1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/parsing/parser.h" 6 7 #include "src/api.h" 8 #include "src/ast/ast.h" 9 #include "src/ast/ast-expression-visitor.h" 10 #include "src/ast/ast-literal-reindexer.h" 11 #include "src/ast/scopeinfo.h" 12 #include "src/bailout-reason.h" 13 #include "src/base/platform/platform.h" 14 #include "src/bootstrapper.h" 15 #include "src/char-predicates-inl.h" 16 #include "src/codegen.h" 17 #include "src/compiler.h" 18 #include "src/messages.h" 19 #include "src/parsing/parameter-initializer-rewriter.h" 20 #include "src/parsing/parser-base.h" 21 #include "src/parsing/rewriter.h" 22 #include "src/parsing/scanner-character-streams.h" 23 #include "src/runtime/runtime.h" 24 #include "src/string-stream.h" 25 26 namespace v8 { 27 namespace internal { 28 29 ScriptData::ScriptData(const byte* data, int length) 30 : owns_data_(false), rejected_(false), data_(data), length_(length) { 31 if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) { 32 byte* copy = NewArray<byte>(length); 33 DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment)); 34 CopyBytes(copy, data, length); 35 data_ = copy; 36 AcquireDataOwnership(); 37 } 38 } 39 40 41 ParseInfo::ParseInfo(Zone* zone) 42 : zone_(zone), 43 flags_(0), 44 source_stream_(nullptr), 45 source_stream_encoding_(ScriptCompiler::StreamedSource::ONE_BYTE), 46 extension_(nullptr), 47 compile_options_(ScriptCompiler::kNoCompileOptions), 48 script_scope_(nullptr), 49 unicode_cache_(nullptr), 50 stack_limit_(0), 51 hash_seed_(0), 52 cached_data_(nullptr), 53 ast_value_factory_(nullptr), 54 literal_(nullptr), 55 scope_(nullptr) {} 56 57 58 ParseInfo::ParseInfo(Zone* zone, Handle<JSFunction> function) 59 : ParseInfo(zone, Handle<SharedFunctionInfo>(function->shared())) { 60 set_closure(function); 61 set_context(Handle<Context>(function->context())); 62 } 63 64 65 ParseInfo::ParseInfo(Zone* zone, Handle<SharedFunctionInfo> shared) 66 : ParseInfo(zone) { 67 isolate_ = shared->GetIsolate(); 68 69 set_lazy(); 70 set_hash_seed(isolate_->heap()->HashSeed()); 71 set_stack_limit(isolate_->stack_guard()->real_climit()); 72 set_unicode_cache(isolate_->unicode_cache()); 73 set_language_mode(shared->language_mode()); 74 set_shared_info(shared); 75 76 Handle<Script> script(Script::cast(shared->script())); 77 set_script(script); 78 if (!script.is_null() && script->type() == Script::TYPE_NATIVE) { 79 set_native(); 80 } 81 } 82 83 84 ParseInfo::ParseInfo(Zone* zone, Handle<Script> script) : ParseInfo(zone) { 85 isolate_ = script->GetIsolate(); 86 87 set_hash_seed(isolate_->heap()->HashSeed()); 88 set_stack_limit(isolate_->stack_guard()->real_climit()); 89 set_unicode_cache(isolate_->unicode_cache()); 90 set_script(script); 91 92 if (script->type() == Script::TYPE_NATIVE) { 93 set_native(); 94 } 95 } 96 97 98 FunctionEntry ParseData::GetFunctionEntry(int start) { 99 // The current pre-data entry must be a FunctionEntry with the given 100 // start position. 101 if ((function_index_ + FunctionEntry::kSize <= Length()) && 102 (static_cast<int>(Data()[function_index_]) == start)) { 103 int index = function_index_; 104 function_index_ += FunctionEntry::kSize; 105 Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize); 106 return FunctionEntry(subvector); 107 } 108 return FunctionEntry(); 109 } 110 111 112 int ParseData::FunctionCount() { 113 int functions_size = FunctionsSize(); 114 if (functions_size < 0) return 0; 115 if (functions_size % FunctionEntry::kSize != 0) return 0; 116 return functions_size / FunctionEntry::kSize; 117 } 118 119 120 bool ParseData::IsSane() { 121 if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false; 122 // Check that the header data is valid and doesn't specify 123 // point to positions outside the store. 124 int data_length = Length(); 125 if (data_length < PreparseDataConstants::kHeaderSize) return false; 126 if (Magic() != PreparseDataConstants::kMagicNumber) return false; 127 if (Version() != PreparseDataConstants::kCurrentVersion) return false; 128 if (HasError()) return false; 129 // Check that the space allocated for function entries is sane. 130 int functions_size = FunctionsSize(); 131 if (functions_size < 0) return false; 132 if (functions_size % FunctionEntry::kSize != 0) return false; 133 // Check that the total size has room for header and function entries. 134 int minimum_size = 135 PreparseDataConstants::kHeaderSize + functions_size; 136 if (data_length < minimum_size) return false; 137 return true; 138 } 139 140 141 void ParseData::Initialize() { 142 // Prepares state for use. 143 int data_length = Length(); 144 if (data_length >= PreparseDataConstants::kHeaderSize) { 145 function_index_ = PreparseDataConstants::kHeaderSize; 146 } 147 } 148 149 150 bool ParseData::HasError() { 151 return Data()[PreparseDataConstants::kHasErrorOffset]; 152 } 153 154 155 unsigned ParseData::Magic() { 156 return Data()[PreparseDataConstants::kMagicOffset]; 157 } 158 159 160 unsigned ParseData::Version() { 161 return Data()[PreparseDataConstants::kVersionOffset]; 162 } 163 164 165 int ParseData::FunctionsSize() { 166 return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]); 167 } 168 169 170 void Parser::SetCachedData(ParseInfo* info) { 171 if (compile_options_ == ScriptCompiler::kNoCompileOptions) { 172 cached_parse_data_ = NULL; 173 } else { 174 DCHECK(info->cached_data() != NULL); 175 if (compile_options_ == ScriptCompiler::kConsumeParserCache) { 176 cached_parse_data_ = ParseData::FromCachedData(*info->cached_data()); 177 } 178 } 179 } 180 181 182 FunctionLiteral* Parser::DefaultConstructor(bool call_super, Scope* scope, 183 int pos, int end_pos, 184 LanguageMode language_mode) { 185 int materialized_literal_count = -1; 186 int expected_property_count = -1; 187 int parameter_count = 0; 188 const AstRawString* name = ast_value_factory()->empty_string(); 189 190 191 FunctionKind kind = call_super ? FunctionKind::kDefaultSubclassConstructor 192 : FunctionKind::kDefaultBaseConstructor; 193 Scope* function_scope = NewScope(scope, FUNCTION_SCOPE, kind); 194 SetLanguageMode(function_scope, 195 static_cast<LanguageMode>(language_mode | STRICT)); 196 // Set start and end position to the same value 197 function_scope->set_start_position(pos); 198 function_scope->set_end_position(pos); 199 ZoneList<Statement*>* body = NULL; 200 201 { 202 AstNodeFactory function_factory(ast_value_factory()); 203 FunctionState function_state(&function_state_, &scope_, function_scope, 204 kind, &function_factory); 205 206 body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone()); 207 if (call_super) { 208 // $super_constructor = %_GetSuperConstructor(<this-function>) 209 // %reflect_construct($super_constructor, arguments, new.target) 210 ZoneList<Expression*>* args = 211 new (zone()) ZoneList<Expression*>(2, zone()); 212 VariableProxy* this_function_proxy = scope_->NewUnresolved( 213 factory(), ast_value_factory()->this_function_string(), 214 Variable::NORMAL, pos); 215 ZoneList<Expression*>* tmp = 216 new (zone()) ZoneList<Expression*>(1, zone()); 217 tmp->Add(this_function_proxy, zone()); 218 Expression* super_constructor = factory()->NewCallRuntime( 219 Runtime::kInlineGetSuperConstructor, tmp, pos); 220 args->Add(super_constructor, zone()); 221 VariableProxy* arguments_proxy = scope_->NewUnresolved( 222 factory(), ast_value_factory()->arguments_string(), Variable::NORMAL, 223 pos); 224 args->Add(arguments_proxy, zone()); 225 VariableProxy* new_target_proxy = scope_->NewUnresolved( 226 factory(), ast_value_factory()->new_target_string(), Variable::NORMAL, 227 pos); 228 args->Add(new_target_proxy, zone()); 229 CallRuntime* call = factory()->NewCallRuntime( 230 Context::REFLECT_CONSTRUCT_INDEX, args, pos); 231 body->Add(factory()->NewReturnStatement(call, pos), zone()); 232 } 233 234 materialized_literal_count = function_state.materialized_literal_count(); 235 expected_property_count = function_state.expected_property_count(); 236 } 237 238 FunctionLiteral* function_literal = factory()->NewFunctionLiteral( 239 name, function_scope, body, materialized_literal_count, 240 expected_property_count, parameter_count, 241 FunctionLiteral::kNoDuplicateParameters, 242 FunctionLiteral::kAnonymousExpression, 243 FunctionLiteral::kShouldLazyCompile, kind, pos); 244 245 return function_literal; 246 } 247 248 249 // ---------------------------------------------------------------------------- 250 // Target is a support class to facilitate manipulation of the 251 // Parser's target_stack_ (the stack of potential 'break' and 252 // 'continue' statement targets). Upon construction, a new target is 253 // added; it is removed upon destruction. 254 255 class Target BASE_EMBEDDED { 256 public: 257 Target(Target** variable, BreakableStatement* statement) 258 : variable_(variable), statement_(statement), previous_(*variable) { 259 *variable = this; 260 } 261 262 ~Target() { 263 *variable_ = previous_; 264 } 265 266 Target* previous() { return previous_; } 267 BreakableStatement* statement() { return statement_; } 268 269 private: 270 Target** variable_; 271 BreakableStatement* statement_; 272 Target* previous_; 273 }; 274 275 276 class TargetScope BASE_EMBEDDED { 277 public: 278 explicit TargetScope(Target** variable) 279 : variable_(variable), previous_(*variable) { 280 *variable = NULL; 281 } 282 283 ~TargetScope() { 284 *variable_ = previous_; 285 } 286 287 private: 288 Target** variable_; 289 Target* previous_; 290 }; 291 292 293 // ---------------------------------------------------------------------------- 294 // The CHECK_OK macro is a convenient macro to enforce error 295 // handling for functions that may fail (by returning !*ok). 296 // 297 // CAUTION: This macro appends extra statements after a call, 298 // thus it must never be used where only a single statement 299 // is correct (e.g. an if statement branch w/o braces)! 300 301 #define CHECK_OK ok); \ 302 if (!*ok) return NULL; \ 303 ((void)0 304 #define DUMMY ) // to make indentation work 305 #undef DUMMY 306 307 #define CHECK_FAILED /**/); \ 308 if (failed_) return NULL; \ 309 ((void)0 310 #define DUMMY ) // to make indentation work 311 #undef DUMMY 312 313 // ---------------------------------------------------------------------------- 314 // Implementation of Parser 315 316 bool ParserTraits::IsEval(const AstRawString* identifier) const { 317 return identifier == parser_->ast_value_factory()->eval_string(); 318 } 319 320 321 bool ParserTraits::IsArguments(const AstRawString* identifier) const { 322 return identifier == parser_->ast_value_factory()->arguments_string(); 323 } 324 325 326 bool ParserTraits::IsEvalOrArguments(const AstRawString* identifier) const { 327 return IsEval(identifier) || IsArguments(identifier); 328 } 329 330 bool ParserTraits::IsUndefined(const AstRawString* identifier) const { 331 return identifier == parser_->ast_value_factory()->undefined_string(); 332 } 333 334 bool ParserTraits::IsPrototype(const AstRawString* identifier) const { 335 return identifier == parser_->ast_value_factory()->prototype_string(); 336 } 337 338 339 bool ParserTraits::IsConstructor(const AstRawString* identifier) const { 340 return identifier == parser_->ast_value_factory()->constructor_string(); 341 } 342 343 344 bool ParserTraits::IsThisProperty(Expression* expression) { 345 DCHECK(expression != NULL); 346 Property* property = expression->AsProperty(); 347 return property != NULL && property->obj()->IsVariableProxy() && 348 property->obj()->AsVariableProxy()->is_this(); 349 } 350 351 352 bool ParserTraits::IsIdentifier(Expression* expression) { 353 VariableProxy* operand = expression->AsVariableProxy(); 354 return operand != NULL && !operand->is_this(); 355 } 356 357 358 void ParserTraits::PushPropertyName(FuncNameInferrer* fni, 359 Expression* expression) { 360 if (expression->IsPropertyName()) { 361 fni->PushLiteralName(expression->AsLiteral()->AsRawPropertyName()); 362 } else { 363 fni->PushLiteralName( 364 parser_->ast_value_factory()->anonymous_function_string()); 365 } 366 } 367 368 369 void ParserTraits::CheckAssigningFunctionLiteralToProperty(Expression* left, 370 Expression* right) { 371 DCHECK(left != NULL); 372 if (left->IsProperty() && right->IsFunctionLiteral()) { 373 right->AsFunctionLiteral()->set_pretenure(); 374 } 375 } 376 377 378 Expression* ParserTraits::MarkExpressionAsAssigned(Expression* expression) { 379 VariableProxy* proxy = 380 expression != NULL ? expression->AsVariableProxy() : NULL; 381 if (proxy != NULL) proxy->set_is_assigned(); 382 return expression; 383 } 384 385 386 bool ParserTraits::ShortcutNumericLiteralBinaryExpression( 387 Expression** x, Expression* y, Token::Value op, int pos, 388 AstNodeFactory* factory) { 389 if ((*x)->AsLiteral() && (*x)->AsLiteral()->raw_value()->IsNumber() && 390 y->AsLiteral() && y->AsLiteral()->raw_value()->IsNumber()) { 391 double x_val = (*x)->AsLiteral()->raw_value()->AsNumber(); 392 double y_val = y->AsLiteral()->raw_value()->AsNumber(); 393 bool x_has_dot = (*x)->AsLiteral()->raw_value()->ContainsDot(); 394 bool y_has_dot = y->AsLiteral()->raw_value()->ContainsDot(); 395 bool has_dot = x_has_dot || y_has_dot; 396 switch (op) { 397 case Token::ADD: 398 *x = factory->NewNumberLiteral(x_val + y_val, pos, has_dot); 399 return true; 400 case Token::SUB: 401 *x = factory->NewNumberLiteral(x_val - y_val, pos, has_dot); 402 return true; 403 case Token::MUL: 404 *x = factory->NewNumberLiteral(x_val * y_val, pos, has_dot); 405 return true; 406 case Token::DIV: 407 *x = factory->NewNumberLiteral(x_val / y_val, pos, has_dot); 408 return true; 409 case Token::BIT_OR: { 410 int value = DoubleToInt32(x_val) | DoubleToInt32(y_val); 411 *x = factory->NewNumberLiteral(value, pos, has_dot); 412 return true; 413 } 414 case Token::BIT_AND: { 415 int value = DoubleToInt32(x_val) & DoubleToInt32(y_val); 416 *x = factory->NewNumberLiteral(value, pos, has_dot); 417 return true; 418 } 419 case Token::BIT_XOR: { 420 int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val); 421 *x = factory->NewNumberLiteral(value, pos, has_dot); 422 return true; 423 } 424 case Token::SHL: { 425 int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1f); 426 *x = factory->NewNumberLiteral(value, pos, has_dot); 427 return true; 428 } 429 case Token::SHR: { 430 uint32_t shift = DoubleToInt32(y_val) & 0x1f; 431 uint32_t value = DoubleToUint32(x_val) >> shift; 432 *x = factory->NewNumberLiteral(value, pos, has_dot); 433 return true; 434 } 435 case Token::SAR: { 436 uint32_t shift = DoubleToInt32(y_val) & 0x1f; 437 int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift); 438 *x = factory->NewNumberLiteral(value, pos, has_dot); 439 return true; 440 } 441 default: 442 break; 443 } 444 } 445 return false; 446 } 447 448 449 Expression* ParserTraits::BuildUnaryExpression(Expression* expression, 450 Token::Value op, int pos, 451 AstNodeFactory* factory) { 452 DCHECK(expression != NULL); 453 if (expression->IsLiteral()) { 454 const AstValue* literal = expression->AsLiteral()->raw_value(); 455 if (op == Token::NOT) { 456 // Convert the literal to a boolean condition and negate it. 457 bool condition = literal->BooleanValue(); 458 return factory->NewBooleanLiteral(!condition, pos); 459 } else if (literal->IsNumber()) { 460 // Compute some expressions involving only number literals. 461 double value = literal->AsNumber(); 462 bool has_dot = literal->ContainsDot(); 463 switch (op) { 464 case Token::ADD: 465 return expression; 466 case Token::SUB: 467 return factory->NewNumberLiteral(-value, pos, has_dot); 468 case Token::BIT_NOT: 469 return factory->NewNumberLiteral(~DoubleToInt32(value), pos, has_dot); 470 default: 471 break; 472 } 473 } 474 } 475 // Desugar '+foo' => 'foo*1' 476 if (op == Token::ADD) { 477 return factory->NewBinaryOperation( 478 Token::MUL, expression, factory->NewNumberLiteral(1, pos, true), pos); 479 } 480 // The same idea for '-foo' => 'foo*(-1)'. 481 if (op == Token::SUB) { 482 return factory->NewBinaryOperation( 483 Token::MUL, expression, factory->NewNumberLiteral(-1, pos), pos); 484 } 485 // ...and one more time for '~foo' => 'foo^(~0)'. 486 if (op == Token::BIT_NOT) { 487 return factory->NewBinaryOperation( 488 Token::BIT_XOR, expression, factory->NewNumberLiteral(~0, pos), pos); 489 } 490 return factory->NewUnaryOperation(op, expression, pos); 491 } 492 493 494 Expression* ParserTraits::NewThrowReferenceError( 495 MessageTemplate::Template message, int pos) { 496 return NewThrowError(Runtime::kNewReferenceError, message, 497 parser_->ast_value_factory()->empty_string(), pos); 498 } 499 500 501 Expression* ParserTraits::NewThrowSyntaxError(MessageTemplate::Template message, 502 const AstRawString* arg, 503 int pos) { 504 return NewThrowError(Runtime::kNewSyntaxError, message, arg, pos); 505 } 506 507 508 Expression* ParserTraits::NewThrowTypeError(MessageTemplate::Template message, 509 const AstRawString* arg, int pos) { 510 return NewThrowError(Runtime::kNewTypeError, message, arg, pos); 511 } 512 513 514 Expression* ParserTraits::NewThrowError(Runtime::FunctionId id, 515 MessageTemplate::Template message, 516 const AstRawString* arg, int pos) { 517 Zone* zone = parser_->zone(); 518 ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(2, zone); 519 args->Add(parser_->factory()->NewSmiLiteral(message, pos), zone); 520 args->Add(parser_->factory()->NewStringLiteral(arg, pos), zone); 521 CallRuntime* call_constructor = 522 parser_->factory()->NewCallRuntime(id, args, pos); 523 return parser_->factory()->NewThrow(call_constructor, pos); 524 } 525 526 527 void ParserTraits::ReportMessageAt(Scanner::Location source_location, 528 MessageTemplate::Template message, 529 const char* arg, ParseErrorType error_type) { 530 if (parser_->stack_overflow()) { 531 // Suppress the error message (syntax error or such) in the presence of a 532 // stack overflow. The isolate allows only one pending exception at at time 533 // and we want to report the stack overflow later. 534 return; 535 } 536 parser_->pending_error_handler_.ReportMessageAt(source_location.beg_pos, 537 source_location.end_pos, 538 message, arg, error_type); 539 } 540 541 542 void ParserTraits::ReportMessage(MessageTemplate::Template message, 543 const char* arg, ParseErrorType error_type) { 544 Scanner::Location source_location = parser_->scanner()->location(); 545 ReportMessageAt(source_location, message, arg, error_type); 546 } 547 548 549 void ParserTraits::ReportMessage(MessageTemplate::Template message, 550 const AstRawString* arg, 551 ParseErrorType error_type) { 552 Scanner::Location source_location = parser_->scanner()->location(); 553 ReportMessageAt(source_location, message, arg, error_type); 554 } 555 556 557 void ParserTraits::ReportMessageAt(Scanner::Location source_location, 558 MessageTemplate::Template message, 559 const AstRawString* arg, 560 ParseErrorType error_type) { 561 if (parser_->stack_overflow()) { 562 // Suppress the error message (syntax error or such) in the presence of a 563 // stack overflow. The isolate allows only one pending exception at at time 564 // and we want to report the stack overflow later. 565 return; 566 } 567 parser_->pending_error_handler_.ReportMessageAt(source_location.beg_pos, 568 source_location.end_pos, 569 message, arg, error_type); 570 } 571 572 573 const AstRawString* ParserTraits::GetSymbol(Scanner* scanner) { 574 const AstRawString* result = 575 parser_->scanner()->CurrentSymbol(parser_->ast_value_factory()); 576 DCHECK(result != NULL); 577 return result; 578 } 579 580 581 const AstRawString* ParserTraits::GetNumberAsSymbol(Scanner* scanner) { 582 double double_value = parser_->scanner()->DoubleValue(); 583 char array[100]; 584 const char* string = 585 DoubleToCString(double_value, Vector<char>(array, arraysize(array))); 586 return parser_->ast_value_factory()->GetOneByteString(string); 587 } 588 589 590 const AstRawString* ParserTraits::GetNextSymbol(Scanner* scanner) { 591 return parser_->scanner()->NextSymbol(parser_->ast_value_factory()); 592 } 593 594 595 Expression* ParserTraits::ThisExpression(Scope* scope, AstNodeFactory* factory, 596 int pos) { 597 return scope->NewUnresolved(factory, 598 parser_->ast_value_factory()->this_string(), 599 Variable::THIS, pos, pos + 4); 600 } 601 602 603 Expression* ParserTraits::SuperPropertyReference(Scope* scope, 604 AstNodeFactory* factory, 605 int pos) { 606 // this_function[home_object_symbol] 607 VariableProxy* this_function_proxy = scope->NewUnresolved( 608 factory, parser_->ast_value_factory()->this_function_string(), 609 Variable::NORMAL, pos); 610 Expression* home_object_symbol_literal = 611 factory->NewSymbolLiteral("home_object_symbol", RelocInfo::kNoPosition); 612 Expression* home_object = factory->NewProperty( 613 this_function_proxy, home_object_symbol_literal, pos); 614 return factory->NewSuperPropertyReference( 615 ThisExpression(scope, factory, pos)->AsVariableProxy(), home_object, pos); 616 } 617 618 619 Expression* ParserTraits::SuperCallReference(Scope* scope, 620 AstNodeFactory* factory, int pos) { 621 VariableProxy* new_target_proxy = scope->NewUnresolved( 622 factory, parser_->ast_value_factory()->new_target_string(), 623 Variable::NORMAL, pos); 624 VariableProxy* this_function_proxy = scope->NewUnresolved( 625 factory, parser_->ast_value_factory()->this_function_string(), 626 Variable::NORMAL, pos); 627 return factory->NewSuperCallReference( 628 ThisExpression(scope, factory, pos)->AsVariableProxy(), new_target_proxy, 629 this_function_proxy, pos); 630 } 631 632 633 Expression* ParserTraits::NewTargetExpression(Scope* scope, 634 AstNodeFactory* factory, 635 int pos) { 636 static const int kNewTargetStringLength = 10; 637 auto proxy = scope->NewUnresolved( 638 factory, parser_->ast_value_factory()->new_target_string(), 639 Variable::NORMAL, pos, pos + kNewTargetStringLength); 640 proxy->set_is_new_target(); 641 return proxy; 642 } 643 644 645 Expression* ParserTraits::DefaultConstructor(bool call_super, Scope* scope, 646 int pos, int end_pos, 647 LanguageMode mode) { 648 return parser_->DefaultConstructor(call_super, scope, pos, end_pos, mode); 649 } 650 651 652 Literal* ParserTraits::ExpressionFromLiteral(Token::Value token, int pos, 653 Scanner* scanner, 654 AstNodeFactory* factory) { 655 switch (token) { 656 case Token::NULL_LITERAL: 657 return factory->NewNullLiteral(pos); 658 case Token::TRUE_LITERAL: 659 return factory->NewBooleanLiteral(true, pos); 660 case Token::FALSE_LITERAL: 661 return factory->NewBooleanLiteral(false, pos); 662 case Token::SMI: { 663 int value = scanner->smi_value(); 664 return factory->NewSmiLiteral(value, pos); 665 } 666 case Token::NUMBER: { 667 bool has_dot = scanner->ContainsDot(); 668 double value = scanner->DoubleValue(); 669 return factory->NewNumberLiteral(value, pos, has_dot); 670 } 671 default: 672 DCHECK(false); 673 } 674 return NULL; 675 } 676 677 678 Expression* ParserTraits::ExpressionFromIdentifier(const AstRawString* name, 679 int start_position, 680 int end_position, 681 Scope* scope, 682 AstNodeFactory* factory) { 683 if (parser_->fni_ != NULL) parser_->fni_->PushVariableName(name); 684 return scope->NewUnresolved(factory, name, Variable::NORMAL, start_position, 685 end_position); 686 } 687 688 689 Expression* ParserTraits::ExpressionFromString(int pos, Scanner* scanner, 690 AstNodeFactory* factory) { 691 const AstRawString* symbol = GetSymbol(scanner); 692 if (parser_->fni_ != NULL) parser_->fni_->PushLiteralName(symbol); 693 return factory->NewStringLiteral(symbol, pos); 694 } 695 696 697 Expression* ParserTraits::GetIterator(Expression* iterable, 698 AstNodeFactory* factory, int pos) { 699 Expression* iterator_symbol_literal = 700 factory->NewSymbolLiteral("iterator_symbol", RelocInfo::kNoPosition); 701 Expression* prop = 702 factory->NewProperty(iterable, iterator_symbol_literal, pos); 703 Zone* zone = parser_->zone(); 704 ZoneList<Expression*>* args = new (zone) ZoneList<Expression*>(0, zone); 705 return factory->NewCall(prop, args, pos); 706 } 707 708 709 Literal* ParserTraits::GetLiteralTheHole(int position, 710 AstNodeFactory* factory) { 711 return factory->NewTheHoleLiteral(RelocInfo::kNoPosition); 712 } 713 714 715 Expression* ParserTraits::ParseV8Intrinsic(bool* ok) { 716 return parser_->ParseV8Intrinsic(ok); 717 } 718 719 720 FunctionLiteral* ParserTraits::ParseFunctionLiteral( 721 const AstRawString* name, Scanner::Location function_name_location, 722 FunctionNameValidity function_name_validity, FunctionKind kind, 723 int function_token_position, FunctionLiteral::FunctionType type, 724 FunctionLiteral::ArityRestriction arity_restriction, 725 LanguageMode language_mode, bool* ok) { 726 return parser_->ParseFunctionLiteral( 727 name, function_name_location, function_name_validity, kind, 728 function_token_position, type, arity_restriction, language_mode, ok); 729 } 730 731 732 ClassLiteral* ParserTraits::ParseClassLiteral( 733 const AstRawString* name, Scanner::Location class_name_location, 734 bool name_is_strict_reserved, int pos, bool* ok) { 735 return parser_->ParseClassLiteral(name, class_name_location, 736 name_is_strict_reserved, pos, ok); 737 } 738 739 740 Parser::Parser(ParseInfo* info) 741 : ParserBase<ParserTraits>(info->zone(), &scanner_, info->stack_limit(), 742 info->extension(), info->ast_value_factory(), 743 NULL, this), 744 scanner_(info->unicode_cache()), 745 reusable_preparser_(NULL), 746 original_scope_(NULL), 747 target_stack_(NULL), 748 compile_options_(info->compile_options()), 749 cached_parse_data_(NULL), 750 total_preparse_skipped_(0), 751 pre_parse_timer_(NULL), 752 parsing_on_main_thread_(true) { 753 // Even though we were passed ParseInfo, we should not store it in 754 // Parser - this makes sure that Isolate is not accidentally accessed via 755 // ParseInfo during background parsing. 756 DCHECK(!info->script().is_null() || info->source_stream() != NULL); 757 set_allow_lazy(info->allow_lazy_parsing()); 758 set_allow_natives(FLAG_allow_natives_syntax || info->is_native()); 759 set_allow_harmony_sloppy(FLAG_harmony_sloppy); 760 set_allow_harmony_sloppy_function(FLAG_harmony_sloppy_function); 761 set_allow_harmony_sloppy_let(FLAG_harmony_sloppy_let); 762 set_allow_harmony_default_parameters(FLAG_harmony_default_parameters); 763 set_allow_harmony_destructuring_bind(FLAG_harmony_destructuring_bind); 764 set_allow_harmony_destructuring_assignment( 765 FLAG_harmony_destructuring_assignment); 766 set_allow_strong_mode(FLAG_strong_mode); 767 set_allow_legacy_const(FLAG_legacy_const); 768 set_allow_harmony_do_expressions(FLAG_harmony_do_expressions); 769 set_allow_harmony_function_name(FLAG_harmony_function_name); 770 for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount; 771 ++feature) { 772 use_counts_[feature] = 0; 773 } 774 if (info->ast_value_factory() == NULL) { 775 // info takes ownership of AstValueFactory. 776 info->set_ast_value_factory(new AstValueFactory(zone(), info->hash_seed())); 777 info->set_ast_value_factory_owned(); 778 ast_value_factory_ = info->ast_value_factory(); 779 } 780 } 781 782 783 FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) { 784 // TODO(bmeurer): We temporarily need to pass allow_nesting = true here, 785 // see comment for HistogramTimerScope class. 786 787 // It's OK to use the Isolate & counters here, since this function is only 788 // called in the main thread. 789 DCHECK(parsing_on_main_thread_); 790 791 HistogramTimerScope timer_scope(isolate->counters()->parse(), true); 792 Handle<String> source(String::cast(info->script()->source())); 793 isolate->counters()->total_parse_size()->Increment(source->length()); 794 base::ElapsedTimer timer; 795 if (FLAG_trace_parse) { 796 timer.Start(); 797 } 798 fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); 799 800 // Initialize parser state. 801 CompleteParserRecorder recorder; 802 803 if (produce_cached_parse_data()) { 804 log_ = &recorder; 805 } else if (consume_cached_parse_data()) { 806 cached_parse_data_->Initialize(); 807 } 808 809 source = String::Flatten(source); 810 FunctionLiteral* result; 811 812 if (source->IsExternalTwoByteString()) { 813 // Notice that the stream is destroyed at the end of the branch block. 814 // The last line of the blocks can't be moved outside, even though they're 815 // identical calls. 816 ExternalTwoByteStringUtf16CharacterStream stream( 817 Handle<ExternalTwoByteString>::cast(source), 0, source->length()); 818 scanner_.Initialize(&stream); 819 result = DoParseProgram(info); 820 } else { 821 GenericStringUtf16CharacterStream stream(source, 0, source->length()); 822 scanner_.Initialize(&stream); 823 result = DoParseProgram(info); 824 } 825 if (result != NULL) { 826 DCHECK_EQ(scanner_.peek_location().beg_pos, source->length()); 827 } 828 HandleSourceURLComments(isolate, info->script()); 829 830 if (FLAG_trace_parse && result != NULL) { 831 double ms = timer.Elapsed().InMillisecondsF(); 832 if (info->is_eval()) { 833 PrintF("[parsing eval"); 834 } else if (info->script()->name()->IsString()) { 835 String* name = String::cast(info->script()->name()); 836 base::SmartArrayPointer<char> name_chars = name->ToCString(); 837 PrintF("[parsing script: %s", name_chars.get()); 838 } else { 839 PrintF("[parsing script"); 840 } 841 PrintF(" - took %0.3f ms]\n", ms); 842 } 843 if (produce_cached_parse_data()) { 844 if (result != NULL) *info->cached_data() = recorder.GetScriptData(); 845 log_ = NULL; 846 } 847 return result; 848 } 849 850 851 FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) { 852 // Note that this function can be called from the main thread or from a 853 // background thread. We should not access anything Isolate / heap dependent 854 // via ParseInfo, and also not pass it forward. 855 DCHECK(scope_ == NULL); 856 DCHECK(target_stack_ == NULL); 857 858 Mode parsing_mode = FLAG_lazy && allow_lazy() ? PARSE_LAZILY : PARSE_EAGERLY; 859 if (allow_natives() || extension_ != NULL) parsing_mode = PARSE_EAGERLY; 860 861 FunctionLiteral* result = NULL; 862 { 863 // TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native 864 // context, which will have the "this" binding for script scopes. 865 Scope* scope = NewScope(scope_, SCRIPT_SCOPE); 866 info->set_script_scope(scope); 867 if (!info->context().is_null() && !info->context()->IsNativeContext()) { 868 scope = Scope::DeserializeScopeChain(info->isolate(), zone(), 869 *info->context(), scope); 870 // The Scope is backed up by ScopeInfo (which is in the V8 heap); this 871 // means the Parser cannot operate independent of the V8 heap. Tell the 872 // string table to internalize strings and values right after they're 873 // created. This kind of parsing can only be done in the main thread. 874 DCHECK(parsing_on_main_thread_); 875 ast_value_factory()->Internalize(info->isolate()); 876 } 877 original_scope_ = scope; 878 if (info->is_eval()) { 879 if (!scope->is_script_scope() || is_strict(info->language_mode())) { 880 parsing_mode = PARSE_EAGERLY; 881 } 882 scope = NewScope(scope, EVAL_SCOPE); 883 } else if (info->is_module()) { 884 scope = NewScope(scope, MODULE_SCOPE); 885 } 886 887 scope->set_start_position(0); 888 889 // Enter 'scope' with the given parsing mode. 890 ParsingModeScope parsing_mode_scope(this, parsing_mode); 891 AstNodeFactory function_factory(ast_value_factory()); 892 FunctionState function_state(&function_state_, &scope_, scope, 893 kNormalFunction, &function_factory); 894 895 // Don't count the mode in the use counters--give the program a chance 896 // to enable script/module-wide strict/strong mode below. 897 scope_->SetLanguageMode(info->language_mode()); 898 ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone()); 899 bool ok = true; 900 int beg_pos = scanner()->location().beg_pos; 901 if (info->is_module()) { 902 ParseModuleItemList(body, &ok); 903 } else { 904 ParseStatementList(body, Token::EOS, &ok); 905 } 906 907 // The parser will peek but not consume EOS. Our scope logically goes all 908 // the way to the EOS, though. 909 scope->set_end_position(scanner()->peek_location().beg_pos); 910 911 if (ok && is_strict(language_mode())) { 912 CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok); 913 } 914 if (ok && is_sloppy(language_mode()) && allow_harmony_sloppy_function()) { 915 // TODO(littledan): Function bindings on the global object that modify 916 // pre-existing bindings should be made writable, enumerable and 917 // nonconfigurable if possible, whereas this code will leave attributes 918 // unchanged if the property already exists. 919 InsertSloppyBlockFunctionVarBindings(scope, &ok); 920 } 921 if (ok && (is_strict(language_mode()) || allow_harmony_sloppy() || 922 allow_harmony_destructuring_bind())) { 923 CheckConflictingVarDeclarations(scope_, &ok); 924 } 925 926 if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) { 927 if (body->length() != 1 || 928 !body->at(0)->IsExpressionStatement() || 929 !body->at(0)->AsExpressionStatement()-> 930 expression()->IsFunctionLiteral()) { 931 ReportMessage(MessageTemplate::kSingleFunctionLiteral); 932 ok = false; 933 } 934 } 935 936 if (ok) { 937 ParserTraits::RewriteDestructuringAssignments(); 938 result = factory()->NewFunctionLiteral( 939 ast_value_factory()->empty_string(), scope_, body, 940 function_state.materialized_literal_count(), 941 function_state.expected_property_count(), 0, 942 FunctionLiteral::kNoDuplicateParameters, 943 FunctionLiteral::kGlobalOrEval, FunctionLiteral::kShouldLazyCompile, 944 FunctionKind::kNormalFunction, 0); 945 } 946 } 947 948 // Make sure the target stack is empty. 949 DCHECK(target_stack_ == NULL); 950 951 return result; 952 } 953 954 955 FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info) { 956 // It's OK to use the Isolate & counters here, since this function is only 957 // called in the main thread. 958 DCHECK(parsing_on_main_thread_); 959 HistogramTimerScope timer_scope(isolate->counters()->parse_lazy()); 960 Handle<String> source(String::cast(info->script()->source())); 961 isolate->counters()->total_parse_size()->Increment(source->length()); 962 base::ElapsedTimer timer; 963 if (FLAG_trace_parse) { 964 timer.Start(); 965 } 966 Handle<SharedFunctionInfo> shared_info = info->shared_info(); 967 968 // Initialize parser state. 969 source = String::Flatten(source); 970 FunctionLiteral* result; 971 if (source->IsExternalTwoByteString()) { 972 ExternalTwoByteStringUtf16CharacterStream stream( 973 Handle<ExternalTwoByteString>::cast(source), 974 shared_info->start_position(), 975 shared_info->end_position()); 976 result = ParseLazy(isolate, info, &stream); 977 } else { 978 GenericStringUtf16CharacterStream stream(source, 979 shared_info->start_position(), 980 shared_info->end_position()); 981 result = ParseLazy(isolate, info, &stream); 982 } 983 984 if (FLAG_trace_parse && result != NULL) { 985 double ms = timer.Elapsed().InMillisecondsF(); 986 base::SmartArrayPointer<char> name_chars = 987 result->debug_name()->ToCString(); 988 PrintF("[parsing function: %s - took %0.3f ms]\n", name_chars.get(), ms); 989 } 990 return result; 991 } 992 993 994 FunctionLiteral* Parser::ParseLazy(Isolate* isolate, ParseInfo* info, 995 Utf16CharacterStream* source) { 996 Handle<SharedFunctionInfo> shared_info = info->shared_info(); 997 scanner_.Initialize(source); 998 DCHECK(scope_ == NULL); 999 DCHECK(target_stack_ == NULL); 1000 1001 Handle<String> name(String::cast(shared_info->name())); 1002 DCHECK(ast_value_factory()); 1003 fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); 1004 const AstRawString* raw_name = ast_value_factory()->GetString(name); 1005 fni_->PushEnclosingName(raw_name); 1006 1007 ParsingModeScope parsing_mode(this, PARSE_EAGERLY); 1008 1009 // Place holder for the result. 1010 FunctionLiteral* result = NULL; 1011 1012 { 1013 // Parse the function literal. 1014 Scope* scope = NewScope(scope_, SCRIPT_SCOPE); 1015 info->set_script_scope(scope); 1016 if (!info->closure().is_null()) { 1017 // Ok to use Isolate here, since lazy function parsing is only done in the 1018 // main thread. 1019 DCHECK(parsing_on_main_thread_); 1020 scope = Scope::DeserializeScopeChain(isolate, zone(), 1021 info->closure()->context(), scope); 1022 } 1023 original_scope_ = scope; 1024 AstNodeFactory function_factory(ast_value_factory()); 1025 FunctionState function_state(&function_state_, &scope_, scope, 1026 shared_info->kind(), &function_factory); 1027 DCHECK(is_sloppy(scope->language_mode()) || 1028 is_strict(info->language_mode())); 1029 DCHECK(info->language_mode() == shared_info->language_mode()); 1030 FunctionLiteral::FunctionType function_type = 1031 shared_info->is_expression() 1032 ? (shared_info->is_anonymous() 1033 ? FunctionLiteral::kAnonymousExpression 1034 : FunctionLiteral::kNamedExpression) 1035 : FunctionLiteral::kDeclaration; 1036 bool ok = true; 1037 1038 if (shared_info->is_arrow()) { 1039 // TODO(adamk): We should construct this scope from the ScopeInfo. 1040 Scope* scope = 1041 NewScope(scope_, FUNCTION_SCOPE, FunctionKind::kArrowFunction); 1042 1043 // These two bits only need to be explicitly set because we're 1044 // not passing the ScopeInfo to the Scope constructor. 1045 // TODO(adamk): Remove these calls once the above NewScope call 1046 // passes the ScopeInfo. 1047 if (shared_info->scope_info()->CallsEval()) { 1048 scope->RecordEvalCall(); 1049 } 1050 SetLanguageMode(scope, shared_info->language_mode()); 1051 1052 scope->set_start_position(shared_info->start_position()); 1053 ExpressionClassifier formals_classifier; 1054 ParserFormalParameters formals(scope); 1055 Checkpoint checkpoint(this); 1056 { 1057 // Parsing patterns as variable reference expression creates 1058 // NewUnresolved references in current scope. Entrer arrow function 1059 // scope for formal parameter parsing. 1060 BlockState block_state(&scope_, scope); 1061 if (Check(Token::LPAREN)) { 1062 // '(' StrictFormalParameters ')' 1063 ParseFormalParameterList(&formals, &formals_classifier, &ok); 1064 if (ok) ok = Check(Token::RPAREN); 1065 } else { 1066 // BindingIdentifier 1067 ParseFormalParameter(&formals, &formals_classifier, &ok); 1068 if (ok) { 1069 DeclareFormalParameter(formals.scope, formals.at(0), 1070 &formals_classifier); 1071 } 1072 } 1073 } 1074 1075 if (ok) { 1076 checkpoint.Restore(&formals.materialized_literals_count); 1077 // Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should 1078 // not be observable, or else the preparser would have failed. 1079 Expression* expression = 1080 ParseArrowFunctionLiteral(true, formals, formals_classifier, &ok); 1081 if (ok) { 1082 // Scanning must end at the same position that was recorded 1083 // previously. If not, parsing has been interrupted due to a stack 1084 // overflow, at which point the partially parsed arrow function 1085 // concise body happens to be a valid expression. This is a problem 1086 // only for arrow functions with single expression bodies, since there 1087 // is no end token such as "}" for normal functions. 1088 if (scanner()->location().end_pos == shared_info->end_position()) { 1089 // The pre-parser saw an arrow function here, so the full parser 1090 // must produce a FunctionLiteral. 1091 DCHECK(expression->IsFunctionLiteral()); 1092 result = expression->AsFunctionLiteral(); 1093 } else { 1094 ok = false; 1095 } 1096 } 1097 } 1098 } else if (shared_info->is_default_constructor()) { 1099 result = DefaultConstructor(IsSubclassConstructor(shared_info->kind()), 1100 scope, shared_info->start_position(), 1101 shared_info->end_position(), 1102 shared_info->language_mode()); 1103 } else { 1104 result = ParseFunctionLiteral( 1105 raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, 1106 shared_info->kind(), RelocInfo::kNoPosition, function_type, 1107 FunctionLiteral::kNormalArity, shared_info->language_mode(), &ok); 1108 } 1109 // Make sure the results agree. 1110 DCHECK(ok == (result != NULL)); 1111 } 1112 1113 // Make sure the target stack is empty. 1114 DCHECK(target_stack_ == NULL); 1115 1116 if (result != NULL) { 1117 Handle<String> inferred_name(shared_info->inferred_name()); 1118 result->set_inferred_name(inferred_name); 1119 } 1120 return result; 1121 } 1122 1123 1124 void* Parser::ParseStatementList(ZoneList<Statement*>* body, int end_token, 1125 bool* ok) { 1126 // StatementList :: 1127 // (StatementListItem)* <end_token> 1128 1129 // Allocate a target stack to use for this set of source 1130 // elements. This way, all scripts and functions get their own 1131 // target stack thus avoiding illegal breaks and continues across 1132 // functions. 1133 TargetScope scope(&this->target_stack_); 1134 1135 DCHECK(body != NULL); 1136 bool directive_prologue = true; // Parsing directive prologue. 1137 1138 while (peek() != end_token) { 1139 if (directive_prologue && peek() != Token::STRING) { 1140 directive_prologue = false; 1141 } 1142 1143 Scanner::Location token_loc = scanner()->peek_location(); 1144 Scanner::Location old_this_loc = function_state_->this_location(); 1145 Scanner::Location old_super_loc = function_state_->super_location(); 1146 Statement* stat = ParseStatementListItem(CHECK_OK); 1147 1148 if (is_strong(language_mode()) && scope_->is_function_scope() && 1149 IsClassConstructor(function_state_->kind())) { 1150 Scanner::Location this_loc = function_state_->this_location(); 1151 Scanner::Location super_loc = function_state_->super_location(); 1152 if (this_loc.beg_pos != old_this_loc.beg_pos && 1153 this_loc.beg_pos != token_loc.beg_pos) { 1154 ReportMessageAt(this_loc, MessageTemplate::kStrongConstructorThis); 1155 *ok = false; 1156 return nullptr; 1157 } 1158 if (super_loc.beg_pos != old_super_loc.beg_pos && 1159 super_loc.beg_pos != token_loc.beg_pos) { 1160 ReportMessageAt(super_loc, MessageTemplate::kStrongConstructorSuper); 1161 *ok = false; 1162 return nullptr; 1163 } 1164 } 1165 1166 if (stat == NULL || stat->IsEmpty()) { 1167 directive_prologue = false; // End of directive prologue. 1168 continue; 1169 } 1170 1171 if (directive_prologue) { 1172 // A shot at a directive. 1173 ExpressionStatement* e_stat; 1174 Literal* literal; 1175 // Still processing directive prologue? 1176 if ((e_stat = stat->AsExpressionStatement()) != NULL && 1177 (literal = e_stat->expression()->AsLiteral()) != NULL && 1178 literal->raw_value()->IsString()) { 1179 // Check "use strict" directive (ES5 14.1), "use asm" directive, and 1180 // "use strong" directive (experimental). 1181 bool use_strict_found = 1182 literal->raw_value()->AsString() == 1183 ast_value_factory()->use_strict_string() && 1184 token_loc.end_pos - token_loc.beg_pos == 1185 ast_value_factory()->use_strict_string()->length() + 2; 1186 bool use_strong_found = 1187 allow_strong_mode() && 1188 literal->raw_value()->AsString() == 1189 ast_value_factory()->use_strong_string() && 1190 token_loc.end_pos - token_loc.beg_pos == 1191 ast_value_factory()->use_strong_string()->length() + 2; 1192 if (use_strict_found || use_strong_found) { 1193 // Strong mode implies strict mode. If there are several "use strict" 1194 // / "use strong" directives, do the strict mode changes only once. 1195 if (is_sloppy(scope_->language_mode())) { 1196 RaiseLanguageMode(STRICT); 1197 } 1198 1199 if (use_strong_found) { 1200 RaiseLanguageMode(STRONG); 1201 if (IsClassConstructor(function_state_->kind())) { 1202 // "use strong" cannot occur in a class constructor body, to avoid 1203 // unintuitive strong class object semantics. 1204 ParserTraits::ReportMessageAt( 1205 token_loc, MessageTemplate::kStrongConstructorDirective); 1206 *ok = false; 1207 return nullptr; 1208 } 1209 } 1210 if (!scope_->HasSimpleParameters()) { 1211 // TC39 deemed "use strict" directives to be an error when occurring 1212 // in the body of a function with non-simple parameter list, on 1213 // 29/7/2015. https://goo.gl/ueA7Ln 1214 // 1215 // In V8, this also applies to "use strong " directives. 1216 const AstRawString* string = literal->raw_value()->AsString(); 1217 ParserTraits::ReportMessageAt( 1218 token_loc, MessageTemplate::kIllegalLanguageModeDirective, 1219 string); 1220 *ok = false; 1221 return nullptr; 1222 } 1223 // Because declarations in strict eval code don't leak into the scope 1224 // of the eval call, it is likely that functions declared in strict 1225 // eval code will be used within the eval code, so lazy parsing is 1226 // probably not a win. 1227 if (scope_->is_eval_scope()) mode_ = PARSE_EAGERLY; 1228 } else if (literal->raw_value()->AsString() == 1229 ast_value_factory()->use_asm_string() && 1230 token_loc.end_pos - token_loc.beg_pos == 1231 ast_value_factory()->use_asm_string()->length() + 2) { 1232 // Store the usage count; The actual use counter on the isolate is 1233 // incremented after parsing is done. 1234 ++use_counts_[v8::Isolate::kUseAsm]; 1235 scope_->SetAsmModule(); 1236 } else { 1237 // Should not change mode, but will increment UseCounter 1238 // if appropriate. Ditto usages below. 1239 RaiseLanguageMode(SLOPPY); 1240 } 1241 } else { 1242 // End of the directive prologue. 1243 directive_prologue = false; 1244 RaiseLanguageMode(SLOPPY); 1245 } 1246 } else { 1247 RaiseLanguageMode(SLOPPY); 1248 } 1249 1250 body->Add(stat, zone()); 1251 } 1252 1253 return 0; 1254 } 1255 1256 1257 Statement* Parser::ParseStatementListItem(bool* ok) { 1258 // (Ecma 262 6th Edition, 13.1): 1259 // StatementListItem: 1260 // Statement 1261 // Declaration 1262 1263 if (peek() != Token::CLASS) { 1264 // No more classes follow; reset the start position for the consecutive 1265 // class declaration group. 1266 scope_->set_class_declaration_group_start(-1); 1267 } 1268 1269 switch (peek()) { 1270 case Token::FUNCTION: 1271 return ParseFunctionDeclaration(NULL, ok); 1272 case Token::CLASS: 1273 if (scope_->class_declaration_group_start() < 0) { 1274 scope_->set_class_declaration_group_start( 1275 scanner()->peek_location().beg_pos); 1276 } 1277 return ParseClassDeclaration(NULL, ok); 1278 case Token::CONST: 1279 if (allow_const()) { 1280 return ParseVariableStatement(kStatementListItem, NULL, ok); 1281 } 1282 break; 1283 case Token::VAR: 1284 return ParseVariableStatement(kStatementListItem, NULL, ok); 1285 case Token::LET: 1286 if (IsNextLetKeyword()) { 1287 return ParseVariableStatement(kStatementListItem, NULL, ok); 1288 } 1289 break; 1290 default: 1291 break; 1292 } 1293 return ParseStatement(NULL, ok); 1294 } 1295 1296 1297 Statement* Parser::ParseModuleItem(bool* ok) { 1298 // (Ecma 262 6th Edition, 15.2): 1299 // ModuleItem : 1300 // ImportDeclaration 1301 // ExportDeclaration 1302 // StatementListItem 1303 1304 switch (peek()) { 1305 case Token::IMPORT: 1306 return ParseImportDeclaration(ok); 1307 case Token::EXPORT: 1308 return ParseExportDeclaration(ok); 1309 default: 1310 return ParseStatementListItem(ok); 1311 } 1312 } 1313 1314 1315 void* Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) { 1316 // (Ecma 262 6th Edition, 15.2): 1317 // Module : 1318 // ModuleBody? 1319 // 1320 // ModuleBody : 1321 // ModuleItem* 1322 1323 DCHECK(scope_->is_module_scope()); 1324 RaiseLanguageMode(STRICT); 1325 1326 while (peek() != Token::EOS) { 1327 Statement* stat = ParseModuleItem(CHECK_OK); 1328 if (stat && !stat->IsEmpty()) { 1329 body->Add(stat, zone()); 1330 } 1331 } 1332 1333 // Check that all exports are bound. 1334 ModuleDescriptor* descriptor = scope_->module(); 1335 for (ModuleDescriptor::Iterator it = descriptor->iterator(); !it.done(); 1336 it.Advance()) { 1337 if (scope_->LookupLocal(it.local_name()) == NULL) { 1338 // TODO(adamk): Pass both local_name and export_name once ParserTraits 1339 // supports multiple arg error messages. 1340 // Also try to report this at a better location. 1341 ParserTraits::ReportMessage(MessageTemplate::kModuleExportUndefined, 1342 it.local_name()); 1343 *ok = false; 1344 return NULL; 1345 } 1346 } 1347 1348 scope_->module()->Freeze(); 1349 return NULL; 1350 } 1351 1352 1353 const AstRawString* Parser::ParseModuleSpecifier(bool* ok) { 1354 // ModuleSpecifier : 1355 // StringLiteral 1356 1357 Expect(Token::STRING, CHECK_OK); 1358 return GetSymbol(scanner()); 1359 } 1360 1361 1362 void* Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names, 1363 ZoneList<Scanner::Location>* export_locations, 1364 ZoneList<const AstRawString*>* local_names, 1365 Scanner::Location* reserved_loc, bool* ok) { 1366 // ExportClause : 1367 // '{' '}' 1368 // '{' ExportsList '}' 1369 // '{' ExportsList ',' '}' 1370 // 1371 // ExportsList : 1372 // ExportSpecifier 1373 // ExportsList ',' ExportSpecifier 1374 // 1375 // ExportSpecifier : 1376 // IdentifierName 1377 // IdentifierName 'as' IdentifierName 1378 1379 Expect(Token::LBRACE, CHECK_OK); 1380 1381 Token::Value name_tok; 1382 while ((name_tok = peek()) != Token::RBRACE) { 1383 // Keep track of the first reserved word encountered in case our 1384 // caller needs to report an error. 1385 if (!reserved_loc->IsValid() && 1386 !Token::IsIdentifier(name_tok, STRICT, false)) { 1387 *reserved_loc = scanner()->location(); 1388 } 1389 const AstRawString* local_name = ParseIdentifierName(CHECK_OK); 1390 const AstRawString* export_name = NULL; 1391 if (CheckContextualKeyword(CStrVector("as"))) { 1392 export_name = ParseIdentifierName(CHECK_OK); 1393 } 1394 if (export_name == NULL) { 1395 export_name = local_name; 1396 } 1397 export_names->Add(export_name, zone()); 1398 local_names->Add(local_name, zone()); 1399 export_locations->Add(scanner()->location(), zone()); 1400 if (peek() == Token::RBRACE) break; 1401 Expect(Token::COMMA, CHECK_OK); 1402 } 1403 1404 Expect(Token::RBRACE, CHECK_OK); 1405 1406 return 0; 1407 } 1408 1409 1410 ZoneList<ImportDeclaration*>* Parser::ParseNamedImports(int pos, bool* ok) { 1411 // NamedImports : 1412 // '{' '}' 1413 // '{' ImportsList '}' 1414 // '{' ImportsList ',' '}' 1415 // 1416 // ImportsList : 1417 // ImportSpecifier 1418 // ImportsList ',' ImportSpecifier 1419 // 1420 // ImportSpecifier : 1421 // BindingIdentifier 1422 // IdentifierName 'as' BindingIdentifier 1423 1424 Expect(Token::LBRACE, CHECK_OK); 1425 1426 ZoneList<ImportDeclaration*>* result = 1427 new (zone()) ZoneList<ImportDeclaration*>(1, zone()); 1428 while (peek() != Token::RBRACE) { 1429 const AstRawString* import_name = ParseIdentifierName(CHECK_OK); 1430 const AstRawString* local_name = import_name; 1431 // In the presence of 'as', the left-side of the 'as' can 1432 // be any IdentifierName. But without 'as', it must be a valid 1433 // BindingIdentifier. 1434 if (CheckContextualKeyword(CStrVector("as"))) { 1435 local_name = ParseIdentifierName(CHECK_OK); 1436 } 1437 if (!Token::IsIdentifier(scanner()->current_token(), STRICT, false)) { 1438 *ok = false; 1439 ReportMessage(MessageTemplate::kUnexpectedReserved); 1440 return NULL; 1441 } else if (IsEvalOrArguments(local_name)) { 1442 *ok = false; 1443 ReportMessage(MessageTemplate::kStrictEvalArguments); 1444 return NULL; 1445 } else if (is_strong(language_mode()) && IsUndefined(local_name)) { 1446 *ok = false; 1447 ReportMessage(MessageTemplate::kStrongUndefined); 1448 return NULL; 1449 } 1450 VariableProxy* proxy = NewUnresolved(local_name, IMPORT); 1451 ImportDeclaration* declaration = 1452 factory()->NewImportDeclaration(proxy, import_name, NULL, scope_, pos); 1453 Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); 1454 result->Add(declaration, zone()); 1455 if (peek() == Token::RBRACE) break; 1456 Expect(Token::COMMA, CHECK_OK); 1457 } 1458 1459 Expect(Token::RBRACE, CHECK_OK); 1460 1461 return result; 1462 } 1463 1464 1465 Statement* Parser::ParseImportDeclaration(bool* ok) { 1466 // ImportDeclaration : 1467 // 'import' ImportClause 'from' ModuleSpecifier ';' 1468 // 'import' ModuleSpecifier ';' 1469 // 1470 // ImportClause : 1471 // NameSpaceImport 1472 // NamedImports 1473 // ImportedDefaultBinding 1474 // ImportedDefaultBinding ',' NameSpaceImport 1475 // ImportedDefaultBinding ',' NamedImports 1476 // 1477 // NameSpaceImport : 1478 // '*' 'as' ImportedBinding 1479 1480 int pos = peek_position(); 1481 Expect(Token::IMPORT, CHECK_OK); 1482 1483 Token::Value tok = peek(); 1484 1485 // 'import' ModuleSpecifier ';' 1486 if (tok == Token::STRING) { 1487 const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); 1488 scope_->module()->AddModuleRequest(module_specifier, zone()); 1489 ExpectSemicolon(CHECK_OK); 1490 return factory()->NewEmptyStatement(pos); 1491 } 1492 1493 // Parse ImportedDefaultBinding if present. 1494 ImportDeclaration* import_default_declaration = NULL; 1495 if (tok != Token::MUL && tok != Token::LBRACE) { 1496 const AstRawString* local_name = 1497 ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK); 1498 VariableProxy* proxy = NewUnresolved(local_name, IMPORT); 1499 import_default_declaration = factory()->NewImportDeclaration( 1500 proxy, ast_value_factory()->default_string(), NULL, scope_, pos); 1501 Declare(import_default_declaration, DeclarationDescriptor::NORMAL, true, 1502 CHECK_OK); 1503 } 1504 1505 const AstRawString* module_instance_binding = NULL; 1506 ZoneList<ImportDeclaration*>* named_declarations = NULL; 1507 if (import_default_declaration == NULL || Check(Token::COMMA)) { 1508 switch (peek()) { 1509 case Token::MUL: { 1510 Consume(Token::MUL); 1511 ExpectContextualKeyword(CStrVector("as"), CHECK_OK); 1512 module_instance_binding = 1513 ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK); 1514 // TODO(ES6): Add an appropriate declaration. 1515 break; 1516 } 1517 1518 case Token::LBRACE: 1519 named_declarations = ParseNamedImports(pos, CHECK_OK); 1520 break; 1521 1522 default: 1523 *ok = false; 1524 ReportUnexpectedToken(scanner()->current_token()); 1525 return NULL; 1526 } 1527 } 1528 1529 ExpectContextualKeyword(CStrVector("from"), CHECK_OK); 1530 const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); 1531 scope_->module()->AddModuleRequest(module_specifier, zone()); 1532 1533 if (module_instance_binding != NULL) { 1534 // TODO(ES6): Set the module specifier for the module namespace binding. 1535 } 1536 1537 if (import_default_declaration != NULL) { 1538 import_default_declaration->set_module_specifier(module_specifier); 1539 } 1540 1541 if (named_declarations != NULL) { 1542 for (int i = 0; i < named_declarations->length(); ++i) { 1543 named_declarations->at(i)->set_module_specifier(module_specifier); 1544 } 1545 } 1546 1547 ExpectSemicolon(CHECK_OK); 1548 return factory()->NewEmptyStatement(pos); 1549 } 1550 1551 1552 Statement* Parser::ParseExportDefault(bool* ok) { 1553 // Supports the following productions, starting after the 'default' token: 1554 // 'export' 'default' FunctionDeclaration 1555 // 'export' 'default' ClassDeclaration 1556 // 'export' 'default' AssignmentExpression[In] ';' 1557 1558 Expect(Token::DEFAULT, CHECK_OK); 1559 Scanner::Location default_loc = scanner()->location(); 1560 1561 ZoneList<const AstRawString*> names(1, zone()); 1562 Statement* result = NULL; 1563 switch (peek()) { 1564 case Token::FUNCTION: 1565 // TODO(ES6): Support parsing anonymous function declarations here. 1566 result = ParseFunctionDeclaration(&names, CHECK_OK); 1567 break; 1568 1569 case Token::CLASS: 1570 // TODO(ES6): Support parsing anonymous class declarations here. 1571 result = ParseClassDeclaration(&names, CHECK_OK); 1572 break; 1573 1574 default: { 1575 int pos = peek_position(); 1576 ExpressionClassifier classifier; 1577 Expression* expr = ParseAssignmentExpression(true, &classifier, CHECK_OK); 1578 expr = ParserTraits::RewriteNonPattern(expr, &classifier, CHECK_OK); 1579 1580 ExpectSemicolon(CHECK_OK); 1581 result = factory()->NewExpressionStatement(expr, pos); 1582 break; 1583 } 1584 } 1585 1586 const AstRawString* default_string = ast_value_factory()->default_string(); 1587 1588 DCHECK_LE(names.length(), 1); 1589 if (names.length() == 1) { 1590 scope_->module()->AddLocalExport(default_string, names.first(), zone(), ok); 1591 if (!*ok) { 1592 ParserTraits::ReportMessageAt( 1593 default_loc, MessageTemplate::kDuplicateExport, default_string); 1594 return NULL; 1595 } 1596 } else { 1597 // TODO(ES6): Assign result to a const binding with the name "*default*" 1598 // and add an export entry with "*default*" as the local name. 1599 } 1600 1601 return result; 1602 } 1603 1604 1605 Statement* Parser::ParseExportDeclaration(bool* ok) { 1606 // ExportDeclaration: 1607 // 'export' '*' 'from' ModuleSpecifier ';' 1608 // 'export' ExportClause ('from' ModuleSpecifier)? ';' 1609 // 'export' VariableStatement 1610 // 'export' Declaration 1611 // 'export' 'default' ... (handled in ParseExportDefault) 1612 1613 int pos = peek_position(); 1614 Expect(Token::EXPORT, CHECK_OK); 1615 1616 Statement* result = NULL; 1617 ZoneList<const AstRawString*> names(1, zone()); 1618 switch (peek()) { 1619 case Token::DEFAULT: 1620 return ParseExportDefault(ok); 1621 1622 case Token::MUL: { 1623 Consume(Token::MUL); 1624 ExpectContextualKeyword(CStrVector("from"), CHECK_OK); 1625 const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); 1626 scope_->module()->AddModuleRequest(module_specifier, zone()); 1627 // TODO(ES6): scope_->module()->AddStarExport(...) 1628 ExpectSemicolon(CHECK_OK); 1629 return factory()->NewEmptyStatement(pos); 1630 } 1631 1632 case Token::LBRACE: { 1633 // There are two cases here: 1634 // 1635 // 'export' ExportClause ';' 1636 // and 1637 // 'export' ExportClause FromClause ';' 1638 // 1639 // In the first case, the exported identifiers in ExportClause must 1640 // not be reserved words, while in the latter they may be. We 1641 // pass in a location that gets filled with the first reserved word 1642 // encountered, and then throw a SyntaxError if we are in the 1643 // non-FromClause case. 1644 Scanner::Location reserved_loc = Scanner::Location::invalid(); 1645 ZoneList<const AstRawString*> export_names(1, zone()); 1646 ZoneList<Scanner::Location> export_locations(1, zone()); 1647 ZoneList<const AstRawString*> local_names(1, zone()); 1648 ParseExportClause(&export_names, &export_locations, &local_names, 1649 &reserved_loc, CHECK_OK); 1650 const AstRawString* indirect_export_module_specifier = NULL; 1651 if (CheckContextualKeyword(CStrVector("from"))) { 1652 indirect_export_module_specifier = ParseModuleSpecifier(CHECK_OK); 1653 } else if (reserved_loc.IsValid()) { 1654 // No FromClause, so reserved words are invalid in ExportClause. 1655 *ok = false; 1656 ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved); 1657 return NULL; 1658 } 1659 ExpectSemicolon(CHECK_OK); 1660 const int length = export_names.length(); 1661 DCHECK_EQ(length, local_names.length()); 1662 DCHECK_EQ(length, export_locations.length()); 1663 if (indirect_export_module_specifier == NULL) { 1664 for (int i = 0; i < length; ++i) { 1665 scope_->module()->AddLocalExport(export_names[i], local_names[i], 1666 zone(), ok); 1667 if (!*ok) { 1668 ParserTraits::ReportMessageAt(export_locations[i], 1669 MessageTemplate::kDuplicateExport, 1670 export_names[i]); 1671 return NULL; 1672 } 1673 } 1674 } else { 1675 scope_->module()->AddModuleRequest(indirect_export_module_specifier, 1676 zone()); 1677 for (int i = 0; i < length; ++i) { 1678 // TODO(ES6): scope_->module()->AddIndirectExport(...);( 1679 } 1680 } 1681 return factory()->NewEmptyStatement(pos); 1682 } 1683 1684 case Token::FUNCTION: 1685 result = ParseFunctionDeclaration(&names, CHECK_OK); 1686 break; 1687 1688 case Token::CLASS: 1689 result = ParseClassDeclaration(&names, CHECK_OK); 1690 break; 1691 1692 case Token::VAR: 1693 case Token::LET: 1694 case Token::CONST: 1695 result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK); 1696 break; 1697 1698 default: 1699 *ok = false; 1700 ReportUnexpectedToken(scanner()->current_token()); 1701 return NULL; 1702 } 1703 1704 // Extract declared names into export declarations. 1705 ModuleDescriptor* descriptor = scope_->module(); 1706 for (int i = 0; i < names.length(); ++i) { 1707 descriptor->AddLocalExport(names[i], names[i], zone(), ok); 1708 if (!*ok) { 1709 // TODO(adamk): Possibly report this error at the right place. 1710 ParserTraits::ReportMessage(MessageTemplate::kDuplicateExport, names[i]); 1711 return NULL; 1712 } 1713 } 1714 1715 DCHECK_NOT_NULL(result); 1716 return result; 1717 } 1718 1719 1720 Statement* Parser::ParseStatement(ZoneList<const AstRawString*>* labels, 1721 bool* ok) { 1722 // Statement :: 1723 // EmptyStatement 1724 // ... 1725 1726 if (peek() == Token::SEMICOLON) { 1727 Next(); 1728 return factory()->NewEmptyStatement(RelocInfo::kNoPosition); 1729 } 1730 return ParseSubStatement(labels, ok); 1731 } 1732 1733 1734 Statement* Parser::ParseSubStatement(ZoneList<const AstRawString*>* labels, 1735 bool* ok) { 1736 // Statement :: 1737 // Block 1738 // VariableStatement 1739 // EmptyStatement 1740 // ExpressionStatement 1741 // IfStatement 1742 // IterationStatement 1743 // ContinueStatement 1744 // BreakStatement 1745 // ReturnStatement 1746 // WithStatement 1747 // LabelledStatement 1748 // SwitchStatement 1749 // ThrowStatement 1750 // TryStatement 1751 // DebuggerStatement 1752 1753 // Note: Since labels can only be used by 'break' and 'continue' 1754 // statements, which themselves are only valid within blocks, 1755 // iterations or 'switch' statements (i.e., BreakableStatements), 1756 // labels can be simply ignored in all other cases; except for 1757 // trivial labeled break statements 'label: break label' which is 1758 // parsed into an empty statement. 1759 switch (peek()) { 1760 case Token::LBRACE: 1761 return ParseBlock(labels, ok); 1762 1763 case Token::SEMICOLON: 1764 if (is_strong(language_mode())) { 1765 ReportMessageAt(scanner()->peek_location(), 1766 MessageTemplate::kStrongEmpty); 1767 *ok = false; 1768 return NULL; 1769 } 1770 Next(); 1771 return factory()->NewEmptyStatement(RelocInfo::kNoPosition); 1772 1773 case Token::IF: 1774 return ParseIfStatement(labels, ok); 1775 1776 case Token::DO: 1777 return ParseDoWhileStatement(labels, ok); 1778 1779 case Token::WHILE: 1780 return ParseWhileStatement(labels, ok); 1781 1782 case Token::FOR: 1783 return ParseForStatement(labels, ok); 1784 1785 case Token::CONTINUE: 1786 case Token::BREAK: 1787 case Token::RETURN: 1788 case Token::THROW: 1789 case Token::TRY: { 1790 // These statements must have their labels preserved in an enclosing 1791 // block 1792 if (labels == NULL) { 1793 return ParseStatementAsUnlabelled(labels, ok); 1794 } else { 1795 Block* result = 1796 factory()->NewBlock(labels, 1, false, RelocInfo::kNoPosition); 1797 Target target(&this->target_stack_, result); 1798 Statement* statement = ParseStatementAsUnlabelled(labels, CHECK_OK); 1799 if (result) result->statements()->Add(statement, zone()); 1800 return result; 1801 } 1802 } 1803 1804 case Token::WITH: 1805 return ParseWithStatement(labels, ok); 1806 1807 case Token::SWITCH: 1808 return ParseSwitchStatement(labels, ok); 1809 1810 case Token::FUNCTION: { 1811 // FunctionDeclaration is only allowed in the context of SourceElements 1812 // (Ecma 262 5th Edition, clause 14): 1813 // SourceElement: 1814 // Statement 1815 // FunctionDeclaration 1816 // Common language extension is to allow function declaration in place 1817 // of any statement. This language extension is disabled in strict mode. 1818 // 1819 // In Harmony mode, this case also handles the extension: 1820 // Statement: 1821 // GeneratorDeclaration 1822 if (is_strict(language_mode())) { 1823 ReportMessageAt(scanner()->peek_location(), 1824 MessageTemplate::kStrictFunction); 1825 *ok = false; 1826 return NULL; 1827 } 1828 return ParseFunctionDeclaration(NULL, ok); 1829 } 1830 1831 case Token::DEBUGGER: 1832 return ParseDebuggerStatement(ok); 1833 1834 case Token::VAR: 1835 return ParseVariableStatement(kStatement, NULL, ok); 1836 1837 case Token::CONST: 1838 // In ES6 CONST is not allowed as a Statement, only as a 1839 // LexicalDeclaration, however we continue to allow it in sloppy mode for 1840 // backwards compatibility. 1841 if (is_sloppy(language_mode()) && allow_legacy_const()) { 1842 return ParseVariableStatement(kStatement, NULL, ok); 1843 } 1844 1845 // Fall through. 1846 default: 1847 return ParseExpressionOrLabelledStatement(labels, ok); 1848 } 1849 } 1850 1851 Statement* Parser::ParseStatementAsUnlabelled( 1852 ZoneList<const AstRawString*>* labels, bool* ok) { 1853 switch (peek()) { 1854 case Token::CONTINUE: 1855 return ParseContinueStatement(ok); 1856 1857 case Token::BREAK: 1858 return ParseBreakStatement(labels, ok); 1859 1860 case Token::RETURN: 1861 return ParseReturnStatement(ok); 1862 1863 case Token::THROW: 1864 return ParseThrowStatement(ok); 1865 1866 case Token::TRY: 1867 return ParseTryStatement(ok); 1868 1869 default: 1870 UNREACHABLE(); 1871 return NULL; 1872 } 1873 } 1874 1875 1876 VariableProxy* Parser::NewUnresolved(const AstRawString* name, 1877 VariableMode mode) { 1878 // If we are inside a function, a declaration of a var/const variable is a 1879 // truly local variable, and the scope of the variable is always the function 1880 // scope. 1881 // Let/const variables in harmony mode are always added to the immediately 1882 // enclosing scope. 1883 Scope* scope = 1884 IsLexicalVariableMode(mode) ? scope_ : scope_->DeclarationScope(); 1885 return scope->NewUnresolved(factory(), name, Variable::NORMAL, 1886 scanner()->location().beg_pos, 1887 scanner()->location().end_pos); 1888 } 1889 1890 1891 Variable* Parser::Declare(Declaration* declaration, 1892 DeclarationDescriptor::Kind declaration_kind, 1893 bool resolve, bool* ok, Scope* scope) { 1894 VariableProxy* proxy = declaration->proxy(); 1895 DCHECK(proxy->raw_name() != NULL); 1896 const AstRawString* name = proxy->raw_name(); 1897 VariableMode mode = declaration->mode(); 1898 bool is_function_declaration = declaration->IsFunctionDeclaration(); 1899 if (scope == nullptr) scope = scope_; 1900 Scope* declaration_scope = 1901 IsLexicalVariableMode(mode) ? scope : scope->DeclarationScope(); 1902 Variable* var = NULL; 1903 1904 // If a suitable scope exists, then we can statically declare this 1905 // variable and also set its mode. In any case, a Declaration node 1906 // will be added to the scope so that the declaration can be added 1907 // to the corresponding activation frame at runtime if necessary. 1908 // For instance, var declarations inside a sloppy eval scope need 1909 // to be added to the calling function context. Similarly, strict 1910 // mode eval scope and lexical eval bindings do not leak variable 1911 // declarations to the caller's scope so we declare all locals, too. 1912 if (declaration_scope->is_function_scope() || 1913 declaration_scope->is_block_scope() || 1914 declaration_scope->is_module_scope() || 1915 declaration_scope->is_script_scope() || 1916 (declaration_scope->is_eval_scope() && 1917 (is_strict(declaration_scope->language_mode()) || 1918 IsLexicalVariableMode(mode)))) { 1919 // Declare the variable in the declaration scope. 1920 var = declaration_scope->LookupLocal(name); 1921 if (var == NULL) { 1922 // Declare the name. 1923 Variable::Kind kind = Variable::NORMAL; 1924 int declaration_group_start = -1; 1925 if (is_function_declaration) { 1926 kind = Variable::FUNCTION; 1927 } else if (declaration->IsVariableDeclaration() && 1928 declaration->AsVariableDeclaration()->is_class_declaration()) { 1929 kind = Variable::CLASS; 1930 declaration_group_start = 1931 declaration->AsVariableDeclaration()->declaration_group_start(); 1932 } 1933 var = declaration_scope->DeclareLocal( 1934 name, mode, declaration->initialization(), kind, kNotAssigned, 1935 declaration_group_start); 1936 } else if (((IsLexicalVariableMode(mode) || 1937 IsLexicalVariableMode(var->mode())) && 1938 // Allow duplicate function decls for web compat, see bug 4693. 1939 (is_strict(language_mode()) || !is_function_declaration || 1940 !var->is_function())) || 1941 ((mode == CONST_LEGACY || var->mode() == CONST_LEGACY) && 1942 !declaration_scope->is_script_scope())) { 1943 // The name was declared in this scope before; check for conflicting 1944 // re-declarations. We have a conflict if either of the declarations is 1945 // not a var (in script scope, we also have to ignore legacy const for 1946 // compatibility). There is similar code in runtime.cc in the Declare 1947 // functions. The function CheckConflictingVarDeclarations checks for 1948 // var and let bindings from different scopes whereas this is a check for 1949 // conflicting declarations within the same scope. This check also covers 1950 // the special case 1951 // 1952 // function () { let x; { var x; } } 1953 // 1954 // because the var declaration is hoisted to the function scope where 'x' 1955 // is already bound. 1956 DCHECK(IsDeclaredVariableMode(var->mode())); 1957 if (is_strict(language_mode()) || 1958 (allow_harmony_sloppy() && mode != CONST_LEGACY && 1959 var->mode() != CONST_LEGACY)) { 1960 // In harmony we treat re-declarations as early errors. See 1961 // ES5 16 for a definition of early errors. 1962 if (declaration_kind == DeclarationDescriptor::NORMAL) { 1963 ParserTraits::ReportMessage(MessageTemplate::kVarRedeclaration, name); 1964 } else { 1965 ParserTraits::ReportMessage(MessageTemplate::kParamDupe); 1966 } 1967 *ok = false; 1968 return nullptr; 1969 } 1970 Expression* expression = NewThrowSyntaxError( 1971 MessageTemplate::kVarRedeclaration, name, declaration->position()); 1972 declaration_scope->SetIllegalRedeclaration(expression); 1973 } else if (mode == VAR) { 1974 var->set_maybe_assigned(); 1975 } 1976 } else if (declaration_scope->is_eval_scope() && 1977 is_sloppy(declaration_scope->language_mode()) && 1978 !IsLexicalVariableMode(mode)) { 1979 // In a var binding in a sloppy direct eval, pollute the enclosing scope 1980 // with this new binding by doing the following: 1981 // The proxy is bound to a lookup variable to force a dynamic declaration 1982 // using the DeclareLookupSlot runtime function. 1983 Variable::Kind kind = Variable::NORMAL; 1984 // TODO(sigurds) figure out if kNotAssigned is OK here 1985 var = new (zone()) Variable(declaration_scope, name, mode, kind, 1986 declaration->initialization(), kNotAssigned); 1987 var->AllocateTo(VariableLocation::LOOKUP, -1); 1988 var->SetFromEval(); 1989 resolve = true; 1990 } 1991 1992 1993 // We add a declaration node for every declaration. The compiler 1994 // will only generate code if necessary. In particular, declarations 1995 // for inner local variables that do not represent functions won't 1996 // result in any generated code. 1997 // 1998 // Note that we always add an unresolved proxy even if it's not 1999 // used, simply because we don't know in this method (w/o extra 2000 // parameters) if the proxy is needed or not. The proxy will be 2001 // bound during variable resolution time unless it was pre-bound 2002 // below. 2003 // 2004 // WARNING: This will lead to multiple declaration nodes for the 2005 // same variable if it is declared several times. This is not a 2006 // semantic issue as long as we keep the source order, but it may be 2007 // a performance issue since it may lead to repeated 2008 // RuntimeHidden_DeclareLookupSlot calls. 2009 declaration_scope->AddDeclaration(declaration); 2010 2011 if (mode == CONST_LEGACY && declaration_scope->is_script_scope()) { 2012 // For global const variables we bind the proxy to a variable. 2013 DCHECK(resolve); // should be set by all callers 2014 Variable::Kind kind = Variable::NORMAL; 2015 var = new (zone()) Variable(declaration_scope, name, mode, kind, 2016 kNeedsInitialization, kNotAssigned); 2017 } 2018 2019 // If requested and we have a local variable, bind the proxy to the variable 2020 // at parse-time. This is used for functions (and consts) declared inside 2021 // statements: the corresponding function (or const) variable must be in the 2022 // function scope and not a statement-local scope, e.g. as provided with a 2023 // 'with' statement: 2024 // 2025 // with (obj) { 2026 // function f() {} 2027 // } 2028 // 2029 // which is translated into: 2030 // 2031 // with (obj) { 2032 // // in this case this is not: 'var f; f = function () {};' 2033 // var f = function () {}; 2034 // } 2035 // 2036 // Note that if 'f' is accessed from inside the 'with' statement, it 2037 // will be allocated in the context (because we must be able to look 2038 // it up dynamically) but it will also be accessed statically, i.e., 2039 // with a context slot index and a context chain length for this 2040 // initialization code. Thus, inside the 'with' statement, we need 2041 // both access to the static and the dynamic context chain; the 2042 // runtime needs to provide both. 2043 if (resolve && var != NULL) { 2044 proxy->BindTo(var); 2045 } 2046 return var; 2047 } 2048 2049 2050 // Language extension which is only enabled for source files loaded 2051 // through the API's extension mechanism. A native function 2052 // declaration is resolved by looking up the function through a 2053 // callback provided by the extension. 2054 Statement* Parser::ParseNativeDeclaration(bool* ok) { 2055 int pos = peek_position(); 2056 Expect(Token::FUNCTION, CHECK_OK); 2057 // Allow "eval" or "arguments" for backward compatibility. 2058 const AstRawString* name = 2059 ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); 2060 Expect(Token::LPAREN, CHECK_OK); 2061 bool done = (peek() == Token::RPAREN); 2062 while (!done) { 2063 ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); 2064 done = (peek() == Token::RPAREN); 2065 if (!done) { 2066 Expect(Token::COMMA, CHECK_OK); 2067 } 2068 } 2069 Expect(Token::RPAREN, CHECK_OK); 2070 Expect(Token::SEMICOLON, CHECK_OK); 2071 2072 // Make sure that the function containing the native declaration 2073 // isn't lazily compiled. The extension structures are only 2074 // accessible while parsing the first time not when reparsing 2075 // because of lazy compilation. 2076 // TODO(adamk): Should this be ClosureScope()? 2077 scope_->DeclarationScope()->ForceEagerCompilation(); 2078 2079 // TODO(1240846): It's weird that native function declarations are 2080 // introduced dynamically when we meet their declarations, whereas 2081 // other functions are set up when entering the surrounding scope. 2082 VariableProxy* proxy = NewUnresolved(name, VAR); 2083 Declaration* declaration = 2084 factory()->NewVariableDeclaration(proxy, VAR, scope_, pos); 2085 Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); 2086 NativeFunctionLiteral* lit = factory()->NewNativeFunctionLiteral( 2087 name, extension_, RelocInfo::kNoPosition); 2088 return factory()->NewExpressionStatement( 2089 factory()->NewAssignment(Token::INIT, proxy, lit, RelocInfo::kNoPosition), 2090 pos); 2091 } 2092 2093 2094 Statement* Parser::ParseFunctionDeclaration( 2095 ZoneList<const AstRawString*>* names, bool* ok) { 2096 // FunctionDeclaration :: 2097 // 'function' Identifier '(' FormalParameterListopt ')' '{' FunctionBody '}' 2098 // GeneratorDeclaration :: 2099 // 'function' '*' Identifier '(' FormalParameterListopt ')' 2100 // '{' FunctionBody '}' 2101 Expect(Token::FUNCTION, CHECK_OK); 2102 int pos = position(); 2103 bool is_generator = Check(Token::MUL); 2104 bool is_strict_reserved = false; 2105 const AstRawString* name = ParseIdentifierOrStrictReservedWord( 2106 &is_strict_reserved, CHECK_OK); 2107 2108 FuncNameInferrer::State fni_state(fni_); 2109 if (fni_ != NULL) fni_->PushEnclosingName(name); 2110 FunctionLiteral* fun = ParseFunctionLiteral( 2111 name, scanner()->location(), 2112 is_strict_reserved ? kFunctionNameIsStrictReserved 2113 : kFunctionNameValidityUnknown, 2114 is_generator ? FunctionKind::kGeneratorFunction 2115 : FunctionKind::kNormalFunction, 2116 pos, FunctionLiteral::kDeclaration, FunctionLiteral::kNormalArity, 2117 language_mode(), CHECK_OK); 2118 2119 // Even if we're not at the top-level of the global or a function 2120 // scope, we treat it as such and introduce the function with its 2121 // initial value upon entering the corresponding scope. 2122 // In ES6, a function behaves as a lexical binding, except in 2123 // a script scope, or the initial scope of eval or another function. 2124 VariableMode mode = 2125 is_strong(language_mode()) 2126 ? CONST 2127 : (is_strict(language_mode()) || allow_harmony_sloppy_function()) && 2128 !scope_->is_declaration_scope() 2129 ? LET 2130 : VAR; 2131 VariableProxy* proxy = NewUnresolved(name, mode); 2132 Declaration* declaration = 2133 factory()->NewFunctionDeclaration(proxy, mode, fun, scope_, pos); 2134 Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); 2135 if (names) names->Add(name, zone()); 2136 EmptyStatement* empty = factory()->NewEmptyStatement(RelocInfo::kNoPosition); 2137 if (is_sloppy(language_mode()) && allow_harmony_sloppy_function() && 2138 !scope_->is_declaration_scope()) { 2139 SloppyBlockFunctionStatement* delegate = 2140 factory()->NewSloppyBlockFunctionStatement(empty, scope_); 2141 scope_->DeclarationScope()->sloppy_block_function_map()->Declare(name, 2142 delegate); 2143 return delegate; 2144 } 2145 return empty; 2146 } 2147 2148 2149 Statement* Parser::ParseClassDeclaration(ZoneList<const AstRawString*>* names, 2150 bool* ok) { 2151 // ClassDeclaration :: 2152 // 'class' Identifier ('extends' LeftHandExpression)? '{' ClassBody '}' 2153 // 2154 // A ClassDeclaration 2155 // 2156 // class C { ... } 2157 // 2158 // has the same semantics as: 2159 // 2160 // let C = class C { ... }; 2161 // 2162 // so rewrite it as such. 2163 2164 Expect(Token::CLASS, CHECK_OK); 2165 if (!allow_harmony_sloppy() && is_sloppy(language_mode())) { 2166 ReportMessage(MessageTemplate::kSloppyLexical); 2167 *ok = false; 2168 return NULL; 2169 } 2170 2171 int pos = position(); 2172 bool is_strict_reserved = false; 2173 const AstRawString* name = 2174 ParseIdentifierOrStrictReservedWord(&is_strict_reserved, CHECK_OK); 2175 ClassLiteral* value = ParseClassLiteral(name, scanner()->location(), 2176 is_strict_reserved, pos, CHECK_OK); 2177 2178 VariableMode mode = is_strong(language_mode()) ? CONST : LET; 2179 VariableProxy* proxy = NewUnresolved(name, mode); 2180 const bool is_class_declaration = true; 2181 Declaration* declaration = factory()->NewVariableDeclaration( 2182 proxy, mode, scope_, pos, is_class_declaration, 2183 scope_->class_declaration_group_start()); 2184 Variable* outer_class_variable = 2185 Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); 2186 proxy->var()->set_initializer_position(position()); 2187 // This is needed because a class ("class Name { }") creates two bindings (one 2188 // in the outer scope, and one in the class scope). The method is a function 2189 // scope inside the inner scope (class scope). The consecutive class 2190 // declarations are in the outer scope. 2191 if (value->class_variable_proxy() && value->class_variable_proxy()->var() && 2192 outer_class_variable->is_class()) { 2193 // In some cases, the outer variable is not detected as a class variable; 2194 // this happens e.g., for lazy methods. They are excluded from strong mode 2195 // checks for now. TODO(marja, rossberg): re-create variables with the 2196 // correct Kind and remove this hack. 2197 value->class_variable_proxy() 2198 ->var() 2199 ->AsClassVariable() 2200 ->set_declaration_group_start( 2201 outer_class_variable->AsClassVariable()->declaration_group_start()); 2202 } 2203 2204 Assignment* assignment = 2205 factory()->NewAssignment(Token::INIT, proxy, value, pos); 2206 Statement* assignment_statement = 2207 factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); 2208 if (names) names->Add(name, zone()); 2209 return assignment_statement; 2210 } 2211 2212 2213 Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels, 2214 bool finalize_block_scope, bool* ok) { 2215 // The harmony mode uses block elements instead of statements. 2216 // 2217 // Block :: 2218 // '{' StatementList '}' 2219 2220 // Construct block expecting 16 statements. 2221 Block* body = 2222 factory()->NewBlock(labels, 16, false, RelocInfo::kNoPosition); 2223 Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); 2224 2225 // Parse the statements and collect escaping labels. 2226 Expect(Token::LBRACE, CHECK_OK); 2227 block_scope->set_start_position(scanner()->location().beg_pos); 2228 { BlockState block_state(&scope_, block_scope); 2229 Target target(&this->target_stack_, body); 2230 2231 while (peek() != Token::RBRACE) { 2232 Statement* stat = ParseStatementListItem(CHECK_OK); 2233 if (stat && !stat->IsEmpty()) { 2234 body->statements()->Add(stat, zone()); 2235 } 2236 } 2237 } 2238 Expect(Token::RBRACE, CHECK_OK); 2239 block_scope->set_end_position(scanner()->location().end_pos); 2240 if (finalize_block_scope) { 2241 block_scope = block_scope->FinalizeBlockScope(); 2242 } 2243 body->set_scope(block_scope); 2244 return body; 2245 } 2246 2247 2248 Block* Parser::ParseBlock(ZoneList<const AstRawString*>* labels, bool* ok) { 2249 return ParseBlock(labels, true, ok); 2250 } 2251 2252 2253 Block* Parser::DeclarationParsingResult::BuildInitializationBlock( 2254 ZoneList<const AstRawString*>* names, bool* ok) { 2255 Block* result = descriptor.parser->factory()->NewBlock( 2256 NULL, 1, true, descriptor.declaration_pos); 2257 for (auto declaration : declarations) { 2258 PatternRewriter::DeclareAndInitializeVariables( 2259 result, &descriptor, &declaration, names, CHECK_OK); 2260 } 2261 return result; 2262 } 2263 2264 2265 Block* Parser::ParseVariableStatement(VariableDeclarationContext var_context, 2266 ZoneList<const AstRawString*>* names, 2267 bool* ok) { 2268 // VariableStatement :: 2269 // VariableDeclarations ';' 2270 2271 // The scope of a var/const declared variable anywhere inside a function 2272 // is the entire function (ECMA-262, 3rd, 10.1.3, and 12.2). Thus we can 2273 // transform a source-level var/const declaration into a (Function) 2274 // Scope declaration, and rewrite the source-level initialization into an 2275 // assignment statement. We use a block to collect multiple assignments. 2276 // 2277 // We mark the block as initializer block because we don't want the 2278 // rewriter to add a '.result' assignment to such a block (to get compliant 2279 // behavior for code such as print(eval('var x = 7')), and for cosmetic 2280 // reasons when pretty-printing. Also, unless an assignment (initialization) 2281 // is inside an initializer block, it is ignored. 2282 2283 DeclarationParsingResult parsing_result; 2284 ParseVariableDeclarations(var_context, &parsing_result, CHECK_OK); 2285 ExpectSemicolon(CHECK_OK); 2286 2287 Block* result = parsing_result.BuildInitializationBlock(names, CHECK_OK); 2288 return result; 2289 } 2290 2291 2292 void Parser::ParseVariableDeclarations(VariableDeclarationContext var_context, 2293 DeclarationParsingResult* parsing_result, 2294 bool* ok) { 2295 // VariableDeclarations :: 2296 // ('var' | 'const' | 'let') (Identifier ('=' AssignmentExpression)?)+[','] 2297 // 2298 // The ES6 Draft Rev3 specifies the following grammar for const declarations 2299 // 2300 // ConstDeclaration :: 2301 // const ConstBinding (',' ConstBinding)* ';' 2302 // ConstBinding :: 2303 // Identifier '=' AssignmentExpression 2304 // 2305 // TODO(ES6): 2306 // ConstBinding :: 2307 // BindingPattern '=' AssignmentExpression 2308 2309 parsing_result->descriptor.parser = this; 2310 parsing_result->descriptor.declaration_kind = DeclarationDescriptor::NORMAL; 2311 parsing_result->descriptor.declaration_pos = peek_position(); 2312 parsing_result->descriptor.initialization_pos = peek_position(); 2313 parsing_result->descriptor.mode = VAR; 2314 // True if the binding needs initialization. 'let' and 'const' declared 2315 // bindings are created uninitialized by their declaration nodes and 2316 // need initialization. 'var' declared bindings are always initialized 2317 // immediately by their declaration nodes. 2318 parsing_result->descriptor.needs_init = false; 2319 if (peek() == Token::VAR) { 2320 if (is_strong(language_mode())) { 2321 Scanner::Location location = scanner()->peek_location(); 2322 ReportMessageAt(location, MessageTemplate::kStrongVar); 2323 *ok = false; 2324 return; 2325 } 2326 Consume(Token::VAR); 2327 } else if (peek() == Token::CONST && allow_const()) { 2328 Consume(Token::CONST); 2329 if (is_sloppy(language_mode()) && allow_legacy_const()) { 2330 parsing_result->descriptor.mode = CONST_LEGACY; 2331 ++use_counts_[v8::Isolate::kLegacyConst]; 2332 } else { 2333 DCHECK(is_strict(language_mode()) || allow_harmony_sloppy()); 2334 DCHECK(var_context != kStatement); 2335 parsing_result->descriptor.mode = CONST; 2336 } 2337 parsing_result->descriptor.needs_init = true; 2338 } else if (peek() == Token::LET && allow_let()) { 2339 Consume(Token::LET); 2340 DCHECK(var_context != kStatement); 2341 parsing_result->descriptor.mode = LET; 2342 parsing_result->descriptor.needs_init = true; 2343 } else { 2344 UNREACHABLE(); // by current callers 2345 } 2346 2347 parsing_result->descriptor.scope = scope_; 2348 parsing_result->descriptor.hoist_scope = nullptr; 2349 2350 2351 bool first_declaration = true; 2352 int bindings_start = peek_position(); 2353 bool is_for_iteration_variable; 2354 do { 2355 FuncNameInferrer::State fni_state(fni_); 2356 2357 // Parse name. 2358 if (!first_declaration) Consume(Token::COMMA); 2359 2360 Expression* pattern; 2361 int decl_pos = peek_position(); 2362 { 2363 ExpressionClassifier pattern_classifier; 2364 Token::Value next = peek(); 2365 pattern = ParsePrimaryExpression(&pattern_classifier, ok); 2366 if (!*ok) return; 2367 ValidateBindingPattern(&pattern_classifier, ok); 2368 if (!*ok) return; 2369 if (IsLexicalVariableMode(parsing_result->descriptor.mode)) { 2370 ValidateLetPattern(&pattern_classifier, ok); 2371 if (!*ok) return; 2372 } 2373 if (!allow_harmony_destructuring_bind() && !pattern->IsVariableProxy()) { 2374 ReportUnexpectedToken(next); 2375 *ok = false; 2376 return; 2377 } 2378 } 2379 2380 bool is_pattern = 2381 (pattern->IsObjectLiteral() || pattern->IsArrayLiteral()) && 2382 !pattern->is_parenthesized(); 2383 2384 Scanner::Location variable_loc = scanner()->location(); 2385 const AstRawString* single_name = 2386 pattern->IsVariableProxy() ? pattern->AsVariableProxy()->raw_name() 2387 : nullptr; 2388 if (single_name != nullptr) { 2389 if (fni_ != NULL) fni_->PushVariableName(single_name); 2390 } 2391 2392 is_for_iteration_variable = 2393 var_context == kForStatement && 2394 (peek() == Token::IN || PeekContextualKeyword(CStrVector("of"))); 2395 if (is_for_iteration_variable && 2396 (parsing_result->descriptor.mode == CONST || 2397 parsing_result->descriptor.mode == CONST_LEGACY)) { 2398 parsing_result->descriptor.needs_init = false; 2399 } 2400 2401 Expression* value = NULL; 2402 // Harmony consts have non-optional initializers. 2403 int initializer_position = RelocInfo::kNoPosition; 2404 if (Check(Token::ASSIGN)) { 2405 ExpressionClassifier classifier; 2406 value = ParseAssignmentExpression(var_context != kForStatement, 2407 &classifier, ok); 2408 if (!*ok) return; 2409 value = ParserTraits::RewriteNonPattern(value, &classifier, ok); 2410 if (!*ok) return; 2411 variable_loc.end_pos = scanner()->location().end_pos; 2412 2413 if (!parsing_result->first_initializer_loc.IsValid()) { 2414 parsing_result->first_initializer_loc = variable_loc; 2415 } 2416 2417 // Don't infer if it is "a = function(){...}();"-like expression. 2418 if (single_name) { 2419 if (fni_ != NULL && value->AsCall() == NULL && 2420 value->AsCallNew() == NULL) { 2421 fni_->Infer(); 2422 } else { 2423 fni_->RemoveLastFunction(); 2424 } 2425 } 2426 2427 if (allow_harmony_function_name() && single_name) { 2428 if (value->IsFunctionLiteral()) { 2429 auto function_literal = value->AsFunctionLiteral(); 2430 if (function_literal->is_anonymous()) { 2431 function_literal->set_raw_name(single_name); 2432 } 2433 } else if (value->IsClassLiteral()) { 2434 auto class_literal = value->AsClassLiteral(); 2435 if (class_literal->raw_name() == nullptr) { 2436 class_literal->set_raw_name(single_name); 2437 } 2438 } 2439 } 2440 2441 // End position of the initializer is after the assignment expression. 2442 initializer_position = scanner()->location().end_pos; 2443 } else { 2444 if ((parsing_result->descriptor.mode == CONST || is_pattern) && 2445 !is_for_iteration_variable) { 2446 ParserTraits::ReportMessageAt( 2447 Scanner::Location(decl_pos, scanner()->location().end_pos), 2448 MessageTemplate::kDeclarationMissingInitializer, 2449 is_pattern ? "destructuring" : "const"); 2450 *ok = false; 2451 return; 2452 } 2453 // End position of the initializer is after the variable. 2454 initializer_position = position(); 2455 } 2456 2457 // Make sure that 'const x' and 'let x' initialize 'x' to undefined. 2458 if (value == NULL && parsing_result->descriptor.needs_init) { 2459 value = GetLiteralUndefined(position()); 2460 } 2461 2462 parsing_result->declarations.Add(DeclarationParsingResult::Declaration( 2463 pattern, initializer_position, value)); 2464 first_declaration = false; 2465 } while (peek() == Token::COMMA); 2466 2467 parsing_result->bindings_loc = 2468 Scanner::Location(bindings_start, scanner()->location().end_pos); 2469 } 2470 2471 2472 static bool ContainsLabel(ZoneList<const AstRawString*>* labels, 2473 const AstRawString* label) { 2474 DCHECK(label != NULL); 2475 if (labels != NULL) { 2476 for (int i = labels->length(); i-- > 0; ) { 2477 if (labels->at(i) == label) { 2478 return true; 2479 } 2480 } 2481 } 2482 return false; 2483 } 2484 2485 2486 Statement* Parser::ParseExpressionOrLabelledStatement( 2487 ZoneList<const AstRawString*>* labels, bool* ok) { 2488 // ExpressionStatement | LabelledStatement :: 2489 // Expression ';' 2490 // Identifier ':' Statement 2491 // 2492 // ExpressionStatement[Yield] : 2493 // [lookahead {{, function, class, let [}] Expression[In, ?Yield] ; 2494 2495 int pos = peek_position(); 2496 2497 switch (peek()) { 2498 case Token::FUNCTION: 2499 case Token::LBRACE: 2500 UNREACHABLE(); // Always handled by the callers. 2501 case Token::CLASS: 2502 ReportUnexpectedToken(Next()); 2503 *ok = false; 2504 return nullptr; 2505 2506 case Token::THIS: 2507 if (!FLAG_strong_this) break; 2508 // Fall through. 2509 case Token::SUPER: 2510 if (is_strong(language_mode()) && 2511 IsClassConstructor(function_state_->kind())) { 2512 bool is_this = peek() == Token::THIS; 2513 Expression* expr; 2514 ExpressionClassifier classifier; 2515 if (is_this) { 2516 expr = ParseStrongInitializationExpression(&classifier, CHECK_OK); 2517 } else { 2518 expr = ParseStrongSuperCallExpression(&classifier, CHECK_OK); 2519 } 2520 expr = ParserTraits::RewriteNonPattern(expr, &classifier, CHECK_OK); 2521 switch (peek()) { 2522 case Token::SEMICOLON: 2523 Consume(Token::SEMICOLON); 2524 break; 2525 case Token::RBRACE: 2526 case Token::EOS: 2527 break; 2528 default: 2529 if (!scanner()->HasAnyLineTerminatorBeforeNext()) { 2530 ReportMessageAt(function_state_->this_location(), 2531 is_this 2532 ? MessageTemplate::kStrongConstructorThis 2533 : MessageTemplate::kStrongConstructorSuper); 2534 *ok = false; 2535 return nullptr; 2536 } 2537 } 2538 return factory()->NewExpressionStatement(expr, pos); 2539 } 2540 break; 2541 2542 default: 2543 break; 2544 } 2545 2546 bool starts_with_idenfifier = peek_any_identifier(); 2547 Expression* expr = ParseExpression(true, CHECK_OK); 2548 if (peek() == Token::COLON && starts_with_idenfifier && expr != NULL && 2549 expr->AsVariableProxy() != NULL && 2550 !expr->AsVariableProxy()->is_this()) { 2551 // Expression is a single identifier, and not, e.g., a parenthesized 2552 // identifier. 2553 VariableProxy* var = expr->AsVariableProxy(); 2554 const AstRawString* label = var->raw_name(); 2555 // TODO(1240780): We don't check for redeclaration of labels 2556 // during preparsing since keeping track of the set of active 2557 // labels requires nontrivial changes to the way scopes are 2558 // structured. However, these are probably changes we want to 2559 // make later anyway so we should go back and fix this then. 2560 if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) { 2561 ParserTraits::ReportMessage(MessageTemplate::kLabelRedeclaration, label); 2562 *ok = false; 2563 return NULL; 2564 } 2565 if (labels == NULL) { 2566 labels = new(zone()) ZoneList<const AstRawString*>(4, zone()); 2567 } 2568 labels->Add(label, zone()); 2569 // Remove the "ghost" variable that turned out to be a label 2570 // from the top scope. This way, we don't try to resolve it 2571 // during the scope processing. 2572 scope_->RemoveUnresolved(var); 2573 Expect(Token::COLON, CHECK_OK); 2574 return ParseStatement(labels, ok); 2575 } 2576 2577 // If we have an extension, we allow a native function declaration. 2578 // A native function declaration starts with "native function" with 2579 // no line-terminator between the two words. 2580 if (extension_ != NULL && peek() == Token::FUNCTION && 2581 !scanner()->HasAnyLineTerminatorBeforeNext() && expr != NULL && 2582 expr->AsVariableProxy() != NULL && 2583 expr->AsVariableProxy()->raw_name() == 2584 ast_value_factory()->native_string() && 2585 !scanner()->literal_contains_escapes()) { 2586 return ParseNativeDeclaration(ok); 2587 } 2588 2589 // Parsed expression statement, followed by semicolon. 2590 // Detect attempts at 'let' declarations in sloppy mode. 2591 if (!allow_harmony_sloppy_let() && peek() == Token::IDENTIFIER && 2592 expr->AsVariableProxy() != NULL && 2593 expr->AsVariableProxy()->raw_name() == 2594 ast_value_factory()->let_string()) { 2595 ReportMessage(MessageTemplate::kSloppyLexical, NULL); 2596 *ok = false; 2597 return NULL; 2598 } 2599 ExpectSemicolon(CHECK_OK); 2600 return factory()->NewExpressionStatement(expr, pos); 2601 } 2602 2603 2604 IfStatement* Parser::ParseIfStatement(ZoneList<const AstRawString*>* labels, 2605 bool* ok) { 2606 // IfStatement :: 2607 // 'if' '(' Expression ')' Statement ('else' Statement)? 2608 2609 int pos = peek_position(); 2610 Expect(Token::IF, CHECK_OK); 2611 Expect(Token::LPAREN, CHECK_OK); 2612 Expression* condition = ParseExpression(true, CHECK_OK); 2613 Expect(Token::RPAREN, CHECK_OK); 2614 Statement* then_statement = ParseSubStatement(labels, CHECK_OK); 2615 Statement* else_statement = NULL; 2616 if (peek() == Token::ELSE) { 2617 Next(); 2618 else_statement = ParseSubStatement(labels, CHECK_OK); 2619 } else { 2620 else_statement = factory()->NewEmptyStatement(RelocInfo::kNoPosition); 2621 } 2622 return factory()->NewIfStatement( 2623 condition, then_statement, else_statement, pos); 2624 } 2625 2626 2627 Statement* Parser::ParseContinueStatement(bool* ok) { 2628 // ContinueStatement :: 2629 // 'continue' Identifier? ';' 2630 2631 int pos = peek_position(); 2632 Expect(Token::CONTINUE, CHECK_OK); 2633 const AstRawString* label = NULL; 2634 Token::Value tok = peek(); 2635 if (!scanner()->HasAnyLineTerminatorBeforeNext() && 2636 tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) { 2637 // ECMA allows "eval" or "arguments" as labels even in strict mode. 2638 label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); 2639 } 2640 IterationStatement* target = LookupContinueTarget(label, CHECK_OK); 2641 if (target == NULL) { 2642 // Illegal continue statement. 2643 MessageTemplate::Template message = MessageTemplate::kIllegalContinue; 2644 if (label != NULL) { 2645 message = MessageTemplate::kUnknownLabel; 2646 } 2647 ParserTraits::ReportMessage(message, label); 2648 *ok = false; 2649 return NULL; 2650 } 2651 ExpectSemicolon(CHECK_OK); 2652 return factory()->NewContinueStatement(target, pos); 2653 } 2654 2655 2656 Statement* Parser::ParseBreakStatement(ZoneList<const AstRawString*>* labels, 2657 bool* ok) { 2658 // BreakStatement :: 2659 // 'break' Identifier? ';' 2660 2661 int pos = peek_position(); 2662 Expect(Token::BREAK, CHECK_OK); 2663 const AstRawString* label = NULL; 2664 Token::Value tok = peek(); 2665 if (!scanner()->HasAnyLineTerminatorBeforeNext() && 2666 tok != Token::SEMICOLON && tok != Token::RBRACE && tok != Token::EOS) { 2667 // ECMA allows "eval" or "arguments" as labels even in strict mode. 2668 label = ParseIdentifier(kAllowRestrictedIdentifiers, CHECK_OK); 2669 } 2670 // Parse labeled break statements that target themselves into 2671 // empty statements, e.g. 'l1: l2: l3: break l2;' 2672 if (label != NULL && ContainsLabel(labels, label)) { 2673 ExpectSemicolon(CHECK_OK); 2674 return factory()->NewEmptyStatement(pos); 2675 } 2676 BreakableStatement* target = NULL; 2677 target = LookupBreakTarget(label, CHECK_OK); 2678 if (target == NULL) { 2679 // Illegal break statement. 2680 MessageTemplate::Template message = MessageTemplate::kIllegalBreak; 2681 if (label != NULL) { 2682 message = MessageTemplate::kUnknownLabel; 2683 } 2684 ParserTraits::ReportMessage(message, label); 2685 *ok = false; 2686 return NULL; 2687 } 2688 ExpectSemicolon(CHECK_OK); 2689 return factory()->NewBreakStatement(target, pos); 2690 } 2691 2692 2693 Statement* Parser::ParseReturnStatement(bool* ok) { 2694 // ReturnStatement :: 2695 // 'return' Expression? ';' 2696 2697 // Consume the return token. It is necessary to do that before 2698 // reporting any errors on it, because of the way errors are 2699 // reported (underlining). 2700 Expect(Token::RETURN, CHECK_OK); 2701 Scanner::Location loc = scanner()->location(); 2702 function_state_->set_return_location(loc); 2703 2704 Token::Value tok = peek(); 2705 Statement* result; 2706 Expression* return_value; 2707 if (scanner()->HasAnyLineTerminatorBeforeNext() || 2708 tok == Token::SEMICOLON || 2709 tok == Token::RBRACE || 2710 tok == Token::EOS) { 2711 if (IsSubclassConstructor(function_state_->kind())) { 2712 return_value = ThisExpression(scope_, factory(), loc.beg_pos); 2713 } else { 2714 return_value = GetLiteralUndefined(position()); 2715 } 2716 } else { 2717 if (is_strong(language_mode()) && 2718 IsClassConstructor(function_state_->kind())) { 2719 int pos = peek_position(); 2720 ReportMessageAt(Scanner::Location(pos, pos + 1), 2721 MessageTemplate::kStrongConstructorReturnValue); 2722 *ok = false; 2723 return NULL; 2724 } 2725 2726 int pos = peek_position(); 2727 return_value = ParseExpression(true, CHECK_OK); 2728 2729 if (IsSubclassConstructor(function_state_->kind())) { 2730 // For subclass constructors we need to return this in case of undefined 2731 // and throw an exception in case of a non object. 2732 // 2733 // return expr; 2734 // 2735 // Is rewritten as: 2736 // 2737 // return (temp = expr) === undefined ? this : 2738 // %_IsJSReceiver(temp) ? temp : throw new TypeError(...); 2739 Variable* temp = scope_->NewTemporary( 2740 ast_value_factory()->empty_string()); 2741 Assignment* assign = factory()->NewAssignment( 2742 Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos); 2743 2744 Expression* throw_expression = 2745 NewThrowTypeError(MessageTemplate::kDerivedConstructorReturn, 2746 ast_value_factory()->empty_string(), pos); 2747 2748 // %_IsJSReceiver(temp) 2749 ZoneList<Expression*>* is_spec_object_args = 2750 new (zone()) ZoneList<Expression*>(1, zone()); 2751 is_spec_object_args->Add(factory()->NewVariableProxy(temp), zone()); 2752 Expression* is_spec_object_call = factory()->NewCallRuntime( 2753 Runtime::kInlineIsJSReceiver, is_spec_object_args, pos); 2754 2755 // %_IsJSReceiver(temp) ? temp : throw_expression 2756 Expression* is_object_conditional = factory()->NewConditional( 2757 is_spec_object_call, factory()->NewVariableProxy(temp), 2758 throw_expression, pos); 2759 2760 // temp === undefined 2761 Expression* is_undefined = factory()->NewCompareOperation( 2762 Token::EQ_STRICT, assign, 2763 factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), pos); 2764 2765 // is_undefined ? this : is_object_conditional 2766 return_value = factory()->NewConditional( 2767 is_undefined, ThisExpression(scope_, factory(), pos), 2768 is_object_conditional, pos); 2769 } 2770 2771 return_value->MarkTail(); 2772 } 2773 ExpectSemicolon(CHECK_OK); 2774 2775 if (is_generator()) { 2776 Expression* generator = factory()->NewVariableProxy( 2777 function_state_->generator_object_variable()); 2778 Expression* yield = factory()->NewYield( 2779 generator, return_value, Yield::kFinal, loc.beg_pos); 2780 result = factory()->NewExpressionStatement(yield, loc.beg_pos); 2781 } else { 2782 result = factory()->NewReturnStatement(return_value, loc.beg_pos); 2783 } 2784 2785 Scope* decl_scope = scope_->DeclarationScope(); 2786 if (decl_scope->is_script_scope() || decl_scope->is_eval_scope()) { 2787 ReportMessageAt(loc, MessageTemplate::kIllegalReturn); 2788 *ok = false; 2789 return NULL; 2790 } 2791 return result; 2792 } 2793 2794 2795 Statement* Parser::ParseWithStatement(ZoneList<const AstRawString*>* labels, 2796 bool* ok) { 2797 // WithStatement :: 2798 // 'with' '(' Expression ')' Statement 2799 2800 Expect(Token::WITH, CHECK_OK); 2801 int pos = position(); 2802 2803 if (is_strict(language_mode())) { 2804 ReportMessage(MessageTemplate::kStrictWith); 2805 *ok = false; 2806 return NULL; 2807 } 2808 2809 Expect(Token::LPAREN, CHECK_OK); 2810 Expression* expr = ParseExpression(true, CHECK_OK); 2811 Expect(Token::RPAREN, CHECK_OK); 2812 2813 scope_->DeclarationScope()->RecordWithStatement(); 2814 Scope* with_scope = NewScope(scope_, WITH_SCOPE); 2815 Block* body; 2816 { BlockState block_state(&scope_, with_scope); 2817 with_scope->set_start_position(scanner()->peek_location().beg_pos); 2818 2819 // The body of the with statement must be enclosed in an additional 2820 // lexical scope in case the body is a FunctionDeclaration. 2821 body = factory()->NewBlock(labels, 1, false, RelocInfo::kNoPosition); 2822 Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); 2823 block_scope->set_start_position(scanner()->location().beg_pos); 2824 { 2825 BlockState block_state(&scope_, block_scope); 2826 Target target(&this->target_stack_, body); 2827 Statement* stmt = ParseSubStatement(labels, CHECK_OK); 2828 body->statements()->Add(stmt, zone()); 2829 block_scope->set_end_position(scanner()->location().end_pos); 2830 block_scope = block_scope->FinalizeBlockScope(); 2831 body->set_scope(block_scope); 2832 } 2833 2834 with_scope->set_end_position(scanner()->location().end_pos); 2835 } 2836 return factory()->NewWithStatement(with_scope, expr, body, pos); 2837 } 2838 2839 2840 CaseClause* Parser::ParseCaseClause(bool* default_seen_ptr, bool* ok) { 2841 // CaseClause :: 2842 // 'case' Expression ':' StatementList 2843 // 'default' ':' StatementList 2844 2845 Expression* label = NULL; // NULL expression indicates default case 2846 if (peek() == Token::CASE) { 2847 Expect(Token::CASE, CHECK_OK); 2848 label = ParseExpression(true, CHECK_OK); 2849 } else { 2850 Expect(Token::DEFAULT, CHECK_OK); 2851 if (*default_seen_ptr) { 2852 ReportMessage(MessageTemplate::kMultipleDefaultsInSwitch); 2853 *ok = false; 2854 return NULL; 2855 } 2856 *default_seen_ptr = true; 2857 } 2858 Expect(Token::COLON, CHECK_OK); 2859 int pos = position(); 2860 ZoneList<Statement*>* statements = 2861 new(zone()) ZoneList<Statement*>(5, zone()); 2862 Statement* stat = NULL; 2863 while (peek() != Token::CASE && 2864 peek() != Token::DEFAULT && 2865 peek() != Token::RBRACE) { 2866 stat = ParseStatementListItem(CHECK_OK); 2867 statements->Add(stat, zone()); 2868 } 2869 if (is_strong(language_mode()) && stat != NULL && !stat->IsJump() && 2870 peek() != Token::RBRACE) { 2871 ReportMessageAt(scanner()->location(), 2872 MessageTemplate::kStrongSwitchFallthrough); 2873 *ok = false; 2874 return NULL; 2875 } 2876 return factory()->NewCaseClause(label, statements, pos); 2877 } 2878 2879 2880 Statement* Parser::ParseSwitchStatement(ZoneList<const AstRawString*>* labels, 2881 bool* ok) { 2882 // SwitchStatement :: 2883 // 'switch' '(' Expression ')' '{' CaseClause* '}' 2884 // In order to get the CaseClauses to execute in their own lexical scope, 2885 // but without requiring downstream code to have special scope handling 2886 // code for switch statements, desugar into blocks as follows: 2887 // { // To group the statements--harmless to evaluate Expression in scope 2888 // .tag_variable = Expression; 2889 // { // To give CaseClauses a scope 2890 // switch (.tag_variable) { CaseClause* } 2891 // } 2892 // } 2893 2894 Block* switch_block = 2895 factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition); 2896 int switch_pos = peek_position(); 2897 2898 Expect(Token::SWITCH, CHECK_OK); 2899 Expect(Token::LPAREN, CHECK_OK); 2900 Expression* tag = ParseExpression(true, CHECK_OK); 2901 Expect(Token::RPAREN, CHECK_OK); 2902 2903 Variable* tag_variable = 2904 scope_->NewTemporary(ast_value_factory()->dot_switch_tag_string()); 2905 Assignment* tag_assign = factory()->NewAssignment( 2906 Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag, 2907 tag->position()); 2908 Statement* tag_statement = 2909 factory()->NewExpressionStatement(tag_assign, RelocInfo::kNoPosition); 2910 switch_block->statements()->Add(tag_statement, zone()); 2911 2912 // make statement: undefined; 2913 // This is needed so the tag isn't returned as the value, in case the switch 2914 // statements don't have a value. 2915 switch_block->statements()->Add( 2916 factory()->NewExpressionStatement( 2917 factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), 2918 RelocInfo::kNoPosition), 2919 zone()); 2920 2921 Block* cases_block = 2922 factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition); 2923 Scope* cases_scope = NewScope(scope_, BLOCK_SCOPE); 2924 cases_scope->SetNonlinear(); 2925 2926 SwitchStatement* switch_statement = 2927 factory()->NewSwitchStatement(labels, switch_pos); 2928 2929 cases_scope->set_start_position(scanner()->location().beg_pos); 2930 { 2931 BlockState cases_block_state(&scope_, cases_scope); 2932 Target target(&this->target_stack_, switch_statement); 2933 2934 Expression* tag_read = factory()->NewVariableProxy(tag_variable); 2935 2936 bool default_seen = false; 2937 ZoneList<CaseClause*>* cases = 2938 new (zone()) ZoneList<CaseClause*>(4, zone()); 2939 Expect(Token::LBRACE, CHECK_OK); 2940 while (peek() != Token::RBRACE) { 2941 CaseClause* clause = ParseCaseClause(&default_seen, CHECK_OK); 2942 cases->Add(clause, zone()); 2943 } 2944 switch_statement->Initialize(tag_read, cases); 2945 cases_block->statements()->Add(switch_statement, zone()); 2946 } 2947 Expect(Token::RBRACE, CHECK_OK); 2948 2949 cases_scope->set_end_position(scanner()->location().end_pos); 2950 cases_scope = cases_scope->FinalizeBlockScope(); 2951 cases_block->set_scope(cases_scope); 2952 2953 switch_block->statements()->Add(cases_block, zone()); 2954 2955 return switch_block; 2956 } 2957 2958 2959 Statement* Parser::ParseThrowStatement(bool* ok) { 2960 // ThrowStatement :: 2961 // 'throw' Expression ';' 2962 2963 Expect(Token::THROW, CHECK_OK); 2964 int pos = position(); 2965 if (scanner()->HasAnyLineTerminatorBeforeNext()) { 2966 ReportMessage(MessageTemplate::kNewlineAfterThrow); 2967 *ok = false; 2968 return NULL; 2969 } 2970 Expression* exception = ParseExpression(true, CHECK_OK); 2971 ExpectSemicolon(CHECK_OK); 2972 2973 return factory()->NewExpressionStatement( 2974 factory()->NewThrow(exception, pos), pos); 2975 } 2976 2977 2978 TryStatement* Parser::ParseTryStatement(bool* ok) { 2979 // TryStatement :: 2980 // 'try' Block Catch 2981 // 'try' Block Finally 2982 // 'try' Block Catch Finally 2983 // 2984 // Catch :: 2985 // 'catch' '(' Identifier ')' Block 2986 // 2987 // Finally :: 2988 // 'finally' Block 2989 2990 Expect(Token::TRY, CHECK_OK); 2991 int pos = position(); 2992 2993 Block* try_block = ParseBlock(NULL, CHECK_OK); 2994 2995 Token::Value tok = peek(); 2996 if (tok != Token::CATCH && tok != Token::FINALLY) { 2997 ReportMessage(MessageTemplate::kNoCatchOrFinally); 2998 *ok = false; 2999 return NULL; 3000 } 3001 3002 Scope* catch_scope = NULL; 3003 Variable* catch_variable = NULL; 3004 Block* catch_block = NULL; 3005 if (tok == Token::CATCH) { 3006 Consume(Token::CATCH); 3007 3008 Expect(Token::LPAREN, CHECK_OK); 3009 catch_scope = NewScope(scope_, CATCH_SCOPE); 3010 catch_scope->set_start_position(scanner()->location().beg_pos); 3011 3012 ExpressionClassifier pattern_classifier; 3013 Expression* pattern = ParsePrimaryExpression(&pattern_classifier, CHECK_OK); 3014 ValidateBindingPattern(&pattern_classifier, CHECK_OK); 3015 3016 const AstRawString* name = ast_value_factory()->dot_catch_string(); 3017 bool is_simple = pattern->IsVariableProxy(); 3018 if (is_simple) { 3019 auto proxy = pattern->AsVariableProxy(); 3020 scope_->RemoveUnresolved(proxy); 3021 name = proxy->raw_name(); 3022 } 3023 3024 catch_variable = catch_scope->DeclareLocal(name, VAR, kCreatedInitialized, 3025 Variable::NORMAL); 3026 3027 Expect(Token::RPAREN, CHECK_OK); 3028 3029 { 3030 BlockState block_state(&scope_, catch_scope); 3031 3032 // TODO(adamk): Make a version of ParseBlock that takes a scope and 3033 // a block. 3034 catch_block = 3035 factory()->NewBlock(nullptr, 16, false, RelocInfo::kNoPosition); 3036 Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); 3037 3038 block_scope->set_start_position(scanner()->location().beg_pos); 3039 { 3040 BlockState block_state(&scope_, block_scope); 3041 Target target(&this->target_stack_, catch_block); 3042 3043 if (!is_simple) { 3044 DeclarationDescriptor descriptor; 3045 descriptor.declaration_kind = DeclarationDescriptor::NORMAL; 3046 descriptor.parser = this; 3047 descriptor.scope = scope_; 3048 descriptor.hoist_scope = nullptr; 3049 descriptor.mode = LET; 3050 descriptor.needs_init = true; 3051 descriptor.declaration_pos = pattern->position(); 3052 descriptor.initialization_pos = pattern->position(); 3053 3054 DeclarationParsingResult::Declaration decl( 3055 pattern, pattern->position(), 3056 factory()->NewVariableProxy(catch_variable)); 3057 3058 PatternRewriter::DeclareAndInitializeVariables( 3059 catch_block, &descriptor, &decl, nullptr, CHECK_OK); 3060 } 3061 3062 Expect(Token::LBRACE, CHECK_OK); 3063 while (peek() != Token::RBRACE) { 3064 Statement* stat = ParseStatementListItem(CHECK_OK); 3065 if (stat && !stat->IsEmpty()) { 3066 catch_block->statements()->Add(stat, zone()); 3067 } 3068 } 3069 Consume(Token::RBRACE); 3070 } 3071 block_scope->set_end_position(scanner()->location().end_pos); 3072 block_scope = block_scope->FinalizeBlockScope(); 3073 catch_block->set_scope(block_scope); 3074 } 3075 3076 catch_scope->set_end_position(scanner()->location().end_pos); 3077 tok = peek(); 3078 } 3079 3080 Block* finally_block = NULL; 3081 DCHECK(tok == Token::FINALLY || catch_block != NULL); 3082 if (tok == Token::FINALLY) { 3083 Consume(Token::FINALLY); 3084 finally_block = ParseBlock(NULL, CHECK_OK); 3085 } 3086 3087 // Simplify the AST nodes by converting: 3088 // 'try B0 catch B1 finally B2' 3089 // to: 3090 // 'try { try B0 catch B1 } finally B2' 3091 3092 if (catch_block != NULL && finally_block != NULL) { 3093 // If we have both, create an inner try/catch. 3094 DCHECK(catch_scope != NULL && catch_variable != NULL); 3095 TryCatchStatement* statement = 3096 factory()->NewTryCatchStatement(try_block, catch_scope, catch_variable, 3097 catch_block, RelocInfo::kNoPosition); 3098 try_block = factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition); 3099 try_block->statements()->Add(statement, zone()); 3100 catch_block = NULL; // Clear to indicate it's been handled. 3101 } 3102 3103 TryStatement* result = NULL; 3104 if (catch_block != NULL) { 3105 DCHECK(finally_block == NULL); 3106 DCHECK(catch_scope != NULL && catch_variable != NULL); 3107 result = factory()->NewTryCatchStatement(try_block, catch_scope, 3108 catch_variable, catch_block, pos); 3109 } else { 3110 DCHECK(finally_block != NULL); 3111 result = factory()->NewTryFinallyStatement(try_block, finally_block, pos); 3112 } 3113 3114 return result; 3115 } 3116 3117 3118 DoWhileStatement* Parser::ParseDoWhileStatement( 3119 ZoneList<const AstRawString*>* labels, bool* ok) { 3120 // DoStatement :: 3121 // 'do' Statement 'while' '(' Expression ')' ';' 3122 3123 DoWhileStatement* loop = 3124 factory()->NewDoWhileStatement(labels, peek_position()); 3125 Target target(&this->target_stack_, loop); 3126 3127 Expect(Token::DO, CHECK_OK); 3128 Statement* body = ParseSubStatement(NULL, CHECK_OK); 3129 Expect(Token::WHILE, CHECK_OK); 3130 Expect(Token::LPAREN, CHECK_OK); 3131 3132 Expression* cond = ParseExpression(true, CHECK_OK); 3133 Expect(Token::RPAREN, CHECK_OK); 3134 3135 // Allow do-statements to be terminated with and without 3136 // semi-colons. This allows code such as 'do;while(0)return' to 3137 // parse, which would not be the case if we had used the 3138 // ExpectSemicolon() functionality here. 3139 if (peek() == Token::SEMICOLON) Consume(Token::SEMICOLON); 3140 3141 if (loop != NULL) loop->Initialize(cond, body); 3142 return loop; 3143 } 3144 3145 3146 WhileStatement* Parser::ParseWhileStatement( 3147 ZoneList<const AstRawString*>* labels, bool* ok) { 3148 // WhileStatement :: 3149 // 'while' '(' Expression ')' Statement 3150 3151 WhileStatement* loop = factory()->NewWhileStatement(labels, peek_position()); 3152 Target target(&this->target_stack_, loop); 3153 3154 Expect(Token::WHILE, CHECK_OK); 3155 Expect(Token::LPAREN, CHECK_OK); 3156 Expression* cond = ParseExpression(true, CHECK_OK); 3157 Expect(Token::RPAREN, CHECK_OK); 3158 Statement* body = ParseSubStatement(NULL, CHECK_OK); 3159 3160 if (loop != NULL) loop->Initialize(cond, body); 3161 return loop; 3162 } 3163 3164 3165 // !%_IsJSReceiver(result = iterator.next()) && 3166 // %ThrowIteratorResultNotAnObject(result) 3167 Expression* Parser::BuildIteratorNextResult(Expression* iterator, 3168 Variable* result, int pos) { 3169 Expression* next_literal = factory()->NewStringLiteral( 3170 ast_value_factory()->next_string(), RelocInfo::kNoPosition); 3171 Expression* next_property = 3172 factory()->NewProperty(iterator, next_literal, RelocInfo::kNoPosition); 3173 ZoneList<Expression*>* next_arguments = 3174 new (zone()) ZoneList<Expression*>(0, zone()); 3175 Expression* next_call = 3176 factory()->NewCall(next_property, next_arguments, pos); 3177 Expression* result_proxy = factory()->NewVariableProxy(result); 3178 Expression* left = 3179 factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos); 3180 3181 // %_IsJSReceiver(...) 3182 ZoneList<Expression*>* is_spec_object_args = 3183 new (zone()) ZoneList<Expression*>(1, zone()); 3184 is_spec_object_args->Add(left, zone()); 3185 Expression* is_spec_object_call = factory()->NewCallRuntime( 3186 Runtime::kInlineIsJSReceiver, is_spec_object_args, pos); 3187 3188 // %ThrowIteratorResultNotAnObject(result) 3189 Expression* result_proxy_again = factory()->NewVariableProxy(result); 3190 ZoneList<Expression*>* throw_arguments = 3191 new (zone()) ZoneList<Expression*>(1, zone()); 3192 throw_arguments->Add(result_proxy_again, zone()); 3193 Expression* throw_call = factory()->NewCallRuntime( 3194 Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos); 3195 3196 return factory()->NewBinaryOperation( 3197 Token::AND, 3198 factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos), 3199 throw_call, pos); 3200 } 3201 3202 3203 void Parser::InitializeForEachStatement(ForEachStatement* stmt, 3204 Expression* each, Expression* subject, 3205 Statement* body, 3206 bool is_destructuring) { 3207 DCHECK(!is_destructuring || allow_harmony_destructuring_assignment()); 3208 ForOfStatement* for_of = stmt->AsForOfStatement(); 3209 3210 if (for_of != NULL) { 3211 Variable* iterator = scope_->NewTemporary( 3212 ast_value_factory()->dot_iterator_string()); 3213 Variable* result = scope_->NewTemporary( 3214 ast_value_factory()->dot_result_string()); 3215 3216 Expression* assign_iterator; 3217 Expression* next_result; 3218 Expression* result_done; 3219 Expression* assign_each; 3220 3221 // iterator = subject[Symbol.iterator]() 3222 // Hackily disambiguate o from o.next and o [Symbol.iterator](). 3223 // TODO(verwaest): Come up with a better solution. 3224 assign_iterator = factory()->NewAssignment( 3225 Token::ASSIGN, factory()->NewVariableProxy(iterator), 3226 GetIterator(subject, factory(), subject->position() - 2), 3227 subject->position()); 3228 3229 // !%_IsJSReceiver(result = iterator.next()) && 3230 // %ThrowIteratorResultNotAnObject(result) 3231 { 3232 // result = iterator.next() 3233 Expression* iterator_proxy = factory()->NewVariableProxy(iterator); 3234 // Hackily disambiguate o from o.next and o [Symbol.iterator](). 3235 // TODO(verwaest): Come up with a better solution. 3236 next_result = BuildIteratorNextResult(iterator_proxy, result, 3237 subject->position() - 1); 3238 } 3239 3240 // result.done 3241 { 3242 Expression* done_literal = factory()->NewStringLiteral( 3243 ast_value_factory()->done_string(), RelocInfo::kNoPosition); 3244 Expression* result_proxy = factory()->NewVariableProxy(result); 3245 result_done = factory()->NewProperty( 3246 result_proxy, done_literal, RelocInfo::kNoPosition); 3247 } 3248 3249 // each = result.value 3250 { 3251 Expression* value_literal = factory()->NewStringLiteral( 3252 ast_value_factory()->value_string(), RelocInfo::kNoPosition); 3253 Expression* result_proxy = factory()->NewVariableProxy(result); 3254 Expression* result_value = factory()->NewProperty( 3255 result_proxy, value_literal, RelocInfo::kNoPosition); 3256 assign_each = factory()->NewAssignment(Token::ASSIGN, each, result_value, 3257 RelocInfo::kNoPosition); 3258 if (is_destructuring) { 3259 assign_each = PatternRewriter::RewriteDestructuringAssignment( 3260 this, assign_each->AsAssignment(), scope_); 3261 } 3262 } 3263 3264 for_of->Initialize(each, subject, body, 3265 assign_iterator, 3266 next_result, 3267 result_done, 3268 assign_each); 3269 } else { 3270 if (is_destructuring) { 3271 Variable* temp = 3272 scope_->NewTemporary(ast_value_factory()->empty_string()); 3273 VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); 3274 Expression* assign_each = PatternRewriter::RewriteDestructuringAssignment( 3275 this, factory()->NewAssignment(Token::ASSIGN, each, temp_proxy, 3276 RelocInfo::kNoPosition), 3277 scope_); 3278 auto block = 3279 factory()->NewBlock(nullptr, 2, false, RelocInfo::kNoPosition); 3280 block->statements()->Add(factory()->NewExpressionStatement( 3281 assign_each, RelocInfo::kNoPosition), 3282 zone()); 3283 block->statements()->Add(body, zone()); 3284 body = block; 3285 each = factory()->NewVariableProxy(temp); 3286 } 3287 stmt->Initialize(each, subject, body); 3288 } 3289 } 3290 3291 3292 Statement* Parser::DesugarLexicalBindingsInForStatement( 3293 Scope* inner_scope, bool is_const, ZoneList<const AstRawString*>* names, 3294 ForStatement* loop, Statement* init, Expression* cond, Statement* next, 3295 Statement* body, bool* ok) { 3296 // ES6 13.7.4.8 specifies that on each loop iteration the let variables are 3297 // copied into a new environment. Moreover, the "next" statement must be 3298 // evaluated not in the environment of the just completed iteration but in 3299 // that of the upcoming one. We achieve this with the following desugaring. 3300 // Extra care is needed to preserve the completion value of the original loop. 3301 // 3302 // We are given a for statement of the form 3303 // 3304 // labels: for (let/const x = i; cond; next) body 3305 // 3306 // and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie., 3307 // blocks whose ignore_completion_value_ flag is set. 3308 // 3309 // { 3310 // let/const x = i; 3311 // temp_x = x; 3312 // first = 1; 3313 // undefined; 3314 // outer: for (;;) { 3315 // let/const x = temp_x; 3316 // {{ if (first == 1) { 3317 // first = 0; 3318 // } else { 3319 // next; 3320 // } 3321 // flag = 1; 3322 // if (!cond) break; 3323 // }} 3324 // labels: for (; flag == 1; flag = 0, temp_x = x) { 3325 // body 3326 // } 3327 // {{ if (flag == 1) // Body used break. 3328 // break; 3329 // }} 3330 // } 3331 // } 3332 3333 DCHECK(names->length() > 0); 3334 Scope* for_scope = scope_; 3335 ZoneList<Variable*> temps(names->length(), zone()); 3336 3337 Block* outer_block = factory()->NewBlock(NULL, names->length() + 4, false, 3338 RelocInfo::kNoPosition); 3339 3340 // Add statement: let/const x = i. 3341 outer_block->statements()->Add(init, zone()); 3342 3343 const AstRawString* temp_name = ast_value_factory()->dot_for_string(); 3344 3345 // For each lexical variable x: 3346 // make statement: temp_x = x. 3347 for (int i = 0; i < names->length(); i++) { 3348 VariableProxy* proxy = NewUnresolved(names->at(i), LET); 3349 Variable* temp = scope_->NewTemporary(temp_name); 3350 VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); 3351 Assignment* assignment = factory()->NewAssignment( 3352 Token::ASSIGN, temp_proxy, proxy, RelocInfo::kNoPosition); 3353 Statement* assignment_statement = factory()->NewExpressionStatement( 3354 assignment, RelocInfo::kNoPosition); 3355 outer_block->statements()->Add(assignment_statement, zone()); 3356 temps.Add(temp, zone()); 3357 } 3358 3359 Variable* first = NULL; 3360 // Make statement: first = 1. 3361 if (next) { 3362 first = scope_->NewTemporary(temp_name); 3363 VariableProxy* first_proxy = factory()->NewVariableProxy(first); 3364 Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); 3365 Assignment* assignment = factory()->NewAssignment( 3366 Token::ASSIGN, first_proxy, const1, RelocInfo::kNoPosition); 3367 Statement* assignment_statement = 3368 factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); 3369 outer_block->statements()->Add(assignment_statement, zone()); 3370 } 3371 3372 // make statement: undefined; 3373 outer_block->statements()->Add( 3374 factory()->NewExpressionStatement( 3375 factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), 3376 RelocInfo::kNoPosition), 3377 zone()); 3378 3379 // Make statement: outer: for (;;) 3380 // Note that we don't actually create the label, or set this loop up as an 3381 // explicit break target, instead handing it directly to those nodes that 3382 // need to know about it. This should be safe because we don't run any code 3383 // in this function that looks up break targets. 3384 ForStatement* outer_loop = 3385 factory()->NewForStatement(NULL, RelocInfo::kNoPosition); 3386 outer_block->statements()->Add(outer_loop, zone()); 3387 3388 outer_block->set_scope(for_scope); 3389 scope_ = inner_scope; 3390 3391 Block* inner_block = 3392 factory()->NewBlock(NULL, 3, false, RelocInfo::kNoPosition); 3393 Block* ignore_completion_block = factory()->NewBlock( 3394 NULL, names->length() + 3, true, RelocInfo::kNoPosition); 3395 ZoneList<Variable*> inner_vars(names->length(), zone()); 3396 // For each let variable x: 3397 // make statement: let/const x = temp_x. 3398 VariableMode mode = is_const ? CONST : LET; 3399 for (int i = 0; i < names->length(); i++) { 3400 VariableProxy* proxy = NewUnresolved(names->at(i), mode); 3401 Declaration* declaration = factory()->NewVariableDeclaration( 3402 proxy, mode, scope_, RelocInfo::kNoPosition); 3403 Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); 3404 inner_vars.Add(declaration->proxy()->var(), zone()); 3405 VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i)); 3406 Assignment* assignment = factory()->NewAssignment( 3407 Token::INIT, proxy, temp_proxy, RelocInfo::kNoPosition); 3408 Statement* assignment_statement = 3409 factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); 3410 DCHECK(init->position() != RelocInfo::kNoPosition); 3411 proxy->var()->set_initializer_position(init->position()); 3412 ignore_completion_block->statements()->Add(assignment_statement, zone()); 3413 } 3414 3415 // Make statement: if (first == 1) { first = 0; } else { next; } 3416 if (next) { 3417 DCHECK(first); 3418 Expression* compare = NULL; 3419 // Make compare expression: first == 1. 3420 { 3421 Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); 3422 VariableProxy* first_proxy = factory()->NewVariableProxy(first); 3423 compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1, 3424 RelocInfo::kNoPosition); 3425 } 3426 Statement* clear_first = NULL; 3427 // Make statement: first = 0. 3428 { 3429 VariableProxy* first_proxy = factory()->NewVariableProxy(first); 3430 Expression* const0 = factory()->NewSmiLiteral(0, RelocInfo::kNoPosition); 3431 Assignment* assignment = factory()->NewAssignment( 3432 Token::ASSIGN, first_proxy, const0, RelocInfo::kNoPosition); 3433 clear_first = 3434 factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); 3435 } 3436 Statement* clear_first_or_next = factory()->NewIfStatement( 3437 compare, clear_first, next, RelocInfo::kNoPosition); 3438 ignore_completion_block->statements()->Add(clear_first_or_next, zone()); 3439 } 3440 3441 Variable* flag = scope_->NewTemporary(temp_name); 3442 // Make statement: flag = 1. 3443 { 3444 VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); 3445 Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); 3446 Assignment* assignment = factory()->NewAssignment( 3447 Token::ASSIGN, flag_proxy, const1, RelocInfo::kNoPosition); 3448 Statement* assignment_statement = 3449 factory()->NewExpressionStatement(assignment, RelocInfo::kNoPosition); 3450 ignore_completion_block->statements()->Add(assignment_statement, zone()); 3451 } 3452 3453 // Make statement: if (!cond) break. 3454 if (cond) { 3455 Statement* stop = 3456 factory()->NewBreakStatement(outer_loop, RelocInfo::kNoPosition); 3457 Statement* noop = factory()->NewEmptyStatement(RelocInfo::kNoPosition); 3458 ignore_completion_block->statements()->Add( 3459 factory()->NewIfStatement(cond, noop, stop, cond->position()), zone()); 3460 } 3461 3462 inner_block->statements()->Add(ignore_completion_block, zone()); 3463 // Make cond expression for main loop: flag == 1. 3464 Expression* flag_cond = NULL; 3465 { 3466 Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); 3467 VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); 3468 flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1, 3469 RelocInfo::kNoPosition); 3470 } 3471 3472 // Create chain of expressions "flag = 0, temp_x = x, ..." 3473 Statement* compound_next_statement = NULL; 3474 { 3475 Expression* compound_next = NULL; 3476 // Make expression: flag = 0. 3477 { 3478 VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); 3479 Expression* const0 = factory()->NewSmiLiteral(0, RelocInfo::kNoPosition); 3480 compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy, 3481 const0, RelocInfo::kNoPosition); 3482 } 3483 3484 // Make the comma-separated list of temp_x = x assignments. 3485 int inner_var_proxy_pos = scanner()->location().beg_pos; 3486 for (int i = 0; i < names->length(); i++) { 3487 VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i)); 3488 VariableProxy* proxy = 3489 factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos); 3490 Assignment* assignment = factory()->NewAssignment( 3491 Token::ASSIGN, temp_proxy, proxy, RelocInfo::kNoPosition); 3492 compound_next = factory()->NewBinaryOperation( 3493 Token::COMMA, compound_next, assignment, RelocInfo::kNoPosition); 3494 } 3495 3496 compound_next_statement = factory()->NewExpressionStatement( 3497 compound_next, RelocInfo::kNoPosition); 3498 } 3499 3500 // Make statement: labels: for (; flag == 1; flag = 0, temp_x = x) 3501 // Note that we re-use the original loop node, which retains its labels 3502 // and ensures that any break or continue statements in body point to 3503 // the right place. 3504 loop->Initialize(NULL, flag_cond, compound_next_statement, body); 3505 inner_block->statements()->Add(loop, zone()); 3506 3507 // Make statement: {{if (flag == 1) break;}} 3508 { 3509 Expression* compare = NULL; 3510 // Make compare expresion: flag == 1. 3511 { 3512 Expression* const1 = factory()->NewSmiLiteral(1, RelocInfo::kNoPosition); 3513 VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); 3514 compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1, 3515 RelocInfo::kNoPosition); 3516 } 3517 Statement* stop = 3518 factory()->NewBreakStatement(outer_loop, RelocInfo::kNoPosition); 3519 Statement* empty = factory()->NewEmptyStatement(RelocInfo::kNoPosition); 3520 Statement* if_flag_break = 3521 factory()->NewIfStatement(compare, stop, empty, RelocInfo::kNoPosition); 3522 Block* ignore_completion_block = 3523 factory()->NewBlock(NULL, 1, true, RelocInfo::kNoPosition); 3524 ignore_completion_block->statements()->Add(if_flag_break, zone()); 3525 inner_block->statements()->Add(ignore_completion_block, zone()); 3526 } 3527 3528 inner_scope->set_end_position(scanner()->location().end_pos); 3529 inner_block->set_scope(inner_scope); 3530 scope_ = for_scope; 3531 3532 outer_loop->Initialize(NULL, NULL, NULL, inner_block); 3533 return outer_block; 3534 } 3535 3536 3537 Statement* Parser::ParseForStatement(ZoneList<const AstRawString*>* labels, 3538 bool* ok) { 3539 // ForStatement :: 3540 // 'for' '(' Expression? ';' Expression? ';' Expression? ')' Statement 3541 3542 int stmt_pos = peek_position(); 3543 bool is_const = false; 3544 Statement* init = NULL; 3545 ZoneList<const AstRawString*> lexical_bindings(1, zone()); 3546 3547 // Create an in-between scope for let-bound iteration variables. 3548 Scope* saved_scope = scope_; 3549 Scope* for_scope = NewScope(scope_, BLOCK_SCOPE); 3550 scope_ = for_scope; 3551 Expect(Token::FOR, CHECK_OK); 3552 Expect(Token::LPAREN, CHECK_OK); 3553 for_scope->set_start_position(scanner()->location().beg_pos); 3554 bool is_let_identifier_expression = false; 3555 DeclarationParsingResult parsing_result; 3556 if (peek() != Token::SEMICOLON) { 3557 if (peek() == Token::VAR || (peek() == Token::CONST && allow_const()) || 3558 (peek() == Token::LET && IsNextLetKeyword())) { 3559 ParseVariableDeclarations(kForStatement, &parsing_result, CHECK_OK); 3560 is_const = parsing_result.descriptor.mode == CONST; 3561 3562 int num_decl = parsing_result.declarations.length(); 3563 bool accept_IN = num_decl >= 1; 3564 ForEachStatement::VisitMode mode; 3565 int each_beg_pos = scanner()->location().beg_pos; 3566 int each_end_pos = scanner()->location().end_pos; 3567 3568 if (accept_IN && CheckInOrOf(&mode, ok)) { 3569 if (!*ok) return nullptr; 3570 if (num_decl != 1) { 3571 const char* loop_type = 3572 mode == ForEachStatement::ITERATE ? "for-of" : "for-in"; 3573 ParserTraits::ReportMessageAt( 3574 parsing_result.bindings_loc, 3575 MessageTemplate::kForInOfLoopMultiBindings, loop_type); 3576 *ok = false; 3577 return nullptr; 3578 } 3579 DeclarationParsingResult::Declaration& decl = 3580 parsing_result.declarations[0]; 3581 if (parsing_result.first_initializer_loc.IsValid() && 3582 (is_strict(language_mode()) || mode == ForEachStatement::ITERATE || 3583 IsLexicalVariableMode(parsing_result.descriptor.mode) || 3584 !decl.pattern->IsVariableProxy())) { 3585 if (mode == ForEachStatement::ITERATE) { 3586 ReportMessageAt(parsing_result.first_initializer_loc, 3587 MessageTemplate::kForOfLoopInitializer); 3588 } else { 3589 // TODO(caitp): This should be an error in sloppy mode too. 3590 ReportMessageAt(parsing_result.first_initializer_loc, 3591 MessageTemplate::kForInLoopInitializer); 3592 } 3593 *ok = false; 3594 return nullptr; 3595 } 3596 3597 Block* init_block = nullptr; 3598 3599 // special case for legacy for (var/const x =.... in) 3600 if (!IsLexicalVariableMode(parsing_result.descriptor.mode) && 3601 decl.pattern->IsVariableProxy() && decl.initializer != nullptr) { 3602 const AstRawString* name = 3603 decl.pattern->AsVariableProxy()->raw_name(); 3604 VariableProxy* single_var = scope_->NewUnresolved( 3605 factory(), name, Variable::NORMAL, each_beg_pos, each_end_pos); 3606 init_block = factory()->NewBlock( 3607 nullptr, 2, true, parsing_result.descriptor.declaration_pos); 3608 init_block->statements()->Add( 3609 factory()->NewExpressionStatement( 3610 factory()->NewAssignment(Token::ASSIGN, single_var, 3611 decl.initializer, 3612 RelocInfo::kNoPosition), 3613 RelocInfo::kNoPosition), 3614 zone()); 3615 } 3616 3617 // Rewrite a for-in/of statement of the form 3618 // 3619 // for (let/const/var x in/of e) b 3620 // 3621 // into 3622 // 3623 // { 3624 // <let x' be a temporary variable> 3625 // for (x' in/of e) { 3626 // let/const/var x; 3627 // x = x'; 3628 // b; 3629 // } 3630 // let x; // for TDZ 3631 // } 3632 3633 Variable* temp = scope_->NewTemporary( 3634 ast_value_factory()->dot_for_string()); 3635 ForEachStatement* loop = 3636 factory()->NewForEachStatement(mode, labels, stmt_pos); 3637 Target target(&this->target_stack_, loop); 3638 3639 Expression* enumerable = ParseExpression(true, CHECK_OK); 3640 3641 Expect(Token::RPAREN, CHECK_OK); 3642 3643 Scope* body_scope = NewScope(scope_, BLOCK_SCOPE); 3644 body_scope->set_start_position(scanner()->location().beg_pos); 3645 scope_ = body_scope; 3646 3647 Statement* body = ParseSubStatement(NULL, CHECK_OK); 3648 3649 Block* body_block = 3650 factory()->NewBlock(NULL, 3, false, RelocInfo::kNoPosition); 3651 3652 auto each_initialization_block = 3653 factory()->NewBlock(nullptr, 1, true, RelocInfo::kNoPosition); 3654 { 3655 auto descriptor = parsing_result.descriptor; 3656 descriptor.declaration_pos = RelocInfo::kNoPosition; 3657 descriptor.initialization_pos = RelocInfo::kNoPosition; 3658 decl.initializer = factory()->NewVariableProxy(temp); 3659 3660 PatternRewriter::DeclareAndInitializeVariables( 3661 each_initialization_block, &descriptor, &decl, 3662 IsLexicalVariableMode(descriptor.mode) ? &lexical_bindings 3663 : nullptr, 3664 CHECK_OK); 3665 } 3666 3667 body_block->statements()->Add(each_initialization_block, zone()); 3668 body_block->statements()->Add(body, zone()); 3669 VariableProxy* temp_proxy = 3670 factory()->NewVariableProxy(temp, each_beg_pos, each_end_pos); 3671 InitializeForEachStatement(loop, temp_proxy, enumerable, body_block, 3672 false); 3673 scope_ = for_scope; 3674 body_scope->set_end_position(scanner()->location().end_pos); 3675 body_scope = body_scope->FinalizeBlockScope(); 3676 if (body_scope != nullptr) { 3677 body_block->set_scope(body_scope); 3678 } 3679 3680 // Create a TDZ for any lexically-bound names. 3681 if (IsLexicalVariableMode(parsing_result.descriptor.mode)) { 3682 DCHECK_NULL(init_block); 3683 3684 init_block = 3685 factory()->NewBlock(nullptr, 1, false, RelocInfo::kNoPosition); 3686 3687 for (int i = 0; i < lexical_bindings.length(); ++i) { 3688 // TODO(adamk): This needs to be some sort of special 3689 // INTERNAL variable that's invisible to the debugger 3690 // but visible to everything else. 3691 VariableProxy* tdz_proxy = NewUnresolved(lexical_bindings[i], LET); 3692 Declaration* tdz_decl = factory()->NewVariableDeclaration( 3693 tdz_proxy, LET, scope_, RelocInfo::kNoPosition); 3694 Variable* tdz_var = Declare(tdz_decl, DeclarationDescriptor::NORMAL, 3695 true, CHECK_OK); 3696 tdz_var->set_initializer_position(position()); 3697 } 3698 } 3699 3700 scope_ = saved_scope; 3701 for_scope->set_end_position(scanner()->location().end_pos); 3702 for_scope = for_scope->FinalizeBlockScope(); 3703 // Parsed for-in loop w/ variable declarations. 3704 if (init_block != nullptr) { 3705 init_block->statements()->Add(loop, zone()); 3706 if (for_scope != nullptr) { 3707 init_block->set_scope(for_scope); 3708 } 3709 return init_block; 3710 } else { 3711 DCHECK_NULL(for_scope); 3712 return loop; 3713 } 3714 } else { 3715 init = parsing_result.BuildInitializationBlock( 3716 IsLexicalVariableMode(parsing_result.descriptor.mode) 3717 ? &lexical_bindings 3718 : nullptr, 3719 CHECK_OK); 3720 } 3721 } else { 3722 int lhs_beg_pos = peek_position(); 3723 ExpressionClassifier classifier; 3724 Expression* expression = ParseExpression(false, &classifier, CHECK_OK); 3725 int lhs_end_pos = scanner()->location().end_pos; 3726 ForEachStatement::VisitMode mode; 3727 is_let_identifier_expression = 3728 expression->IsVariableProxy() && 3729 expression->AsVariableProxy()->raw_name() == 3730 ast_value_factory()->let_string(); 3731 3732 bool is_for_each = CheckInOrOf(&mode, ok); 3733 if (!*ok) return nullptr; 3734 bool is_destructuring = 3735 is_for_each && allow_harmony_destructuring_assignment() && 3736 (expression->IsArrayLiteral() || expression->IsObjectLiteral()); 3737 3738 if (is_destructuring) { 3739 ValidateAssignmentPattern(&classifier, CHECK_OK); 3740 } else { 3741 expression = 3742 ParserTraits::RewriteNonPattern(expression, &classifier, CHECK_OK); 3743 } 3744 3745 if (is_for_each) { 3746 if (!is_destructuring) { 3747 expression = this->CheckAndRewriteReferenceExpression( 3748 expression, lhs_beg_pos, lhs_end_pos, 3749 MessageTemplate::kInvalidLhsInFor, kSyntaxError, CHECK_OK); 3750 } 3751 3752 ForEachStatement* loop = 3753 factory()->NewForEachStatement(mode, labels, stmt_pos); 3754 Target target(&this->target_stack_, loop); 3755 3756 Expression* enumerable = ParseExpression(true, CHECK_OK); 3757 Expect(Token::RPAREN, CHECK_OK); 3758 3759 // Make a block around the statement in case a lexical binding 3760 // is introduced, e.g. by a FunctionDeclaration. 3761 // This block must not use for_scope as its scope because if a 3762 // lexical binding is introduced which overlaps with the for-in/of, 3763 // expressions in head of the loop should actually have variables 3764 // resolved in the outer scope. 3765 Scope* body_scope = NewScope(for_scope, BLOCK_SCOPE); 3766 scope_ = body_scope; 3767 Block* block = 3768 factory()->NewBlock(NULL, 1, false, RelocInfo::kNoPosition); 3769 Statement* body = ParseSubStatement(NULL, CHECK_OK); 3770 block->statements()->Add(body, zone()); 3771 InitializeForEachStatement(loop, expression, enumerable, block, 3772 is_destructuring); 3773 scope_ = saved_scope; 3774 body_scope->set_end_position(scanner()->location().end_pos); 3775 body_scope = body_scope->FinalizeBlockScope(); 3776 if (body_scope != nullptr) { 3777 block->set_scope(body_scope); 3778 } 3779 for_scope->set_end_position(scanner()->location().end_pos); 3780 for_scope = for_scope->FinalizeBlockScope(); 3781 DCHECK(for_scope == nullptr); 3782 // Parsed for-in loop. 3783 return loop; 3784 3785 } else { 3786 init = factory()->NewExpressionStatement(expression, lhs_beg_pos); 3787 } 3788 } 3789 } 3790 3791 // Standard 'for' loop 3792 ForStatement* loop = factory()->NewForStatement(labels, stmt_pos); 3793 Target target(&this->target_stack_, loop); 3794 3795 // Parsed initializer at this point. 3796 // Detect attempts at 'let' declarations in sloppy mode. 3797 if (!allow_harmony_sloppy_let() && peek() == Token::IDENTIFIER && 3798 is_sloppy(language_mode()) && is_let_identifier_expression) { 3799 ReportMessage(MessageTemplate::kSloppyLexical, NULL); 3800 *ok = false; 3801 return NULL; 3802 } 3803 Expect(Token::SEMICOLON, CHECK_OK); 3804 3805 // If there are let bindings, then condition and the next statement of the 3806 // for loop must be parsed in a new scope. 3807 Scope* inner_scope = NULL; 3808 if (lexical_bindings.length() > 0) { 3809 inner_scope = NewScope(for_scope, BLOCK_SCOPE); 3810 inner_scope->set_start_position(scanner()->location().beg_pos); 3811 scope_ = inner_scope; 3812 } 3813 3814 Expression* cond = NULL; 3815 if (peek() != Token::SEMICOLON) { 3816 cond = ParseExpression(true, CHECK_OK); 3817 } 3818 Expect(Token::SEMICOLON, CHECK_OK); 3819 3820 Statement* next = NULL; 3821 if (peek() != Token::RPAREN) { 3822 Expression* exp = ParseExpression(true, CHECK_OK); 3823 next = factory()->NewExpressionStatement(exp, exp->position()); 3824 } 3825 Expect(Token::RPAREN, CHECK_OK); 3826 3827 Statement* body = ParseSubStatement(NULL, CHECK_OK); 3828 3829 Statement* result = NULL; 3830 if (lexical_bindings.length() > 0) { 3831 scope_ = for_scope; 3832 result = DesugarLexicalBindingsInForStatement( 3833 inner_scope, is_const, &lexical_bindings, loop, init, cond, 3834 next, body, CHECK_OK); 3835 scope_ = saved_scope; 3836 for_scope->set_end_position(scanner()->location().end_pos); 3837 } else { 3838 scope_ = saved_scope; 3839 for_scope->set_end_position(scanner()->location().end_pos); 3840 for_scope = for_scope->FinalizeBlockScope(); 3841 if (for_scope) { 3842 // Rewrite a for statement of the form 3843 // for (const x = i; c; n) b 3844 // 3845 // into 3846 // 3847 // { 3848 // const x = i; 3849 // for (; c; n) b 3850 // } 3851 // 3852 // or, desugar 3853 // for (; c; n) b 3854 // into 3855 // { 3856 // for (; c; n) b 3857 // } 3858 // just in case b introduces a lexical binding some other way, e.g., if b 3859 // is a FunctionDeclaration. 3860 Block* block = 3861 factory()->NewBlock(NULL, 2, false, RelocInfo::kNoPosition); 3862 if (init != nullptr) { 3863 block->statements()->Add(init, zone()); 3864 } 3865 block->statements()->Add(loop, zone()); 3866 block->set_scope(for_scope); 3867 loop->Initialize(NULL, cond, next, body); 3868 result = block; 3869 } else { 3870 loop->Initialize(init, cond, next, body); 3871 result = loop; 3872 } 3873 } 3874 return result; 3875 } 3876 3877 3878 DebuggerStatement* Parser::ParseDebuggerStatement(bool* ok) { 3879 // In ECMA-262 'debugger' is defined as a reserved keyword. In some browser 3880 // contexts this is used as a statement which invokes the debugger as i a 3881 // break point is present. 3882 // DebuggerStatement :: 3883 // 'debugger' ';' 3884 3885 int pos = peek_position(); 3886 Expect(Token::DEBUGGER, CHECK_OK); 3887 ExpectSemicolon(CHECK_OK); 3888 return factory()->NewDebuggerStatement(pos); 3889 } 3890 3891 3892 bool CompileTimeValue::IsCompileTimeValue(Expression* expression) { 3893 if (expression->IsLiteral()) return true; 3894 MaterializedLiteral* lit = expression->AsMaterializedLiteral(); 3895 return lit != NULL && lit->is_simple(); 3896 } 3897 3898 3899 Handle<FixedArray> CompileTimeValue::GetValue(Isolate* isolate, 3900 Expression* expression) { 3901 Factory* factory = isolate->factory(); 3902 DCHECK(IsCompileTimeValue(expression)); 3903 Handle<FixedArray> result = factory->NewFixedArray(2, TENURED); 3904 ObjectLiteral* object_literal = expression->AsObjectLiteral(); 3905 if (object_literal != NULL) { 3906 DCHECK(object_literal->is_simple()); 3907 if (object_literal->fast_elements()) { 3908 result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_FAST_ELEMENTS)); 3909 } else { 3910 result->set(kLiteralTypeSlot, Smi::FromInt(OBJECT_LITERAL_SLOW_ELEMENTS)); 3911 } 3912 result->set(kElementsSlot, *object_literal->constant_properties()); 3913 } else { 3914 ArrayLiteral* array_literal = expression->AsArrayLiteral(); 3915 DCHECK(array_literal != NULL && array_literal->is_simple()); 3916 result->set(kLiteralTypeSlot, Smi::FromInt(ARRAY_LITERAL)); 3917 result->set(kElementsSlot, *array_literal->constant_elements()); 3918 } 3919 return result; 3920 } 3921 3922 3923 CompileTimeValue::LiteralType CompileTimeValue::GetLiteralType( 3924 Handle<FixedArray> value) { 3925 Smi* literal_type = Smi::cast(value->get(kLiteralTypeSlot)); 3926 return static_cast<LiteralType>(literal_type->value()); 3927 } 3928 3929 3930 Handle<FixedArray> CompileTimeValue::GetElements(Handle<FixedArray> value) { 3931 return Handle<FixedArray>(FixedArray::cast(value->get(kElementsSlot))); 3932 } 3933 3934 3935 void ParserTraits::ParseArrowFunctionFormalParameters( 3936 ParserFormalParameters* parameters, Expression* expr, 3937 const Scanner::Location& params_loc, bool* ok) { 3938 if (parameters->Arity() >= Code::kMaxArguments) { 3939 ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList); 3940 *ok = false; 3941 return; 3942 } 3943 3944 // ArrowFunctionFormals :: 3945 // Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail) 3946 // Tail 3947 // NonTailArrowFunctionFormals :: 3948 // Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy) 3949 // VariableProxy 3950 // Tail :: 3951 // VariableProxy 3952 // Spread(VariableProxy) 3953 // 3954 // As we need to visit the parameters in left-to-right order, we recurse on 3955 // the left-hand side of comma expressions. 3956 // 3957 if (expr->IsBinaryOperation()) { 3958 BinaryOperation* binop = expr->AsBinaryOperation(); 3959 // The classifier has already run, so we know that the expression is a valid 3960 // arrow function formals production. 3961 DCHECK_EQ(binop->op(), Token::COMMA); 3962 Expression* left = binop->left(); 3963 Expression* right = binop->right(); 3964 ParseArrowFunctionFormalParameters(parameters, left, params_loc, ok); 3965 if (!*ok) return; 3966 // LHS of comma expression should be unparenthesized. 3967 expr = right; 3968 } 3969 3970 // Only the right-most expression may be a rest parameter. 3971 DCHECK(!parameters->has_rest); 3972 3973 bool is_rest = expr->IsSpread(); 3974 if (is_rest) { 3975 expr = expr->AsSpread()->expression(); 3976 parameters->has_rest = true; 3977 } 3978 if (parameters->is_simple) { 3979 parameters->is_simple = !is_rest && expr->IsVariableProxy(); 3980 } 3981 3982 Expression* initializer = nullptr; 3983 if (expr->IsVariableProxy()) { 3984 // When the formal parameter was originally seen, it was parsed as a 3985 // VariableProxy and recorded as unresolved in the scope. Here we undo that 3986 // parse-time side-effect for parameters that are single-names (not 3987 // patterns; for patterns that happens uniformly in 3988 // PatternRewriter::VisitVariableProxy). 3989 parser_->scope_->RemoveUnresolved(expr->AsVariableProxy()); 3990 } else if (expr->IsAssignment()) { 3991 Assignment* assignment = expr->AsAssignment(); 3992 DCHECK(parser_->allow_harmony_default_parameters()); 3993 DCHECK(!assignment->is_compound()); 3994 initializer = assignment->value(); 3995 expr = assignment->target(); 3996 3997 // TODO(adamk): Only call this if necessary. 3998 RewriteParameterInitializerScope(parser_->stack_limit(), initializer, 3999 parser_->scope_, parameters->scope); 4000 } 4001 4002 // TODO(adamk): params_loc.end_pos is not the correct initializer position, 4003 // but it should be conservative enough to trigger hole checks for variables 4004 // referenced in the initializer (if any). 4005 AddFormalParameter(parameters, expr, initializer, params_loc.end_pos, 4006 is_rest); 4007 } 4008 4009 4010 DoExpression* Parser::ParseDoExpression(bool* ok) { 4011 // AssignmentExpression :: 4012 // do '{' StatementList '}' 4013 int pos = peek_position(); 4014 4015 Expect(Token::DO, CHECK_OK); 4016 Variable* result = 4017 scope_->NewTemporary(ast_value_factory()->dot_result_string()); 4018 Block* block = ParseBlock(nullptr, false, CHECK_OK); 4019 DoExpression* expr = factory()->NewDoExpression(block, result, pos); 4020 if (!Rewriter::Rewrite(this, expr, ast_value_factory())) { 4021 *ok = false; 4022 return nullptr; 4023 } 4024 block->set_scope(block->scope()->FinalizeBlockScope()); 4025 return expr; 4026 } 4027 4028 4029 void ParserTraits::ParseArrowFunctionFormalParameterList( 4030 ParserFormalParameters* parameters, Expression* expr, 4031 const Scanner::Location& params_loc, 4032 Scanner::Location* duplicate_loc, bool* ok) { 4033 if (expr->IsEmptyParentheses()) return; 4034 4035 ParseArrowFunctionFormalParameters(parameters, expr, params_loc, ok); 4036 if (!*ok) return; 4037 4038 ExpressionClassifier classifier; 4039 if (!parameters->is_simple) { 4040 classifier.RecordNonSimpleParameter(); 4041 } 4042 for (int i = 0; i < parameters->Arity(); ++i) { 4043 auto parameter = parameters->at(i); 4044 DeclareFormalParameter(parameters->scope, parameter, &classifier); 4045 if (!duplicate_loc->IsValid()) { 4046 *duplicate_loc = classifier.duplicate_formal_parameter_error().location; 4047 } 4048 } 4049 DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters()); 4050 } 4051 4052 4053 void ParserTraits::ReindexLiterals(const ParserFormalParameters& parameters) { 4054 if (parser_->function_state_->materialized_literal_count() > 0) { 4055 AstLiteralReindexer reindexer; 4056 4057 for (const auto p : parameters.params) { 4058 if (p.pattern != nullptr) reindexer.Reindex(p.pattern); 4059 if (p.initializer != nullptr) reindexer.Reindex(p.initializer); 4060 } 4061 4062 DCHECK(reindexer.count() <= 4063 parser_->function_state_->materialized_literal_count()); 4064 } 4065 } 4066 4067 4068 FunctionLiteral* Parser::ParseFunctionLiteral( 4069 const AstRawString* function_name, Scanner::Location function_name_location, 4070 FunctionNameValidity function_name_validity, FunctionKind kind, 4071 int function_token_pos, FunctionLiteral::FunctionType function_type, 4072 FunctionLiteral::ArityRestriction arity_restriction, 4073 LanguageMode language_mode, bool* ok) { 4074 // Function :: 4075 // '(' FormalParameterList? ')' '{' FunctionBody '}' 4076 // 4077 // Getter :: 4078 // '(' ')' '{' FunctionBody '}' 4079 // 4080 // Setter :: 4081 // '(' PropertySetParameterList ')' '{' FunctionBody '}' 4082 4083 int pos = function_token_pos == RelocInfo::kNoPosition 4084 ? peek_position() : function_token_pos; 4085 4086 bool is_generator = IsGeneratorFunction(kind); 4087 4088 // Anonymous functions were passed either the empty symbol or a null 4089 // handle as the function name. Remember if we were passed a non-empty 4090 // handle to decide whether to invoke function name inference. 4091 bool should_infer_name = function_name == NULL; 4092 4093 // We want a non-null handle as the function name. 4094 if (should_infer_name) { 4095 function_name = ast_value_factory()->empty_string(); 4096 } 4097 4098 // Function declarations are function scoped in normal mode, so they are 4099 // hoisted. In harmony block scoping mode they are block scoped, so they 4100 // are not hoisted. 4101 // 4102 // One tricky case are function declarations in a local sloppy-mode eval: 4103 // their declaration is hoisted, but they still see the local scope. E.g., 4104 // 4105 // function() { 4106 // var x = 0 4107 // try { throw 1 } catch (x) { eval("function g() { return x }") } 4108 // return g() 4109 // } 4110 // 4111 // needs to return 1. To distinguish such cases, we need to detect 4112 // (1) whether a function stems from a sloppy eval, and 4113 // (2) whether it actually hoists across the eval. 4114 // Unfortunately, we do not represent sloppy eval scopes, so we do not have 4115 // either information available directly, especially not when lazily compiling 4116 // a function like 'g'. We hence rely on the following invariants: 4117 // - (1) is the case iff the innermost scope of the deserialized scope chain 4118 // under which we compile is _not_ a declaration scope. This holds because 4119 // in all normal cases, function declarations are fully hoisted to a 4120 // declaration scope and compiled relative to that. 4121 // - (2) is the case iff the current declaration scope is still the original 4122 // one relative to the deserialized scope chain. Otherwise we must be 4123 // compiling a function in an inner declaration scope in the eval, e.g. a 4124 // nested function, and hoisting works normally relative to that. 4125 Scope* declaration_scope = scope_->DeclarationScope(); 4126 Scope* original_declaration_scope = original_scope_->DeclarationScope(); 4127 Scope* scope = function_type == FunctionLiteral::kDeclaration && 4128 is_sloppy(language_mode) && 4129 !allow_harmony_sloppy_function() && 4130 (original_scope_ == original_declaration_scope || 4131 declaration_scope != original_declaration_scope) 4132 ? NewScope(declaration_scope, FUNCTION_SCOPE, kind) 4133 : NewScope(scope_, FUNCTION_SCOPE, kind); 4134 SetLanguageMode(scope, language_mode); 4135 ZoneList<Statement*>* body = NULL; 4136 int arity = -1; 4137 int materialized_literal_count = -1; 4138 int expected_property_count = -1; 4139 DuplicateFinder duplicate_finder(scanner()->unicode_cache()); 4140 ExpressionClassifier formals_classifier(&duplicate_finder); 4141 FunctionLiteral::EagerCompileHint eager_compile_hint = 4142 parenthesized_function_ ? FunctionLiteral::kShouldEagerCompile 4143 : FunctionLiteral::kShouldLazyCompile; 4144 bool should_be_used_once_hint = false; 4145 // Parse function. 4146 { 4147 AstNodeFactory function_factory(ast_value_factory()); 4148 FunctionState function_state(&function_state_, &scope_, scope, kind, 4149 &function_factory); 4150 scope_->SetScopeName(function_name); 4151 4152 if (is_generator) { 4153 // For generators, allocating variables in contexts is currently a win 4154 // because it minimizes the work needed to suspend and resume an 4155 // activation. 4156 scope_->ForceContextAllocation(); 4157 4158 // Calling a generator returns a generator object. That object is stored 4159 // in a temporary variable, a definition that is used by "yield" 4160 // expressions. This also marks the FunctionState as a generator. 4161 Variable* temp = scope_->NewTemporary( 4162 ast_value_factory()->dot_generator_object_string()); 4163 function_state.set_generator_object_variable(temp); 4164 } 4165 4166 Expect(Token::LPAREN, CHECK_OK); 4167 int start_position = scanner()->location().beg_pos; 4168 scope_->set_start_position(start_position); 4169 ParserFormalParameters formals(scope); 4170 ParseFormalParameterList(&formals, &formals_classifier, CHECK_OK); 4171 arity = formals.Arity(); 4172 Expect(Token::RPAREN, CHECK_OK); 4173 int formals_end_position = scanner()->location().end_pos; 4174 4175 CheckArityRestrictions(arity, arity_restriction, 4176 formals.has_rest, start_position, 4177 formals_end_position, CHECK_OK); 4178 Expect(Token::LBRACE, CHECK_OK); 4179 4180 // Determine if the function can be parsed lazily. Lazy parsing is different 4181 // from lazy compilation; we need to parse more eagerly than we compile. 4182 4183 // We can only parse lazily if we also compile lazily. The heuristics for 4184 // lazy compilation are: 4185 // - It must not have been prohibited by the caller to Parse (some callers 4186 // need a full AST). 4187 // - The outer scope must allow lazy compilation of inner functions. 4188 // - The function mustn't be a function expression with an open parenthesis 4189 // before; we consider that a hint that the function will be called 4190 // immediately, and it would be a waste of time to make it lazily 4191 // compiled. 4192 // These are all things we can know at this point, without looking at the 4193 // function itself. 4194 4195 // In addition, we need to distinguish between these cases: 4196 // (function foo() { 4197 // bar = function() { return 1; } 4198 // })(); 4199 // and 4200 // (function foo() { 4201 // var a = 1; 4202 // bar = function() { return a; } 4203 // })(); 4204 4205 // Now foo will be parsed eagerly and compiled eagerly (optimization: assume 4206 // parenthesis before the function means that it will be called 4207 // immediately). The inner function *must* be parsed eagerly to resolve the 4208 // possible reference to the variable in foo's scope. However, it's possible 4209 // that it will be compiled lazily. 4210 4211 // To make this additional case work, both Parser and PreParser implement a 4212 // logic where only top-level functions will be parsed lazily. 4213 bool is_lazily_parsed = mode() == PARSE_LAZILY && 4214 scope_->AllowsLazyParsing() && 4215 !parenthesized_function_; 4216 parenthesized_function_ = false; // The bit was set for this function only. 4217 4218 // Eager or lazy parse? 4219 // If is_lazily_parsed, we'll parse lazy. If we can set a bookmark, we'll 4220 // pass it to SkipLazyFunctionBody, which may use it to abort lazy 4221 // parsing if it suspect that wasn't a good idea. If so, or if we didn't 4222 // try to lazy parse in the first place, we'll have to parse eagerly. 4223 Scanner::BookmarkScope bookmark(scanner()); 4224 if (is_lazily_parsed) { 4225 Scanner::BookmarkScope* maybe_bookmark = 4226 bookmark.Set() ? &bookmark : nullptr; 4227 SkipLazyFunctionBody(&materialized_literal_count, 4228 &expected_property_count, /*CHECK_OK*/ ok, 4229 maybe_bookmark); 4230 4231 materialized_literal_count += formals.materialized_literals_count + 4232 function_state.materialized_literal_count(); 4233 4234 if (bookmark.HasBeenReset()) { 4235 // Trigger eager (re-)parsing, just below this block. 4236 is_lazily_parsed = false; 4237 4238 // This is probably an initialization function. Inform the compiler it 4239 // should also eager-compile this function, and that we expect it to be 4240 // used once. 4241 eager_compile_hint = FunctionLiteral::kShouldEagerCompile; 4242 should_be_used_once_hint = true; 4243 } 4244 } 4245 if (!is_lazily_parsed) { 4246 // Determine whether the function body can be discarded after parsing. 4247 // The preconditions are: 4248 // - Lazy compilation has to be enabled. 4249 // - Neither V8 natives nor native function declarations can be allowed, 4250 // since parsing one would retroactively force the function to be 4251 // eagerly compiled. 4252 // - The invoker of this parser can't depend on the AST being eagerly 4253 // built (either because the function is about to be compiled, or 4254 // because the AST is going to be inspected for some reason). 4255 // - Because of the above, we can't be attempting to parse a 4256 // FunctionExpression; even without enclosing parentheses it might be 4257 // immediately invoked. 4258 // - The function literal shouldn't be hinted to eagerly compile. 4259 bool use_temp_zone = 4260 FLAG_lazy && !allow_natives() && extension_ == NULL && allow_lazy() && 4261 function_type == FunctionLiteral::kDeclaration && 4262 eager_compile_hint != FunctionLiteral::kShouldEagerCompile; 4263 // Open a new BodyScope, which sets our AstNodeFactory to allocate in the 4264 // new temporary zone if the preconditions are satisfied, and ensures that 4265 // the previous zone is always restored after parsing the body. 4266 // For the purpose of scope analysis, some ZoneObjects allocated by the 4267 // factory must persist after the function body is thrown away and 4268 // temp_zone is deallocated. These objects are instead allocated in a 4269 // parser-persistent zone (see parser_zone_ in AstNodeFactory). 4270 { 4271 Zone temp_zone; 4272 AstNodeFactory::BodyScope inner(factory(), &temp_zone, use_temp_zone); 4273 4274 body = ParseEagerFunctionBody(function_name, pos, formals, kind, 4275 function_type, CHECK_OK); 4276 } 4277 materialized_literal_count = function_state.materialized_literal_count(); 4278 expected_property_count = function_state.expected_property_count(); 4279 if (use_temp_zone) { 4280 // If the preconditions are correct the function body should never be 4281 // accessed, but do this anyway for better behaviour if they're wrong. 4282 body = NULL; 4283 } 4284 } 4285 4286 // Parsing the body may change the language mode in our scope. 4287 language_mode = scope->language_mode(); 4288 4289 if (is_strong(language_mode) && IsSubclassConstructor(kind)) { 4290 if (!function_state.super_location().IsValid()) { 4291 ReportMessageAt(function_name_location, 4292 MessageTemplate::kStrongSuperCallMissing, 4293 kReferenceError); 4294 *ok = false; 4295 return nullptr; 4296 } 4297 } 4298 4299 // Validate name and parameter names. We can do this only after parsing the 4300 // function, since the function can declare itself strict. 4301 CheckFunctionName(language_mode, function_name, function_name_validity, 4302 function_name_location, CHECK_OK); 4303 const bool allow_duplicate_parameters = 4304 is_sloppy(language_mode) && formals.is_simple && !IsConciseMethod(kind); 4305 ValidateFormalParameters(&formals_classifier, language_mode, 4306 allow_duplicate_parameters, CHECK_OK); 4307 4308 if (is_strict(language_mode)) { 4309 CheckStrictOctalLiteral(scope->start_position(), scope->end_position(), 4310 CHECK_OK); 4311 } 4312 if (is_sloppy(language_mode) && allow_harmony_sloppy_function()) { 4313 InsertSloppyBlockFunctionVarBindings(scope, CHECK_OK); 4314 } 4315 if (is_strict(language_mode) || allow_harmony_sloppy() || 4316 allow_harmony_destructuring_bind()) { 4317 CheckConflictingVarDeclarations(scope, CHECK_OK); 4318 } 4319 4320 if (body) { 4321 // If body can be inspected, rewrite queued destructuring assignments 4322 ParserTraits::RewriteDestructuringAssignments(); 4323 } 4324 } 4325 4326 bool has_duplicate_parameters = 4327 !formals_classifier.is_valid_formal_parameter_list_without_duplicates(); 4328 FunctionLiteral::ParameterFlag duplicate_parameters = 4329 has_duplicate_parameters ? FunctionLiteral::kHasDuplicateParameters 4330 : FunctionLiteral::kNoDuplicateParameters; 4331 4332 FunctionLiteral* function_literal = factory()->NewFunctionLiteral( 4333 function_name, scope, body, materialized_literal_count, 4334 expected_property_count, arity, duplicate_parameters, function_type, 4335 eager_compile_hint, kind, pos); 4336 function_literal->set_function_token_position(function_token_pos); 4337 if (should_be_used_once_hint) 4338 function_literal->set_should_be_used_once_hint(); 4339 4340 if (scope->has_rest_parameter()) { 4341 function_literal->set_dont_optimize_reason(kRestParameter); 4342 } 4343 4344 if (fni_ != NULL && should_infer_name) fni_->AddFunction(function_literal); 4345 return function_literal; 4346 } 4347 4348 4349 void Parser::SkipLazyFunctionBody(int* materialized_literal_count, 4350 int* expected_property_count, bool* ok, 4351 Scanner::BookmarkScope* bookmark) { 4352 DCHECK_IMPLIES(bookmark, bookmark->HasBeenSet()); 4353 if (produce_cached_parse_data()) CHECK(log_); 4354 4355 int function_block_pos = position(); 4356 if (consume_cached_parse_data() && !cached_parse_data_->rejected()) { 4357 // If we have cached data, we use it to skip parsing the function body. The 4358 // data contains the information we need to construct the lazy function. 4359 FunctionEntry entry = 4360 cached_parse_data_->GetFunctionEntry(function_block_pos); 4361 // Check that cached data is valid. If not, mark it as invalid (the embedder 4362 // handles it). Note that end position greater than end of stream is safe, 4363 // and hard to check. 4364 if (entry.is_valid() && entry.end_pos() > function_block_pos) { 4365 scanner()->SeekForward(entry.end_pos() - 1); 4366 4367 scope_->set_end_position(entry.end_pos()); 4368 Expect(Token::RBRACE, ok); 4369 if (!*ok) { 4370 return; 4371 } 4372 total_preparse_skipped_ += scope_->end_position() - function_block_pos; 4373 *materialized_literal_count = entry.literal_count(); 4374 *expected_property_count = entry.property_count(); 4375 SetLanguageMode(scope_, entry.language_mode()); 4376 if (entry.uses_super_property()) scope_->RecordSuperPropertyUsage(); 4377 if (entry.calls_eval()) scope_->RecordEvalCall(); 4378 return; 4379 } 4380 cached_parse_data_->Reject(); 4381 } 4382 // With no cached data, we partially parse the function, without building an 4383 // AST. This gathers the data needed to build a lazy function. 4384 SingletonLogger logger; 4385 PreParser::PreParseResult result = 4386 ParseLazyFunctionBodyWithPreParser(&logger, bookmark); 4387 if (bookmark && bookmark->HasBeenReset()) { 4388 return; // Return immediately if pre-parser devided to abort parsing. 4389 } 4390 if (result == PreParser::kPreParseStackOverflow) { 4391 // Propagate stack overflow. 4392 set_stack_overflow(); 4393 *ok = false; 4394 return; 4395 } 4396 if (logger.has_error()) { 4397 ParserTraits::ReportMessageAt( 4398 Scanner::Location(logger.start(), logger.end()), logger.message(), 4399 logger.argument_opt(), logger.error_type()); 4400 *ok = false; 4401 return; 4402 } 4403 scope_->set_end_position(logger.end()); 4404 Expect(Token::RBRACE, ok); 4405 if (!*ok) { 4406 return; 4407 } 4408 total_preparse_skipped_ += scope_->end_position() - function_block_pos; 4409 *materialized_literal_count = logger.literals(); 4410 *expected_property_count = logger.properties(); 4411 SetLanguageMode(scope_, logger.language_mode()); 4412 if (logger.uses_super_property()) { 4413 scope_->RecordSuperPropertyUsage(); 4414 } 4415 if (logger.calls_eval()) { 4416 scope_->RecordEvalCall(); 4417 } 4418 if (produce_cached_parse_data()) { 4419 DCHECK(log_); 4420 // Position right after terminal '}'. 4421 int body_end = scanner()->location().end_pos; 4422 log_->LogFunction(function_block_pos, body_end, *materialized_literal_count, 4423 *expected_property_count, scope_->language_mode(), 4424 scope_->uses_super_property(), scope_->calls_eval()); 4425 } 4426 } 4427 4428 4429 Statement* Parser::BuildAssertIsCoercible(Variable* var) { 4430 // if (var === null || var === undefined) 4431 // throw /* type error kNonCoercible) */; 4432 4433 Expression* condition = factory()->NewBinaryOperation( 4434 Token::OR, factory()->NewCompareOperation( 4435 Token::EQ_STRICT, factory()->NewVariableProxy(var), 4436 factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), 4437 RelocInfo::kNoPosition), 4438 factory()->NewCompareOperation( 4439 Token::EQ_STRICT, factory()->NewVariableProxy(var), 4440 factory()->NewNullLiteral(RelocInfo::kNoPosition), 4441 RelocInfo::kNoPosition), 4442 RelocInfo::kNoPosition); 4443 Expression* throw_type_error = this->NewThrowTypeError( 4444 MessageTemplate::kNonCoercible, ast_value_factory()->empty_string(), 4445 RelocInfo::kNoPosition); 4446 IfStatement* if_statement = factory()->NewIfStatement( 4447 condition, factory()->NewExpressionStatement(throw_type_error, 4448 RelocInfo::kNoPosition), 4449 factory()->NewEmptyStatement(RelocInfo::kNoPosition), 4450 RelocInfo::kNoPosition); 4451 return if_statement; 4452 } 4453 4454 4455 class InitializerRewriter : public AstExpressionVisitor { 4456 public: 4457 InitializerRewriter(uintptr_t stack_limit, Expression* root, Parser* parser, 4458 Scope* scope) 4459 : AstExpressionVisitor(stack_limit, root), 4460 parser_(parser), 4461 scope_(scope) {} 4462 4463 private: 4464 void VisitExpression(Expression* expr) { 4465 RewritableAssignmentExpression* to_rewrite = 4466 expr->AsRewritableAssignmentExpression(); 4467 if (to_rewrite == nullptr || to_rewrite->is_rewritten()) return; 4468 4469 Parser::PatternRewriter::RewriteDestructuringAssignment(parser_, to_rewrite, 4470 scope_); 4471 } 4472 4473 private: 4474 Parser* parser_; 4475 Scope* scope_; 4476 }; 4477 4478 4479 void Parser::RewriteParameterInitializer(Expression* expr, Scope* scope) { 4480 InitializerRewriter rewriter(stack_limit_, expr, this, scope); 4481 rewriter.Run(); 4482 } 4483 4484 4485 Block* Parser::BuildParameterInitializationBlock( 4486 const ParserFormalParameters& parameters, bool* ok) { 4487 DCHECK(!parameters.is_simple); 4488 DCHECK(scope_->is_function_scope()); 4489 Block* init_block = 4490 factory()->NewBlock(NULL, 1, true, RelocInfo::kNoPosition); 4491 for (int i = 0; i < parameters.params.length(); ++i) { 4492 auto parameter = parameters.params[i]; 4493 if (parameter.is_rest && parameter.pattern->IsVariableProxy()) break; 4494 DeclarationDescriptor descriptor; 4495 descriptor.declaration_kind = DeclarationDescriptor::PARAMETER; 4496 descriptor.parser = this; 4497 descriptor.scope = scope_; 4498 descriptor.hoist_scope = nullptr; 4499 descriptor.mode = LET; 4500 descriptor.needs_init = true; 4501 descriptor.declaration_pos = parameter.pattern->position(); 4502 // The position that will be used by the AssignmentExpression 4503 // which copies from the temp parameter to the pattern. 4504 // 4505 // TODO(adamk): Should this be RelocInfo::kNoPosition, since 4506 // it's just copying from a temp var to the real param var? 4507 descriptor.initialization_pos = parameter.pattern->position(); 4508 // The initializer position which will end up in, 4509 // Variable::initializer_position(), used for hole check elimination. 4510 int initializer_position = parameter.pattern->position(); 4511 Expression* initial_value = 4512 factory()->NewVariableProxy(parameters.scope->parameter(i)); 4513 if (parameter.initializer != nullptr) { 4514 // IS_UNDEFINED($param) ? initializer : $param 4515 4516 // Ensure initializer is rewritten 4517 RewriteParameterInitializer(parameter.initializer, scope_); 4518 4519 auto condition = factory()->NewCompareOperation( 4520 Token::EQ_STRICT, 4521 factory()->NewVariableProxy(parameters.scope->parameter(i)), 4522 factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), 4523 RelocInfo::kNoPosition); 4524 initial_value = factory()->NewConditional( 4525 condition, parameter.initializer, initial_value, 4526 RelocInfo::kNoPosition); 4527 descriptor.initialization_pos = parameter.initializer->position(); 4528 initializer_position = parameter.initializer_end_position; 4529 } 4530 4531 Scope* param_scope = scope_; 4532 Block* param_block = init_block; 4533 if (!parameter.is_simple() && scope_->calls_sloppy_eval()) { 4534 param_scope = NewScope(scope_, BLOCK_SCOPE); 4535 param_scope->set_is_declaration_scope(); 4536 param_scope->set_start_position(parameter.pattern->position()); 4537 param_scope->set_end_position(RelocInfo::kNoPosition); 4538 param_scope->RecordEvalCall(); 4539 param_block = factory()->NewBlock(NULL, 8, true, RelocInfo::kNoPosition); 4540 param_block->set_scope(param_scope); 4541 descriptor.hoist_scope = scope_; 4542 } 4543 4544 { 4545 BlockState block_state(&scope_, param_scope); 4546 DeclarationParsingResult::Declaration decl( 4547 parameter.pattern, initializer_position, initial_value); 4548 PatternRewriter::DeclareAndInitializeVariables(param_block, &descriptor, 4549 &decl, nullptr, CHECK_OK); 4550 } 4551 4552 if (!parameter.is_simple() && scope_->calls_sloppy_eval()) { 4553 param_scope = param_scope->FinalizeBlockScope(); 4554 if (param_scope != nullptr) { 4555 CheckConflictingVarDeclarations(param_scope, CHECK_OK); 4556 } 4557 init_block->statements()->Add(param_block, zone()); 4558 } 4559 } 4560 return init_block; 4561 } 4562 4563 4564 ZoneList<Statement*>* Parser::ParseEagerFunctionBody( 4565 const AstRawString* function_name, int pos, 4566 const ParserFormalParameters& parameters, FunctionKind kind, 4567 FunctionLiteral::FunctionType function_type, bool* ok) { 4568 // Everything inside an eagerly parsed function will be parsed eagerly 4569 // (see comment above). 4570 ParsingModeScope parsing_mode(this, PARSE_EAGERLY); 4571 ZoneList<Statement*>* result = new(zone()) ZoneList<Statement*>(8, zone()); 4572 4573 static const int kFunctionNameAssignmentIndex = 0; 4574 if (function_type == FunctionLiteral::kNamedExpression) { 4575 DCHECK(function_name != NULL); 4576 // If we have a named function expression, we add a local variable 4577 // declaration to the body of the function with the name of the 4578 // function and let it refer to the function itself (closure). 4579 // Not having parsed the function body, the language mode may still change, 4580 // so we reserve a spot and create the actual const assignment later. 4581 DCHECK_EQ(kFunctionNameAssignmentIndex, result->length()); 4582 result->Add(NULL, zone()); 4583 } 4584 4585 ZoneList<Statement*>* body = result; 4586 Scope* inner_scope = scope_; 4587 Block* inner_block = nullptr; 4588 if (!parameters.is_simple) { 4589 inner_scope = NewScope(scope_, BLOCK_SCOPE); 4590 inner_scope->set_is_declaration_scope(); 4591 inner_scope->set_start_position(scanner()->location().beg_pos); 4592 inner_block = factory()->NewBlock(NULL, 8, true, RelocInfo::kNoPosition); 4593 inner_block->set_scope(inner_scope); 4594 body = inner_block->statements(); 4595 } 4596 4597 { 4598 BlockState block_state(&scope_, inner_scope); 4599 4600 // For generators, allocate and yield an iterator on function entry. 4601 if (IsGeneratorFunction(kind)) { 4602 ZoneList<Expression*>* arguments = 4603 new(zone()) ZoneList<Expression*>(0, zone()); 4604 CallRuntime* allocation = factory()->NewCallRuntime( 4605 Runtime::kCreateJSGeneratorObject, arguments, pos); 4606 VariableProxy* init_proxy = factory()->NewVariableProxy( 4607 function_state_->generator_object_variable()); 4608 Assignment* assignment = factory()->NewAssignment( 4609 Token::INIT, init_proxy, allocation, RelocInfo::kNoPosition); 4610 VariableProxy* get_proxy = factory()->NewVariableProxy( 4611 function_state_->generator_object_variable()); 4612 Yield* yield = factory()->NewYield( 4613 get_proxy, assignment, Yield::kInitial, RelocInfo::kNoPosition); 4614 body->Add(factory()->NewExpressionStatement( 4615 yield, RelocInfo::kNoPosition), zone()); 4616 } 4617 4618 ParseStatementList(body, Token::RBRACE, CHECK_OK); 4619 4620 if (IsGeneratorFunction(kind)) { 4621 VariableProxy* get_proxy = factory()->NewVariableProxy( 4622 function_state_->generator_object_variable()); 4623 Expression* undefined = 4624 factory()->NewUndefinedLiteral(RelocInfo::kNoPosition); 4625 Yield* yield = factory()->NewYield(get_proxy, undefined, Yield::kFinal, 4626 RelocInfo::kNoPosition); 4627 body->Add(factory()->NewExpressionStatement( 4628 yield, RelocInfo::kNoPosition), zone()); 4629 } 4630 4631 if (IsSubclassConstructor(kind)) { 4632 body->Add( 4633 factory()->NewReturnStatement( 4634 this->ThisExpression(scope_, factory(), RelocInfo::kNoPosition), 4635 RelocInfo::kNoPosition), 4636 zone()); 4637 } 4638 } 4639 4640 Expect(Token::RBRACE, CHECK_OK); 4641 scope_->set_end_position(scanner()->location().end_pos); 4642 4643 if (!parameters.is_simple) { 4644 DCHECK_NOT_NULL(inner_scope); 4645 DCHECK_EQ(body, inner_block->statements()); 4646 SetLanguageMode(scope_, inner_scope->language_mode()); 4647 Block* init_block = BuildParameterInitializationBlock(parameters, CHECK_OK); 4648 DCHECK_NOT_NULL(init_block); 4649 4650 inner_scope->set_end_position(scanner()->location().end_pos); 4651 inner_scope = inner_scope->FinalizeBlockScope(); 4652 if (inner_scope != nullptr) { 4653 CheckConflictingVarDeclarations(inner_scope, CHECK_OK); 4654 InsertShadowingVarBindingInitializers(inner_block); 4655 } 4656 4657 result->Add(init_block, zone()); 4658 result->Add(inner_block, zone()); 4659 } 4660 4661 if (function_type == FunctionLiteral::kNamedExpression) { 4662 // Now that we know the language mode, we can create the const assignment 4663 // in the previously reserved spot. 4664 // NOTE: We create a proxy and resolve it here so that in the 4665 // future we can change the AST to only refer to VariableProxies 4666 // instead of Variables and Proxies as is the case now. 4667 VariableMode fvar_mode = is_strict(language_mode()) ? CONST : CONST_LEGACY; 4668 Variable* fvar = new (zone()) 4669 Variable(scope_, function_name, fvar_mode, Variable::NORMAL, 4670 kCreatedInitialized, kNotAssigned); 4671 VariableProxy* proxy = factory()->NewVariableProxy(fvar); 4672 VariableDeclaration* fvar_declaration = factory()->NewVariableDeclaration( 4673 proxy, fvar_mode, scope_, RelocInfo::kNoPosition); 4674 scope_->DeclareFunctionVar(fvar_declaration); 4675 4676 VariableProxy* fproxy = factory()->NewVariableProxy(fvar); 4677 result->Set(kFunctionNameAssignmentIndex, 4678 factory()->NewExpressionStatement( 4679 factory()->NewAssignment(Token::INIT, fproxy, 4680 factory()->NewThisFunction(pos), 4681 RelocInfo::kNoPosition), 4682 RelocInfo::kNoPosition)); 4683 } 4684 4685 return result; 4686 } 4687 4688 4689 PreParser::PreParseResult Parser::ParseLazyFunctionBodyWithPreParser( 4690 SingletonLogger* logger, Scanner::BookmarkScope* bookmark) { 4691 // This function may be called on a background thread too; record only the 4692 // main thread preparse times. 4693 if (pre_parse_timer_ != NULL) { 4694 pre_parse_timer_->Start(); 4695 } 4696 DCHECK_EQ(Token::LBRACE, scanner()->current_token()); 4697 4698 if (reusable_preparser_ == NULL) { 4699 reusable_preparser_ = new PreParser(zone(), &scanner_, ast_value_factory(), 4700 NULL, stack_limit_); 4701 reusable_preparser_->set_allow_lazy(true); 4702 #define SET_ALLOW(name) reusable_preparser_->set_allow_##name(allow_##name()); 4703 SET_ALLOW(natives); 4704 SET_ALLOW(harmony_sloppy); 4705 SET_ALLOW(harmony_sloppy_let); 4706 SET_ALLOW(harmony_default_parameters); 4707 SET_ALLOW(harmony_destructuring_bind); 4708 SET_ALLOW(harmony_destructuring_assignment); 4709 SET_ALLOW(strong_mode); 4710 SET_ALLOW(harmony_do_expressions); 4711 SET_ALLOW(harmony_function_name); 4712 #undef SET_ALLOW 4713 } 4714 PreParser::PreParseResult result = reusable_preparser_->PreParseLazyFunction( 4715 language_mode(), function_state_->kind(), scope_->has_simple_parameters(), 4716 logger, bookmark); 4717 if (pre_parse_timer_ != NULL) { 4718 pre_parse_timer_->Stop(); 4719 } 4720 return result; 4721 } 4722 4723 4724 ClassLiteral* Parser::ParseClassLiteral(const AstRawString* name, 4725 Scanner::Location class_name_location, 4726 bool name_is_strict_reserved, int pos, 4727 bool* ok) { 4728 // All parts of a ClassDeclaration and ClassExpression are strict code. 4729 if (name_is_strict_reserved) { 4730 ReportMessageAt(class_name_location, 4731 MessageTemplate::kUnexpectedStrictReserved); 4732 *ok = false; 4733 return NULL; 4734 } 4735 if (IsEvalOrArguments(name)) { 4736 ReportMessageAt(class_name_location, MessageTemplate::kStrictEvalArguments); 4737 *ok = false; 4738 return NULL; 4739 } 4740 if (is_strong(language_mode()) && IsUndefined(name)) { 4741 ReportMessageAt(class_name_location, MessageTemplate::kStrongUndefined); 4742 *ok = false; 4743 return NULL; 4744 } 4745 4746 Scope* block_scope = NewScope(scope_, BLOCK_SCOPE); 4747 BlockState block_state(&scope_, block_scope); 4748 RaiseLanguageMode(STRICT); 4749 scope_->SetScopeName(name); 4750 4751 VariableProxy* proxy = NULL; 4752 if (name != NULL) { 4753 proxy = NewUnresolved(name, CONST); 4754 const bool is_class_declaration = true; 4755 Declaration* declaration = factory()->NewVariableDeclaration( 4756 proxy, CONST, block_scope, pos, is_class_declaration, 4757 scope_->class_declaration_group_start()); 4758 Declare(declaration, DeclarationDescriptor::NORMAL, true, CHECK_OK); 4759 } 4760 4761 Expression* extends = NULL; 4762 if (Check(Token::EXTENDS)) { 4763 block_scope->set_start_position(scanner()->location().end_pos); 4764 ExpressionClassifier classifier; 4765 extends = ParseLeftHandSideExpression(&classifier, CHECK_OK); 4766 extends = ParserTraits::RewriteNonPattern(extends, &classifier, CHECK_OK); 4767 } else { 4768 block_scope->set_start_position(scanner()->location().end_pos); 4769 } 4770 4771 4772 ClassLiteralChecker checker(this); 4773 ZoneList<ObjectLiteral::Property*>* properties = NewPropertyList(4, zone()); 4774 FunctionLiteral* constructor = NULL; 4775 bool has_seen_constructor = false; 4776 4777 Expect(Token::LBRACE, CHECK_OK); 4778 4779 const bool has_extends = extends != nullptr; 4780 while (peek() != Token::RBRACE) { 4781 if (Check(Token::SEMICOLON)) continue; 4782 FuncNameInferrer::State fni_state(fni_); 4783 const bool in_class = true; 4784 const bool is_static = false; 4785 bool is_computed_name = false; // Classes do not care about computed 4786 // property names here. 4787 ExpressionClassifier classifier; 4788 const AstRawString* name = nullptr; 4789 ObjectLiteral::Property* property = ParsePropertyDefinition( 4790 &checker, in_class, has_extends, is_static, &is_computed_name, 4791 &has_seen_constructor, &classifier, &name, CHECK_OK); 4792 property = ParserTraits::RewriteNonPatternObjectLiteralProperty( 4793 property, &classifier, CHECK_OK); 4794 4795 if (has_seen_constructor && constructor == NULL) { 4796 constructor = GetPropertyValue(property)->AsFunctionLiteral(); 4797 DCHECK_NOT_NULL(constructor); 4798 } else { 4799 properties->Add(property, zone()); 4800 } 4801 4802 if (fni_ != NULL) fni_->Infer(); 4803 4804 if (allow_harmony_function_name()) { 4805 SetFunctionNameFromPropertyName(property, name); 4806 } 4807 } 4808 4809 Expect(Token::RBRACE, CHECK_OK); 4810 int end_pos = scanner()->location().end_pos; 4811 4812 if (constructor == NULL) { 4813 constructor = DefaultConstructor(extends != NULL, block_scope, pos, end_pos, 4814 block_scope->language_mode()); 4815 } 4816 4817 // Note that we do not finalize this block scope because strong 4818 // mode uses it as a sentinel value indicating an anonymous class. 4819 block_scope->set_end_position(end_pos); 4820 4821 if (name != NULL) { 4822 DCHECK_NOT_NULL(proxy); 4823 proxy->var()->set_initializer_position(end_pos); 4824 } 4825 4826 return factory()->NewClassLiteral(name, block_scope, proxy, extends, 4827 constructor, properties, pos, end_pos); 4828 } 4829 4830 4831 Expression* Parser::ParseV8Intrinsic(bool* ok) { 4832 // CallRuntime :: 4833 // '%' Identifier Arguments 4834 4835 int pos = peek_position(); 4836 Expect(Token::MOD, CHECK_OK); 4837 // Allow "eval" or "arguments" for backward compatibility. 4838 const AstRawString* name = ParseIdentifier(kAllowRestrictedIdentifiers, 4839 CHECK_OK); 4840 Scanner::Location spread_pos; 4841 ExpressionClassifier classifier; 4842 ZoneList<Expression*>* args = 4843 ParseArguments(&spread_pos, &classifier, CHECK_OK); 4844 args = RewriteNonPatternArguments(args, &classifier, CHECK_OK); 4845 4846 DCHECK(!spread_pos.IsValid()); 4847 4848 if (extension_ != NULL) { 4849 // The extension structures are only accessible while parsing the 4850 // very first time not when reparsing because of lazy compilation. 4851 scope_->DeclarationScope()->ForceEagerCompilation(); 4852 } 4853 4854 const Runtime::Function* function = Runtime::FunctionForName(name->string()); 4855 4856 if (function != NULL) { 4857 // Check for possible name clash. 4858 DCHECK_EQ(Context::kNotFound, 4859 Context::IntrinsicIndexForName(name->string())); 4860 // Check for built-in IS_VAR macro. 4861 if (function->function_id == Runtime::kIS_VAR) { 4862 DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type); 4863 // %IS_VAR(x) evaluates to x if x is a variable, 4864 // leads to a parse error otherwise. Could be implemented as an 4865 // inline function %_IS_VAR(x) to eliminate this special case. 4866 if (args->length() == 1 && args->at(0)->AsVariableProxy() != NULL) { 4867 return args->at(0); 4868 } else { 4869 ReportMessage(MessageTemplate::kNotIsvar); 4870 *ok = false; 4871 return NULL; 4872 } 4873 } 4874 4875 // Check that the expected number of arguments are being passed. 4876 if (function->nargs != -1 && function->nargs != args->length()) { 4877 ReportMessage(MessageTemplate::kIllegalAccess); 4878 *ok = false; 4879 return NULL; 4880 } 4881 4882 return factory()->NewCallRuntime(function, args, pos); 4883 } 4884 4885 int context_index = Context::IntrinsicIndexForName(name->string()); 4886 4887 // Check that the function is defined. 4888 if (context_index == Context::kNotFound) { 4889 ParserTraits::ReportMessage(MessageTemplate::kNotDefined, name); 4890 *ok = false; 4891 return NULL; 4892 } 4893 4894 return factory()->NewCallRuntime(context_index, args, pos); 4895 } 4896 4897 4898 Literal* Parser::GetLiteralUndefined(int position) { 4899 return factory()->NewUndefinedLiteral(position); 4900 } 4901 4902 4903 void Parser::CheckConflictingVarDeclarations(Scope* scope, bool* ok) { 4904 Declaration* decl = scope->CheckConflictingVarDeclarations(); 4905 if (decl != NULL) { 4906 // In ES6, conflicting variable bindings are early errors. 4907 const AstRawString* name = decl->proxy()->raw_name(); 4908 int position = decl->proxy()->position(); 4909 Scanner::Location location = position == RelocInfo::kNoPosition 4910 ? Scanner::Location::invalid() 4911 : Scanner::Location(position, position + 1); 4912 ParserTraits::ReportMessageAt(location, MessageTemplate::kVarRedeclaration, 4913 name); 4914 *ok = false; 4915 } 4916 } 4917 4918 4919 void Parser::InsertShadowingVarBindingInitializers(Block* inner_block) { 4920 // For each var-binding that shadows a parameter, insert an assignment 4921 // initializing the variable with the parameter. 4922 Scope* inner_scope = inner_block->scope(); 4923 DCHECK(inner_scope->is_declaration_scope()); 4924 Scope* function_scope = inner_scope->outer_scope(); 4925 DCHECK(function_scope->is_function_scope()); 4926 ZoneList<Declaration*>* decls = inner_scope->declarations(); 4927 for (int i = 0; i < decls->length(); ++i) { 4928 Declaration* decl = decls->at(i); 4929 if (decl->mode() != VAR || !decl->IsVariableDeclaration()) continue; 4930 const AstRawString* name = decl->proxy()->raw_name(); 4931 Variable* parameter = function_scope->LookupLocal(name); 4932 if (parameter == nullptr) continue; 4933 VariableProxy* to = inner_scope->NewUnresolved(factory(), name); 4934 VariableProxy* from = factory()->NewVariableProxy(parameter); 4935 Expression* assignment = factory()->NewAssignment( 4936 Token::ASSIGN, to, from, RelocInfo::kNoPosition); 4937 Statement* statement = factory()->NewExpressionStatement( 4938 assignment, RelocInfo::kNoPosition); 4939 inner_block->statements()->InsertAt(0, statement, zone()); 4940 } 4941 } 4942 4943 4944 void Parser::InsertSloppyBlockFunctionVarBindings(Scope* scope, bool* ok) { 4945 // For each variable which is used as a function declaration in a sloppy 4946 // block, 4947 DCHECK(scope->is_declaration_scope()); 4948 SloppyBlockFunctionMap* map = scope->sloppy_block_function_map(); 4949 for (ZoneHashMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) { 4950 AstRawString* name = static_cast<AstRawString*>(p->key); 4951 // If the variable wouldn't conflict with a lexical declaration, 4952 Variable* var = scope->LookupLocal(name); 4953 if (var == nullptr || !IsLexicalVariableMode(var->mode())) { 4954 // Declare a var-style binding for the function in the outer scope 4955 VariableProxy* proxy = scope->NewUnresolved(factory(), name); 4956 Declaration* declaration = factory()->NewVariableDeclaration( 4957 proxy, VAR, scope, RelocInfo::kNoPosition); 4958 Declare(declaration, DeclarationDescriptor::NORMAL, true, ok, scope); 4959 DCHECK(ok); // Based on the preceding check, this should not fail 4960 if (!ok) return; 4961 4962 // Write in assignments to var for each block-scoped function declaration 4963 auto delegates = static_cast<SloppyBlockFunctionMap::Vector*>(p->value); 4964 for (SloppyBlockFunctionStatement* delegate : *delegates) { 4965 // Read from the local lexical scope and write to the function scope 4966 VariableProxy* to = scope->NewUnresolved(factory(), name); 4967 VariableProxy* from = delegate->scope()->NewUnresolved(factory(), name); 4968 Expression* assignment = factory()->NewAssignment( 4969 Token::ASSIGN, to, from, RelocInfo::kNoPosition); 4970 Statement* statement = factory()->NewExpressionStatement( 4971 assignment, RelocInfo::kNoPosition); 4972 delegate->set_statement(statement); 4973 } 4974 } 4975 } 4976 } 4977 4978 4979 // ---------------------------------------------------------------------------- 4980 // Parser support 4981 4982 bool Parser::TargetStackContainsLabel(const AstRawString* label) { 4983 for (Target* t = target_stack_; t != NULL; t = t->previous()) { 4984 if (ContainsLabel(t->statement()->labels(), label)) return true; 4985 } 4986 return false; 4987 } 4988 4989 4990 BreakableStatement* Parser::LookupBreakTarget(const AstRawString* label, 4991 bool* ok) { 4992 bool anonymous = label == NULL; 4993 for (Target* t = target_stack_; t != NULL; t = t->previous()) { 4994 BreakableStatement* stat = t->statement(); 4995 if ((anonymous && stat->is_target_for_anonymous()) || 4996 (!anonymous && ContainsLabel(stat->labels(), label))) { 4997 return stat; 4998 } 4999 } 5000 return NULL; 5001 } 5002 5003 5004 IterationStatement* Parser::LookupContinueTarget(const AstRawString* label, 5005 bool* ok) { 5006 bool anonymous = label == NULL; 5007 for (Target* t = target_stack_; t != NULL; t = t->previous()) { 5008 IterationStatement* stat = t->statement()->AsIterationStatement(); 5009 if (stat == NULL) continue; 5010 5011 DCHECK(stat->is_target_for_anonymous()); 5012 if (anonymous || ContainsLabel(stat->labels(), label)) { 5013 return stat; 5014 } 5015 } 5016 return NULL; 5017 } 5018 5019 5020 void Parser::HandleSourceURLComments(Isolate* isolate, Handle<Script> script) { 5021 if (scanner_.source_url()->length() > 0) { 5022 Handle<String> source_url = scanner_.source_url()->Internalize(isolate); 5023 script->set_source_url(*source_url); 5024 } 5025 if (scanner_.source_mapping_url()->length() > 0) { 5026 Handle<String> source_mapping_url = 5027 scanner_.source_mapping_url()->Internalize(isolate); 5028 script->set_source_mapping_url(*source_mapping_url); 5029 } 5030 } 5031 5032 5033 void Parser::Internalize(Isolate* isolate, Handle<Script> script, bool error) { 5034 // Internalize strings. 5035 ast_value_factory()->Internalize(isolate); 5036 5037 // Error processing. 5038 if (error) { 5039 if (stack_overflow()) { 5040 isolate->StackOverflow(); 5041 } else { 5042 DCHECK(pending_error_handler_.has_pending_error()); 5043 pending_error_handler_.ThrowPendingError(isolate, script); 5044 } 5045 } 5046 5047 // Move statistics to Isolate. 5048 for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount; 5049 ++feature) { 5050 for (int i = 0; i < use_counts_[feature]; ++i) { 5051 isolate->CountUsage(v8::Isolate::UseCounterFeature(feature)); 5052 } 5053 } 5054 isolate->counters()->total_preparse_skipped()->Increment( 5055 total_preparse_skipped_); 5056 } 5057 5058 5059 // ---------------------------------------------------------------------------- 5060 // The Parser interface. 5061 5062 5063 bool Parser::ParseStatic(ParseInfo* info) { 5064 Parser parser(info); 5065 if (parser.Parse(info)) { 5066 info->set_language_mode(info->literal()->language_mode()); 5067 return true; 5068 } 5069 return false; 5070 } 5071 5072 5073 bool Parser::Parse(ParseInfo* info) { 5074 DCHECK(info->literal() == NULL); 5075 FunctionLiteral* result = NULL; 5076 // Ok to use Isolate here; this function is only called in the main thread. 5077 DCHECK(parsing_on_main_thread_); 5078 Isolate* isolate = info->isolate(); 5079 pre_parse_timer_ = isolate->counters()->pre_parse(); 5080 if (FLAG_trace_parse || allow_natives() || extension_ != NULL) { 5081 // If intrinsics are allowed, the Parser cannot operate independent of the 5082 // V8 heap because of Runtime. Tell the string table to internalize strings 5083 // and values right after they're created. 5084 ast_value_factory()->Internalize(isolate); 5085 } 5086 5087 if (info->is_lazy()) { 5088 DCHECK(!info->is_eval()); 5089 if (info->shared_info()->is_function()) { 5090 result = ParseLazy(isolate, info); 5091 } else { 5092 result = ParseProgram(isolate, info); 5093 } 5094 } else { 5095 SetCachedData(info); 5096 result = ParseProgram(isolate, info); 5097 } 5098 info->set_literal(result); 5099 5100 Internalize(isolate, info->script(), result == NULL); 5101 DCHECK(ast_value_factory()->IsInternalized()); 5102 return (result != NULL); 5103 } 5104 5105 5106 void Parser::ParseOnBackground(ParseInfo* info) { 5107 parsing_on_main_thread_ = false; 5108 5109 DCHECK(info->literal() == NULL); 5110 FunctionLiteral* result = NULL; 5111 fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); 5112 5113 CompleteParserRecorder recorder; 5114 if (produce_cached_parse_data()) log_ = &recorder; 5115 5116 DCHECK(info->source_stream() != NULL); 5117 ExternalStreamingStream stream(info->source_stream(), 5118 info->source_stream_encoding()); 5119 scanner_.Initialize(&stream); 5120 DCHECK(info->context().is_null() || info->context()->IsNativeContext()); 5121 5122 // When streaming, we don't know the length of the source until we have parsed 5123 // it. The raw data can be UTF-8, so we wouldn't know the source length until 5124 // we have decoded it anyway even if we knew the raw data length (which we 5125 // don't). We work around this by storing all the scopes which need their end 5126 // position set at the end of the script (the top scope and possible eval 5127 // scopes) and set their end position after we know the script length. 5128 result = DoParseProgram(info); 5129 5130 info->set_literal(result); 5131 5132 // We cannot internalize on a background thread; a foreground task will take 5133 // care of calling Parser::Internalize just before compilation. 5134 5135 if (produce_cached_parse_data()) { 5136 if (result != NULL) *info->cached_data() = recorder.GetScriptData(); 5137 log_ = NULL; 5138 } 5139 } 5140 5141 5142 ParserTraits::TemplateLiteralState Parser::OpenTemplateLiteral(int pos) { 5143 return new (zone()) ParserTraits::TemplateLiteral(zone(), pos); 5144 } 5145 5146 5147 void Parser::AddTemplateSpan(TemplateLiteralState* state, bool tail) { 5148 int pos = scanner()->location().beg_pos; 5149 int end = scanner()->location().end_pos - (tail ? 1 : 2); 5150 const AstRawString* tv = scanner()->CurrentSymbol(ast_value_factory()); 5151 const AstRawString* trv = scanner()->CurrentRawSymbol(ast_value_factory()); 5152 Literal* cooked = factory()->NewStringLiteral(tv, pos); 5153 Literal* raw = factory()->NewStringLiteral(trv, pos); 5154 (*state)->AddTemplateSpan(cooked, raw, end, zone()); 5155 } 5156 5157 5158 void Parser::AddTemplateExpression(TemplateLiteralState* state, 5159 Expression* expression) { 5160 (*state)->AddExpression(expression, zone()); 5161 } 5162 5163 5164 Expression* Parser::CloseTemplateLiteral(TemplateLiteralState* state, int start, 5165 Expression* tag) { 5166 TemplateLiteral* lit = *state; 5167 int pos = lit->position(); 5168 const ZoneList<Expression*>* cooked_strings = lit->cooked(); 5169 const ZoneList<Expression*>* raw_strings = lit->raw(); 5170 const ZoneList<Expression*>* expressions = lit->expressions(); 5171 DCHECK_EQ(cooked_strings->length(), raw_strings->length()); 5172 DCHECK_EQ(cooked_strings->length(), expressions->length() + 1); 5173 5174 if (!tag) { 5175 // Build tree of BinaryOps to simplify code-generation 5176 Expression* expr = cooked_strings->at(0); 5177 int i = 0; 5178 while (i < expressions->length()) { 5179 Expression* sub = expressions->at(i++); 5180 Expression* cooked_str = cooked_strings->at(i); 5181 5182 // Let middle be ToString(sub). 5183 ZoneList<Expression*>* args = 5184 new (zone()) ZoneList<Expression*>(1, zone()); 5185 args->Add(sub, zone()); 5186 Expression* middle = factory()->NewCallRuntime(Runtime::kInlineToString, 5187 args, sub->position()); 5188 5189 expr = factory()->NewBinaryOperation( 5190 Token::ADD, factory()->NewBinaryOperation( 5191 Token::ADD, expr, middle, expr->position()), 5192 cooked_str, sub->position()); 5193 } 5194 return expr; 5195 } else { 5196 uint32_t hash = ComputeTemplateLiteralHash(lit); 5197 5198 int cooked_idx = function_state_->NextMaterializedLiteralIndex(); 5199 int raw_idx = function_state_->NextMaterializedLiteralIndex(); 5200 5201 // $getTemplateCallSite 5202 ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(4, zone()); 5203 args->Add(factory()->NewArrayLiteral( 5204 const_cast<ZoneList<Expression*>*>(cooked_strings), 5205 cooked_idx, is_strong(language_mode()), pos), 5206 zone()); 5207 args->Add( 5208 factory()->NewArrayLiteral( 5209 const_cast<ZoneList<Expression*>*>(raw_strings), raw_idx, 5210 is_strong(language_mode()), pos), 5211 zone()); 5212 5213 // Ensure hash is suitable as a Smi value 5214 Smi* hash_obj = Smi::cast(Internals::IntToSmi(static_cast<int>(hash))); 5215 args->Add(factory()->NewSmiLiteral(hash_obj->value(), pos), zone()); 5216 5217 Expression* call_site = factory()->NewCallRuntime( 5218 Context::GET_TEMPLATE_CALL_SITE_INDEX, args, start); 5219 5220 // Call TagFn 5221 ZoneList<Expression*>* call_args = 5222 new (zone()) ZoneList<Expression*>(expressions->length() + 1, zone()); 5223 call_args->Add(call_site, zone()); 5224 call_args->AddAll(*expressions, zone()); 5225 return factory()->NewCall(tag, call_args, pos); 5226 } 5227 } 5228 5229 5230 uint32_t Parser::ComputeTemplateLiteralHash(const TemplateLiteral* lit) { 5231 const ZoneList<Expression*>* raw_strings = lit->raw(); 5232 int total = raw_strings->length(); 5233 DCHECK(total); 5234 5235 uint32_t running_hash = 0; 5236 5237 for (int index = 0; index < total; ++index) { 5238 if (index) { 5239 running_hash = StringHasher::ComputeRunningHashOneByte( 5240 running_hash, "${}", 3); 5241 } 5242 5243 const AstRawString* raw_string = 5244 raw_strings->at(index)->AsLiteral()->raw_value()->AsString(); 5245 if (raw_string->is_one_byte()) { 5246 const char* data = reinterpret_cast<const char*>(raw_string->raw_data()); 5247 running_hash = StringHasher::ComputeRunningHashOneByte( 5248 running_hash, data, raw_string->length()); 5249 } else { 5250 const uc16* data = reinterpret_cast<const uc16*>(raw_string->raw_data()); 5251 running_hash = StringHasher::ComputeRunningHash(running_hash, data, 5252 raw_string->length()); 5253 } 5254 } 5255 5256 return running_hash; 5257 } 5258 5259 5260 ZoneList<v8::internal::Expression*>* Parser::PrepareSpreadArguments( 5261 ZoneList<v8::internal::Expression*>* list) { 5262 ZoneList<v8::internal::Expression*>* args = 5263 new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); 5264 if (list->length() == 1) { 5265 // Spread-call with single spread argument produces an InternalArray 5266 // containing the values from the array. 5267 // 5268 // Function is called or constructed with the produced array of arguments 5269 // 5270 // EG: Apply(Func, Spread(spread0)) 5271 ZoneList<Expression*>* spread_list = 5272 new (zone()) ZoneList<Expression*>(0, zone()); 5273 spread_list->Add(list->at(0)->AsSpread()->expression(), zone()); 5274 args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX, 5275 spread_list, RelocInfo::kNoPosition), 5276 zone()); 5277 return args; 5278 } else { 5279 // Spread-call with multiple arguments produces array literals for each 5280 // sequences of unspread arguments, and converts each spread iterable to 5281 // an Internal array. Finally, all of these produced arrays are flattened 5282 // into a single InternalArray, containing the arguments for the call. 5283 // 5284 // EG: Apply(Func, Flatten([unspread0, unspread1], Spread(spread0), 5285 // Spread(spread1), [unspread2, unspread3])) 5286 int i = 0; 5287 int n = list->length(); 5288 while (i < n) { 5289 if (!list->at(i)->IsSpread()) { 5290 ZoneList<v8::internal::Expression*>* unspread = 5291 new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); 5292 5293 // Push array of unspread parameters 5294 while (i < n && !list->at(i)->IsSpread()) { 5295 unspread->Add(list->at(i++), zone()); 5296 } 5297 int literal_index = function_state_->NextMaterializedLiteralIndex(); 5298 args->Add(factory()->NewArrayLiteral(unspread, literal_index, 5299 is_strong(language_mode()), 5300 RelocInfo::kNoPosition), 5301 zone()); 5302 5303 if (i == n) break; 5304 } 5305 5306 // Push eagerly spread argument 5307 ZoneList<v8::internal::Expression*>* spread_list = 5308 new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); 5309 spread_list->Add(list->at(i++)->AsSpread()->expression(), zone()); 5310 args->Add(factory()->NewCallRuntime(Context::SPREAD_ITERABLE_INDEX, 5311 spread_list, RelocInfo::kNoPosition), 5312 zone()); 5313 } 5314 5315 list = new (zone()) ZoneList<v8::internal::Expression*>(1, zone()); 5316 list->Add(factory()->NewCallRuntime(Context::SPREAD_ARGUMENTS_INDEX, args, 5317 RelocInfo::kNoPosition), 5318 zone()); 5319 return list; 5320 } 5321 UNREACHABLE(); 5322 } 5323 5324 5325 Expression* Parser::SpreadCall(Expression* function, 5326 ZoneList<v8::internal::Expression*>* args, 5327 int pos) { 5328 if (function->IsSuperCallReference()) { 5329 // Super calls 5330 // $super_constructor = %_GetSuperConstructor(<this-function>) 5331 // %reflect_construct($super_constructor, args, new.target) 5332 ZoneList<Expression*>* tmp = new (zone()) ZoneList<Expression*>(1, zone()); 5333 tmp->Add(function->AsSuperCallReference()->this_function_var(), zone()); 5334 Expression* super_constructor = factory()->NewCallRuntime( 5335 Runtime::kInlineGetSuperConstructor, tmp, pos); 5336 args->InsertAt(0, super_constructor, zone()); 5337 args->Add(function->AsSuperCallReference()->new_target_var(), zone()); 5338 return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, 5339 pos); 5340 } else { 5341 if (function->IsProperty()) { 5342 // Method calls 5343 if (function->AsProperty()->IsSuperAccess()) { 5344 Expression* home = 5345 ThisExpression(scope_, factory(), RelocInfo::kNoPosition); 5346 args->InsertAt(0, function, zone()); 5347 args->InsertAt(1, home, zone()); 5348 } else { 5349 Variable* temp = 5350 scope_->NewTemporary(ast_value_factory()->empty_string()); 5351 VariableProxy* obj = factory()->NewVariableProxy(temp); 5352 Assignment* assign_obj = factory()->NewAssignment( 5353 Token::ASSIGN, obj, function->AsProperty()->obj(), 5354 RelocInfo::kNoPosition); 5355 function = factory()->NewProperty( 5356 assign_obj, function->AsProperty()->key(), RelocInfo::kNoPosition); 5357 args->InsertAt(0, function, zone()); 5358 obj = factory()->NewVariableProxy(temp); 5359 args->InsertAt(1, obj, zone()); 5360 } 5361 } else { 5362 // Non-method calls 5363 args->InsertAt(0, function, zone()); 5364 args->InsertAt(1, factory()->NewUndefinedLiteral(RelocInfo::kNoPosition), 5365 zone()); 5366 } 5367 return factory()->NewCallRuntime(Context::REFLECT_APPLY_INDEX, args, pos); 5368 } 5369 } 5370 5371 5372 Expression* Parser::SpreadCallNew(Expression* function, 5373 ZoneList<v8::internal::Expression*>* args, 5374 int pos) { 5375 args->InsertAt(0, function, zone()); 5376 5377 return factory()->NewCallRuntime(Context::REFLECT_CONSTRUCT_INDEX, args, pos); 5378 } 5379 5380 5381 void Parser::SetLanguageMode(Scope* scope, LanguageMode mode) { 5382 v8::Isolate::UseCounterFeature feature; 5383 if (is_sloppy(mode)) 5384 feature = v8::Isolate::kSloppyMode; 5385 else if (is_strong(mode)) 5386 feature = v8::Isolate::kStrongMode; 5387 else if (is_strict(mode)) 5388 feature = v8::Isolate::kStrictMode; 5389 else 5390 UNREACHABLE(); 5391 ++use_counts_[feature]; 5392 scope->SetLanguageMode(mode); 5393 } 5394 5395 5396 void Parser::RaiseLanguageMode(LanguageMode mode) { 5397 SetLanguageMode(scope_, 5398 static_cast<LanguageMode>(scope_->language_mode() | mode)); 5399 } 5400 5401 5402 void ParserTraits::RewriteDestructuringAssignments() { 5403 parser_->RewriteDestructuringAssignments(); 5404 } 5405 5406 5407 Expression* ParserTraits::RewriteNonPattern( 5408 Expression* expr, const ExpressionClassifier* classifier, bool* ok) { 5409 return parser_->RewriteNonPattern(expr, classifier, ok); 5410 } 5411 5412 5413 ZoneList<Expression*>* ParserTraits::RewriteNonPatternArguments( 5414 ZoneList<Expression*>* args, const ExpressionClassifier* classifier, 5415 bool* ok) { 5416 return parser_->RewriteNonPatternArguments(args, classifier, ok); 5417 } 5418 5419 5420 ObjectLiteralProperty* ParserTraits::RewriteNonPatternObjectLiteralProperty( 5421 ObjectLiteralProperty* property, const ExpressionClassifier* classifier, 5422 bool* ok) { 5423 return parser_->RewriteNonPatternObjectLiteralProperty(property, classifier, 5424 ok); 5425 } 5426 5427 5428 Expression* Parser::RewriteNonPattern(Expression* expr, 5429 const ExpressionClassifier* classifier, 5430 bool* ok) { 5431 // For the time being, this does no rewriting at all. 5432 ValidateExpression(classifier, ok); 5433 return expr; 5434 } 5435 5436 5437 ZoneList<Expression*>* Parser::RewriteNonPatternArguments( 5438 ZoneList<Expression*>* args, const ExpressionClassifier* classifier, 5439 bool* ok) { 5440 // For the time being, this does no rewriting at all. 5441 ValidateExpression(classifier, ok); 5442 return args; 5443 } 5444 5445 5446 ObjectLiteralProperty* Parser::RewriteNonPatternObjectLiteralProperty( 5447 ObjectLiteralProperty* property, const ExpressionClassifier* classifier, 5448 bool* ok) { 5449 if (property != nullptr) { 5450 Expression* key = RewriteNonPattern(property->key(), classifier, ok); 5451 property->set_key(key); 5452 Expression* value = RewriteNonPattern(property->value(), classifier, ok); 5453 property->set_value(value); 5454 } 5455 return property; 5456 } 5457 5458 5459 void Parser::RewriteDestructuringAssignments() { 5460 FunctionState* func = function_state_; 5461 if (!allow_harmony_destructuring_assignment()) return; 5462 const List<DestructuringAssignment>& assignments = 5463 func->destructuring_assignments_to_rewrite(); 5464 for (int i = assignments.length() - 1; i >= 0; --i) { 5465 // Rewrite list in reverse, so that nested assignment patterns are rewritten 5466 // correctly. 5467 DestructuringAssignment pair = assignments.at(i); 5468 RewritableAssignmentExpression* to_rewrite = 5469 pair.assignment->AsRewritableAssignmentExpression(); 5470 Scope* scope = pair.scope; 5471 DCHECK_NOT_NULL(to_rewrite); 5472 if (!to_rewrite->is_rewritten()) { 5473 PatternRewriter::RewriteDestructuringAssignment(this, to_rewrite, scope); 5474 } 5475 } 5476 } 5477 5478 5479 void ParserTraits::QueueDestructuringAssignmentForRewriting(Expression* expr) { 5480 DCHECK(expr->IsRewritableAssignmentExpression()); 5481 parser_->function_state_->AddDestructuringAssignment( 5482 Parser::DestructuringAssignment(expr, parser_->scope_)); 5483 } 5484 5485 5486 void ParserTraits::SetFunctionNameFromPropertyName( 5487 ObjectLiteralProperty* property, const AstRawString* name) { 5488 Expression* value = property->value(); 5489 if (!value->IsFunctionLiteral() && !value->IsClassLiteral()) return; 5490 5491 // TODO(adamk): Support computed names. 5492 if (property->is_computed_name()) return; 5493 DCHECK_NOT_NULL(name); 5494 5495 // Ignore "__proto__" as a name when it's being used to set the [[Prototype]] 5496 // of an object literal. 5497 if (property->kind() == ObjectLiteralProperty::PROTOTYPE) return; 5498 5499 if (value->IsFunctionLiteral()) { 5500 auto function = value->AsFunctionLiteral(); 5501 if (function->is_anonymous()) { 5502 if (property->kind() == ObjectLiteralProperty::GETTER) { 5503 function->set_raw_name(parser_->ast_value_factory()->NewConsString( 5504 parser_->ast_value_factory()->get_space_string(), name)); 5505 } else if (property->kind() == ObjectLiteralProperty::SETTER) { 5506 function->set_raw_name(parser_->ast_value_factory()->NewConsString( 5507 parser_->ast_value_factory()->set_space_string(), name)); 5508 } else { 5509 function->set_raw_name(name); 5510 DCHECK_EQ(ObjectLiteralProperty::COMPUTED, property->kind()); 5511 } 5512 } 5513 } else { 5514 DCHECK(value->IsClassLiteral()); 5515 DCHECK_EQ(ObjectLiteralProperty::COMPUTED, property->kind()); 5516 auto class_literal = value->AsClassLiteral(); 5517 if (class_literal->raw_name() == nullptr) { 5518 class_literal->set_raw_name(name); 5519 } 5520 } 5521 } 5522 5523 5524 void ParserTraits::SetFunctionNameFromIdentifierRef(Expression* value, 5525 Expression* identifier) { 5526 if (!value->IsFunctionLiteral() && !value->IsClassLiteral()) return; 5527 if (!identifier->IsVariableProxy()) return; 5528 5529 auto name = identifier->AsVariableProxy()->raw_name(); 5530 DCHECK_NOT_NULL(name); 5531 5532 if (value->IsFunctionLiteral()) { 5533 auto function = value->AsFunctionLiteral(); 5534 if (function->is_anonymous()) { 5535 function->set_raw_name(name); 5536 } 5537 } else { 5538 DCHECK(value->IsClassLiteral()); 5539 auto class_literal = value->AsClassLiteral(); 5540 if (class_literal->raw_name() == nullptr) { 5541 class_literal->set_raw_name(name); 5542 } 5543 } 5544 } 5545 5546 5547 } // namespace internal 5548 } // namespace v8 5549