Home | History | Annotate | Download | only in optimizing
      1 /*
      2  * Copyright (C) 2016 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "instruction_builder.h"
     18 
     19 #include "bytecode_utils.h"
     20 #include "class_linker.h"
     21 #include "driver/compiler_options.h"
     22 #include "scoped_thread_state_change.h"
     23 
     24 namespace art {
     25 
     26 void HInstructionBuilder::MaybeRecordStat(MethodCompilationStat compilation_stat) {
     27   if (compilation_stats_ != nullptr) {
     28     compilation_stats_->RecordStat(compilation_stat);
     29   }
     30 }
     31 
     32 HBasicBlock* HInstructionBuilder::FindBlockStartingAt(uint32_t dex_pc) const {
     33   return block_builder_->GetBlockAt(dex_pc);
     34 }
     35 
     36 ArenaVector<HInstruction*>* HInstructionBuilder::GetLocalsFor(HBasicBlock* block) {
     37   ArenaVector<HInstruction*>* locals = &locals_for_[block->GetBlockId()];
     38   const size_t vregs = graph_->GetNumberOfVRegs();
     39   if (locals->size() != vregs) {
     40     locals->resize(vregs, nullptr);
     41 
     42     if (block->IsCatchBlock()) {
     43       // We record incoming inputs of catch phis at throwing instructions and
     44       // must therefore eagerly create the phis. Phis for undefined vregs will
     45       // be deleted when the first throwing instruction with the vreg undefined
     46       // is encountered. Unused phis will be removed by dead phi analysis.
     47       for (size_t i = 0; i < vregs; ++i) {
     48         // No point in creating the catch phi if it is already undefined at
     49         // the first throwing instruction.
     50         HInstruction* current_local_value = (*current_locals_)[i];
     51         if (current_local_value != nullptr) {
     52           HPhi* phi = new (arena_) HPhi(
     53               arena_,
     54               i,
     55               0,
     56               current_local_value->GetType());
     57           block->AddPhi(phi);
     58           (*locals)[i] = phi;
     59         }
     60       }
     61     }
     62   }
     63   return locals;
     64 }
     65 
     66 HInstruction* HInstructionBuilder::ValueOfLocalAt(HBasicBlock* block, size_t local) {
     67   ArenaVector<HInstruction*>* locals = GetLocalsFor(block);
     68   return (*locals)[local];
     69 }
     70 
     71 void HInstructionBuilder::InitializeBlockLocals() {
     72   current_locals_ = GetLocalsFor(current_block_);
     73 
     74   if (current_block_->IsCatchBlock()) {
     75     // Catch phis were already created and inputs collected from throwing sites.
     76     if (kIsDebugBuild) {
     77       // Make sure there was at least one throwing instruction which initialized
     78       // locals (guaranteed by HGraphBuilder) and that all try blocks have been
     79       // visited already (from HTryBoundary scoping and reverse post order).
     80       bool catch_block_visited = false;
     81       for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
     82         HBasicBlock* current = it.Current();
     83         if (current == current_block_) {
     84           catch_block_visited = true;
     85         } else if (current->IsTryBlock()) {
     86           const HTryBoundary& try_entry = current->GetTryCatchInformation()->GetTryEntry();
     87           if (try_entry.HasExceptionHandler(*current_block_)) {
     88             DCHECK(!catch_block_visited) << "Catch block visited before its try block.";
     89           }
     90         }
     91       }
     92       DCHECK_EQ(current_locals_->size(), graph_->GetNumberOfVRegs())
     93           << "No instructions throwing into a live catch block.";
     94     }
     95   } else if (current_block_->IsLoopHeader()) {
     96     // If the block is a loop header, we know we only have visited the pre header
     97     // because we are visiting in reverse post order. We create phis for all initialized
     98     // locals from the pre header. Their inputs will be populated at the end of
     99     // the analysis.
    100     for (size_t local = 0; local < current_locals_->size(); ++local) {
    101       HInstruction* incoming =
    102           ValueOfLocalAt(current_block_->GetLoopInformation()->GetPreHeader(), local);
    103       if (incoming != nullptr) {
    104         HPhi* phi = new (arena_) HPhi(
    105             arena_,
    106             local,
    107             0,
    108             incoming->GetType());
    109         current_block_->AddPhi(phi);
    110         (*current_locals_)[local] = phi;
    111       }
    112     }
    113 
    114     // Save the loop header so that the last phase of the analysis knows which
    115     // blocks need to be updated.
    116     loop_headers_.push_back(current_block_);
    117   } else if (current_block_->GetPredecessors().size() > 0) {
    118     // All predecessors have already been visited because we are visiting in reverse post order.
    119     // We merge the values of all locals, creating phis if those values differ.
    120     for (size_t local = 0; local < current_locals_->size(); ++local) {
    121       bool one_predecessor_has_no_value = false;
    122       bool is_different = false;
    123       HInstruction* value = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
    124 
    125       for (HBasicBlock* predecessor : current_block_->GetPredecessors()) {
    126         HInstruction* current = ValueOfLocalAt(predecessor, local);
    127         if (current == nullptr) {
    128           one_predecessor_has_no_value = true;
    129           break;
    130         } else if (current != value) {
    131           is_different = true;
    132         }
    133       }
    134 
    135       if (one_predecessor_has_no_value) {
    136         // If one predecessor has no value for this local, we trust the verifier has
    137         // successfully checked that there is a store dominating any read after this block.
    138         continue;
    139       }
    140 
    141       if (is_different) {
    142         HInstruction* first_input = ValueOfLocalAt(current_block_->GetPredecessors()[0], local);
    143         HPhi* phi = new (arena_) HPhi(
    144             arena_,
    145             local,
    146             current_block_->GetPredecessors().size(),
    147             first_input->GetType());
    148         for (size_t i = 0; i < current_block_->GetPredecessors().size(); i++) {
    149           HInstruction* pred_value = ValueOfLocalAt(current_block_->GetPredecessors()[i], local);
    150           phi->SetRawInputAt(i, pred_value);
    151         }
    152         current_block_->AddPhi(phi);
    153         value = phi;
    154       }
    155       (*current_locals_)[local] = value;
    156     }
    157   }
    158 }
    159 
    160 void HInstructionBuilder::PropagateLocalsToCatchBlocks() {
    161   const HTryBoundary& try_entry = current_block_->GetTryCatchInformation()->GetTryEntry();
    162   for (HBasicBlock* catch_block : try_entry.GetExceptionHandlers()) {
    163     ArenaVector<HInstruction*>* handler_locals = GetLocalsFor(catch_block);
    164     DCHECK_EQ(handler_locals->size(), current_locals_->size());
    165     for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
    166       HInstruction* handler_value = (*handler_locals)[vreg];
    167       if (handler_value == nullptr) {
    168         // Vreg was undefined at a previously encountered throwing instruction
    169         // and the catch phi was deleted. Do not record the local value.
    170         continue;
    171       }
    172       DCHECK(handler_value->IsPhi());
    173 
    174       HInstruction* local_value = (*current_locals_)[vreg];
    175       if (local_value == nullptr) {
    176         // This is the first instruction throwing into `catch_block` where
    177         // `vreg` is undefined. Delete the catch phi.
    178         catch_block->RemovePhi(handler_value->AsPhi());
    179         (*handler_locals)[vreg] = nullptr;
    180       } else {
    181         // Vreg has been defined at all instructions throwing into `catch_block`
    182         // encountered so far. Record the local value in the catch phi.
    183         handler_value->AsPhi()->AddInput(local_value);
    184       }
    185     }
    186   }
    187 }
    188 
    189 void HInstructionBuilder::AppendInstruction(HInstruction* instruction) {
    190   current_block_->AddInstruction(instruction);
    191   InitializeInstruction(instruction);
    192 }
    193 
    194 void HInstructionBuilder::InsertInstructionAtTop(HInstruction* instruction) {
    195   if (current_block_->GetInstructions().IsEmpty()) {
    196     current_block_->AddInstruction(instruction);
    197   } else {
    198     current_block_->InsertInstructionBefore(instruction, current_block_->GetFirstInstruction());
    199   }
    200   InitializeInstruction(instruction);
    201 }
    202 
    203 void HInstructionBuilder::InitializeInstruction(HInstruction* instruction) {
    204   if (instruction->NeedsEnvironment()) {
    205     HEnvironment* environment = new (arena_) HEnvironment(
    206         arena_,
    207         current_locals_->size(),
    208         graph_->GetDexFile(),
    209         graph_->GetMethodIdx(),
    210         instruction->GetDexPc(),
    211         graph_->GetInvokeType(),
    212         instruction);
    213     environment->CopyFrom(*current_locals_);
    214     instruction->SetRawEnvironment(environment);
    215   }
    216 }
    217 
    218 HInstruction* HInstructionBuilder::LoadNullCheckedLocal(uint32_t register_index, uint32_t dex_pc) {
    219   HInstruction* ref = LoadLocal(register_index, Primitive::kPrimNot);
    220   if (!ref->CanBeNull()) {
    221     return ref;
    222   }
    223 
    224   HNullCheck* null_check = new (arena_) HNullCheck(ref, dex_pc);
    225   AppendInstruction(null_check);
    226   return null_check;
    227 }
    228 
    229 void HInstructionBuilder::SetLoopHeaderPhiInputs() {
    230   for (size_t i = loop_headers_.size(); i > 0; --i) {
    231     HBasicBlock* block = loop_headers_[i - 1];
    232     for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
    233       HPhi* phi = it.Current()->AsPhi();
    234       size_t vreg = phi->GetRegNumber();
    235       for (HBasicBlock* predecessor : block->GetPredecessors()) {
    236         HInstruction* value = ValueOfLocalAt(predecessor, vreg);
    237         if (value == nullptr) {
    238           // Vreg is undefined at this predecessor. Mark it dead and leave with
    239           // fewer inputs than predecessors. SsaChecker will fail if not removed.
    240           phi->SetDead();
    241           break;
    242         } else {
    243           phi->AddInput(value);
    244         }
    245       }
    246     }
    247   }
    248 }
    249 
    250 static bool IsBlockPopulated(HBasicBlock* block) {
    251   if (block->IsLoopHeader()) {
    252     // Suspend checks were inserted into loop headers during building of dominator tree.
    253     DCHECK(block->GetFirstInstruction()->IsSuspendCheck());
    254     return block->GetFirstInstruction() != block->GetLastInstruction();
    255   } else {
    256     return !block->GetInstructions().IsEmpty();
    257   }
    258 }
    259 
    260 bool HInstructionBuilder::Build() {
    261   locals_for_.resize(graph_->GetBlocks().size(),
    262                      ArenaVector<HInstruction*>(arena_->Adapter(kArenaAllocGraphBuilder)));
    263 
    264   // Find locations where we want to generate extra stackmaps for native debugging.
    265   // This allows us to generate the info only at interesting points (for example,
    266   // at start of java statement) rather than before every dex instruction.
    267   const bool native_debuggable = compiler_driver_ != nullptr &&
    268                                  compiler_driver_->GetCompilerOptions().GetNativeDebuggable();
    269   ArenaBitVector* native_debug_info_locations = nullptr;
    270   if (native_debuggable) {
    271     const uint32_t num_instructions = code_item_.insns_size_in_code_units_;
    272     native_debug_info_locations = new (arena_) ArenaBitVector (arena_, num_instructions, false);
    273     FindNativeDebugInfoLocations(native_debug_info_locations);
    274   }
    275 
    276   for (HReversePostOrderIterator block_it(*graph_); !block_it.Done(); block_it.Advance()) {
    277     current_block_ = block_it.Current();
    278     uint32_t block_dex_pc = current_block_->GetDexPc();
    279 
    280     InitializeBlockLocals();
    281 
    282     if (current_block_->IsEntryBlock()) {
    283       InitializeParameters();
    284       AppendInstruction(new (arena_) HSuspendCheck(0u));
    285       AppendInstruction(new (arena_) HGoto(0u));
    286       continue;
    287     } else if (current_block_->IsExitBlock()) {
    288       AppendInstruction(new (arena_) HExit());
    289       continue;
    290     } else if (current_block_->IsLoopHeader()) {
    291       HSuspendCheck* suspend_check = new (arena_) HSuspendCheck(current_block_->GetDexPc());
    292       current_block_->GetLoopInformation()->SetSuspendCheck(suspend_check);
    293       // This is slightly odd because the loop header might not be empty (TryBoundary).
    294       // But we're still creating the environment with locals from the top of the block.
    295       InsertInstructionAtTop(suspend_check);
    296     }
    297 
    298     if (block_dex_pc == kNoDexPc || current_block_ != block_builder_->GetBlockAt(block_dex_pc)) {
    299       // Synthetic block that does not need to be populated.
    300       DCHECK(IsBlockPopulated(current_block_));
    301       continue;
    302     }
    303 
    304     DCHECK(!IsBlockPopulated(current_block_));
    305 
    306     for (CodeItemIterator it(code_item_, block_dex_pc); !it.Done(); it.Advance()) {
    307       if (current_block_ == nullptr) {
    308         // The previous instruction ended this block.
    309         break;
    310       }
    311 
    312       uint32_t dex_pc = it.CurrentDexPc();
    313       if (dex_pc != block_dex_pc && FindBlockStartingAt(dex_pc) != nullptr) {
    314         // This dex_pc starts a new basic block.
    315         break;
    316       }
    317 
    318       if (current_block_->IsTryBlock() && IsThrowingDexInstruction(it.CurrentInstruction())) {
    319         PropagateLocalsToCatchBlocks();
    320       }
    321 
    322       if (native_debuggable && native_debug_info_locations->IsBitSet(dex_pc)) {
    323         AppendInstruction(new (arena_) HNativeDebugInfo(dex_pc));
    324       }
    325 
    326       if (!ProcessDexInstruction(it.CurrentInstruction(), dex_pc)) {
    327         return false;
    328       }
    329     }
    330 
    331     if (current_block_ != nullptr) {
    332       // Branching instructions clear current_block, so we know the last
    333       // instruction of the current block is not a branching instruction.
    334       // We add an unconditional Goto to the next block.
    335       DCHECK_EQ(current_block_->GetSuccessors().size(), 1u);
    336       AppendInstruction(new (arena_) HGoto());
    337     }
    338   }
    339 
    340   SetLoopHeaderPhiInputs();
    341 
    342   return true;
    343 }
    344 
    345 void HInstructionBuilder::FindNativeDebugInfoLocations(ArenaBitVector* locations) {
    346   // The callback gets called when the line number changes.
    347   // In other words, it marks the start of new java statement.
    348   struct Callback {
    349     static bool Position(void* ctx, const DexFile::PositionInfo& entry) {
    350       static_cast<ArenaBitVector*>(ctx)->SetBit(entry.address_);
    351       return false;
    352     }
    353   };
    354   dex_file_->DecodeDebugPositionInfo(&code_item_, Callback::Position, locations);
    355   // Instruction-specific tweaks.
    356   const Instruction* const begin = Instruction::At(code_item_.insns_);
    357   const Instruction* const end = begin->RelativeAt(code_item_.insns_size_in_code_units_);
    358   for (const Instruction* inst = begin; inst < end; inst = inst->Next()) {
    359     switch (inst->Opcode()) {
    360       case Instruction::MOVE_EXCEPTION: {
    361         // Stop in native debugger after the exception has been moved.
    362         // The compiler also expects the move at the start of basic block so
    363         // we do not want to interfere by inserting native-debug-info before it.
    364         locations->ClearBit(inst->GetDexPc(code_item_.insns_));
    365         const Instruction* next = inst->Next();
    366         if (next < end) {
    367           locations->SetBit(next->GetDexPc(code_item_.insns_));
    368         }
    369         break;
    370       }
    371       default:
    372         break;
    373     }
    374   }
    375 }
    376 
    377 HInstruction* HInstructionBuilder::LoadLocal(uint32_t reg_number, Primitive::Type type) const {
    378   HInstruction* value = (*current_locals_)[reg_number];
    379   DCHECK(value != nullptr);
    380 
    381   // If the operation requests a specific type, we make sure its input is of that type.
    382   if (type != value->GetType()) {
    383     if (Primitive::IsFloatingPointType(type)) {
    384       return ssa_builder_->GetFloatOrDoubleEquivalent(value, type);
    385     } else if (type == Primitive::kPrimNot) {
    386       return ssa_builder_->GetReferenceTypeEquivalent(value);
    387     }
    388   }
    389 
    390   return value;
    391 }
    392 
    393 void HInstructionBuilder::UpdateLocal(uint32_t reg_number, HInstruction* stored_value) {
    394   Primitive::Type stored_type = stored_value->GetType();
    395   DCHECK_NE(stored_type, Primitive::kPrimVoid);
    396 
    397   // Storing into vreg `reg_number` may implicitly invalidate the surrounding
    398   // registers. Consider the following cases:
    399   // (1) Storing a wide value must overwrite previous values in both `reg_number`
    400   //     and `reg_number+1`. We store `nullptr` in `reg_number+1`.
    401   // (2) If vreg `reg_number-1` holds a wide value, writing into `reg_number`
    402   //     must invalidate it. We store `nullptr` in `reg_number-1`.
    403   // Consequently, storing a wide value into the high vreg of another wide value
    404   // will invalidate both `reg_number-1` and `reg_number+1`.
    405 
    406   if (reg_number != 0) {
    407     HInstruction* local_low = (*current_locals_)[reg_number - 1];
    408     if (local_low != nullptr && Primitive::Is64BitType(local_low->GetType())) {
    409       // The vreg we are storing into was previously the high vreg of a pair.
    410       // We need to invalidate its low vreg.
    411       DCHECK((*current_locals_)[reg_number] == nullptr);
    412       (*current_locals_)[reg_number - 1] = nullptr;
    413     }
    414   }
    415 
    416   (*current_locals_)[reg_number] = stored_value;
    417   if (Primitive::Is64BitType(stored_type)) {
    418     // We are storing a pair. Invalidate the instruction in the high vreg.
    419     (*current_locals_)[reg_number + 1] = nullptr;
    420   }
    421 }
    422 
    423 void HInstructionBuilder::InitializeParameters() {
    424   DCHECK(current_block_->IsEntryBlock());
    425 
    426   // dex_compilation_unit_ is null only when unit testing.
    427   if (dex_compilation_unit_ == nullptr) {
    428     return;
    429   }
    430 
    431   const char* shorty = dex_compilation_unit_->GetShorty();
    432   uint16_t number_of_parameters = graph_->GetNumberOfInVRegs();
    433   uint16_t locals_index = graph_->GetNumberOfLocalVRegs();
    434   uint16_t parameter_index = 0;
    435 
    436   const DexFile::MethodId& referrer_method_id =
    437       dex_file_->GetMethodId(dex_compilation_unit_->GetDexMethodIndex());
    438   if (!dex_compilation_unit_->IsStatic()) {
    439     // Add the implicit 'this' argument, not expressed in the signature.
    440     HParameterValue* parameter = new (arena_) HParameterValue(*dex_file_,
    441                                                               referrer_method_id.class_idx_,
    442                                                               parameter_index++,
    443                                                               Primitive::kPrimNot,
    444                                                               true);
    445     AppendInstruction(parameter);
    446     UpdateLocal(locals_index++, parameter);
    447     number_of_parameters--;
    448   }
    449 
    450   const DexFile::ProtoId& proto = dex_file_->GetMethodPrototype(referrer_method_id);
    451   const DexFile::TypeList* arg_types = dex_file_->GetProtoParameters(proto);
    452   for (int i = 0, shorty_pos = 1; i < number_of_parameters; i++) {
    453     HParameterValue* parameter = new (arena_) HParameterValue(
    454         *dex_file_,
    455         arg_types->GetTypeItem(shorty_pos - 1).type_idx_,
    456         parameter_index++,
    457         Primitive::GetType(shorty[shorty_pos]),
    458         false);
    459     ++shorty_pos;
    460     AppendInstruction(parameter);
    461     // Store the parameter value in the local that the dex code will use
    462     // to reference that parameter.
    463     UpdateLocal(locals_index++, parameter);
    464     if (Primitive::Is64BitType(parameter->GetType())) {
    465       i++;
    466       locals_index++;
    467       parameter_index++;
    468     }
    469   }
    470 }
    471 
    472 template<typename T>
    473 void HInstructionBuilder::If_22t(const Instruction& instruction, uint32_t dex_pc) {
    474   HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
    475   HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    476   T* comparison = new (arena_) T(first, second, dex_pc);
    477   AppendInstruction(comparison);
    478   AppendInstruction(new (arena_) HIf(comparison, dex_pc));
    479   current_block_ = nullptr;
    480 }
    481 
    482 template<typename T>
    483 void HInstructionBuilder::If_21t(const Instruction& instruction, uint32_t dex_pc) {
    484   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
    485   T* comparison = new (arena_) T(value, graph_->GetIntConstant(0, dex_pc), dex_pc);
    486   AppendInstruction(comparison);
    487   AppendInstruction(new (arena_) HIf(comparison, dex_pc));
    488   current_block_ = nullptr;
    489 }
    490 
    491 template<typename T>
    492 void HInstructionBuilder::Unop_12x(const Instruction& instruction,
    493                                    Primitive::Type type,
    494                                    uint32_t dex_pc) {
    495   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    496   AppendInstruction(new (arena_) T(type, first, dex_pc));
    497   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    498 }
    499 
    500 void HInstructionBuilder::Conversion_12x(const Instruction& instruction,
    501                                          Primitive::Type input_type,
    502                                          Primitive::Type result_type,
    503                                          uint32_t dex_pc) {
    504   HInstruction* first = LoadLocal(instruction.VRegB(), input_type);
    505   AppendInstruction(new (arena_) HTypeConversion(result_type, first, dex_pc));
    506   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    507 }
    508 
    509 template<typename T>
    510 void HInstructionBuilder::Binop_23x(const Instruction& instruction,
    511                                     Primitive::Type type,
    512                                     uint32_t dex_pc) {
    513   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    514   HInstruction* second = LoadLocal(instruction.VRegC(), type);
    515   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    516   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    517 }
    518 
    519 template<typename T>
    520 void HInstructionBuilder::Binop_23x_shift(const Instruction& instruction,
    521                                           Primitive::Type type,
    522                                           uint32_t dex_pc) {
    523   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    524   HInstruction* second = LoadLocal(instruction.VRegC(), Primitive::kPrimInt);
    525   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    526   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    527 }
    528 
    529 void HInstructionBuilder::Binop_23x_cmp(const Instruction& instruction,
    530                                         Primitive::Type type,
    531                                         ComparisonBias bias,
    532                                         uint32_t dex_pc) {
    533   HInstruction* first = LoadLocal(instruction.VRegB(), type);
    534   HInstruction* second = LoadLocal(instruction.VRegC(), type);
    535   AppendInstruction(new (arena_) HCompare(type, first, second, bias, dex_pc));
    536   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    537 }
    538 
    539 template<typename T>
    540 void HInstructionBuilder::Binop_12x_shift(const Instruction& instruction,
    541                                           Primitive::Type type,
    542                                           uint32_t dex_pc) {
    543   HInstruction* first = LoadLocal(instruction.VRegA(), type);
    544   HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    545   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    546   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    547 }
    548 
    549 template<typename T>
    550 void HInstructionBuilder::Binop_12x(const Instruction& instruction,
    551                                     Primitive::Type type,
    552                                     uint32_t dex_pc) {
    553   HInstruction* first = LoadLocal(instruction.VRegA(), type);
    554   HInstruction* second = LoadLocal(instruction.VRegB(), type);
    555   AppendInstruction(new (arena_) T(type, first, second, dex_pc));
    556   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    557 }
    558 
    559 template<typename T>
    560 void HInstructionBuilder::Binop_22s(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
    561   HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    562   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22s(), dex_pc);
    563   if (reverse) {
    564     std::swap(first, second);
    565   }
    566   AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
    567   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    568 }
    569 
    570 template<typename T>
    571 void HInstructionBuilder::Binop_22b(const Instruction& instruction, bool reverse, uint32_t dex_pc) {
    572   HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
    573   HInstruction* second = graph_->GetIntConstant(instruction.VRegC_22b(), dex_pc);
    574   if (reverse) {
    575     std::swap(first, second);
    576   }
    577   AppendInstruction(new (arena_) T(Primitive::kPrimInt, first, second, dex_pc));
    578   UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
    579 }
    580 
    581 static bool RequiresConstructorBarrier(const DexCompilationUnit* cu, CompilerDriver* driver) {
    582   Thread* self = Thread::Current();
    583   return cu->IsConstructor()
    584       && driver->RequiresConstructorBarrier(self, cu->GetDexFile(), cu->GetClassDefIndex());
    585 }
    586 
    587 // Returns true if `block` has only one successor which starts at the next
    588 // dex_pc after `instruction` at `dex_pc`.
    589 static bool IsFallthroughInstruction(const Instruction& instruction,
    590                                      uint32_t dex_pc,
    591                                      HBasicBlock* block) {
    592   uint32_t next_dex_pc = dex_pc + instruction.SizeInCodeUnits();
    593   return block->GetSingleSuccessor()->GetDexPc() == next_dex_pc;
    594 }
    595 
    596 void HInstructionBuilder::BuildSwitch(const Instruction& instruction, uint32_t dex_pc) {
    597   HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
    598   DexSwitchTable table(instruction, dex_pc);
    599 
    600   if (table.GetNumEntries() == 0) {
    601     // Empty Switch. Code falls through to the next block.
    602     DCHECK(IsFallthroughInstruction(instruction, dex_pc, current_block_));
    603     AppendInstruction(new (arena_) HGoto(dex_pc));
    604   } else if (table.ShouldBuildDecisionTree()) {
    605     for (DexSwitchTableIterator it(table); !it.Done(); it.Advance()) {
    606       HInstruction* case_value = graph_->GetIntConstant(it.CurrentKey(), dex_pc);
    607       HEqual* comparison = new (arena_) HEqual(value, case_value, dex_pc);
    608       AppendInstruction(comparison);
    609       AppendInstruction(new (arena_) HIf(comparison, dex_pc));
    610 
    611       if (!it.IsLast()) {
    612         current_block_ = FindBlockStartingAt(it.GetDexPcForCurrentIndex());
    613       }
    614     }
    615   } else {
    616     AppendInstruction(
    617         new (arena_) HPackedSwitch(table.GetEntryAt(0), table.GetNumEntries(), value, dex_pc));
    618   }
    619 
    620   current_block_ = nullptr;
    621 }
    622 
    623 void HInstructionBuilder::BuildReturn(const Instruction& instruction,
    624                                       Primitive::Type type,
    625                                       uint32_t dex_pc) {
    626   if (type == Primitive::kPrimVoid) {
    627     if (graph_->ShouldGenerateConstructorBarrier()) {
    628       // The compilation unit is null during testing.
    629       if (dex_compilation_unit_ != nullptr) {
    630         DCHECK(RequiresConstructorBarrier(dex_compilation_unit_, compiler_driver_))
    631           << "Inconsistent use of ShouldGenerateConstructorBarrier. Should not generate a barrier.";
    632       }
    633       AppendInstruction(new (arena_) HMemoryBarrier(kStoreStore, dex_pc));
    634     }
    635     AppendInstruction(new (arena_) HReturnVoid(dex_pc));
    636   } else {
    637     HInstruction* value = LoadLocal(instruction.VRegA(), type);
    638     AppendInstruction(new (arena_) HReturn(value, dex_pc));
    639   }
    640   current_block_ = nullptr;
    641 }
    642 
    643 static InvokeType GetInvokeTypeFromOpCode(Instruction::Code opcode) {
    644   switch (opcode) {
    645     case Instruction::INVOKE_STATIC:
    646     case Instruction::INVOKE_STATIC_RANGE:
    647       return kStatic;
    648     case Instruction::INVOKE_DIRECT:
    649     case Instruction::INVOKE_DIRECT_RANGE:
    650       return kDirect;
    651     case Instruction::INVOKE_VIRTUAL:
    652     case Instruction::INVOKE_VIRTUAL_QUICK:
    653     case Instruction::INVOKE_VIRTUAL_RANGE:
    654     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK:
    655       return kVirtual;
    656     case Instruction::INVOKE_INTERFACE:
    657     case Instruction::INVOKE_INTERFACE_RANGE:
    658       return kInterface;
    659     case Instruction::INVOKE_SUPER_RANGE:
    660     case Instruction::INVOKE_SUPER:
    661       return kSuper;
    662     default:
    663       LOG(FATAL) << "Unexpected invoke opcode: " << opcode;
    664       UNREACHABLE();
    665   }
    666 }
    667 
    668 ArtMethod* HInstructionBuilder::ResolveMethod(uint16_t method_idx, InvokeType invoke_type) {
    669   ScopedObjectAccess soa(Thread::Current());
    670   StackHandleScope<3> hs(soa.Self());
    671 
    672   ClassLinker* class_linker = dex_compilation_unit_->GetClassLinker();
    673   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
    674       soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
    675   Handle<mirror::Class> compiling_class(hs.NewHandle(GetCompilingClass()));
    676   // We fetch the referenced class eagerly (that is, the class pointed by in the MethodId
    677   // at method_idx), as `CanAccessResolvedMethod` expects it be be in the dex cache.
    678   Handle<mirror::Class> methods_class(hs.NewHandle(class_linker->ResolveReferencedClassOfMethod(
    679       method_idx, dex_compilation_unit_->GetDexCache(), class_loader)));
    680 
    681   if (UNLIKELY(methods_class.Get() == nullptr)) {
    682     // Clean up any exception left by type resolution.
    683     soa.Self()->ClearException();
    684     return nullptr;
    685   }
    686 
    687   ArtMethod* resolved_method = class_linker->ResolveMethod<ClassLinker::kForceICCECheck>(
    688       *dex_compilation_unit_->GetDexFile(),
    689       method_idx,
    690       dex_compilation_unit_->GetDexCache(),
    691       class_loader,
    692       /* referrer */ nullptr,
    693       invoke_type);
    694 
    695   if (UNLIKELY(resolved_method == nullptr)) {
    696     // Clean up any exception left by type resolution.
    697     soa.Self()->ClearException();
    698     return nullptr;
    699   }
    700 
    701   // Check access. The class linker has a fast path for looking into the dex cache
    702   // and does not check the access if it hits it.
    703   if (compiling_class.Get() == nullptr) {
    704     if (!resolved_method->IsPublic()) {
    705       return nullptr;
    706     }
    707   } else if (!compiling_class->CanAccessResolvedMethod(resolved_method->GetDeclaringClass(),
    708                                                        resolved_method,
    709                                                        dex_compilation_unit_->GetDexCache().Get(),
    710                                                        method_idx)) {
    711     return nullptr;
    712   }
    713 
    714   // We have to special case the invoke-super case, as ClassLinker::ResolveMethod does not.
    715   // We need to look at the referrer's super class vtable. We need to do this to know if we need to
    716   // make this an invoke-unresolved to handle cross-dex invokes or abstract super methods, both of
    717   // which require runtime handling.
    718   if (invoke_type == kSuper) {
    719     if (compiling_class.Get() == nullptr) {
    720       // We could not determine the method's class we need to wait until runtime.
    721       DCHECK(Runtime::Current()->IsAotCompiler());
    722       return nullptr;
    723     }
    724     if (!methods_class->IsAssignableFrom(compiling_class.Get())) {
    725       // We cannot statically determine the target method. The runtime will throw a
    726       // NoSuchMethodError on this one.
    727       return nullptr;
    728     }
    729     ArtMethod* actual_method;
    730     if (methods_class->IsInterface()) {
    731       actual_method = methods_class->FindVirtualMethodForInterfaceSuper(
    732           resolved_method, class_linker->GetImagePointerSize());
    733     } else {
    734       uint16_t vtable_index = resolved_method->GetMethodIndex();
    735       actual_method = compiling_class->GetSuperClass()->GetVTableEntry(
    736           vtable_index, class_linker->GetImagePointerSize());
    737     }
    738     if (actual_method != resolved_method &&
    739         !IsSameDexFile(*actual_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
    740       // The back-end code generator relies on this check in order to ensure that it will not
    741       // attempt to read the dex_cache with a dex_method_index that is not from the correct
    742       // dex_file. If we didn't do this check then the dex_method_index will not be updated in the
    743       // builder, which means that the code-generator (and compiler driver during sharpening and
    744       // inliner, maybe) might invoke an incorrect method.
    745       // TODO: The actual method could still be referenced in the current dex file, so we
    746       //       could try locating it.
    747       // TODO: Remove the dex_file restriction.
    748       return nullptr;
    749     }
    750     if (!actual_method->IsInvokable()) {
    751       // Fail if the actual method cannot be invoked. Otherwise, the runtime resolution stub
    752       // could resolve the callee to the wrong method.
    753       return nullptr;
    754     }
    755     resolved_method = actual_method;
    756   }
    757 
    758   // Check for incompatible class changes. The class linker has a fast path for
    759   // looking into the dex cache and does not check incompatible class changes if it hits it.
    760   if (resolved_method->CheckIncompatibleClassChange(invoke_type)) {
    761     return nullptr;
    762   }
    763 
    764   return resolved_method;
    765 }
    766 
    767 bool HInstructionBuilder::BuildInvoke(const Instruction& instruction,
    768                                       uint32_t dex_pc,
    769                                       uint32_t method_idx,
    770                                       uint32_t number_of_vreg_arguments,
    771                                       bool is_range,
    772                                       uint32_t* args,
    773                                       uint32_t register_index) {
    774   InvokeType invoke_type = GetInvokeTypeFromOpCode(instruction.Opcode());
    775   const char* descriptor = dex_file_->GetMethodShorty(method_idx);
    776   Primitive::Type return_type = Primitive::GetType(descriptor[0]);
    777 
    778   // Remove the return type from the 'proto'.
    779   size_t number_of_arguments = strlen(descriptor) - 1;
    780   if (invoke_type != kStatic) {  // instance call
    781     // One extra argument for 'this'.
    782     number_of_arguments++;
    783   }
    784 
    785   MethodReference target_method(dex_file_, method_idx);
    786 
    787   // Special handling for string init.
    788   int32_t string_init_offset = 0;
    789   bool is_string_init = compiler_driver_->IsStringInit(method_idx,
    790                                                        dex_file_,
    791                                                        &string_init_offset);
    792   // Replace calls to String.<init> with StringFactory.
    793   if (is_string_init) {
    794     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
    795         HInvokeStaticOrDirect::MethodLoadKind::kStringInit,
    796         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
    797         dchecked_integral_cast<uint64_t>(string_init_offset),
    798         0U
    799     };
    800     HInvoke* invoke = new (arena_) HInvokeStaticOrDirect(
    801         arena_,
    802         number_of_arguments - 1,
    803         Primitive::kPrimNot /*return_type */,
    804         dex_pc,
    805         method_idx,
    806         target_method,
    807         dispatch_info,
    808         invoke_type,
    809         kStatic /* optimized_invoke_type */,
    810         HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit);
    811     return HandleStringInit(invoke,
    812                             number_of_vreg_arguments,
    813                             args,
    814                             register_index,
    815                             is_range,
    816                             descriptor);
    817   }
    818 
    819   ArtMethod* resolved_method = ResolveMethod(method_idx, invoke_type);
    820 
    821   if (UNLIKELY(resolved_method == nullptr)) {
    822     MaybeRecordStat(MethodCompilationStat::kUnresolvedMethod);
    823     HInvoke* invoke = new (arena_) HInvokeUnresolved(arena_,
    824                                                      number_of_arguments,
    825                                                      return_type,
    826                                                      dex_pc,
    827                                                      method_idx,
    828                                                      invoke_type);
    829     return HandleInvoke(invoke,
    830                         number_of_vreg_arguments,
    831                         args,
    832                         register_index,
    833                         is_range,
    834                         descriptor,
    835                         nullptr /* clinit_check */);
    836   }
    837 
    838   // Potential class initialization check, in the case of a static method call.
    839   HClinitCheck* clinit_check = nullptr;
    840   HInvoke* invoke = nullptr;
    841   if (invoke_type == kDirect || invoke_type == kStatic || invoke_type == kSuper) {
    842     // By default, consider that the called method implicitly requires
    843     // an initialization check of its declaring method.
    844     HInvokeStaticOrDirect::ClinitCheckRequirement clinit_check_requirement
    845         = HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit;
    846     ScopedObjectAccess soa(Thread::Current());
    847     if (invoke_type == kStatic) {
    848       clinit_check = ProcessClinitCheckForInvoke(
    849           dex_pc, resolved_method, method_idx, &clinit_check_requirement);
    850     } else if (invoke_type == kSuper) {
    851       if (IsSameDexFile(*resolved_method->GetDexFile(), *dex_compilation_unit_->GetDexFile())) {
    852         // Update the target method to the one resolved. Note that this may be a no-op if
    853         // we resolved to the method referenced by the instruction.
    854         method_idx = resolved_method->GetDexMethodIndex();
    855         target_method = MethodReference(dex_file_, method_idx);
    856       }
    857     }
    858 
    859     HInvokeStaticOrDirect::DispatchInfo dispatch_info = {
    860         HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod,
    861         HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
    862         0u,
    863         0U
    864     };
    865     invoke = new (arena_) HInvokeStaticOrDirect(arena_,
    866                                                 number_of_arguments,
    867                                                 return_type,
    868                                                 dex_pc,
    869                                                 method_idx,
    870                                                 target_method,
    871                                                 dispatch_info,
    872                                                 invoke_type,
    873                                                 invoke_type,
    874                                                 clinit_check_requirement);
    875   } else if (invoke_type == kVirtual) {
    876     ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
    877     invoke = new (arena_) HInvokeVirtual(arena_,
    878                                          number_of_arguments,
    879                                          return_type,
    880                                          dex_pc,
    881                                          method_idx,
    882                                          resolved_method->GetMethodIndex());
    883   } else {
    884     DCHECK_EQ(invoke_type, kInterface);
    885     ScopedObjectAccess soa(Thread::Current());  // Needed for the method index
    886     invoke = new (arena_) HInvokeInterface(arena_,
    887                                            number_of_arguments,
    888                                            return_type,
    889                                            dex_pc,
    890                                            method_idx,
    891                                            resolved_method->GetDexMethodIndex());
    892   }
    893 
    894   return HandleInvoke(invoke,
    895                       number_of_vreg_arguments,
    896                       args,
    897                       register_index,
    898                       is_range,
    899                       descriptor,
    900                       clinit_check);
    901 }
    902 
    903 bool HInstructionBuilder::BuildNewInstance(uint16_t type_index, uint32_t dex_pc) {
    904   ScopedObjectAccess soa(Thread::Current());
    905   StackHandleScope<1> hs(soa.Self());
    906   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
    907   Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
    908   const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
    909   Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache();
    910 
    911   bool finalizable;
    912   bool can_throw = NeedsAccessCheck(type_index, dex_cache, &finalizable);
    913 
    914   // Only the non-resolved entrypoint handles the finalizable class case. If we
    915   // need access checks, then we haven't resolved the method and the class may
    916   // again be finalizable.
    917   QuickEntrypointEnum entrypoint = (finalizable || can_throw)
    918       ? kQuickAllocObject
    919       : kQuickAllocObjectInitialized;
    920 
    921   if (outer_dex_cache.Get() != dex_cache.Get()) {
    922     // We currently do not support inlining allocations across dex files.
    923     return false;
    924   }
    925 
    926   HLoadClass* load_class = new (arena_) HLoadClass(
    927       graph_->GetCurrentMethod(),
    928       type_index,
    929       outer_dex_file,
    930       IsOutermostCompilingClass(type_index),
    931       dex_pc,
    932       /*needs_access_check*/ can_throw,
    933       compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_cache, type_index));
    934 
    935   AppendInstruction(load_class);
    936   HInstruction* cls = load_class;
    937   if (!IsInitialized(resolved_class)) {
    938     cls = new (arena_) HClinitCheck(load_class, dex_pc);
    939     AppendInstruction(cls);
    940   }
    941 
    942   AppendInstruction(new (arena_) HNewInstance(
    943       cls,
    944       graph_->GetCurrentMethod(),
    945       dex_pc,
    946       type_index,
    947       *dex_compilation_unit_->GetDexFile(),
    948       can_throw,
    949       finalizable,
    950       entrypoint));
    951   return true;
    952 }
    953 
    954 static bool IsSubClass(mirror::Class* to_test, mirror::Class* super_class)
    955     SHARED_REQUIRES(Locks::mutator_lock_) {
    956   return to_test != nullptr && !to_test->IsInterface() && to_test->IsSubClass(super_class);
    957 }
    958 
    959 bool HInstructionBuilder::IsInitialized(Handle<mirror::Class> cls) const {
    960   if (cls.Get() == nullptr) {
    961     return false;
    962   }
    963 
    964   // `CanAssumeClassIsLoaded` will return true if we're JITting, or will
    965   // check whether the class is in an image for the AOT compilation.
    966   if (cls->IsInitialized() &&
    967       compiler_driver_->CanAssumeClassIsLoaded(cls.Get())) {
    968     return true;
    969   }
    970 
    971   if (IsSubClass(GetOutermostCompilingClass(), cls.Get())) {
    972     return true;
    973   }
    974 
    975   // TODO: We should walk over the inlined methods, but we don't pass
    976   //       that information to the builder.
    977   if (IsSubClass(GetCompilingClass(), cls.Get())) {
    978     return true;
    979   }
    980 
    981   return false;
    982 }
    983 
    984 HClinitCheck* HInstructionBuilder::ProcessClinitCheckForInvoke(
    985       uint32_t dex_pc,
    986       ArtMethod* resolved_method,
    987       uint32_t method_idx,
    988       HInvokeStaticOrDirect::ClinitCheckRequirement* clinit_check_requirement) {
    989   const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
    990   Thread* self = Thread::Current();
    991   StackHandleScope<2> hs(self);
    992   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
    993   Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache();
    994   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
    995   Handle<mirror::Class> resolved_method_class(hs.NewHandle(resolved_method->GetDeclaringClass()));
    996 
    997   // The index at which the method's class is stored in the DexCache's type array.
    998   uint32_t storage_index = DexFile::kDexNoIndex;
    999   bool is_outer_class = (resolved_method->GetDeclaringClass() == outer_class.Get());
   1000   if (is_outer_class) {
   1001     storage_index = outer_class->GetDexTypeIndex();
   1002   } else if (outer_dex_cache.Get() == dex_cache.Get()) {
   1003     // Get `storage_index` from IsClassOfStaticMethodAvailableToReferrer.
   1004     compiler_driver_->IsClassOfStaticMethodAvailableToReferrer(outer_dex_cache.Get(),
   1005                                                                GetCompilingClass(),
   1006                                                                resolved_method,
   1007                                                                method_idx,
   1008                                                                &storage_index);
   1009   }
   1010 
   1011   HClinitCheck* clinit_check = nullptr;
   1012 
   1013   if (IsInitialized(resolved_method_class)) {
   1014     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kNone;
   1015   } else if (storage_index != DexFile::kDexNoIndex) {
   1016     *clinit_check_requirement = HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit;
   1017     HLoadClass* load_class = new (arena_) HLoadClass(
   1018         graph_->GetCurrentMethod(),
   1019         storage_index,
   1020         outer_dex_file,
   1021         is_outer_class,
   1022         dex_pc,
   1023         /*needs_access_check*/ false,
   1024         compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_cache, storage_index));
   1025     AppendInstruction(load_class);
   1026     clinit_check = new (arena_) HClinitCheck(load_class, dex_pc);
   1027     AppendInstruction(clinit_check);
   1028   }
   1029   return clinit_check;
   1030 }
   1031 
   1032 bool HInstructionBuilder::SetupInvokeArguments(HInvoke* invoke,
   1033                                                uint32_t number_of_vreg_arguments,
   1034                                                uint32_t* args,
   1035                                                uint32_t register_index,
   1036                                                bool is_range,
   1037                                                const char* descriptor,
   1038                                                size_t start_index,
   1039                                                size_t* argument_index) {
   1040   uint32_t descriptor_index = 1;  // Skip the return type.
   1041 
   1042   for (size_t i = start_index;
   1043        // Make sure we don't go over the expected arguments or over the number of
   1044        // dex registers given. If the instruction was seen as dead by the verifier,
   1045        // it hasn't been properly checked.
   1046        (i < number_of_vreg_arguments) && (*argument_index < invoke->GetNumberOfArguments());
   1047        i++, (*argument_index)++) {
   1048     Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
   1049     bool is_wide = (type == Primitive::kPrimLong) || (type == Primitive::kPrimDouble);
   1050     if (!is_range
   1051         && is_wide
   1052         && ((i + 1 == number_of_vreg_arguments) || (args[i] + 1 != args[i + 1]))) {
   1053       // Longs and doubles should be in pairs, that is, sequential registers. The verifier should
   1054       // reject any class where this is violated. However, the verifier only does these checks
   1055       // on non trivially dead instructions, so we just bailout the compilation.
   1056       VLOG(compiler) << "Did not compile "
   1057                      << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
   1058                      << " because of non-sequential dex register pair in wide argument";
   1059       MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
   1060       return false;
   1061     }
   1062     HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
   1063     invoke->SetArgumentAt(*argument_index, arg);
   1064     if (is_wide) {
   1065       i++;
   1066     }
   1067   }
   1068 
   1069   if (*argument_index != invoke->GetNumberOfArguments()) {
   1070     VLOG(compiler) << "Did not compile "
   1071                    << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
   1072                    << " because of wrong number of arguments in invoke instruction";
   1073     MaybeRecordStat(MethodCompilationStat::kNotCompiledMalformedOpcode);
   1074     return false;
   1075   }
   1076 
   1077   if (invoke->IsInvokeStaticOrDirect() &&
   1078       HInvokeStaticOrDirect::NeedsCurrentMethodInput(
   1079           invoke->AsInvokeStaticOrDirect()->GetMethodLoadKind())) {
   1080     invoke->SetArgumentAt(*argument_index, graph_->GetCurrentMethod());
   1081     (*argument_index)++;
   1082   }
   1083 
   1084   return true;
   1085 }
   1086 
   1087 bool HInstructionBuilder::HandleInvoke(HInvoke* invoke,
   1088                                        uint32_t number_of_vreg_arguments,
   1089                                        uint32_t* args,
   1090                                        uint32_t register_index,
   1091                                        bool is_range,
   1092                                        const char* descriptor,
   1093                                        HClinitCheck* clinit_check) {
   1094   DCHECK(!invoke->IsInvokeStaticOrDirect() || !invoke->AsInvokeStaticOrDirect()->IsStringInit());
   1095 
   1096   size_t start_index = 0;
   1097   size_t argument_index = 0;
   1098   if (invoke->GetOriginalInvokeType() != InvokeType::kStatic) {  // Instance call.
   1099     HInstruction* arg = LoadNullCheckedLocal(is_range ? register_index : args[0],
   1100                                              invoke->GetDexPc());
   1101     invoke->SetArgumentAt(0, arg);
   1102     start_index = 1;
   1103     argument_index = 1;
   1104   }
   1105 
   1106   if (!SetupInvokeArguments(invoke,
   1107                             number_of_vreg_arguments,
   1108                             args,
   1109                             register_index,
   1110                             is_range,
   1111                             descriptor,
   1112                             start_index,
   1113                             &argument_index)) {
   1114     return false;
   1115   }
   1116 
   1117   if (clinit_check != nullptr) {
   1118     // Add the class initialization check as last input of `invoke`.
   1119     DCHECK(invoke->IsInvokeStaticOrDirect());
   1120     DCHECK(invoke->AsInvokeStaticOrDirect()->GetClinitCheckRequirement()
   1121         == HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit);
   1122     invoke->SetArgumentAt(argument_index, clinit_check);
   1123     argument_index++;
   1124   }
   1125 
   1126   AppendInstruction(invoke);
   1127   latest_result_ = invoke;
   1128 
   1129   return true;
   1130 }
   1131 
   1132 bool HInstructionBuilder::HandleStringInit(HInvoke* invoke,
   1133                                            uint32_t number_of_vreg_arguments,
   1134                                            uint32_t* args,
   1135                                            uint32_t register_index,
   1136                                            bool is_range,
   1137                                            const char* descriptor) {
   1138   DCHECK(invoke->IsInvokeStaticOrDirect());
   1139   DCHECK(invoke->AsInvokeStaticOrDirect()->IsStringInit());
   1140 
   1141   size_t start_index = 1;
   1142   size_t argument_index = 0;
   1143   if (!SetupInvokeArguments(invoke,
   1144                             number_of_vreg_arguments,
   1145                             args,
   1146                             register_index,
   1147                             is_range,
   1148                             descriptor,
   1149                             start_index,
   1150                             &argument_index)) {
   1151     return false;
   1152   }
   1153 
   1154   AppendInstruction(invoke);
   1155 
   1156   // This is a StringFactory call, not an actual String constructor. Its result
   1157   // replaces the empty String pre-allocated by NewInstance.
   1158   uint32_t orig_this_reg = is_range ? register_index : args[0];
   1159   HInstruction* arg_this = LoadLocal(orig_this_reg, Primitive::kPrimNot);
   1160 
   1161   // Replacing the NewInstance might render it redundant. Keep a list of these
   1162   // to be visited once it is clear whether it is has remaining uses.
   1163   if (arg_this->IsNewInstance()) {
   1164     ssa_builder_->AddUninitializedString(arg_this->AsNewInstance());
   1165   } else {
   1166     DCHECK(arg_this->IsPhi());
   1167     // NewInstance is not the direct input of the StringFactory call. It might
   1168     // be redundant but optimizing this case is not worth the effort.
   1169   }
   1170 
   1171   // Walk over all vregs and replace any occurrence of `arg_this` with `invoke`.
   1172   for (size_t vreg = 0, e = current_locals_->size(); vreg < e; ++vreg) {
   1173     if ((*current_locals_)[vreg] == arg_this) {
   1174       (*current_locals_)[vreg] = invoke;
   1175     }
   1176   }
   1177 
   1178   return true;
   1179 }
   1180 
   1181 static Primitive::Type GetFieldAccessType(const DexFile& dex_file, uint16_t field_index) {
   1182   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_index);
   1183   const char* type = dex_file.GetFieldTypeDescriptor(field_id);
   1184   return Primitive::GetType(type[0]);
   1185 }
   1186 
   1187 bool HInstructionBuilder::BuildInstanceFieldAccess(const Instruction& instruction,
   1188                                                    uint32_t dex_pc,
   1189                                                    bool is_put) {
   1190   uint32_t source_or_dest_reg = instruction.VRegA_22c();
   1191   uint32_t obj_reg = instruction.VRegB_22c();
   1192   uint16_t field_index;
   1193   if (instruction.IsQuickened()) {
   1194     if (!CanDecodeQuickenedInfo()) {
   1195       return false;
   1196     }
   1197     field_index = LookupQuickenedInfo(dex_pc);
   1198   } else {
   1199     field_index = instruction.VRegC_22c();
   1200   }
   1201 
   1202   ScopedObjectAccess soa(Thread::Current());
   1203   ArtField* resolved_field =
   1204       compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa);
   1205 
   1206 
   1207   HInstruction* object = LoadNullCheckedLocal(obj_reg, dex_pc);
   1208 
   1209   Primitive::Type field_type = (resolved_field == nullptr)
   1210       ? GetFieldAccessType(*dex_file_, field_index)
   1211       : resolved_field->GetTypeAsPrimitiveType();
   1212   if (is_put) {
   1213     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1214     HInstruction* field_set = nullptr;
   1215     if (resolved_field == nullptr) {
   1216       MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
   1217       field_set = new (arena_) HUnresolvedInstanceFieldSet(object,
   1218                                                            value,
   1219                                                            field_type,
   1220                                                            field_index,
   1221                                                            dex_pc);
   1222     } else {
   1223       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
   1224       field_set = new (arena_) HInstanceFieldSet(object,
   1225                                                  value,
   1226                                                  field_type,
   1227                                                  resolved_field->GetOffset(),
   1228                                                  resolved_field->IsVolatile(),
   1229                                                  field_index,
   1230                                                  class_def_index,
   1231                                                  *dex_file_,
   1232                                                  dex_compilation_unit_->GetDexCache(),
   1233                                                  dex_pc);
   1234     }
   1235     AppendInstruction(field_set);
   1236   } else {
   1237     HInstruction* field_get = nullptr;
   1238     if (resolved_field == nullptr) {
   1239       MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
   1240       field_get = new (arena_) HUnresolvedInstanceFieldGet(object,
   1241                                                            field_type,
   1242                                                            field_index,
   1243                                                            dex_pc);
   1244     } else {
   1245       uint16_t class_def_index = resolved_field->GetDeclaringClass()->GetDexClassDefIndex();
   1246       field_get = new (arena_) HInstanceFieldGet(object,
   1247                                                  field_type,
   1248                                                  resolved_field->GetOffset(),
   1249                                                  resolved_field->IsVolatile(),
   1250                                                  field_index,
   1251                                                  class_def_index,
   1252                                                  *dex_file_,
   1253                                                  dex_compilation_unit_->GetDexCache(),
   1254                                                  dex_pc);
   1255     }
   1256     AppendInstruction(field_get);
   1257     UpdateLocal(source_or_dest_reg, field_get);
   1258   }
   1259 
   1260   return true;
   1261 }
   1262 
   1263 static mirror::Class* GetClassFrom(CompilerDriver* driver,
   1264                                    const DexCompilationUnit& compilation_unit) {
   1265   ScopedObjectAccess soa(Thread::Current());
   1266   StackHandleScope<1> hs(soa.Self());
   1267   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
   1268       soa.Decode<mirror::ClassLoader*>(compilation_unit.GetClassLoader())));
   1269   Handle<mirror::DexCache> dex_cache = compilation_unit.GetDexCache();
   1270 
   1271   return driver->ResolveCompilingMethodsClass(soa, dex_cache, class_loader, &compilation_unit);
   1272 }
   1273 
   1274 mirror::Class* HInstructionBuilder::GetOutermostCompilingClass() const {
   1275   return GetClassFrom(compiler_driver_, *outer_compilation_unit_);
   1276 }
   1277 
   1278 mirror::Class* HInstructionBuilder::GetCompilingClass() const {
   1279   return GetClassFrom(compiler_driver_, *dex_compilation_unit_);
   1280 }
   1281 
   1282 bool HInstructionBuilder::IsOutermostCompilingClass(uint16_t type_index) const {
   1283   ScopedObjectAccess soa(Thread::Current());
   1284   StackHandleScope<3> hs(soa.Self());
   1285   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   1286   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
   1287       soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
   1288   Handle<mirror::Class> cls(hs.NewHandle(compiler_driver_->ResolveClass(
   1289       soa, dex_cache, class_loader, type_index, dex_compilation_unit_)));
   1290   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
   1291 
   1292   // GetOutermostCompilingClass returns null when the class is unresolved
   1293   // (e.g. if it derives from an unresolved class). This is bogus knowing that
   1294   // we are compiling it.
   1295   // When this happens we cannot establish a direct relation between the current
   1296   // class and the outer class, so we return false.
   1297   // (Note that this is only used for optimizing invokes and field accesses)
   1298   return (cls.Get() != nullptr) && (outer_class.Get() == cls.Get());
   1299 }
   1300 
   1301 void HInstructionBuilder::BuildUnresolvedStaticFieldAccess(const Instruction& instruction,
   1302                                                      uint32_t dex_pc,
   1303                                                      bool is_put,
   1304                                                      Primitive::Type field_type) {
   1305   uint32_t source_or_dest_reg = instruction.VRegA_21c();
   1306   uint16_t field_index = instruction.VRegB_21c();
   1307 
   1308   if (is_put) {
   1309     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1310     AppendInstruction(
   1311         new (arena_) HUnresolvedStaticFieldSet(value, field_type, field_index, dex_pc));
   1312   } else {
   1313     AppendInstruction(new (arena_) HUnresolvedStaticFieldGet(field_type, field_index, dex_pc));
   1314     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1315   }
   1316 }
   1317 
   1318 bool HInstructionBuilder::BuildStaticFieldAccess(const Instruction& instruction,
   1319                                                  uint32_t dex_pc,
   1320                                                  bool is_put) {
   1321   uint32_t source_or_dest_reg = instruction.VRegA_21c();
   1322   uint16_t field_index = instruction.VRegB_21c();
   1323 
   1324   ScopedObjectAccess soa(Thread::Current());
   1325   StackHandleScope<3> hs(soa.Self());
   1326   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   1327   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
   1328       soa.Decode<mirror::ClassLoader*>(dex_compilation_unit_->GetClassLoader())));
   1329   ArtField* resolved_field = compiler_driver_->ResolveField(
   1330       soa, dex_cache, class_loader, dex_compilation_unit_, field_index, true);
   1331 
   1332   if (resolved_field == nullptr) {
   1333     MaybeRecordStat(MethodCompilationStat::kUnresolvedField);
   1334     Primitive::Type field_type = GetFieldAccessType(*dex_file_, field_index);
   1335     BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
   1336     return true;
   1337   }
   1338 
   1339   Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
   1340   const DexFile& outer_dex_file = *outer_compilation_unit_->GetDexFile();
   1341   Handle<mirror::DexCache> outer_dex_cache = outer_compilation_unit_->GetDexCache();
   1342   Handle<mirror::Class> outer_class(hs.NewHandle(GetOutermostCompilingClass()));
   1343 
   1344   // The index at which the field's class is stored in the DexCache's type array.
   1345   uint32_t storage_index;
   1346   bool is_outer_class = (outer_class.Get() == resolved_field->GetDeclaringClass());
   1347   if (is_outer_class) {
   1348     storage_index = outer_class->GetDexTypeIndex();
   1349   } else if (outer_dex_cache.Get() != dex_cache.Get()) {
   1350     // The compiler driver cannot currently understand multiple dex caches involved. Just bailout.
   1351     return false;
   1352   } else {
   1353     // TODO: This is rather expensive. Perf it and cache the results if needed.
   1354     std::pair<bool, bool> pair = compiler_driver_->IsFastStaticField(
   1355         outer_dex_cache.Get(),
   1356         GetCompilingClass(),
   1357         resolved_field,
   1358         field_index,
   1359         &storage_index);
   1360     bool can_easily_access = is_put ? pair.second : pair.first;
   1361     if (!can_easily_access) {
   1362       MaybeRecordStat(MethodCompilationStat::kUnresolvedFieldNotAFastAccess);
   1363       BuildUnresolvedStaticFieldAccess(instruction, dex_pc, is_put, field_type);
   1364       return true;
   1365     }
   1366   }
   1367 
   1368   bool is_in_cache =
   1369       compiler_driver_->CanAssumeTypeIsPresentInDexCache(outer_dex_cache, storage_index);
   1370   HLoadClass* constant = new (arena_) HLoadClass(graph_->GetCurrentMethod(),
   1371                                                  storage_index,
   1372                                                  outer_dex_file,
   1373                                                  is_outer_class,
   1374                                                  dex_pc,
   1375                                                  /*needs_access_check*/ false,
   1376                                                  is_in_cache);
   1377   AppendInstruction(constant);
   1378 
   1379   HInstruction* cls = constant;
   1380 
   1381   Handle<mirror::Class> klass(hs.NewHandle(resolved_field->GetDeclaringClass()));
   1382   if (!IsInitialized(klass)) {
   1383     cls = new (arena_) HClinitCheck(constant, dex_pc);
   1384     AppendInstruction(cls);
   1385   }
   1386 
   1387   uint16_t class_def_index = klass->GetDexClassDefIndex();
   1388   if (is_put) {
   1389     // We need to keep the class alive before loading the value.
   1390     HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
   1391     DCHECK_EQ(HPhi::ToPhiType(value->GetType()), HPhi::ToPhiType(field_type));
   1392     AppendInstruction(new (arena_) HStaticFieldSet(cls,
   1393                                                    value,
   1394                                                    field_type,
   1395                                                    resolved_field->GetOffset(),
   1396                                                    resolved_field->IsVolatile(),
   1397                                                    field_index,
   1398                                                    class_def_index,
   1399                                                    *dex_file_,
   1400                                                    dex_cache_,
   1401                                                    dex_pc));
   1402   } else {
   1403     AppendInstruction(new (arena_) HStaticFieldGet(cls,
   1404                                                    field_type,
   1405                                                    resolved_field->GetOffset(),
   1406                                                    resolved_field->IsVolatile(),
   1407                                                    field_index,
   1408                                                    class_def_index,
   1409                                                    *dex_file_,
   1410                                                    dex_cache_,
   1411                                                    dex_pc));
   1412     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1413   }
   1414   return true;
   1415 }
   1416 
   1417 void HInstructionBuilder::BuildCheckedDivRem(uint16_t out_vreg,
   1418                                        uint16_t first_vreg,
   1419                                        int64_t second_vreg_or_constant,
   1420                                        uint32_t dex_pc,
   1421                                        Primitive::Type type,
   1422                                        bool second_is_constant,
   1423                                        bool isDiv) {
   1424   DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
   1425 
   1426   HInstruction* first = LoadLocal(first_vreg, type);
   1427   HInstruction* second = nullptr;
   1428   if (second_is_constant) {
   1429     if (type == Primitive::kPrimInt) {
   1430       second = graph_->GetIntConstant(second_vreg_or_constant, dex_pc);
   1431     } else {
   1432       second = graph_->GetLongConstant(second_vreg_or_constant, dex_pc);
   1433     }
   1434   } else {
   1435     second = LoadLocal(second_vreg_or_constant, type);
   1436   }
   1437 
   1438   if (!second_is_constant
   1439       || (type == Primitive::kPrimInt && second->AsIntConstant()->GetValue() == 0)
   1440       || (type == Primitive::kPrimLong && second->AsLongConstant()->GetValue() == 0)) {
   1441     second = new (arena_) HDivZeroCheck(second, dex_pc);
   1442     AppendInstruction(second);
   1443   }
   1444 
   1445   if (isDiv) {
   1446     AppendInstruction(new (arena_) HDiv(type, first, second, dex_pc));
   1447   } else {
   1448     AppendInstruction(new (arena_) HRem(type, first, second, dex_pc));
   1449   }
   1450   UpdateLocal(out_vreg, current_block_->GetLastInstruction());
   1451 }
   1452 
   1453 void HInstructionBuilder::BuildArrayAccess(const Instruction& instruction,
   1454                                            uint32_t dex_pc,
   1455                                            bool is_put,
   1456                                            Primitive::Type anticipated_type) {
   1457   uint8_t source_or_dest_reg = instruction.VRegA_23x();
   1458   uint8_t array_reg = instruction.VRegB_23x();
   1459   uint8_t index_reg = instruction.VRegC_23x();
   1460 
   1461   HInstruction* object = LoadNullCheckedLocal(array_reg, dex_pc);
   1462   HInstruction* length = new (arena_) HArrayLength(object, dex_pc);
   1463   AppendInstruction(length);
   1464   HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
   1465   index = new (arena_) HBoundsCheck(index, length, dex_pc);
   1466   AppendInstruction(index);
   1467   if (is_put) {
   1468     HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
   1469     // TODO: Insert a type check node if the type is Object.
   1470     HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
   1471     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1472     AppendInstruction(aset);
   1473   } else {
   1474     HArrayGet* aget = new (arena_) HArrayGet(object, index, anticipated_type, dex_pc);
   1475     ssa_builder_->MaybeAddAmbiguousArrayGet(aget);
   1476     AppendInstruction(aget);
   1477     UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
   1478   }
   1479   graph_->SetHasBoundsChecks(true);
   1480 }
   1481 
   1482 void HInstructionBuilder::BuildFilledNewArray(uint32_t dex_pc,
   1483                                               uint32_t type_index,
   1484                                               uint32_t number_of_vreg_arguments,
   1485                                               bool is_range,
   1486                                               uint32_t* args,
   1487                                               uint32_t register_index) {
   1488   HInstruction* length = graph_->GetIntConstant(number_of_vreg_arguments, dex_pc);
   1489   bool finalizable;
   1490   QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
   1491       ? kQuickAllocArrayWithAccessCheck
   1492       : kQuickAllocArray;
   1493   HInstruction* object = new (arena_) HNewArray(length,
   1494                                                 graph_->GetCurrentMethod(),
   1495                                                 dex_pc,
   1496                                                 type_index,
   1497                                                 *dex_compilation_unit_->GetDexFile(),
   1498                                                 entrypoint);
   1499   AppendInstruction(object);
   1500 
   1501   const char* descriptor = dex_file_->StringByTypeIdx(type_index);
   1502   DCHECK_EQ(descriptor[0], '[') << descriptor;
   1503   char primitive = descriptor[1];
   1504   DCHECK(primitive == 'I'
   1505       || primitive == 'L'
   1506       || primitive == '[') << descriptor;
   1507   bool is_reference_array = (primitive == 'L') || (primitive == '[');
   1508   Primitive::Type type = is_reference_array ? Primitive::kPrimNot : Primitive::kPrimInt;
   1509 
   1510   for (size_t i = 0; i < number_of_vreg_arguments; ++i) {
   1511     HInstruction* value = LoadLocal(is_range ? register_index + i : args[i], type);
   1512     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1513     HArraySet* aset = new (arena_) HArraySet(object, index, value, type, dex_pc);
   1514     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1515     AppendInstruction(aset);
   1516   }
   1517   latest_result_ = object;
   1518 }
   1519 
   1520 template <typename T>
   1521 void HInstructionBuilder::BuildFillArrayData(HInstruction* object,
   1522                                              const T* data,
   1523                                              uint32_t element_count,
   1524                                              Primitive::Type anticipated_type,
   1525                                              uint32_t dex_pc) {
   1526   for (uint32_t i = 0; i < element_count; ++i) {
   1527     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1528     HInstruction* value = graph_->GetIntConstant(data[i], dex_pc);
   1529     HArraySet* aset = new (arena_) HArraySet(object, index, value, anticipated_type, dex_pc);
   1530     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1531     AppendInstruction(aset);
   1532   }
   1533 }
   1534 
   1535 void HInstructionBuilder::BuildFillArrayData(const Instruction& instruction, uint32_t dex_pc) {
   1536   HInstruction* array = LoadNullCheckedLocal(instruction.VRegA_31t(), dex_pc);
   1537   HInstruction* length = new (arena_) HArrayLength(array, dex_pc);
   1538   AppendInstruction(length);
   1539 
   1540   int32_t payload_offset = instruction.VRegB_31t() + dex_pc;
   1541   const Instruction::ArrayDataPayload* payload =
   1542       reinterpret_cast<const Instruction::ArrayDataPayload*>(code_item_.insns_ + payload_offset);
   1543   const uint8_t* data = payload->data;
   1544   uint32_t element_count = payload->element_count;
   1545 
   1546   // Implementation of this DEX instruction seems to be that the bounds check is
   1547   // done before doing any stores.
   1548   HInstruction* last_index = graph_->GetIntConstant(payload->element_count - 1, dex_pc);
   1549   AppendInstruction(new (arena_) HBoundsCheck(last_index, length, dex_pc));
   1550 
   1551   switch (payload->element_width) {
   1552     case 1:
   1553       BuildFillArrayData(array,
   1554                          reinterpret_cast<const int8_t*>(data),
   1555                          element_count,
   1556                          Primitive::kPrimByte,
   1557                          dex_pc);
   1558       break;
   1559     case 2:
   1560       BuildFillArrayData(array,
   1561                          reinterpret_cast<const int16_t*>(data),
   1562                          element_count,
   1563                          Primitive::kPrimShort,
   1564                          dex_pc);
   1565       break;
   1566     case 4:
   1567       BuildFillArrayData(array,
   1568                          reinterpret_cast<const int32_t*>(data),
   1569                          element_count,
   1570                          Primitive::kPrimInt,
   1571                          dex_pc);
   1572       break;
   1573     case 8:
   1574       BuildFillWideArrayData(array,
   1575                              reinterpret_cast<const int64_t*>(data),
   1576                              element_count,
   1577                              dex_pc);
   1578       break;
   1579     default:
   1580       LOG(FATAL) << "Unknown element width for " << payload->element_width;
   1581   }
   1582   graph_->SetHasBoundsChecks(true);
   1583 }
   1584 
   1585 void HInstructionBuilder::BuildFillWideArrayData(HInstruction* object,
   1586                                                  const int64_t* data,
   1587                                                  uint32_t element_count,
   1588                                                  uint32_t dex_pc) {
   1589   for (uint32_t i = 0; i < element_count; ++i) {
   1590     HInstruction* index = graph_->GetIntConstant(i, dex_pc);
   1591     HInstruction* value = graph_->GetLongConstant(data[i], dex_pc);
   1592     HArraySet* aset = new (arena_) HArraySet(object, index, value, Primitive::kPrimLong, dex_pc);
   1593     ssa_builder_->MaybeAddAmbiguousArraySet(aset);
   1594     AppendInstruction(aset);
   1595   }
   1596 }
   1597 
   1598 static TypeCheckKind ComputeTypeCheckKind(Handle<mirror::Class> cls)
   1599     SHARED_REQUIRES(Locks::mutator_lock_) {
   1600   if (cls.Get() == nullptr) {
   1601     return TypeCheckKind::kUnresolvedCheck;
   1602   } else if (cls->IsInterface()) {
   1603     return TypeCheckKind::kInterfaceCheck;
   1604   } else if (cls->IsArrayClass()) {
   1605     if (cls->GetComponentType()->IsObjectClass()) {
   1606       return TypeCheckKind::kArrayObjectCheck;
   1607     } else if (cls->CannotBeAssignedFromOtherTypes()) {
   1608       return TypeCheckKind::kExactCheck;
   1609     } else {
   1610       return TypeCheckKind::kArrayCheck;
   1611     }
   1612   } else if (cls->IsFinal()) {
   1613     return TypeCheckKind::kExactCheck;
   1614   } else if (cls->IsAbstract()) {
   1615     return TypeCheckKind::kAbstractClassCheck;
   1616   } else {
   1617     return TypeCheckKind::kClassHierarchyCheck;
   1618   }
   1619 }
   1620 
   1621 void HInstructionBuilder::BuildTypeCheck(const Instruction& instruction,
   1622                                          uint8_t destination,
   1623                                          uint8_t reference,
   1624                                          uint16_t type_index,
   1625                                          uint32_t dex_pc) {
   1626   ScopedObjectAccess soa(Thread::Current());
   1627   StackHandleScope<1> hs(soa.Self());
   1628   const DexFile& dex_file = *dex_compilation_unit_->GetDexFile();
   1629   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   1630   Handle<mirror::Class> resolved_class(hs.NewHandle(dex_cache->GetResolvedType(type_index)));
   1631 
   1632   bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
   1633       dex_compilation_unit_->GetDexMethodIndex(),
   1634       dex_cache,
   1635       type_index);
   1636 
   1637   HInstruction* object = LoadLocal(reference, Primitive::kPrimNot);
   1638   HLoadClass* cls = new (arena_) HLoadClass(
   1639       graph_->GetCurrentMethod(),
   1640       type_index,
   1641       dex_file,
   1642       IsOutermostCompilingClass(type_index),
   1643       dex_pc,
   1644       !can_access,
   1645       compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_cache, type_index));
   1646   AppendInstruction(cls);
   1647 
   1648   TypeCheckKind check_kind = ComputeTypeCheckKind(resolved_class);
   1649   if (instruction.Opcode() == Instruction::INSTANCE_OF) {
   1650     AppendInstruction(new (arena_) HInstanceOf(object, cls, check_kind, dex_pc));
   1651     UpdateLocal(destination, current_block_->GetLastInstruction());
   1652   } else {
   1653     DCHECK_EQ(instruction.Opcode(), Instruction::CHECK_CAST);
   1654     // We emit a CheckCast followed by a BoundType. CheckCast is a statement
   1655     // which may throw. If it succeeds BoundType sets the new type of `object`
   1656     // for all subsequent uses.
   1657     AppendInstruction(new (arena_) HCheckCast(object, cls, check_kind, dex_pc));
   1658     AppendInstruction(new (arena_) HBoundType(object, dex_pc));
   1659     UpdateLocal(reference, current_block_->GetLastInstruction());
   1660   }
   1661 }
   1662 
   1663 bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index,
   1664                                            Handle<mirror::DexCache> dex_cache,
   1665                                            bool* finalizable) const {
   1666   return !compiler_driver_->CanAccessInstantiableTypeWithoutChecks(
   1667       dex_compilation_unit_->GetDexMethodIndex(), dex_cache, type_index, finalizable);
   1668 }
   1669 
   1670 bool HInstructionBuilder::NeedsAccessCheck(uint32_t type_index, bool* finalizable) const {
   1671   ScopedObjectAccess soa(Thread::Current());
   1672   Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   1673   return NeedsAccessCheck(type_index, dex_cache, finalizable);
   1674 }
   1675 
   1676 bool HInstructionBuilder::CanDecodeQuickenedInfo() const {
   1677   return interpreter_metadata_ != nullptr;
   1678 }
   1679 
   1680 uint16_t HInstructionBuilder::LookupQuickenedInfo(uint32_t dex_pc) {
   1681   DCHECK(interpreter_metadata_ != nullptr);
   1682 
   1683   // First check if the info has already been decoded from `interpreter_metadata_`.
   1684   auto it = skipped_interpreter_metadata_.find(dex_pc);
   1685   if (it != skipped_interpreter_metadata_.end()) {
   1686     // Remove the entry from the map and return the parsed info.
   1687     uint16_t value_in_map = it->second;
   1688     skipped_interpreter_metadata_.erase(it);
   1689     return value_in_map;
   1690   }
   1691 
   1692   // Otherwise start parsing `interpreter_metadata_` until the slot for `dex_pc`
   1693   // is found. Store skipped values in the `skipped_interpreter_metadata_` map.
   1694   while (true) {
   1695     uint32_t dex_pc_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
   1696     uint16_t value_in_map = DecodeUnsignedLeb128(&interpreter_metadata_);
   1697     DCHECK_LE(dex_pc_in_map, dex_pc);
   1698 
   1699     if (dex_pc_in_map == dex_pc) {
   1700       return value_in_map;
   1701     } else {
   1702       skipped_interpreter_metadata_.Put(dex_pc_in_map, value_in_map);
   1703     }
   1704   }
   1705 }
   1706 
   1707 bool HInstructionBuilder::ProcessDexInstruction(const Instruction& instruction, uint32_t dex_pc) {
   1708   switch (instruction.Opcode()) {
   1709     case Instruction::CONST_4: {
   1710       int32_t register_index = instruction.VRegA();
   1711       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_11n(), dex_pc);
   1712       UpdateLocal(register_index, constant);
   1713       break;
   1714     }
   1715 
   1716     case Instruction::CONST_16: {
   1717       int32_t register_index = instruction.VRegA();
   1718       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21s(), dex_pc);
   1719       UpdateLocal(register_index, constant);
   1720       break;
   1721     }
   1722 
   1723     case Instruction::CONST: {
   1724       int32_t register_index = instruction.VRegA();
   1725       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_31i(), dex_pc);
   1726       UpdateLocal(register_index, constant);
   1727       break;
   1728     }
   1729 
   1730     case Instruction::CONST_HIGH16: {
   1731       int32_t register_index = instruction.VRegA();
   1732       HIntConstant* constant = graph_->GetIntConstant(instruction.VRegB_21h() << 16, dex_pc);
   1733       UpdateLocal(register_index, constant);
   1734       break;
   1735     }
   1736 
   1737     case Instruction::CONST_WIDE_16: {
   1738       int32_t register_index = instruction.VRegA();
   1739       // Get 16 bits of constant value, sign extended to 64 bits.
   1740       int64_t value = instruction.VRegB_21s();
   1741       value <<= 48;
   1742       value >>= 48;
   1743       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1744       UpdateLocal(register_index, constant);
   1745       break;
   1746     }
   1747 
   1748     case Instruction::CONST_WIDE_32: {
   1749       int32_t register_index = instruction.VRegA();
   1750       // Get 32 bits of constant value, sign extended to 64 bits.
   1751       int64_t value = instruction.VRegB_31i();
   1752       value <<= 32;
   1753       value >>= 32;
   1754       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1755       UpdateLocal(register_index, constant);
   1756       break;
   1757     }
   1758 
   1759     case Instruction::CONST_WIDE: {
   1760       int32_t register_index = instruction.VRegA();
   1761       HLongConstant* constant = graph_->GetLongConstant(instruction.VRegB_51l(), dex_pc);
   1762       UpdateLocal(register_index, constant);
   1763       break;
   1764     }
   1765 
   1766     case Instruction::CONST_WIDE_HIGH16: {
   1767       int32_t register_index = instruction.VRegA();
   1768       int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
   1769       HLongConstant* constant = graph_->GetLongConstant(value, dex_pc);
   1770       UpdateLocal(register_index, constant);
   1771       break;
   1772     }
   1773 
   1774     // Note that the SSA building will refine the types.
   1775     case Instruction::MOVE:
   1776     case Instruction::MOVE_FROM16:
   1777     case Instruction::MOVE_16: {
   1778       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
   1779       UpdateLocal(instruction.VRegA(), value);
   1780       break;
   1781     }
   1782 
   1783     // Note that the SSA building will refine the types.
   1784     case Instruction::MOVE_WIDE:
   1785     case Instruction::MOVE_WIDE_FROM16:
   1786     case Instruction::MOVE_WIDE_16: {
   1787       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
   1788       UpdateLocal(instruction.VRegA(), value);
   1789       break;
   1790     }
   1791 
   1792     case Instruction::MOVE_OBJECT:
   1793     case Instruction::MOVE_OBJECT_16:
   1794     case Instruction::MOVE_OBJECT_FROM16: {
   1795       HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
   1796       UpdateLocal(instruction.VRegA(), value);
   1797       break;
   1798     }
   1799 
   1800     case Instruction::RETURN_VOID_NO_BARRIER:
   1801     case Instruction::RETURN_VOID: {
   1802       BuildReturn(instruction, Primitive::kPrimVoid, dex_pc);
   1803       break;
   1804     }
   1805 
   1806 #define IF_XX(comparison, cond) \
   1807     case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_pc); break; \
   1808     case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_pc); break
   1809 
   1810     IF_XX(HEqual, EQ);
   1811     IF_XX(HNotEqual, NE);
   1812     IF_XX(HLessThan, LT);
   1813     IF_XX(HLessThanOrEqual, LE);
   1814     IF_XX(HGreaterThan, GT);
   1815     IF_XX(HGreaterThanOrEqual, GE);
   1816 
   1817     case Instruction::GOTO:
   1818     case Instruction::GOTO_16:
   1819     case Instruction::GOTO_32: {
   1820       AppendInstruction(new (arena_) HGoto(dex_pc));
   1821       current_block_ = nullptr;
   1822       break;
   1823     }
   1824 
   1825     case Instruction::RETURN: {
   1826       BuildReturn(instruction, return_type_, dex_pc);
   1827       break;
   1828     }
   1829 
   1830     case Instruction::RETURN_OBJECT: {
   1831       BuildReturn(instruction, return_type_, dex_pc);
   1832       break;
   1833     }
   1834 
   1835     case Instruction::RETURN_WIDE: {
   1836       BuildReturn(instruction, return_type_, dex_pc);
   1837       break;
   1838     }
   1839 
   1840     case Instruction::INVOKE_DIRECT:
   1841     case Instruction::INVOKE_INTERFACE:
   1842     case Instruction::INVOKE_STATIC:
   1843     case Instruction::INVOKE_SUPER:
   1844     case Instruction::INVOKE_VIRTUAL:
   1845     case Instruction::INVOKE_VIRTUAL_QUICK: {
   1846       uint16_t method_idx;
   1847       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_QUICK) {
   1848         if (!CanDecodeQuickenedInfo()) {
   1849           return false;
   1850         }
   1851         method_idx = LookupQuickenedInfo(dex_pc);
   1852       } else {
   1853         method_idx = instruction.VRegB_35c();
   1854       }
   1855       uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
   1856       uint32_t args[5];
   1857       instruction.GetVarArgs(args);
   1858       if (!BuildInvoke(instruction, dex_pc, method_idx,
   1859                        number_of_vreg_arguments, false, args, -1)) {
   1860         return false;
   1861       }
   1862       break;
   1863     }
   1864 
   1865     case Instruction::INVOKE_DIRECT_RANGE:
   1866     case Instruction::INVOKE_INTERFACE_RANGE:
   1867     case Instruction::INVOKE_STATIC_RANGE:
   1868     case Instruction::INVOKE_SUPER_RANGE:
   1869     case Instruction::INVOKE_VIRTUAL_RANGE:
   1870     case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
   1871       uint16_t method_idx;
   1872       if (instruction.Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK) {
   1873         if (!CanDecodeQuickenedInfo()) {
   1874           return false;
   1875         }
   1876         method_idx = LookupQuickenedInfo(dex_pc);
   1877       } else {
   1878         method_idx = instruction.VRegB_3rc();
   1879       }
   1880       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
   1881       uint32_t register_index = instruction.VRegC();
   1882       if (!BuildInvoke(instruction, dex_pc, method_idx,
   1883                        number_of_vreg_arguments, true, nullptr, register_index)) {
   1884         return false;
   1885       }
   1886       break;
   1887     }
   1888 
   1889     case Instruction::NEG_INT: {
   1890       Unop_12x<HNeg>(instruction, Primitive::kPrimInt, dex_pc);
   1891       break;
   1892     }
   1893 
   1894     case Instruction::NEG_LONG: {
   1895       Unop_12x<HNeg>(instruction, Primitive::kPrimLong, dex_pc);
   1896       break;
   1897     }
   1898 
   1899     case Instruction::NEG_FLOAT: {
   1900       Unop_12x<HNeg>(instruction, Primitive::kPrimFloat, dex_pc);
   1901       break;
   1902     }
   1903 
   1904     case Instruction::NEG_DOUBLE: {
   1905       Unop_12x<HNeg>(instruction, Primitive::kPrimDouble, dex_pc);
   1906       break;
   1907     }
   1908 
   1909     case Instruction::NOT_INT: {
   1910       Unop_12x<HNot>(instruction, Primitive::kPrimInt, dex_pc);
   1911       break;
   1912     }
   1913 
   1914     case Instruction::NOT_LONG: {
   1915       Unop_12x<HNot>(instruction, Primitive::kPrimLong, dex_pc);
   1916       break;
   1917     }
   1918 
   1919     case Instruction::INT_TO_LONG: {
   1920       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimLong, dex_pc);
   1921       break;
   1922     }
   1923 
   1924     case Instruction::INT_TO_FLOAT: {
   1925       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimFloat, dex_pc);
   1926       break;
   1927     }
   1928 
   1929     case Instruction::INT_TO_DOUBLE: {
   1930       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimDouble, dex_pc);
   1931       break;
   1932     }
   1933 
   1934     case Instruction::LONG_TO_INT: {
   1935       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimInt, dex_pc);
   1936       break;
   1937     }
   1938 
   1939     case Instruction::LONG_TO_FLOAT: {
   1940       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimFloat, dex_pc);
   1941       break;
   1942     }
   1943 
   1944     case Instruction::LONG_TO_DOUBLE: {
   1945       Conversion_12x(instruction, Primitive::kPrimLong, Primitive::kPrimDouble, dex_pc);
   1946       break;
   1947     }
   1948 
   1949     case Instruction::FLOAT_TO_INT: {
   1950       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimInt, dex_pc);
   1951       break;
   1952     }
   1953 
   1954     case Instruction::FLOAT_TO_LONG: {
   1955       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimLong, dex_pc);
   1956       break;
   1957     }
   1958 
   1959     case Instruction::FLOAT_TO_DOUBLE: {
   1960       Conversion_12x(instruction, Primitive::kPrimFloat, Primitive::kPrimDouble, dex_pc);
   1961       break;
   1962     }
   1963 
   1964     case Instruction::DOUBLE_TO_INT: {
   1965       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimInt, dex_pc);
   1966       break;
   1967     }
   1968 
   1969     case Instruction::DOUBLE_TO_LONG: {
   1970       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimLong, dex_pc);
   1971       break;
   1972     }
   1973 
   1974     case Instruction::DOUBLE_TO_FLOAT: {
   1975       Conversion_12x(instruction, Primitive::kPrimDouble, Primitive::kPrimFloat, dex_pc);
   1976       break;
   1977     }
   1978 
   1979     case Instruction::INT_TO_BYTE: {
   1980       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimByte, dex_pc);
   1981       break;
   1982     }
   1983 
   1984     case Instruction::INT_TO_SHORT: {
   1985       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimShort, dex_pc);
   1986       break;
   1987     }
   1988 
   1989     case Instruction::INT_TO_CHAR: {
   1990       Conversion_12x(instruction, Primitive::kPrimInt, Primitive::kPrimChar, dex_pc);
   1991       break;
   1992     }
   1993 
   1994     case Instruction::ADD_INT: {
   1995       Binop_23x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
   1996       break;
   1997     }
   1998 
   1999     case Instruction::ADD_LONG: {
   2000       Binop_23x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
   2001       break;
   2002     }
   2003 
   2004     case Instruction::ADD_DOUBLE: {
   2005       Binop_23x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
   2006       break;
   2007     }
   2008 
   2009     case Instruction::ADD_FLOAT: {
   2010       Binop_23x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
   2011       break;
   2012     }
   2013 
   2014     case Instruction::SUB_INT: {
   2015       Binop_23x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
   2016       break;
   2017     }
   2018 
   2019     case Instruction::SUB_LONG: {
   2020       Binop_23x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
   2021       break;
   2022     }
   2023 
   2024     case Instruction::SUB_FLOAT: {
   2025       Binop_23x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
   2026       break;
   2027     }
   2028 
   2029     case Instruction::SUB_DOUBLE: {
   2030       Binop_23x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
   2031       break;
   2032     }
   2033 
   2034     case Instruction::ADD_INT_2ADDR: {
   2035       Binop_12x<HAdd>(instruction, Primitive::kPrimInt, dex_pc);
   2036       break;
   2037     }
   2038 
   2039     case Instruction::MUL_INT: {
   2040       Binop_23x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
   2041       break;
   2042     }
   2043 
   2044     case Instruction::MUL_LONG: {
   2045       Binop_23x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
   2046       break;
   2047     }
   2048 
   2049     case Instruction::MUL_FLOAT: {
   2050       Binop_23x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
   2051       break;
   2052     }
   2053 
   2054     case Instruction::MUL_DOUBLE: {
   2055       Binop_23x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
   2056       break;
   2057     }
   2058 
   2059     case Instruction::DIV_INT: {
   2060       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2061                          dex_pc, Primitive::kPrimInt, false, true);
   2062       break;
   2063     }
   2064 
   2065     case Instruction::DIV_LONG: {
   2066       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2067                          dex_pc, Primitive::kPrimLong, false, true);
   2068       break;
   2069     }
   2070 
   2071     case Instruction::DIV_FLOAT: {
   2072       Binop_23x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
   2073       break;
   2074     }
   2075 
   2076     case Instruction::DIV_DOUBLE: {
   2077       Binop_23x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
   2078       break;
   2079     }
   2080 
   2081     case Instruction::REM_INT: {
   2082       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2083                          dex_pc, Primitive::kPrimInt, false, false);
   2084       break;
   2085     }
   2086 
   2087     case Instruction::REM_LONG: {
   2088       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2089                          dex_pc, Primitive::kPrimLong, false, false);
   2090       break;
   2091     }
   2092 
   2093     case Instruction::REM_FLOAT: {
   2094       Binop_23x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
   2095       break;
   2096     }
   2097 
   2098     case Instruction::REM_DOUBLE: {
   2099       Binop_23x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
   2100       break;
   2101     }
   2102 
   2103     case Instruction::AND_INT: {
   2104       Binop_23x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
   2105       break;
   2106     }
   2107 
   2108     case Instruction::AND_LONG: {
   2109       Binop_23x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
   2110       break;
   2111     }
   2112 
   2113     case Instruction::SHL_INT: {
   2114       Binop_23x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
   2115       break;
   2116     }
   2117 
   2118     case Instruction::SHL_LONG: {
   2119       Binop_23x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
   2120       break;
   2121     }
   2122 
   2123     case Instruction::SHR_INT: {
   2124       Binop_23x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
   2125       break;
   2126     }
   2127 
   2128     case Instruction::SHR_LONG: {
   2129       Binop_23x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
   2130       break;
   2131     }
   2132 
   2133     case Instruction::USHR_INT: {
   2134       Binop_23x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
   2135       break;
   2136     }
   2137 
   2138     case Instruction::USHR_LONG: {
   2139       Binop_23x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
   2140       break;
   2141     }
   2142 
   2143     case Instruction::OR_INT: {
   2144       Binop_23x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
   2145       break;
   2146     }
   2147 
   2148     case Instruction::OR_LONG: {
   2149       Binop_23x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
   2150       break;
   2151     }
   2152 
   2153     case Instruction::XOR_INT: {
   2154       Binop_23x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
   2155       break;
   2156     }
   2157 
   2158     case Instruction::XOR_LONG: {
   2159       Binop_23x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
   2160       break;
   2161     }
   2162 
   2163     case Instruction::ADD_LONG_2ADDR: {
   2164       Binop_12x<HAdd>(instruction, Primitive::kPrimLong, dex_pc);
   2165       break;
   2166     }
   2167 
   2168     case Instruction::ADD_DOUBLE_2ADDR: {
   2169       Binop_12x<HAdd>(instruction, Primitive::kPrimDouble, dex_pc);
   2170       break;
   2171     }
   2172 
   2173     case Instruction::ADD_FLOAT_2ADDR: {
   2174       Binop_12x<HAdd>(instruction, Primitive::kPrimFloat, dex_pc);
   2175       break;
   2176     }
   2177 
   2178     case Instruction::SUB_INT_2ADDR: {
   2179       Binop_12x<HSub>(instruction, Primitive::kPrimInt, dex_pc);
   2180       break;
   2181     }
   2182 
   2183     case Instruction::SUB_LONG_2ADDR: {
   2184       Binop_12x<HSub>(instruction, Primitive::kPrimLong, dex_pc);
   2185       break;
   2186     }
   2187 
   2188     case Instruction::SUB_FLOAT_2ADDR: {
   2189       Binop_12x<HSub>(instruction, Primitive::kPrimFloat, dex_pc);
   2190       break;
   2191     }
   2192 
   2193     case Instruction::SUB_DOUBLE_2ADDR: {
   2194       Binop_12x<HSub>(instruction, Primitive::kPrimDouble, dex_pc);
   2195       break;
   2196     }
   2197 
   2198     case Instruction::MUL_INT_2ADDR: {
   2199       Binop_12x<HMul>(instruction, Primitive::kPrimInt, dex_pc);
   2200       break;
   2201     }
   2202 
   2203     case Instruction::MUL_LONG_2ADDR: {
   2204       Binop_12x<HMul>(instruction, Primitive::kPrimLong, dex_pc);
   2205       break;
   2206     }
   2207 
   2208     case Instruction::MUL_FLOAT_2ADDR: {
   2209       Binop_12x<HMul>(instruction, Primitive::kPrimFloat, dex_pc);
   2210       break;
   2211     }
   2212 
   2213     case Instruction::MUL_DOUBLE_2ADDR: {
   2214       Binop_12x<HMul>(instruction, Primitive::kPrimDouble, dex_pc);
   2215       break;
   2216     }
   2217 
   2218     case Instruction::DIV_INT_2ADDR: {
   2219       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2220                          dex_pc, Primitive::kPrimInt, false, true);
   2221       break;
   2222     }
   2223 
   2224     case Instruction::DIV_LONG_2ADDR: {
   2225       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2226                          dex_pc, Primitive::kPrimLong, false, true);
   2227       break;
   2228     }
   2229 
   2230     case Instruction::REM_INT_2ADDR: {
   2231       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2232                          dex_pc, Primitive::kPrimInt, false, false);
   2233       break;
   2234     }
   2235 
   2236     case Instruction::REM_LONG_2ADDR: {
   2237       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegA(), instruction.VRegB(),
   2238                          dex_pc, Primitive::kPrimLong, false, false);
   2239       break;
   2240     }
   2241 
   2242     case Instruction::REM_FLOAT_2ADDR: {
   2243       Binop_12x<HRem>(instruction, Primitive::kPrimFloat, dex_pc);
   2244       break;
   2245     }
   2246 
   2247     case Instruction::REM_DOUBLE_2ADDR: {
   2248       Binop_12x<HRem>(instruction, Primitive::kPrimDouble, dex_pc);
   2249       break;
   2250     }
   2251 
   2252     case Instruction::SHL_INT_2ADDR: {
   2253       Binop_12x_shift<HShl>(instruction, Primitive::kPrimInt, dex_pc);
   2254       break;
   2255     }
   2256 
   2257     case Instruction::SHL_LONG_2ADDR: {
   2258       Binop_12x_shift<HShl>(instruction, Primitive::kPrimLong, dex_pc);
   2259       break;
   2260     }
   2261 
   2262     case Instruction::SHR_INT_2ADDR: {
   2263       Binop_12x_shift<HShr>(instruction, Primitive::kPrimInt, dex_pc);
   2264       break;
   2265     }
   2266 
   2267     case Instruction::SHR_LONG_2ADDR: {
   2268       Binop_12x_shift<HShr>(instruction, Primitive::kPrimLong, dex_pc);
   2269       break;
   2270     }
   2271 
   2272     case Instruction::USHR_INT_2ADDR: {
   2273       Binop_12x_shift<HUShr>(instruction, Primitive::kPrimInt, dex_pc);
   2274       break;
   2275     }
   2276 
   2277     case Instruction::USHR_LONG_2ADDR: {
   2278       Binop_12x_shift<HUShr>(instruction, Primitive::kPrimLong, dex_pc);
   2279       break;
   2280     }
   2281 
   2282     case Instruction::DIV_FLOAT_2ADDR: {
   2283       Binop_12x<HDiv>(instruction, Primitive::kPrimFloat, dex_pc);
   2284       break;
   2285     }
   2286 
   2287     case Instruction::DIV_DOUBLE_2ADDR: {
   2288       Binop_12x<HDiv>(instruction, Primitive::kPrimDouble, dex_pc);
   2289       break;
   2290     }
   2291 
   2292     case Instruction::AND_INT_2ADDR: {
   2293       Binop_12x<HAnd>(instruction, Primitive::kPrimInt, dex_pc);
   2294       break;
   2295     }
   2296 
   2297     case Instruction::AND_LONG_2ADDR: {
   2298       Binop_12x<HAnd>(instruction, Primitive::kPrimLong, dex_pc);
   2299       break;
   2300     }
   2301 
   2302     case Instruction::OR_INT_2ADDR: {
   2303       Binop_12x<HOr>(instruction, Primitive::kPrimInt, dex_pc);
   2304       break;
   2305     }
   2306 
   2307     case Instruction::OR_LONG_2ADDR: {
   2308       Binop_12x<HOr>(instruction, Primitive::kPrimLong, dex_pc);
   2309       break;
   2310     }
   2311 
   2312     case Instruction::XOR_INT_2ADDR: {
   2313       Binop_12x<HXor>(instruction, Primitive::kPrimInt, dex_pc);
   2314       break;
   2315     }
   2316 
   2317     case Instruction::XOR_LONG_2ADDR: {
   2318       Binop_12x<HXor>(instruction, Primitive::kPrimLong, dex_pc);
   2319       break;
   2320     }
   2321 
   2322     case Instruction::ADD_INT_LIT16: {
   2323       Binop_22s<HAdd>(instruction, false, dex_pc);
   2324       break;
   2325     }
   2326 
   2327     case Instruction::AND_INT_LIT16: {
   2328       Binop_22s<HAnd>(instruction, false, dex_pc);
   2329       break;
   2330     }
   2331 
   2332     case Instruction::OR_INT_LIT16: {
   2333       Binop_22s<HOr>(instruction, false, dex_pc);
   2334       break;
   2335     }
   2336 
   2337     case Instruction::XOR_INT_LIT16: {
   2338       Binop_22s<HXor>(instruction, false, dex_pc);
   2339       break;
   2340     }
   2341 
   2342     case Instruction::RSUB_INT: {
   2343       Binop_22s<HSub>(instruction, true, dex_pc);
   2344       break;
   2345     }
   2346 
   2347     case Instruction::MUL_INT_LIT16: {
   2348       Binop_22s<HMul>(instruction, false, dex_pc);
   2349       break;
   2350     }
   2351 
   2352     case Instruction::ADD_INT_LIT8: {
   2353       Binop_22b<HAdd>(instruction, false, dex_pc);
   2354       break;
   2355     }
   2356 
   2357     case Instruction::AND_INT_LIT8: {
   2358       Binop_22b<HAnd>(instruction, false, dex_pc);
   2359       break;
   2360     }
   2361 
   2362     case Instruction::OR_INT_LIT8: {
   2363       Binop_22b<HOr>(instruction, false, dex_pc);
   2364       break;
   2365     }
   2366 
   2367     case Instruction::XOR_INT_LIT8: {
   2368       Binop_22b<HXor>(instruction, false, dex_pc);
   2369       break;
   2370     }
   2371 
   2372     case Instruction::RSUB_INT_LIT8: {
   2373       Binop_22b<HSub>(instruction, true, dex_pc);
   2374       break;
   2375     }
   2376 
   2377     case Instruction::MUL_INT_LIT8: {
   2378       Binop_22b<HMul>(instruction, false, dex_pc);
   2379       break;
   2380     }
   2381 
   2382     case Instruction::DIV_INT_LIT16:
   2383     case Instruction::DIV_INT_LIT8: {
   2384       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2385                          dex_pc, Primitive::kPrimInt, true, true);
   2386       break;
   2387     }
   2388 
   2389     case Instruction::REM_INT_LIT16:
   2390     case Instruction::REM_INT_LIT8: {
   2391       BuildCheckedDivRem(instruction.VRegA(), instruction.VRegB(), instruction.VRegC(),
   2392                          dex_pc, Primitive::kPrimInt, true, false);
   2393       break;
   2394     }
   2395 
   2396     case Instruction::SHL_INT_LIT8: {
   2397       Binop_22b<HShl>(instruction, false, dex_pc);
   2398       break;
   2399     }
   2400 
   2401     case Instruction::SHR_INT_LIT8: {
   2402       Binop_22b<HShr>(instruction, false, dex_pc);
   2403       break;
   2404     }
   2405 
   2406     case Instruction::USHR_INT_LIT8: {
   2407       Binop_22b<HUShr>(instruction, false, dex_pc);
   2408       break;
   2409     }
   2410 
   2411     case Instruction::NEW_INSTANCE: {
   2412       if (!BuildNewInstance(instruction.VRegB_21c(), dex_pc)) {
   2413         return false;
   2414       }
   2415       UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
   2416       break;
   2417     }
   2418 
   2419     case Instruction::NEW_ARRAY: {
   2420       uint16_t type_index = instruction.VRegC_22c();
   2421       HInstruction* length = LoadLocal(instruction.VRegB_22c(), Primitive::kPrimInt);
   2422       bool finalizable;
   2423       QuickEntrypointEnum entrypoint = NeedsAccessCheck(type_index, &finalizable)
   2424           ? kQuickAllocArrayWithAccessCheck
   2425           : kQuickAllocArray;
   2426       AppendInstruction(new (arena_) HNewArray(length,
   2427                                                graph_->GetCurrentMethod(),
   2428                                                dex_pc,
   2429                                                type_index,
   2430                                                *dex_compilation_unit_->GetDexFile(),
   2431                                                entrypoint));
   2432       UpdateLocal(instruction.VRegA_22c(), current_block_->GetLastInstruction());
   2433       break;
   2434     }
   2435 
   2436     case Instruction::FILLED_NEW_ARRAY: {
   2437       uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
   2438       uint32_t type_index = instruction.VRegB_35c();
   2439       uint32_t args[5];
   2440       instruction.GetVarArgs(args);
   2441       BuildFilledNewArray(dex_pc, type_index, number_of_vreg_arguments, false, args, 0);
   2442       break;
   2443     }
   2444 
   2445     case Instruction::FILLED_NEW_ARRAY_RANGE: {
   2446       uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
   2447       uint32_t type_index = instruction.VRegB_3rc();
   2448       uint32_t register_index = instruction.VRegC_3rc();
   2449       BuildFilledNewArray(
   2450           dex_pc, type_index, number_of_vreg_arguments, true, nullptr, register_index);
   2451       break;
   2452     }
   2453 
   2454     case Instruction::FILL_ARRAY_DATA: {
   2455       BuildFillArrayData(instruction, dex_pc);
   2456       break;
   2457     }
   2458 
   2459     case Instruction::MOVE_RESULT:
   2460     case Instruction::MOVE_RESULT_WIDE:
   2461     case Instruction::MOVE_RESULT_OBJECT: {
   2462       DCHECK(latest_result_ != nullptr);
   2463       UpdateLocal(instruction.VRegA(), latest_result_);
   2464       latest_result_ = nullptr;
   2465       break;
   2466     }
   2467 
   2468     case Instruction::CMP_LONG: {
   2469       Binop_23x_cmp(instruction, Primitive::kPrimLong, ComparisonBias::kNoBias, dex_pc);
   2470       break;
   2471     }
   2472 
   2473     case Instruction::CMPG_FLOAT: {
   2474       Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kGtBias, dex_pc);
   2475       break;
   2476     }
   2477 
   2478     case Instruction::CMPG_DOUBLE: {
   2479       Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kGtBias, dex_pc);
   2480       break;
   2481     }
   2482 
   2483     case Instruction::CMPL_FLOAT: {
   2484       Binop_23x_cmp(instruction, Primitive::kPrimFloat, ComparisonBias::kLtBias, dex_pc);
   2485       break;
   2486     }
   2487 
   2488     case Instruction::CMPL_DOUBLE: {
   2489       Binop_23x_cmp(instruction, Primitive::kPrimDouble, ComparisonBias::kLtBias, dex_pc);
   2490       break;
   2491     }
   2492 
   2493     case Instruction::NOP:
   2494       break;
   2495 
   2496     case Instruction::IGET:
   2497     case Instruction::IGET_QUICK:
   2498     case Instruction::IGET_WIDE:
   2499     case Instruction::IGET_WIDE_QUICK:
   2500     case Instruction::IGET_OBJECT:
   2501     case Instruction::IGET_OBJECT_QUICK:
   2502     case Instruction::IGET_BOOLEAN:
   2503     case Instruction::IGET_BOOLEAN_QUICK:
   2504     case Instruction::IGET_BYTE:
   2505     case Instruction::IGET_BYTE_QUICK:
   2506     case Instruction::IGET_CHAR:
   2507     case Instruction::IGET_CHAR_QUICK:
   2508     case Instruction::IGET_SHORT:
   2509     case Instruction::IGET_SHORT_QUICK: {
   2510       if (!BuildInstanceFieldAccess(instruction, dex_pc, false)) {
   2511         return false;
   2512       }
   2513       break;
   2514     }
   2515 
   2516     case Instruction::IPUT:
   2517     case Instruction::IPUT_QUICK:
   2518     case Instruction::IPUT_WIDE:
   2519     case Instruction::IPUT_WIDE_QUICK:
   2520     case Instruction::IPUT_OBJECT:
   2521     case Instruction::IPUT_OBJECT_QUICK:
   2522     case Instruction::IPUT_BOOLEAN:
   2523     case Instruction::IPUT_BOOLEAN_QUICK:
   2524     case Instruction::IPUT_BYTE:
   2525     case Instruction::IPUT_BYTE_QUICK:
   2526     case Instruction::IPUT_CHAR:
   2527     case Instruction::IPUT_CHAR_QUICK:
   2528     case Instruction::IPUT_SHORT:
   2529     case Instruction::IPUT_SHORT_QUICK: {
   2530       if (!BuildInstanceFieldAccess(instruction, dex_pc, true)) {
   2531         return false;
   2532       }
   2533       break;
   2534     }
   2535 
   2536     case Instruction::SGET:
   2537     case Instruction::SGET_WIDE:
   2538     case Instruction::SGET_OBJECT:
   2539     case Instruction::SGET_BOOLEAN:
   2540     case Instruction::SGET_BYTE:
   2541     case Instruction::SGET_CHAR:
   2542     case Instruction::SGET_SHORT: {
   2543       if (!BuildStaticFieldAccess(instruction, dex_pc, false)) {
   2544         return false;
   2545       }
   2546       break;
   2547     }
   2548 
   2549     case Instruction::SPUT:
   2550     case Instruction::SPUT_WIDE:
   2551     case Instruction::SPUT_OBJECT:
   2552     case Instruction::SPUT_BOOLEAN:
   2553     case Instruction::SPUT_BYTE:
   2554     case Instruction::SPUT_CHAR:
   2555     case Instruction::SPUT_SHORT: {
   2556       if (!BuildStaticFieldAccess(instruction, dex_pc, true)) {
   2557         return false;
   2558       }
   2559       break;
   2560     }
   2561 
   2562 #define ARRAY_XX(kind, anticipated_type)                                          \
   2563     case Instruction::AGET##kind: {                                               \
   2564       BuildArrayAccess(instruction, dex_pc, false, anticipated_type);         \
   2565       break;                                                                      \
   2566     }                                                                             \
   2567     case Instruction::APUT##kind: {                                               \
   2568       BuildArrayAccess(instruction, dex_pc, true, anticipated_type);          \
   2569       break;                                                                      \
   2570     }
   2571 
   2572     ARRAY_XX(, Primitive::kPrimInt);
   2573     ARRAY_XX(_WIDE, Primitive::kPrimLong);
   2574     ARRAY_XX(_OBJECT, Primitive::kPrimNot);
   2575     ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
   2576     ARRAY_XX(_BYTE, Primitive::kPrimByte);
   2577     ARRAY_XX(_CHAR, Primitive::kPrimChar);
   2578     ARRAY_XX(_SHORT, Primitive::kPrimShort);
   2579 
   2580     case Instruction::ARRAY_LENGTH: {
   2581       HInstruction* object = LoadNullCheckedLocal(instruction.VRegB_12x(), dex_pc);
   2582       AppendInstruction(new (arena_) HArrayLength(object, dex_pc));
   2583       UpdateLocal(instruction.VRegA_12x(), current_block_->GetLastInstruction());
   2584       break;
   2585     }
   2586 
   2587     case Instruction::CONST_STRING: {
   2588       uint32_t string_index = instruction.VRegB_21c();
   2589       AppendInstruction(
   2590           new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
   2591       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
   2592       break;
   2593     }
   2594 
   2595     case Instruction::CONST_STRING_JUMBO: {
   2596       uint32_t string_index = instruction.VRegB_31c();
   2597       AppendInstruction(
   2598           new (arena_) HLoadString(graph_->GetCurrentMethod(), string_index, *dex_file_, dex_pc));
   2599       UpdateLocal(instruction.VRegA_31c(), current_block_->GetLastInstruction());
   2600       break;
   2601     }
   2602 
   2603     case Instruction::CONST_CLASS: {
   2604       uint16_t type_index = instruction.VRegB_21c();
   2605       // `CanAccessTypeWithoutChecks` will tell whether the method being
   2606       // built is trying to access its own class, so that the generated
   2607       // code can optimize for this case. However, the optimization does not
   2608       // work for inlining, so we use `IsOutermostCompilingClass` instead.
   2609       ScopedObjectAccess soa(Thread::Current());
   2610       Handle<mirror::DexCache> dex_cache = dex_compilation_unit_->GetDexCache();
   2611       bool can_access = compiler_driver_->CanAccessTypeWithoutChecks(
   2612           dex_compilation_unit_->GetDexMethodIndex(), dex_cache, type_index);
   2613       bool is_in_dex_cache =
   2614           compiler_driver_->CanAssumeTypeIsPresentInDexCache(dex_cache, type_index);
   2615       AppendInstruction(new (arena_) HLoadClass(
   2616           graph_->GetCurrentMethod(),
   2617           type_index,
   2618           *dex_file_,
   2619           IsOutermostCompilingClass(type_index),
   2620           dex_pc,
   2621           !can_access,
   2622           is_in_dex_cache));
   2623       UpdateLocal(instruction.VRegA_21c(), current_block_->GetLastInstruction());
   2624       break;
   2625     }
   2626 
   2627     case Instruction::MOVE_EXCEPTION: {
   2628       AppendInstruction(new (arena_) HLoadException(dex_pc));
   2629       UpdateLocal(instruction.VRegA_11x(), current_block_->GetLastInstruction());
   2630       AppendInstruction(new (arena_) HClearException(dex_pc));
   2631       break;
   2632     }
   2633 
   2634     case Instruction::THROW: {
   2635       HInstruction* exception = LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot);
   2636       AppendInstruction(new (arena_) HThrow(exception, dex_pc));
   2637       // We finished building this block. Set the current block to null to avoid
   2638       // adding dead instructions to it.
   2639       current_block_ = nullptr;
   2640       break;
   2641     }
   2642 
   2643     case Instruction::INSTANCE_OF: {
   2644       uint8_t destination = instruction.VRegA_22c();
   2645       uint8_t reference = instruction.VRegB_22c();
   2646       uint16_t type_index = instruction.VRegC_22c();
   2647       BuildTypeCheck(instruction, destination, reference, type_index, dex_pc);
   2648       break;
   2649     }
   2650 
   2651     case Instruction::CHECK_CAST: {
   2652       uint8_t reference = instruction.VRegA_21c();
   2653       uint16_t type_index = instruction.VRegB_21c();
   2654       BuildTypeCheck(instruction, -1, reference, type_index, dex_pc);
   2655       break;
   2656     }
   2657 
   2658     case Instruction::MONITOR_ENTER: {
   2659       AppendInstruction(new (arena_) HMonitorOperation(
   2660           LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
   2661           HMonitorOperation::OperationKind::kEnter,
   2662           dex_pc));
   2663       break;
   2664     }
   2665 
   2666     case Instruction::MONITOR_EXIT: {
   2667       AppendInstruction(new (arena_) HMonitorOperation(
   2668           LoadLocal(instruction.VRegA_11x(), Primitive::kPrimNot),
   2669           HMonitorOperation::OperationKind::kExit,
   2670           dex_pc));
   2671       break;
   2672     }
   2673 
   2674     case Instruction::SPARSE_SWITCH:
   2675     case Instruction::PACKED_SWITCH: {
   2676       BuildSwitch(instruction, dex_pc);
   2677       break;
   2678     }
   2679 
   2680     default:
   2681       VLOG(compiler) << "Did not compile "
   2682                      << PrettyMethod(dex_compilation_unit_->GetDexMethodIndex(), *dex_file_)
   2683                      << " because of unhandled instruction "
   2684                      << instruction.Name();
   2685       MaybeRecordStat(MethodCompilationStat::kNotCompiledUnhandledInstruction);
   2686       return false;
   2687   }
   2688   return true;
   2689 }  // NOLINT(readability/fn_size)
   2690 
   2691 }  // namespace art
   2692