1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "thread.h" 18 19 #include <pthread.h> 20 #include <signal.h> 21 #include <sys/resource.h> 22 #include <sys/time.h> 23 24 #include <algorithm> 25 #include <bitset> 26 #include <cerrno> 27 #include <iostream> 28 #include <list> 29 #include <sstream> 30 31 #include "arch/context.h" 32 #include "art_field-inl.h" 33 #include "art_method-inl.h" 34 #include "base/bit_utils.h" 35 #include "base/memory_tool.h" 36 #include "base/mutex.h" 37 #include "base/timing_logger.h" 38 #include "base/to_str.h" 39 #include "base/systrace.h" 40 #include "class_linker-inl.h" 41 #include "debugger.h" 42 #include "dex_file-inl.h" 43 #include "entrypoints/entrypoint_utils.h" 44 #include "entrypoints/quick/quick_alloc_entrypoints.h" 45 #include "gc/accounting/card_table-inl.h" 46 #include "gc/accounting/heap_bitmap-inl.h" 47 #include "gc/allocator/rosalloc.h" 48 #include "gc/heap.h" 49 #include "gc/space/space-inl.h" 50 #include "handle_scope-inl.h" 51 #include "indirect_reference_table-inl.h" 52 #include "jni_internal.h" 53 #include "mirror/class_loader.h" 54 #include "mirror/class-inl.h" 55 #include "mirror/object_array-inl.h" 56 #include "mirror/stack_trace_element.h" 57 #include "monitor.h" 58 #include "oat_quick_method_header.h" 59 #include "object_lock.h" 60 #include "quick_exception_handler.h" 61 #include "quick/quick_method_frame_info.h" 62 #include "reflection.h" 63 #include "runtime.h" 64 #include "scoped_thread_state_change.h" 65 #include "ScopedLocalRef.h" 66 #include "ScopedUtfChars.h" 67 #include "stack.h" 68 #include "stack_map.h" 69 #include "thread_list.h" 70 #include "thread-inl.h" 71 #include "utils.h" 72 #include "verifier/method_verifier.h" 73 #include "verify_object-inl.h" 74 #include "well_known_classes.h" 75 #include "interpreter/interpreter.h" 76 77 #if ART_USE_FUTEXES 78 #include "linux/futex.h" 79 #include "sys/syscall.h" 80 #ifndef SYS_futex 81 #define SYS_futex __NR_futex 82 #endif 83 #endif // ART_USE_FUTEXES 84 85 namespace art { 86 87 bool Thread::is_started_ = false; 88 pthread_key_t Thread::pthread_key_self_; 89 ConditionVariable* Thread::resume_cond_ = nullptr; 90 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA); 91 bool (*Thread::is_sensitive_thread_hook_)() = nullptr; 92 Thread* Thread::jit_sensitive_thread_ = nullptr; 93 94 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild; 95 96 // For implicit overflow checks we reserve an extra piece of memory at the bottom 97 // of the stack (lowest memory). The higher portion of the memory 98 // is protected against reads and the lower is available for use while 99 // throwing the StackOverflow exception. 100 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB; 101 102 static const char* kThreadNameDuringStartup = "<native thread without managed peer>"; 103 104 void Thread::InitCardTable() { 105 tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); 106 } 107 108 static void UnimplementedEntryPoint() { 109 UNIMPLEMENTED(FATAL); 110 } 111 112 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints); 113 114 void Thread::InitTlsEntryPoints() { 115 // Insert a placeholder so we can easily tell if we call an unimplemented entry point. 116 uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints); 117 uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + 118 sizeof(tlsPtr_.quick_entrypoints)); 119 for (uintptr_t* it = begin; it != end; ++it) { 120 *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint); 121 } 122 InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints); 123 } 124 125 void Thread::InitStringEntryPoints() { 126 ScopedObjectAccess soa(this); 127 QuickEntryPoints* qpoints = &tlsPtr_.quick_entrypoints; 128 qpoints->pNewEmptyString = reinterpret_cast<void(*)()>( 129 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newEmptyString)); 130 qpoints->pNewStringFromBytes_B = reinterpret_cast<void(*)()>( 131 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_B)); 132 qpoints->pNewStringFromBytes_BI = reinterpret_cast<void(*)()>( 133 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BI)); 134 qpoints->pNewStringFromBytes_BII = reinterpret_cast<void(*)()>( 135 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BII)); 136 qpoints->pNewStringFromBytes_BIII = reinterpret_cast<void(*)()>( 137 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIII)); 138 qpoints->pNewStringFromBytes_BIIString = reinterpret_cast<void(*)()>( 139 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIIString)); 140 qpoints->pNewStringFromBytes_BString = reinterpret_cast<void(*)()>( 141 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BString)); 142 qpoints->pNewStringFromBytes_BIICharset = reinterpret_cast<void(*)()>( 143 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BIICharset)); 144 qpoints->pNewStringFromBytes_BCharset = reinterpret_cast<void(*)()>( 145 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromBytes_BCharset)); 146 qpoints->pNewStringFromChars_C = reinterpret_cast<void(*)()>( 147 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_C)); 148 qpoints->pNewStringFromChars_CII = reinterpret_cast<void(*)()>( 149 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_CII)); 150 qpoints->pNewStringFromChars_IIC = reinterpret_cast<void(*)()>( 151 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromChars_IIC)); 152 qpoints->pNewStringFromCodePoints = reinterpret_cast<void(*)()>( 153 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromCodePoints)); 154 qpoints->pNewStringFromString = reinterpret_cast<void(*)()>( 155 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromString)); 156 qpoints->pNewStringFromStringBuffer = reinterpret_cast<void(*)()>( 157 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuffer)); 158 qpoints->pNewStringFromStringBuilder = reinterpret_cast<void(*)()>( 159 soa.DecodeMethod(WellKnownClasses::java_lang_StringFactory_newStringFromStringBuilder)); 160 } 161 162 void Thread::ResetQuickAllocEntryPointsForThread() { 163 ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints); 164 } 165 166 class DeoptimizationContextRecord { 167 public: 168 DeoptimizationContextRecord(const JValue& ret_val, 169 bool is_reference, 170 bool from_code, 171 mirror::Throwable* pending_exception, 172 DeoptimizationContextRecord* link) 173 : ret_val_(ret_val), 174 is_reference_(is_reference), 175 from_code_(from_code), 176 pending_exception_(pending_exception), 177 link_(link) {} 178 179 JValue GetReturnValue() const { return ret_val_; } 180 bool IsReference() const { return is_reference_; } 181 bool GetFromCode() const { return from_code_; } 182 mirror::Throwable* GetPendingException() const { return pending_exception_; } 183 DeoptimizationContextRecord* GetLink() const { return link_; } 184 mirror::Object** GetReturnValueAsGCRoot() { 185 DCHECK(is_reference_); 186 return ret_val_.GetGCRoot(); 187 } 188 mirror::Object** GetPendingExceptionAsGCRoot() { 189 return reinterpret_cast<mirror::Object**>(&pending_exception_); 190 } 191 192 private: 193 // The value returned by the method at the top of the stack before deoptimization. 194 JValue ret_val_; 195 196 // Indicates whether the returned value is a reference. If so, the GC will visit it. 197 const bool is_reference_; 198 199 // Whether the context was created from an explicit deoptimization in the code. 200 const bool from_code_; 201 202 // The exception that was pending before deoptimization (or null if there was no pending 203 // exception). 204 mirror::Throwable* pending_exception_; 205 206 // A link to the previous DeoptimizationContextRecord. 207 DeoptimizationContextRecord* const link_; 208 209 DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord); 210 }; 211 212 class StackedShadowFrameRecord { 213 public: 214 StackedShadowFrameRecord(ShadowFrame* shadow_frame, 215 StackedShadowFrameType type, 216 StackedShadowFrameRecord* link) 217 : shadow_frame_(shadow_frame), 218 type_(type), 219 link_(link) {} 220 221 ShadowFrame* GetShadowFrame() const { return shadow_frame_; } 222 StackedShadowFrameType GetType() const { return type_; } 223 StackedShadowFrameRecord* GetLink() const { return link_; } 224 225 private: 226 ShadowFrame* const shadow_frame_; 227 const StackedShadowFrameType type_; 228 StackedShadowFrameRecord* const link_; 229 230 DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord); 231 }; 232 233 void Thread::PushDeoptimizationContext(const JValue& return_value, 234 bool is_reference, 235 bool from_code, 236 mirror::Throwable* exception) { 237 DeoptimizationContextRecord* record = new DeoptimizationContextRecord( 238 return_value, 239 is_reference, 240 from_code, 241 exception, 242 tlsPtr_.deoptimization_context_stack); 243 tlsPtr_.deoptimization_context_stack = record; 244 } 245 246 void Thread::PopDeoptimizationContext(JValue* result, 247 mirror::Throwable** exception, 248 bool* from_code) { 249 AssertHasDeoptimizationContext(); 250 DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; 251 tlsPtr_.deoptimization_context_stack = record->GetLink(); 252 result->SetJ(record->GetReturnValue().GetJ()); 253 *exception = record->GetPendingException(); 254 *from_code = record->GetFromCode(); 255 delete record; 256 } 257 258 void Thread::AssertHasDeoptimizationContext() { 259 CHECK(tlsPtr_.deoptimization_context_stack != nullptr) 260 << "No deoptimization context for thread " << *this; 261 } 262 263 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) { 264 StackedShadowFrameRecord* record = new StackedShadowFrameRecord( 265 sf, type, tlsPtr_.stacked_shadow_frame_record); 266 tlsPtr_.stacked_shadow_frame_record = record; 267 } 268 269 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) { 270 StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; 271 if (must_be_present) { 272 DCHECK(record != nullptr); 273 DCHECK_EQ(record->GetType(), type); 274 } else { 275 if (record == nullptr || record->GetType() != type) { 276 return nullptr; 277 } 278 } 279 tlsPtr_.stacked_shadow_frame_record = record->GetLink(); 280 ShadowFrame* shadow_frame = record->GetShadowFrame(); 281 delete record; 282 return shadow_frame; 283 } 284 285 class FrameIdToShadowFrame { 286 public: 287 static FrameIdToShadowFrame* Create(size_t frame_id, 288 ShadowFrame* shadow_frame, 289 FrameIdToShadowFrame* next, 290 size_t num_vregs) { 291 // Append a bool array at the end to keep track of what vregs are updated by the debugger. 292 uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs]; 293 return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next); 294 } 295 296 static void Delete(FrameIdToShadowFrame* f) { 297 uint8_t* memory = reinterpret_cast<uint8_t*>(f); 298 delete[] memory; 299 } 300 301 size_t GetFrameId() const { return frame_id_; } 302 ShadowFrame* GetShadowFrame() const { return shadow_frame_; } 303 FrameIdToShadowFrame* GetNext() const { return next_; } 304 void SetNext(FrameIdToShadowFrame* next) { next_ = next; } 305 bool* GetUpdatedVRegFlags() { 306 return updated_vreg_flags_; 307 } 308 309 private: 310 FrameIdToShadowFrame(size_t frame_id, 311 ShadowFrame* shadow_frame, 312 FrameIdToShadowFrame* next) 313 : frame_id_(frame_id), 314 shadow_frame_(shadow_frame), 315 next_(next) {} 316 317 const size_t frame_id_; 318 ShadowFrame* const shadow_frame_; 319 FrameIdToShadowFrame* next_; 320 bool updated_vreg_flags_[0]; 321 322 DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame); 323 }; 324 325 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head, 326 size_t frame_id) { 327 FrameIdToShadowFrame* found = nullptr; 328 for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) { 329 if (record->GetFrameId() == frame_id) { 330 if (kIsDebugBuild) { 331 // Sanity check we have at most one record for this frame. 332 CHECK(found == nullptr) << "Multiple records for the frame " << frame_id; 333 found = record; 334 } else { 335 return record; 336 } 337 } 338 } 339 return found; 340 } 341 342 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) { 343 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( 344 tlsPtr_.frame_id_to_shadow_frame, frame_id); 345 if (record != nullptr) { 346 return record->GetShadowFrame(); 347 } 348 return nullptr; 349 } 350 351 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr. 352 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) { 353 FrameIdToShadowFrame* record = FindFrameIdToShadowFrame( 354 tlsPtr_.frame_id_to_shadow_frame, frame_id); 355 CHECK(record != nullptr); 356 return record->GetUpdatedVRegFlags(); 357 } 358 359 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id, 360 uint32_t num_vregs, 361 ArtMethod* method, 362 uint32_t dex_pc) { 363 ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id); 364 if (shadow_frame != nullptr) { 365 return shadow_frame; 366 } 367 VLOG(deopt) << "Create pre-deopted ShadowFrame for " << PrettyMethod(method); 368 shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc); 369 FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id, 370 shadow_frame, 371 tlsPtr_.frame_id_to_shadow_frame, 372 num_vregs); 373 for (uint32_t i = 0; i < num_vregs; i++) { 374 // Do this to clear all references for root visitors. 375 shadow_frame->SetVRegReference(i, nullptr); 376 // This flag will be changed to true if the debugger modifies the value. 377 record->GetUpdatedVRegFlags()[i] = false; 378 } 379 tlsPtr_.frame_id_to_shadow_frame = record; 380 return shadow_frame; 381 } 382 383 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) { 384 FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame; 385 if (head->GetFrameId() == frame_id) { 386 tlsPtr_.frame_id_to_shadow_frame = head->GetNext(); 387 FrameIdToShadowFrame::Delete(head); 388 return; 389 } 390 FrameIdToShadowFrame* prev = head; 391 for (FrameIdToShadowFrame* record = head->GetNext(); 392 record != nullptr; 393 prev = record, record = record->GetNext()) { 394 if (record->GetFrameId() == frame_id) { 395 prev->SetNext(record->GetNext()); 396 FrameIdToShadowFrame::Delete(record); 397 return; 398 } 399 } 400 LOG(FATAL) << "No shadow frame for frame " << frame_id; 401 UNREACHABLE(); 402 } 403 404 void Thread::InitTid() { 405 tls32_.tid = ::art::GetTid(); 406 } 407 408 void Thread::InitAfterFork() { 409 // One thread (us) survived the fork, but we have a new tid so we need to 410 // update the value stashed in this Thread*. 411 InitTid(); 412 } 413 414 void* Thread::CreateCallback(void* arg) { 415 Thread* self = reinterpret_cast<Thread*>(arg); 416 Runtime* runtime = Runtime::Current(); 417 if (runtime == nullptr) { 418 LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self; 419 return nullptr; 420 } 421 { 422 // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true 423 // after self->Init(). 424 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 425 // Check that if we got here we cannot be shutting down (as shutdown should never have started 426 // while threads are being born). 427 CHECK(!runtime->IsShuttingDownLocked()); 428 // Note: given that the JNIEnv is created in the parent thread, the only failure point here is 429 // a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort 430 // the runtime in such a case. In case this ever changes, we need to make sure here to 431 // delete the tmp_jni_env, as we own it at this point. 432 CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env)); 433 self->tlsPtr_.tmp_jni_env = nullptr; 434 Runtime::Current()->EndThreadBirth(); 435 } 436 { 437 ScopedObjectAccess soa(self); 438 self->InitStringEntryPoints(); 439 440 // Copy peer into self, deleting global reference when done. 441 CHECK(self->tlsPtr_.jpeer != nullptr); 442 self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer); 443 self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer); 444 self->tlsPtr_.jpeer = nullptr; 445 self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str()); 446 447 ArtField* priorityField = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority); 448 self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer)); 449 Dbg::PostThreadStart(self); 450 451 // Invoke the 'run' method of our java.lang.Thread. 452 mirror::Object* receiver = self->tlsPtr_.opeer; 453 jmethodID mid = WellKnownClasses::java_lang_Thread_run; 454 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver)); 455 InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr); 456 } 457 // Detach and delete self. 458 Runtime::Current()->GetThreadList()->Unregister(self); 459 460 return nullptr; 461 } 462 463 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 464 mirror::Object* thread_peer) { 465 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer); 466 Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer))); 467 // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_ 468 // to stop it from going away. 469 if (kIsDebugBuild) { 470 MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_); 471 if (result != nullptr && !result->IsSuspended()) { 472 Locks::thread_list_lock_->AssertHeld(soa.Self()); 473 } 474 } 475 return result; 476 } 477 478 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa, 479 jobject java_thread) { 480 return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread)); 481 } 482 483 static size_t FixStackSize(size_t stack_size) { 484 // A stack size of zero means "use the default". 485 if (stack_size == 0) { 486 stack_size = Runtime::Current()->GetDefaultStackSize(); 487 } 488 489 // Dalvik used the bionic pthread default stack size for native threads, 490 // so include that here to support apps that expect large native stacks. 491 stack_size += 1 * MB; 492 493 // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. 494 if (stack_size < PTHREAD_STACK_MIN) { 495 stack_size = PTHREAD_STACK_MIN; 496 } 497 498 if (Runtime::Current()->ExplicitStackOverflowChecks()) { 499 // It's likely that callers are trying to ensure they have at least a certain amount of 500 // stack space, so we should add our reserved space on top of what they requested, rather 501 // than implicitly take it away from them. 502 stack_size += GetStackOverflowReservedBytes(kRuntimeISA); 503 } else { 504 // If we are going to use implicit stack checks, allocate space for the protected 505 // region at the bottom of the stack. 506 stack_size += Thread::kStackOverflowImplicitCheckSize + 507 GetStackOverflowReservedBytes(kRuntimeISA); 508 } 509 510 // Some systems require the stack size to be a multiple of the system page size, so round up. 511 stack_size = RoundUp(stack_size, kPageSize); 512 513 return stack_size; 514 } 515 516 // Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack 517 // overflow is detected. It is located right below the stack_begin_. 518 ATTRIBUTE_NO_SANITIZE_ADDRESS 519 void Thread::InstallImplicitProtection() { 520 uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 521 uint8_t* stack_himem = tlsPtr_.stack_end; 522 uint8_t* stack_top = reinterpret_cast<uint8_t*>(reinterpret_cast<uintptr_t>(&stack_himem) & 523 ~(kPageSize - 1)); // Page containing current top of stack. 524 525 // Try to directly protect the stack. 526 VLOG(threads) << "installing stack protected region at " << std::hex << 527 static_cast<void*>(pregion) << " to " << 528 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); 529 if (ProtectStack(/* fatal_on_error */ false)) { 530 // Tell the kernel that we won't be needing these pages any more. 531 // NB. madvise will probably write zeroes into the memory (on linux it does). 532 uint32_t unwanted_size = stack_top - pregion - kPageSize; 533 madvise(pregion, unwanted_size, MADV_DONTNEED); 534 return; 535 } 536 537 // There is a little complexity here that deserves a special mention. On some 538 // architectures, the stack is created using a VM_GROWSDOWN flag 539 // to prevent memory being allocated when it's not needed. This flag makes the 540 // kernel only allocate memory for the stack by growing down in memory. Because we 541 // want to put an mprotected region far away from that at the stack top, we need 542 // to make sure the pages for the stack are mapped in before we call mprotect. 543 // 544 // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN 545 // with a non-mapped stack (usually only the main thread). 546 // 547 // We map in the stack by reading every page from the stack bottom (highest address) 548 // to the stack top. (We then madvise this away.) This must be done by reading from the 549 // current stack pointer downwards. Any access more than a page below the current SP 550 // might cause a segv. 551 // TODO: This comment may be out of date. It seems possible to speed this up. As 552 // this is normally done once in the zygote on startup, ignore for now. 553 // 554 // AddressSanitizer does not like the part of this functions that reads every stack page. 555 // Looks a lot like an out-of-bounds access. 556 557 // (Defensively) first remove the protection on the protected region as will want to read 558 // and write it. Ignore errors. 559 UnprotectStack(); 560 561 VLOG(threads) << "Need to map in stack for thread at " << std::hex << 562 static_cast<void*>(pregion); 563 564 // Read every page from the high address to the low. 565 volatile uint8_t dont_optimize_this; 566 UNUSED(dont_optimize_this); 567 for (uint8_t* p = stack_top; p >= pregion; p -= kPageSize) { 568 dont_optimize_this = *p; 569 } 570 571 VLOG(threads) << "(again) installing stack protected region at " << std::hex << 572 static_cast<void*>(pregion) << " to " << 573 static_cast<void*>(pregion + kStackOverflowProtectedSize - 1); 574 575 // Protect the bottom of the stack to prevent read/write to it. 576 ProtectStack(/* fatal_on_error */ true); 577 578 // Tell the kernel that we won't be needing these pages any more. 579 // NB. madvise will probably write zeroes into the memory (on linux it does). 580 uint32_t unwanted_size = stack_top - pregion - kPageSize; 581 madvise(pregion, unwanted_size, MADV_DONTNEED); 582 } 583 584 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) { 585 CHECK(java_peer != nullptr); 586 Thread* self = static_cast<JNIEnvExt*>(env)->self; 587 588 if (VLOG_IS_ON(threads)) { 589 ScopedObjectAccess soa(env); 590 591 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); 592 mirror::String* java_name = reinterpret_cast<mirror::String*>(f->GetObject( 593 soa.Decode<mirror::Object*>(java_peer))); 594 std::string thread_name; 595 if (java_name != nullptr) { 596 thread_name = java_name->ToModifiedUtf8(); 597 } else { 598 thread_name = "(Unnamed)"; 599 } 600 601 VLOG(threads) << "Creating native thread for " << thread_name; 602 self->Dump(LOG(INFO)); 603 } 604 605 Runtime* runtime = Runtime::Current(); 606 607 // Atomically start the birth of the thread ensuring the runtime isn't shutting down. 608 bool thread_start_during_shutdown = false; 609 { 610 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 611 if (runtime->IsShuttingDownLocked()) { 612 thread_start_during_shutdown = true; 613 } else { 614 runtime->StartThreadBirth(); 615 } 616 } 617 if (thread_start_during_shutdown) { 618 ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError")); 619 env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown"); 620 return; 621 } 622 623 Thread* child_thread = new Thread(is_daemon); 624 // Use global JNI ref to hold peer live while child thread starts. 625 child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer); 626 stack_size = FixStackSize(stack_size); 627 628 // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to 629 // assign it. 630 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 631 reinterpret_cast<jlong>(child_thread)); 632 633 // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and 634 // do not have a good way to report this on the child's side. 635 std::unique_ptr<JNIEnvExt> child_jni_env_ext( 636 JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM())); 637 638 int pthread_create_result = 0; 639 if (child_jni_env_ext.get() != nullptr) { 640 pthread_t new_pthread; 641 pthread_attr_t attr; 642 child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get(); 643 CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); 644 CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), 645 "PTHREAD_CREATE_DETACHED"); 646 CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); 647 pthread_create_result = pthread_create(&new_pthread, 648 &attr, 649 Thread::CreateCallback, 650 child_thread); 651 CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); 652 653 if (pthread_create_result == 0) { 654 // pthread_create started the new thread. The child is now responsible for managing the 655 // JNIEnvExt we created. 656 // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization 657 // between the threads. 658 child_jni_env_ext.release(); 659 return; 660 } 661 } 662 663 // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up. 664 { 665 MutexLock mu(self, *Locks::runtime_shutdown_lock_); 666 runtime->EndThreadBirth(); 667 } 668 // Manually delete the global reference since Thread::Init will not have been run. 669 env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer); 670 child_thread->tlsPtr_.jpeer = nullptr; 671 delete child_thread; 672 child_thread = nullptr; 673 // TODO: remove from thread group? 674 env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0); 675 { 676 std::string msg(child_jni_env_ext.get() == nullptr ? 677 "Could not allocate JNI Env" : 678 StringPrintf("pthread_create (%s stack) failed: %s", 679 PrettySize(stack_size).c_str(), strerror(pthread_create_result))); 680 ScopedObjectAccess soa(env); 681 soa.Self()->ThrowOutOfMemoryError(msg.c_str()); 682 } 683 } 684 685 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) { 686 // This function does all the initialization that must be run by the native thread it applies to. 687 // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so 688 // we can handshake with the corresponding native thread when it's ready.) Check this native 689 // thread hasn't been through here already... 690 CHECK(Thread::Current() == nullptr); 691 692 // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this 693 // avoids pthread_self_ ever being invalid when discovered from Thread::Current(). 694 tlsPtr_.pthread_self = pthread_self(); 695 CHECK(is_started_); 696 697 SetUpAlternateSignalStack(); 698 if (!InitStackHwm()) { 699 return false; 700 } 701 InitCpu(); 702 InitTlsEntryPoints(); 703 RemoveSuspendTrigger(); 704 InitCardTable(); 705 InitTid(); 706 interpreter::InitInterpreterTls(this); 707 708 #ifdef __ANDROID__ 709 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this; 710 #else 711 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self"); 712 #endif 713 DCHECK_EQ(Thread::Current(), this); 714 715 tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this); 716 717 if (jni_env_ext != nullptr) { 718 DCHECK_EQ(jni_env_ext->vm, java_vm); 719 DCHECK_EQ(jni_env_ext->self, this); 720 tlsPtr_.jni_env = jni_env_ext; 721 } else { 722 tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm); 723 if (tlsPtr_.jni_env == nullptr) { 724 return false; 725 } 726 } 727 728 thread_list->Register(this); 729 return true; 730 } 731 732 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group, 733 bool create_peer) { 734 Runtime* runtime = Runtime::Current(); 735 if (runtime == nullptr) { 736 LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name; 737 return nullptr; 738 } 739 Thread* self; 740 { 741 MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_); 742 if (runtime->IsShuttingDownLocked()) { 743 LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name; 744 return nullptr; 745 } else { 746 Runtime::Current()->StartThreadBirth(); 747 self = new Thread(as_daemon); 748 bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM()); 749 Runtime::Current()->EndThreadBirth(); 750 if (!init_success) { 751 delete self; 752 return nullptr; 753 } 754 } 755 } 756 757 self->InitStringEntryPoints(); 758 759 CHECK_NE(self->GetState(), kRunnable); 760 self->SetState(kNative); 761 762 // If we're the main thread, ClassLinker won't be created until after we're attached, 763 // so that thread needs a two-stage attach. Regular threads don't need this hack. 764 // In the compiler, all threads need this hack, because no-one's going to be getting 765 // a native peer! 766 if (create_peer) { 767 self->CreatePeer(thread_name, as_daemon, thread_group); 768 if (self->IsExceptionPending()) { 769 // We cannot keep the exception around, as we're deleting self. Try to be helpful and log it. 770 { 771 ScopedObjectAccess soa(self); 772 LOG(ERROR) << "Exception creating thread peer:"; 773 LOG(ERROR) << self->GetException()->Dump(); 774 self->ClearException(); 775 } 776 runtime->GetThreadList()->Unregister(self); 777 // Unregister deletes self, no need to do this here. 778 return nullptr; 779 } 780 } else { 781 // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. 782 if (thread_name != nullptr) { 783 self->tlsPtr_.name->assign(thread_name); 784 ::art::SetThreadName(thread_name); 785 } else if (self->GetJniEnv()->check_jni) { 786 LOG(WARNING) << *Thread::Current() << " attached without supplying a name"; 787 } 788 } 789 790 if (VLOG_IS_ON(threads)) { 791 if (thread_name != nullptr) { 792 VLOG(threads) << "Attaching thread " << thread_name; 793 } else { 794 VLOG(threads) << "Attaching unnamed thread."; 795 } 796 ScopedObjectAccess soa(self); 797 self->Dump(LOG(INFO)); 798 } 799 800 { 801 ScopedObjectAccess soa(self); 802 Dbg::PostThreadStart(self); 803 } 804 805 return self; 806 } 807 808 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { 809 Runtime* runtime = Runtime::Current(); 810 CHECK(runtime->IsStarted()); 811 JNIEnv* env = tlsPtr_.jni_env; 812 813 if (thread_group == nullptr) { 814 thread_group = runtime->GetMainThreadGroup(); 815 } 816 ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name)); 817 // Add missing null check in case of OOM b/18297817 818 if (name != nullptr && thread_name.get() == nullptr) { 819 CHECK(IsExceptionPending()); 820 return; 821 } 822 jint thread_priority = GetNativePriority(); 823 jboolean thread_is_daemon = as_daemon; 824 825 ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); 826 if (peer.get() == nullptr) { 827 CHECK(IsExceptionPending()); 828 return; 829 } 830 { 831 ScopedObjectAccess soa(this); 832 tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get()); 833 } 834 env->CallNonvirtualVoidMethod(peer.get(), 835 WellKnownClasses::java_lang_Thread, 836 WellKnownClasses::java_lang_Thread_init, 837 thread_group, thread_name.get(), thread_priority, thread_is_daemon); 838 if (IsExceptionPending()) { 839 return; 840 } 841 842 Thread* self = this; 843 DCHECK_EQ(self, Thread::Current()); 844 env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer, 845 reinterpret_cast<jlong>(self)); 846 847 ScopedObjectAccess soa(self); 848 StackHandleScope<1> hs(self); 849 MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa))); 850 if (peer_thread_name.Get() == nullptr) { 851 // The Thread constructor should have set the Thread.name to a 852 // non-null value. However, because we can run without code 853 // available (in the compiler, in tests), we manually assign the 854 // fields the constructor should have set. 855 if (runtime->IsActiveTransaction()) { 856 InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); 857 } else { 858 InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority); 859 } 860 peer_thread_name.Assign(GetThreadName(soa)); 861 } 862 // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. 863 if (peer_thread_name.Get() != nullptr) { 864 SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); 865 } 866 } 867 868 template<bool kTransactionActive> 869 void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group, 870 jobject thread_name, jint thread_priority) { 871 soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)-> 872 SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon); 873 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)-> 874 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group)); 875 soa.DecodeField(WellKnownClasses::java_lang_Thread_name)-> 876 SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name)); 877 soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)-> 878 SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority); 879 } 880 881 void Thread::SetThreadName(const char* name) { 882 tlsPtr_.name->assign(name); 883 ::art::SetThreadName(name); 884 Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); 885 } 886 887 bool Thread::InitStackHwm() { 888 void* read_stack_base; 889 size_t read_stack_size; 890 size_t read_guard_size; 891 GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size); 892 893 tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base); 894 tlsPtr_.stack_size = read_stack_size; 895 896 // The minimum stack size we can cope with is the overflow reserved bytes (typically 897 // 8K) + the protected region size (4K) + another page (4K). Typically this will 898 // be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes 899 // between 8K and 12K. 900 uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize 901 + 4 * KB; 902 if (read_stack_size <= min_stack) { 903 // Note, as we know the stack is small, avoid operations that could use a lot of stack. 904 LogMessage::LogLineLowStack(__PRETTY_FUNCTION__, __LINE__, ERROR, 905 "Attempt to attach a thread with a too-small stack"); 906 return false; 907 } 908 909 // This is included in the SIGQUIT output, but it's useful here for thread debugging. 910 VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)", 911 read_stack_base, 912 PrettySize(read_stack_size).c_str(), 913 PrettySize(read_guard_size).c_str()); 914 915 // Set stack_end_ to the bottom of the stack saving space of stack overflows 916 917 Runtime* runtime = Runtime::Current(); 918 bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler(); 919 ResetDefaultStackEnd(); 920 921 // Install the protected region if we are doing implicit overflow checks. 922 if (implicit_stack_check) { 923 // The thread might have protected region at the bottom. We need 924 // to install our own region so we need to move the limits 925 // of the stack to make room for it. 926 927 tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize; 928 tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize; 929 tlsPtr_.stack_size -= read_guard_size; 930 931 InstallImplicitProtection(); 932 } 933 934 // Sanity check. 935 int stack_variable; 936 CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end)); 937 938 return true; 939 } 940 941 void Thread::ShortDump(std::ostream& os) const { 942 os << "Thread["; 943 if (GetThreadId() != 0) { 944 // If we're in kStarting, we won't have a thin lock id or tid yet. 945 os << GetThreadId() 946 << ",tid=" << GetTid() << ','; 947 } 948 os << GetState() 949 << ",Thread*=" << this 950 << ",peer=" << tlsPtr_.opeer 951 << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\"" 952 << "]"; 953 } 954 955 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map) const { 956 DumpState(os); 957 DumpStack(os, dump_native_stack, backtrace_map); 958 } 959 960 mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const { 961 ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name); 962 return (tlsPtr_.opeer != nullptr) ? 963 reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr; 964 } 965 966 void Thread::GetThreadName(std::string& name) const { 967 name.assign(*tlsPtr_.name); 968 } 969 970 uint64_t Thread::GetCpuMicroTime() const { 971 #if defined(__linux__) 972 clockid_t cpu_clock_id; 973 pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id); 974 timespec now; 975 clock_gettime(cpu_clock_id, &now); 976 return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000); 977 #else // __APPLE__ 978 UNIMPLEMENTED(WARNING); 979 return -1; 980 #endif 981 } 982 983 // Attempt to rectify locks so that we dump thread list with required locks before exiting. 984 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS { 985 LOG(ERROR) << *thread << " suspend count already zero."; 986 Locks::thread_suspend_count_lock_->Unlock(self); 987 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 988 Locks::mutator_lock_->SharedTryLock(self); 989 if (!Locks::mutator_lock_->IsSharedHeld(self)) { 990 LOG(WARNING) << "Dumping thread list without holding mutator_lock_"; 991 } 992 } 993 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 994 Locks::thread_list_lock_->TryLock(self); 995 if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) { 996 LOG(WARNING) << "Dumping thread list without holding thread_list_lock_"; 997 } 998 } 999 std::ostringstream ss; 1000 Runtime::Current()->GetThreadList()->Dump(ss); 1001 LOG(FATAL) << ss.str(); 1002 } 1003 1004 bool Thread::ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier, 1005 bool for_debugger) { 1006 if (kIsDebugBuild) { 1007 DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count) 1008 << delta << " " << tls32_.debug_suspend_count << " " << this; 1009 DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this; 1010 Locks::thread_suspend_count_lock_->AssertHeld(self); 1011 if (this != self && !IsSuspended()) { 1012 Locks::thread_list_lock_->AssertHeld(self); 1013 } 1014 } 1015 if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) { 1016 UnsafeLogFatalForSuspendCount(self, this); 1017 return false; 1018 } 1019 1020 uint16_t flags = kSuspendRequest; 1021 if (delta > 0 && suspend_barrier != nullptr) { 1022 uint32_t available_barrier = kMaxSuspendBarriers; 1023 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1024 if (tlsPtr_.active_suspend_barriers[i] == nullptr) { 1025 available_barrier = i; 1026 break; 1027 } 1028 } 1029 if (available_barrier == kMaxSuspendBarriers) { 1030 // No barrier spaces available, we can't add another. 1031 return false; 1032 } 1033 tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier; 1034 flags |= kActiveSuspendBarrier; 1035 } 1036 1037 tls32_.suspend_count += delta; 1038 if (for_debugger) { 1039 tls32_.debug_suspend_count += delta; 1040 } 1041 1042 if (tls32_.suspend_count == 0) { 1043 AtomicClearFlag(kSuspendRequest); 1044 } else { 1045 // Two bits might be set simultaneously. 1046 tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags); 1047 TriggerSuspend(); 1048 } 1049 return true; 1050 } 1051 1052 bool Thread::PassActiveSuspendBarriers(Thread* self) { 1053 // Grab the suspend_count lock and copy the current set of 1054 // barriers. Then clear the list and the flag. The ModifySuspendCount 1055 // function requires the lock so we prevent a race between setting 1056 // the kActiveSuspendBarrier flag and clearing it. 1057 AtomicInteger* pass_barriers[kMaxSuspendBarriers]; 1058 { 1059 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 1060 if (!ReadFlag(kActiveSuspendBarrier)) { 1061 // quick exit test: the barriers have already been claimed - this is 1062 // possible as there may be a race to claim and it doesn't matter 1063 // who wins. 1064 // All of the callers of this function (except the SuspendAllInternal) 1065 // will first test the kActiveSuspendBarrier flag without lock. Here 1066 // double-check whether the barrier has been passed with the 1067 // suspend_count lock. 1068 return false; 1069 } 1070 1071 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1072 pass_barriers[i] = tlsPtr_.active_suspend_barriers[i]; 1073 tlsPtr_.active_suspend_barriers[i] = nullptr; 1074 } 1075 AtomicClearFlag(kActiveSuspendBarrier); 1076 } 1077 1078 uint32_t barrier_count = 0; 1079 for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) { 1080 AtomicInteger* pending_threads = pass_barriers[i]; 1081 if (pending_threads != nullptr) { 1082 bool done = false; 1083 do { 1084 int32_t cur_val = pending_threads->LoadRelaxed(); 1085 CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val; 1086 // Reduce value by 1. 1087 done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1); 1088 #if ART_USE_FUTEXES 1089 if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously. 1090 futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0); 1091 } 1092 #endif 1093 } while (!done); 1094 ++barrier_count; 1095 } 1096 } 1097 CHECK_GT(barrier_count, 0U); 1098 return true; 1099 } 1100 1101 void Thread::ClearSuspendBarrier(AtomicInteger* target) { 1102 CHECK(ReadFlag(kActiveSuspendBarrier)); 1103 bool clear_flag = true; 1104 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1105 AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i]; 1106 if (ptr == target) { 1107 tlsPtr_.active_suspend_barriers[i] = nullptr; 1108 } else if (ptr != nullptr) { 1109 clear_flag = false; 1110 } 1111 } 1112 if (LIKELY(clear_flag)) { 1113 AtomicClearFlag(kActiveSuspendBarrier); 1114 } 1115 } 1116 1117 void Thread::RunCheckpointFunction() { 1118 Closure *checkpoints[kMaxCheckpoints]; 1119 1120 // Grab the suspend_count lock and copy the current set of 1121 // checkpoints. Then clear the list and the flag. The RequestCheckpoint 1122 // function will also grab this lock so we prevent a race between setting 1123 // the kCheckpointRequest flag and clearing it. 1124 { 1125 MutexLock mu(this, *Locks::thread_suspend_count_lock_); 1126 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 1127 checkpoints[i] = tlsPtr_.checkpoint_functions[i]; 1128 tlsPtr_.checkpoint_functions[i] = nullptr; 1129 } 1130 AtomicClearFlag(kCheckpointRequest); 1131 } 1132 1133 // Outside the lock, run all the checkpoint functions that 1134 // we collected. 1135 bool found_checkpoint = false; 1136 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 1137 if (checkpoints[i] != nullptr) { 1138 ScopedTrace trace("Run checkpoint function"); 1139 checkpoints[i]->Run(this); 1140 found_checkpoint = true; 1141 } 1142 } 1143 CHECK(found_checkpoint); 1144 } 1145 1146 bool Thread::RequestCheckpoint(Closure* function) { 1147 union StateAndFlags old_state_and_flags; 1148 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 1149 if (old_state_and_flags.as_struct.state != kRunnable) { 1150 return false; // Fail, thread is suspended and so can't run a checkpoint. 1151 } 1152 1153 uint32_t available_checkpoint = kMaxCheckpoints; 1154 for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) { 1155 if (tlsPtr_.checkpoint_functions[i] == nullptr) { 1156 available_checkpoint = i; 1157 break; 1158 } 1159 } 1160 if (available_checkpoint == kMaxCheckpoints) { 1161 // No checkpoint functions available, we can't run a checkpoint 1162 return false; 1163 } 1164 tlsPtr_.checkpoint_functions[available_checkpoint] = function; 1165 1166 // Checkpoint function installed now install flag bit. 1167 // We must be runnable to request a checkpoint. 1168 DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable); 1169 union StateAndFlags new_state_and_flags; 1170 new_state_and_flags.as_int = old_state_and_flags.as_int; 1171 new_state_and_flags.as_struct.flags |= kCheckpointRequest; 1172 bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent( 1173 old_state_and_flags.as_int, new_state_and_flags.as_int); 1174 if (UNLIKELY(!success)) { 1175 // The thread changed state before the checkpoint was installed. 1176 CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function); 1177 tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr; 1178 } else { 1179 CHECK_EQ(ReadFlag(kCheckpointRequest), true); 1180 TriggerSuspend(); 1181 } 1182 return success; 1183 } 1184 1185 Closure* Thread::GetFlipFunction() { 1186 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function); 1187 Closure* func; 1188 do { 1189 func = atomic_func->LoadRelaxed(); 1190 if (func == nullptr) { 1191 return nullptr; 1192 } 1193 } while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr)); 1194 DCHECK(func != nullptr); 1195 return func; 1196 } 1197 1198 void Thread::SetFlipFunction(Closure* function) { 1199 CHECK(function != nullptr); 1200 Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function); 1201 atomic_func->StoreSequentiallyConsistent(function); 1202 } 1203 1204 void Thread::FullSuspendCheck() { 1205 ScopedTrace trace(__FUNCTION__); 1206 VLOG(threads) << this << " self-suspending"; 1207 // Make thread appear suspended to other threads, release mutator_lock_. 1208 tls32_.suspended_at_suspend_check = true; 1209 // Transition to suspended and back to runnable, re-acquire share on mutator_lock_. 1210 ScopedThreadSuspension(this, kSuspended); 1211 tls32_.suspended_at_suspend_check = false; 1212 VLOG(threads) << this << " self-reviving"; 1213 } 1214 1215 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { 1216 std::string group_name; 1217 int priority; 1218 bool is_daemon = false; 1219 Thread* self = Thread::Current(); 1220 1221 // If flip_function is not null, it means we have run a checkpoint 1222 // before the thread wakes up to execute the flip function and the 1223 // thread roots haven't been forwarded. So the following access to 1224 // the roots (opeer or methods in the frames) would be bad. Run it 1225 // here. TODO: clean up. 1226 if (thread != nullptr) { 1227 ScopedObjectAccessUnchecked soa(self); 1228 Thread* this_thread = const_cast<Thread*>(thread); 1229 Closure* flip_func = this_thread->GetFlipFunction(); 1230 if (flip_func != nullptr) { 1231 flip_func->Run(this_thread); 1232 } 1233 } 1234 1235 // Don't do this if we are aborting since the GC may have all the threads suspended. This will 1236 // cause ScopedObjectAccessUnchecked to deadlock. 1237 if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) { 1238 ScopedObjectAccessUnchecked soa(self); 1239 priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority) 1240 ->GetInt(thread->tlsPtr_.opeer); 1241 is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon) 1242 ->GetBoolean(thread->tlsPtr_.opeer); 1243 1244 mirror::Object* thread_group = 1245 soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer); 1246 1247 if (thread_group != nullptr) { 1248 ArtField* group_name_field = 1249 soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); 1250 mirror::String* group_name_string = 1251 reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group)); 1252 group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>"; 1253 } 1254 } else { 1255 priority = GetNativePriority(); 1256 } 1257 1258 std::string scheduler_group_name(GetSchedulerGroupName(tid)); 1259 if (scheduler_group_name.empty()) { 1260 scheduler_group_name = "default"; 1261 } 1262 1263 if (thread != nullptr) { 1264 os << '"' << *thread->tlsPtr_.name << '"'; 1265 if (is_daemon) { 1266 os << " daemon"; 1267 } 1268 os << " prio=" << priority 1269 << " tid=" << thread->GetThreadId() 1270 << " " << thread->GetState(); 1271 if (thread->IsStillStarting()) { 1272 os << " (still starting up)"; 1273 } 1274 os << "\n"; 1275 } else { 1276 os << '"' << ::art::GetThreadName(tid) << '"' 1277 << " prio=" << priority 1278 << " (not attached)\n"; 1279 } 1280 1281 if (thread != nullptr) { 1282 MutexLock mu(self, *Locks::thread_suspend_count_lock_); 1283 os << " | group=\"" << group_name << "\"" 1284 << " sCount=" << thread->tls32_.suspend_count 1285 << " dsCount=" << thread->tls32_.debug_suspend_count 1286 << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer) 1287 << " self=" << reinterpret_cast<const void*>(thread) << "\n"; 1288 } 1289 1290 os << " | sysTid=" << tid 1291 << " nice=" << getpriority(PRIO_PROCESS, tid) 1292 << " cgrp=" << scheduler_group_name; 1293 if (thread != nullptr) { 1294 int policy; 1295 sched_param sp; 1296 CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp), 1297 __FUNCTION__); 1298 os << " sched=" << policy << "/" << sp.sched_priority 1299 << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self); 1300 } 1301 os << "\n"; 1302 1303 // Grab the scheduler stats for this thread. 1304 std::string scheduler_stats; 1305 if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { 1306 scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. 1307 } else { 1308 scheduler_stats = "0 0 0"; 1309 } 1310 1311 char native_thread_state = '?'; 1312 int utime = 0; 1313 int stime = 0; 1314 int task_cpu = 0; 1315 GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu); 1316 1317 os << " | state=" << native_thread_state 1318 << " schedstat=( " << scheduler_stats << " )" 1319 << " utm=" << utime 1320 << " stm=" << stime 1321 << " core=" << task_cpu 1322 << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; 1323 if (thread != nullptr) { 1324 os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-" 1325 << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize=" 1326 << PrettySize(thread->tlsPtr_.stack_size) << "\n"; 1327 // Dump the held mutexes. 1328 os << " | held mutexes="; 1329 for (size_t i = 0; i < kLockLevelCount; ++i) { 1330 if (i != kMonitorLock) { 1331 BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i)); 1332 if (mutex != nullptr) { 1333 os << " \"" << mutex->GetName() << "\""; 1334 if (mutex->IsReaderWriterMutex()) { 1335 ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex); 1336 if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) { 1337 os << "(exclusive held)"; 1338 } else { 1339 os << "(shared held)"; 1340 } 1341 } 1342 } 1343 } 1344 } 1345 os << "\n"; 1346 } 1347 } 1348 1349 void Thread::DumpState(std::ostream& os) const { 1350 Thread::DumpState(os, this, GetTid()); 1351 } 1352 1353 struct StackDumpVisitor : public StackVisitor { 1354 StackDumpVisitor(std::ostream& os_in, Thread* thread_in, Context* context, bool can_allocate_in) 1355 SHARED_REQUIRES(Locks::mutator_lock_) 1356 : StackVisitor(thread_in, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 1357 os(os_in), 1358 can_allocate(can_allocate_in), 1359 last_method(nullptr), 1360 last_line_number(0), 1361 repetition_count(0), 1362 frame_count(0) {} 1363 1364 virtual ~StackDumpVisitor() { 1365 if (frame_count == 0) { 1366 os << " (no managed stack frames)\n"; 1367 } 1368 } 1369 1370 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) { 1371 ArtMethod* m = GetMethod(); 1372 if (m->IsRuntimeMethod()) { 1373 return true; 1374 } 1375 m = m->GetInterfaceMethodIfProxy(sizeof(void*)); 1376 const int kMaxRepetition = 3; 1377 mirror::Class* c = m->GetDeclaringClass(); 1378 mirror::DexCache* dex_cache = c->GetDexCache(); 1379 int line_number = -1; 1380 if (dex_cache != nullptr) { // be tolerant of bad input 1381 const DexFile& dex_file = *dex_cache->GetDexFile(); 1382 line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false)); 1383 } 1384 if (line_number == last_line_number && last_method == m) { 1385 ++repetition_count; 1386 } else { 1387 if (repetition_count >= kMaxRepetition) { 1388 os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; 1389 } 1390 repetition_count = 0; 1391 last_line_number = line_number; 1392 last_method = m; 1393 } 1394 if (repetition_count < kMaxRepetition) { 1395 os << " at " << PrettyMethod(m, false); 1396 if (m->IsNative()) { 1397 os << "(Native method)"; 1398 } else { 1399 const char* source_file(m->GetDeclaringClassSourceFile()); 1400 os << "(" << (source_file != nullptr ? source_file : "unavailable") 1401 << ":" << line_number << ")"; 1402 } 1403 os << "\n"; 1404 if (frame_count == 0) { 1405 Monitor::DescribeWait(os, GetThread()); 1406 } 1407 if (can_allocate) { 1408 // Visit locks, but do not abort on errors. This would trigger a nested abort. 1409 Monitor::VisitLocks(this, DumpLockedObject, &os, false); 1410 } 1411 } 1412 1413 ++frame_count; 1414 return true; 1415 } 1416 1417 static void DumpLockedObject(mirror::Object* o, void* context) 1418 SHARED_REQUIRES(Locks::mutator_lock_) { 1419 std::ostream& os = *reinterpret_cast<std::ostream*>(context); 1420 os << " - locked "; 1421 if (o == nullptr) { 1422 os << "an unknown object"; 1423 } else { 1424 if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) && 1425 Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) { 1426 // Getting the identity hashcode here would result in lock inflation and suspension of the 1427 // current thread, which isn't safe if this is the only runnable thread. 1428 os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o), 1429 PrettyTypeOf(o).c_str()); 1430 } else { 1431 // IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So 1432 // we get the pretty type beofre we call IdentityHashCode. 1433 const std::string pretty_type(PrettyTypeOf(o)); 1434 os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str()); 1435 } 1436 } 1437 os << "\n"; 1438 } 1439 1440 std::ostream& os; 1441 const bool can_allocate; 1442 ArtMethod* last_method; 1443 int last_line_number; 1444 int repetition_count; 1445 int frame_count; 1446 }; 1447 1448 static bool ShouldShowNativeStack(const Thread* thread) 1449 SHARED_REQUIRES(Locks::mutator_lock_) { 1450 ThreadState state = thread->GetState(); 1451 1452 // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting. 1453 if (state > kWaiting && state < kStarting) { 1454 return true; 1455 } 1456 1457 // In an Object.wait variant or Thread.sleep? That's not interesting. 1458 if (state == kTimedWaiting || state == kSleeping || state == kWaiting) { 1459 return false; 1460 } 1461 1462 // Threads with no managed stack frames should be shown. 1463 const ManagedStack* managed_stack = thread->GetManagedStack(); 1464 if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr && 1465 managed_stack->GetTopShadowFrame() == nullptr)) { 1466 return true; 1467 } 1468 1469 // In some other native method? That's interesting. 1470 // We don't just check kNative because native methods will be in state kSuspended if they're 1471 // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the 1472 // thread-startup states if it's early enough in their life cycle (http://b/7432159). 1473 ArtMethod* current_method = thread->GetCurrentMethod(nullptr); 1474 return current_method != nullptr && current_method->IsNative(); 1475 } 1476 1477 void Thread::DumpJavaStack(std::ostream& os) const { 1478 // If flip_function is not null, it means we have run a checkpoint 1479 // before the thread wakes up to execute the flip function and the 1480 // thread roots haven't been forwarded. So the following access to 1481 // the roots (locks or methods in the frames) would be bad. Run it 1482 // here. TODO: clean up. 1483 { 1484 Thread* this_thread = const_cast<Thread*>(this); 1485 Closure* flip_func = this_thread->GetFlipFunction(); 1486 if (flip_func != nullptr) { 1487 flip_func->Run(this_thread); 1488 } 1489 } 1490 1491 // Dumping the Java stack involves the verifier for locks. The verifier operates under the 1492 // assumption that there is no exception pending on entry. Thus, stash any pending exception. 1493 // Thread::Current() instead of this in case a thread is dumping the stack of another suspended 1494 // thread. 1495 StackHandleScope<1> scope(Thread::Current()); 1496 Handle<mirror::Throwable> exc; 1497 bool have_exception = false; 1498 if (IsExceptionPending()) { 1499 exc = scope.NewHandle(GetException()); 1500 const_cast<Thread*>(this)->ClearException(); 1501 have_exception = true; 1502 } 1503 1504 std::unique_ptr<Context> context(Context::Create()); 1505 StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(), 1506 !tls32_.throwing_OutOfMemoryError); 1507 dumper.WalkStack(); 1508 1509 if (have_exception) { 1510 const_cast<Thread*>(this)->SetException(exc.Get()); 1511 } 1512 } 1513 1514 void Thread::DumpStack(std::ostream& os, 1515 bool dump_native_stack, 1516 BacktraceMap* backtrace_map) const { 1517 // TODO: we call this code when dying but may not have suspended the thread ourself. The 1518 // IsSuspended check is therefore racy with the use for dumping (normally we inhibit 1519 // the race with the thread_suspend_count_lock_). 1520 bool dump_for_abort = (gAborting > 0); 1521 bool safe_to_dump = (this == Thread::Current() || IsSuspended()); 1522 if (!kIsDebugBuild) { 1523 // We always want to dump the stack for an abort, however, there is no point dumping another 1524 // thread's stack in debug builds where we'll hit the not suspended check in the stack walk. 1525 safe_to_dump = (safe_to_dump || dump_for_abort); 1526 } 1527 if (safe_to_dump) { 1528 // If we're currently in native code, dump that stack before dumping the managed stack. 1529 if (dump_native_stack && (dump_for_abort || ShouldShowNativeStack(this))) { 1530 DumpKernelStack(os, GetTid(), " kernel: ", false); 1531 ArtMethod* method = GetCurrentMethod(nullptr, !dump_for_abort); 1532 DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method); 1533 } 1534 DumpJavaStack(os); 1535 } else { 1536 os << "Not able to dump stack of thread that isn't suspended"; 1537 } 1538 } 1539 1540 void Thread::ThreadExitCallback(void* arg) { 1541 Thread* self = reinterpret_cast<Thread*>(arg); 1542 if (self->tls32_.thread_exit_check_count == 0) { 1543 LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's " 1544 "going to use a pthread_key_create destructor?): " << *self; 1545 CHECK(is_started_); 1546 #ifdef __ANDROID__ 1547 __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self; 1548 #else 1549 CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self"); 1550 #endif 1551 self->tls32_.thread_exit_check_count = 1; 1552 } else { 1553 LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; 1554 } 1555 } 1556 1557 void Thread::Startup() { 1558 CHECK(!is_started_); 1559 is_started_ = true; 1560 { 1561 // MutexLock to keep annotalysis happy. 1562 // 1563 // Note we use null for the thread because Thread::Current can 1564 // return garbage since (is_started_ == true) and 1565 // Thread::pthread_key_self_ is not yet initialized. 1566 // This was seen on glibc. 1567 MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_); 1568 resume_cond_ = new ConditionVariable("Thread resumption condition variable", 1569 *Locks::thread_suspend_count_lock_); 1570 } 1571 1572 // Allocate a TLS slot. 1573 CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), 1574 "self key"); 1575 1576 // Double-check the TLS slot allocation. 1577 if (pthread_getspecific(pthread_key_self_) != nullptr) { 1578 LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr"; 1579 } 1580 } 1581 1582 void Thread::FinishStartup() { 1583 Runtime* runtime = Runtime::Current(); 1584 CHECK(runtime->IsStarted()); 1585 1586 // Finish attaching the main thread. 1587 ScopedObjectAccess soa(Thread::Current()); 1588 Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); 1589 Thread::Current()->AssertNoPendingException(); 1590 1591 Runtime::Current()->GetClassLinker()->RunRootClinits(); 1592 } 1593 1594 void Thread::Shutdown() { 1595 CHECK(is_started_); 1596 is_started_ = false; 1597 CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); 1598 MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_); 1599 if (resume_cond_ != nullptr) { 1600 delete resume_cond_; 1601 resume_cond_ = nullptr; 1602 } 1603 } 1604 1605 Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) { 1606 wait_mutex_ = new Mutex("a thread wait mutex"); 1607 wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_); 1608 tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>; 1609 tlsPtr_.name = new std::string(kThreadNameDuringStartup); 1610 tlsPtr_.nested_signal_state = static_cast<jmp_buf*>(malloc(sizeof(jmp_buf))); 1611 1612 static_assert((sizeof(Thread) % 4) == 0U, 1613 "art::Thread has a size which is not a multiple of 4."); 1614 tls32_.state_and_flags.as_struct.flags = 0; 1615 tls32_.state_and_flags.as_struct.state = kNative; 1616 memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes)); 1617 std::fill(tlsPtr_.rosalloc_runs, 1618 tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread, 1619 gc::allocator::RosAlloc::GetDedicatedFullRun()); 1620 for (uint32_t i = 0; i < kMaxCheckpoints; ++i) { 1621 tlsPtr_.checkpoint_functions[i] = nullptr; 1622 } 1623 for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) { 1624 tlsPtr_.active_suspend_barriers[i] = nullptr; 1625 } 1626 tlsPtr_.flip_function = nullptr; 1627 tlsPtr_.thread_local_mark_stack = nullptr; 1628 tls32_.suspended_at_suspend_check = false; 1629 } 1630 1631 bool Thread::IsStillStarting() const { 1632 // You might think you can check whether the state is kStarting, but for much of thread startup, 1633 // the thread is in kNative; it might also be in kVmWait. 1634 // You might think you can check whether the peer is null, but the peer is actually created and 1635 // assigned fairly early on, and needs to be. 1636 // It turns out that the last thing to change is the thread name; that's a good proxy for "has 1637 // this thread _ever_ entered kRunnable". 1638 return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) || 1639 (*tlsPtr_.name == kThreadNameDuringStartup); 1640 } 1641 1642 void Thread::AssertPendingException() const { 1643 CHECK(IsExceptionPending()) << "Pending exception expected."; 1644 } 1645 1646 void Thread::AssertPendingOOMException() const { 1647 AssertPendingException(); 1648 auto* e = GetException(); 1649 CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass()) 1650 << e->Dump(); 1651 } 1652 1653 void Thread::AssertNoPendingException() const { 1654 if (UNLIKELY(IsExceptionPending())) { 1655 ScopedObjectAccess soa(Thread::Current()); 1656 mirror::Throwable* exception = GetException(); 1657 LOG(FATAL) << "No pending exception expected: " << exception->Dump(); 1658 } 1659 } 1660 1661 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const { 1662 if (UNLIKELY(IsExceptionPending())) { 1663 ScopedObjectAccess soa(Thread::Current()); 1664 mirror::Throwable* exception = GetException(); 1665 LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: " 1666 << exception->Dump(); 1667 } 1668 } 1669 1670 class MonitorExitVisitor : public SingleRootVisitor { 1671 public: 1672 explicit MonitorExitVisitor(Thread* self) : self_(self) { } 1673 1674 // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit. 1675 void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED) 1676 OVERRIDE NO_THREAD_SAFETY_ANALYSIS { 1677 if (self_->HoldsLock(entered_monitor)) { 1678 LOG(WARNING) << "Calling MonitorExit on object " 1679 << entered_monitor << " (" << PrettyTypeOf(entered_monitor) << ")" 1680 << " left locked by native thread " 1681 << *Thread::Current() << " which is detaching"; 1682 entered_monitor->MonitorExit(self_); 1683 } 1684 } 1685 1686 private: 1687 Thread* const self_; 1688 }; 1689 1690 void Thread::Destroy() { 1691 Thread* self = this; 1692 DCHECK_EQ(self, Thread::Current()); 1693 1694 if (tlsPtr_.jni_env != nullptr) { 1695 { 1696 ScopedObjectAccess soa(self); 1697 MonitorExitVisitor visitor(self); 1698 // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. 1699 tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal)); 1700 } 1701 // Release locally held global references which releasing may require the mutator lock. 1702 if (tlsPtr_.jpeer != nullptr) { 1703 // If pthread_create fails we don't have a jni env here. 1704 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer); 1705 tlsPtr_.jpeer = nullptr; 1706 } 1707 if (tlsPtr_.class_loader_override != nullptr) { 1708 tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override); 1709 tlsPtr_.class_loader_override = nullptr; 1710 } 1711 } 1712 1713 if (tlsPtr_.opeer != nullptr) { 1714 ScopedObjectAccess soa(self); 1715 // We may need to call user-supplied managed code, do this before final clean-up. 1716 HandleUncaughtExceptions(soa); 1717 RemoveFromThreadGroup(soa); 1718 1719 // this.nativePeer = 0; 1720 if (Runtime::Current()->IsActiveTransaction()) { 1721 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) 1722 ->SetLong<true>(tlsPtr_.opeer, 0); 1723 } else { 1724 soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer) 1725 ->SetLong<false>(tlsPtr_.opeer, 0); 1726 } 1727 Dbg::PostThreadDeath(self); 1728 1729 // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone 1730 // who is waiting. 1731 mirror::Object* lock = 1732 soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer); 1733 // (This conditional is only needed for tests, where Thread.lock won't have been set.) 1734 if (lock != nullptr) { 1735 StackHandleScope<1> hs(self); 1736 Handle<mirror::Object> h_obj(hs.NewHandle(lock)); 1737 ObjectLock<mirror::Object> locker(self, h_obj); 1738 locker.NotifyAll(); 1739 } 1740 tlsPtr_.opeer = nullptr; 1741 } 1742 1743 { 1744 ScopedObjectAccess soa(self); 1745 Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this); 1746 if (kUseReadBarrier) { 1747 Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this); 1748 } 1749 } 1750 } 1751 1752 Thread::~Thread() { 1753 CHECK(tlsPtr_.class_loader_override == nullptr); 1754 CHECK(tlsPtr_.jpeer == nullptr); 1755 CHECK(tlsPtr_.opeer == nullptr); 1756 bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run? 1757 if (initialized) { 1758 delete tlsPtr_.jni_env; 1759 tlsPtr_.jni_env = nullptr; 1760 } 1761 CHECK_NE(GetState(), kRunnable); 1762 CHECK_NE(ReadFlag(kCheckpointRequest), true); 1763 CHECK(tlsPtr_.checkpoint_functions[0] == nullptr); 1764 CHECK(tlsPtr_.checkpoint_functions[1] == nullptr); 1765 CHECK(tlsPtr_.checkpoint_functions[2] == nullptr); 1766 CHECK(tlsPtr_.flip_function == nullptr); 1767 CHECK_EQ(tls32_.suspended_at_suspend_check, false); 1768 1769 // Make sure we processed all deoptimization requests. 1770 CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization"; 1771 CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) << 1772 "Not all deoptimized frames have been consumed by the debugger."; 1773 1774 // We may be deleting a still born thread. 1775 SetStateUnsafe(kTerminated); 1776 1777 delete wait_cond_; 1778 delete wait_mutex_; 1779 1780 if (tlsPtr_.long_jump_context != nullptr) { 1781 delete tlsPtr_.long_jump_context; 1782 } 1783 1784 if (initialized) { 1785 CleanupCpu(); 1786 } 1787 1788 if (tlsPtr_.single_step_control != nullptr) { 1789 delete tlsPtr_.single_step_control; 1790 } 1791 delete tlsPtr_.instrumentation_stack; 1792 delete tlsPtr_.name; 1793 delete tlsPtr_.stack_trace_sample; 1794 free(tlsPtr_.nested_signal_state); 1795 1796 Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this); 1797 1798 TearDownAlternateSignalStack(); 1799 } 1800 1801 void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) { 1802 if (!IsExceptionPending()) { 1803 return; 1804 } 1805 ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 1806 ScopedThreadStateChange tsc(this, kNative); 1807 1808 // Get and clear the exception. 1809 ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred()); 1810 tlsPtr_.jni_env->ExceptionClear(); 1811 1812 // If the thread has its own handler, use that. 1813 ScopedLocalRef<jobject> handler(tlsPtr_.jni_env, 1814 tlsPtr_.jni_env->GetObjectField(peer.get(), 1815 WellKnownClasses::java_lang_Thread_uncaughtHandler)); 1816 if (handler.get() == nullptr) { 1817 // Otherwise use the thread group's default handler. 1818 handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(), 1819 WellKnownClasses::java_lang_Thread_group)); 1820 } 1821 1822 // Call the handler. 1823 tlsPtr_.jni_env->CallVoidMethod(handler.get(), 1824 WellKnownClasses::java_lang_Thread__UncaughtExceptionHandler_uncaughtException, 1825 peer.get(), exception.get()); 1826 1827 // If the handler threw, clear that exception too. 1828 tlsPtr_.jni_env->ExceptionClear(); 1829 } 1830 1831 void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) { 1832 // this.group.removeThread(this); 1833 // group can be null if we're in the compiler or a test. 1834 mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group) 1835 ->GetObject(tlsPtr_.opeer); 1836 if (ogroup != nullptr) { 1837 ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup)); 1838 ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer)); 1839 ScopedThreadStateChange tsc(soa.Self(), kNative); 1840 tlsPtr_.jni_env->CallVoidMethod(group.get(), 1841 WellKnownClasses::java_lang_ThreadGroup_removeThread, 1842 peer.get()); 1843 } 1844 } 1845 1846 size_t Thread::NumHandleReferences() { 1847 size_t count = 0; 1848 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur != nullptr; cur = cur->GetLink()) { 1849 count += cur->NumberOfReferences(); 1850 } 1851 return count; 1852 } 1853 1854 bool Thread::HandleScopeContains(jobject obj) const { 1855 StackReference<mirror::Object>* hs_entry = 1856 reinterpret_cast<StackReference<mirror::Object>*>(obj); 1857 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) { 1858 if (cur->Contains(hs_entry)) { 1859 return true; 1860 } 1861 } 1862 // JNI code invoked from portable code uses shadow frames rather than the handle scope. 1863 return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry); 1864 } 1865 1866 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) { 1867 BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor( 1868 visitor, RootInfo(kRootNativeStack, thread_id)); 1869 for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) { 1870 for (size_t j = 0, count = cur->NumberOfReferences(); j < count; ++j) { 1871 // GetReference returns a pointer to the stack reference within the handle scope. If this 1872 // needs to be updated, it will be done by the root visitor. 1873 buffered_visitor.VisitRootIfNonNull(cur->GetHandle(j).GetReference()); 1874 } 1875 } 1876 } 1877 1878 mirror::Object* Thread::DecodeJObject(jobject obj) const { 1879 if (obj == nullptr) { 1880 return nullptr; 1881 } 1882 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 1883 IndirectRefKind kind = GetIndirectRefKind(ref); 1884 mirror::Object* result; 1885 bool expect_null = false; 1886 // The "kinds" below are sorted by the frequency we expect to encounter them. 1887 if (kind == kLocal) { 1888 IndirectReferenceTable& locals = tlsPtr_.jni_env->locals; 1889 // Local references do not need a read barrier. 1890 result = locals.Get<kWithoutReadBarrier>(ref); 1891 } else if (kind == kHandleScopeOrInvalid) { 1892 // TODO: make stack indirect reference table lookup more efficient. 1893 // Check if this is a local reference in the handle scope. 1894 if (LIKELY(HandleScopeContains(obj))) { 1895 // Read from handle scope. 1896 result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr(); 1897 VerifyObject(result); 1898 } else { 1899 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj); 1900 expect_null = true; 1901 result = nullptr; 1902 } 1903 } else if (kind == kGlobal) { 1904 result = tlsPtr_.jni_env->vm->DecodeGlobal(ref); 1905 } else { 1906 DCHECK_EQ(kind, kWeakGlobal); 1907 result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref); 1908 if (Runtime::Current()->IsClearedJniWeakGlobal(result)) { 1909 // This is a special case where it's okay to return null. 1910 expect_null = true; 1911 result = nullptr; 1912 } 1913 } 1914 1915 if (UNLIKELY(!expect_null && result == nullptr)) { 1916 tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p", 1917 ToStr<IndirectRefKind>(kind).c_str(), obj); 1918 } 1919 return result; 1920 } 1921 1922 bool Thread::IsJWeakCleared(jweak obj) const { 1923 CHECK(obj != nullptr); 1924 IndirectRef ref = reinterpret_cast<IndirectRef>(obj); 1925 IndirectRefKind kind = GetIndirectRefKind(ref); 1926 CHECK_EQ(kind, kWeakGlobal); 1927 return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref); 1928 } 1929 1930 // Implements java.lang.Thread.interrupted. 1931 bool Thread::Interrupted() { 1932 MutexLock mu(Thread::Current(), *wait_mutex_); 1933 bool interrupted = IsInterruptedLocked(); 1934 SetInterruptedLocked(false); 1935 return interrupted; 1936 } 1937 1938 // Implements java.lang.Thread.isInterrupted. 1939 bool Thread::IsInterrupted() { 1940 MutexLock mu(Thread::Current(), *wait_mutex_); 1941 return IsInterruptedLocked(); 1942 } 1943 1944 void Thread::Interrupt(Thread* self) { 1945 MutexLock mu(self, *wait_mutex_); 1946 if (interrupted_) { 1947 return; 1948 } 1949 interrupted_ = true; 1950 NotifyLocked(self); 1951 } 1952 1953 void Thread::Notify() { 1954 Thread* self = Thread::Current(); 1955 MutexLock mu(self, *wait_mutex_); 1956 NotifyLocked(self); 1957 } 1958 1959 void Thread::NotifyLocked(Thread* self) { 1960 if (wait_monitor_ != nullptr) { 1961 wait_cond_->Signal(self); 1962 } 1963 } 1964 1965 void Thread::SetClassLoaderOverride(jobject class_loader_override) { 1966 if (tlsPtr_.class_loader_override != nullptr) { 1967 GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override); 1968 } 1969 tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override); 1970 } 1971 1972 class CountStackDepthVisitor : public StackVisitor { 1973 public: 1974 explicit CountStackDepthVisitor(Thread* thread) 1975 SHARED_REQUIRES(Locks::mutator_lock_) 1976 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 1977 depth_(0), skip_depth_(0), skipping_(true) {} 1978 1979 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) { 1980 // We want to skip frames up to and including the exception's constructor. 1981 // Note we also skip the frame if it doesn't have a method (namely the callee 1982 // save frame) 1983 ArtMethod* m = GetMethod(); 1984 if (skipping_ && !m->IsRuntimeMethod() && 1985 !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { 1986 skipping_ = false; 1987 } 1988 if (!skipping_) { 1989 if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). 1990 ++depth_; 1991 } 1992 } else { 1993 ++skip_depth_; 1994 } 1995 return true; 1996 } 1997 1998 int GetDepth() const { 1999 return depth_; 2000 } 2001 2002 int GetSkipDepth() const { 2003 return skip_depth_; 2004 } 2005 2006 private: 2007 uint32_t depth_; 2008 uint32_t skip_depth_; 2009 bool skipping_; 2010 2011 DISALLOW_COPY_AND_ASSIGN(CountStackDepthVisitor); 2012 }; 2013 2014 template<bool kTransactionActive> 2015 class BuildInternalStackTraceVisitor : public StackVisitor { 2016 public: 2017 BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth) 2018 : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 2019 self_(self), 2020 skip_depth_(skip_depth), 2021 count_(0), 2022 trace_(nullptr), 2023 pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {} 2024 2025 bool Init(int depth) SHARED_REQUIRES(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) { 2026 // Allocate method trace as an object array where the first element is a pointer array that 2027 // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring 2028 // class of the ArtMethod pointers. 2029 ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); 2030 StackHandleScope<1> hs(self_); 2031 mirror::Class* array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass); 2032 // The first element is the methods and dex pc array, the other elements are declaring classes 2033 // for the methods to ensure classes in the stack trace don't get unloaded. 2034 Handle<mirror::ObjectArray<mirror::Object>> trace( 2035 hs.NewHandle( 2036 mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1))); 2037 if (trace.Get() == nullptr) { 2038 // Acquire uninterruptible_ in all paths. 2039 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 2040 self_->AssertPendingOOMException(); 2041 return false; 2042 } 2043 mirror::PointerArray* methods_and_pcs = class_linker->AllocPointerArray(self_, depth * 2); 2044 const char* last_no_suspend_cause = 2045 self_->StartAssertNoThreadSuspension("Building internal stack trace"); 2046 if (methods_and_pcs == nullptr) { 2047 self_->AssertPendingOOMException(); 2048 return false; 2049 } 2050 trace->Set(0, methods_and_pcs); 2051 trace_ = trace.Get(); 2052 // If We are called from native, use non-transactional mode. 2053 CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause; 2054 return true; 2055 } 2056 2057 virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) { 2058 self_->EndAssertNoThreadSuspension(nullptr); 2059 } 2060 2061 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) { 2062 if (trace_ == nullptr) { 2063 return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. 2064 } 2065 if (skip_depth_ > 0) { 2066 skip_depth_--; 2067 return true; 2068 } 2069 ArtMethod* m = GetMethod(); 2070 if (m->IsRuntimeMethod()) { 2071 return true; // Ignore runtime frames (in particular callee save). 2072 } 2073 mirror::PointerArray* trace_methods_and_pcs = GetTraceMethodsAndPCs(); 2074 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, m, pointer_size_); 2075 trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>( 2076 trace_methods_and_pcs->GetLength() / 2 + count_, 2077 m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc(), 2078 pointer_size_); 2079 // Save the declaring class of the method to ensure that the declaring classes of the methods 2080 // do not get unloaded while the stack trace is live. 2081 trace_->Set(count_ + 1, m->GetDeclaringClass()); 2082 ++count_; 2083 return true; 2084 } 2085 2086 mirror::PointerArray* GetTraceMethodsAndPCs() const SHARED_REQUIRES(Locks::mutator_lock_) { 2087 return down_cast<mirror::PointerArray*>(trace_->Get(0)); 2088 } 2089 2090 mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const { 2091 return trace_; 2092 } 2093 2094 private: 2095 Thread* const self_; 2096 // How many more frames to skip. 2097 int32_t skip_depth_; 2098 // Current position down stack trace. 2099 uint32_t count_; 2100 // An object array where the first element is a pointer array that contains the ArtMethod 2101 // pointers on the stack and dex PCs. The rest of the elements are the declaring 2102 // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of 2103 // the i'th frame. 2104 mirror::ObjectArray<mirror::Object>* trace_; 2105 // For cross compilation. 2106 const size_t pointer_size_; 2107 2108 DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor); 2109 }; 2110 2111 template<bool kTransactionActive> 2112 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const { 2113 // Compute depth of stack 2114 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); 2115 count_visitor.WalkStack(); 2116 int32_t depth = count_visitor.GetDepth(); 2117 int32_t skip_depth = count_visitor.GetSkipDepth(); 2118 2119 // Build internal stack trace. 2120 BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(), 2121 const_cast<Thread*>(this), 2122 skip_depth); 2123 if (!build_trace_visitor.Init(depth)) { 2124 return nullptr; // Allocation failed. 2125 } 2126 build_trace_visitor.WalkStack(); 2127 mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace(); 2128 if (kIsDebugBuild) { 2129 mirror::PointerArray* trace_methods = build_trace_visitor.GetTraceMethodsAndPCs(); 2130 // Second half of trace_methods is dex PCs. 2131 for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) { 2132 auto* method = trace_methods->GetElementPtrSize<ArtMethod*>( 2133 i, Runtime::Current()->GetClassLinker()->GetImagePointerSize()); 2134 CHECK(method != nullptr); 2135 } 2136 } 2137 return soa.AddLocalReference<jobject>(trace); 2138 } 2139 template jobject Thread::CreateInternalStackTrace<false>( 2140 const ScopedObjectAccessAlreadyRunnable& soa) const; 2141 template jobject Thread::CreateInternalStackTrace<true>( 2142 const ScopedObjectAccessAlreadyRunnable& soa) const; 2143 2144 bool Thread::IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const { 2145 CountStackDepthVisitor count_visitor(const_cast<Thread*>(this)); 2146 count_visitor.WalkStack(); 2147 return count_visitor.GetDepth() == exception->GetStackDepth(); 2148 } 2149 2150 jobjectArray Thread::InternalStackTraceToStackTraceElementArray( 2151 const ScopedObjectAccessAlreadyRunnable& soa, 2152 jobject internal, 2153 jobjectArray output_array, 2154 int* stack_depth) { 2155 // Decode the internal stack trace into the depth, method trace and PC trace. 2156 // Subtract one for the methods and PC trace. 2157 int32_t depth = soa.Decode<mirror::Array*>(internal)->GetLength() - 1; 2158 DCHECK_GE(depth, 0); 2159 2160 ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); 2161 2162 jobjectArray result; 2163 2164 if (output_array != nullptr) { 2165 // Reuse the array we were given. 2166 result = output_array; 2167 // ...adjusting the number of frames we'll write to not exceed the array length. 2168 const int32_t traces_length = 2169 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength(); 2170 depth = std::min(depth, traces_length); 2171 } else { 2172 // Create java_trace array and place in local reference table 2173 mirror::ObjectArray<mirror::StackTraceElement>* java_traces = 2174 class_linker->AllocStackTraceElementArray(soa.Self(), depth); 2175 if (java_traces == nullptr) { 2176 return nullptr; 2177 } 2178 result = soa.AddLocalReference<jobjectArray>(java_traces); 2179 } 2180 2181 if (stack_depth != nullptr) { 2182 *stack_depth = depth; 2183 } 2184 2185 for (int32_t i = 0; i < depth; ++i) { 2186 mirror::ObjectArray<mirror::Object>* decoded_traces = 2187 soa.Decode<mirror::Object*>(internal)->AsObjectArray<mirror::Object>(); 2188 // Methods and dex PC trace is element 0. 2189 DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray()); 2190 mirror::PointerArray* const method_trace = 2191 down_cast<mirror::PointerArray*>(decoded_traces->Get(0)); 2192 // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) 2193 ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, sizeof(void*)); 2194 uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>( 2195 i + method_trace->GetLength() / 2, sizeof(void*)); 2196 int32_t line_number; 2197 StackHandleScope<3> hs(soa.Self()); 2198 auto class_name_object(hs.NewHandle<mirror::String>(nullptr)); 2199 auto source_name_object(hs.NewHandle<mirror::String>(nullptr)); 2200 if (method->IsProxyMethod()) { 2201 line_number = -1; 2202 class_name_object.Assign(method->GetDeclaringClass()->GetName()); 2203 // source_name_object intentionally left null for proxy methods 2204 } else { 2205 line_number = method->GetLineNumFromDexPC(dex_pc); 2206 // Allocate element, potentially triggering GC 2207 // TODO: reuse class_name_object via Class::name_? 2208 const char* descriptor = method->GetDeclaringClassDescriptor(); 2209 CHECK(descriptor != nullptr); 2210 std::string class_name(PrettyDescriptor(descriptor)); 2211 class_name_object.Assign( 2212 mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str())); 2213 if (class_name_object.Get() == nullptr) { 2214 soa.Self()->AssertPendingOOMException(); 2215 return nullptr; 2216 } 2217 const char* source_file = method->GetDeclaringClassSourceFile(); 2218 if (source_file != nullptr) { 2219 source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file)); 2220 if (source_name_object.Get() == nullptr) { 2221 soa.Self()->AssertPendingOOMException(); 2222 return nullptr; 2223 } 2224 } 2225 } 2226 const char* method_name = method->GetInterfaceMethodIfProxy(sizeof(void*))->GetName(); 2227 CHECK(method_name != nullptr); 2228 Handle<mirror::String> method_name_object( 2229 hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name))); 2230 if (method_name_object.Get() == nullptr) { 2231 return nullptr; 2232 } 2233 mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc( 2234 soa.Self(), class_name_object, method_name_object, source_name_object, line_number); 2235 if (obj == nullptr) { 2236 return nullptr; 2237 } 2238 // We are called from native: use non-transactional mode. 2239 soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj); 2240 } 2241 return result; 2242 } 2243 2244 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { 2245 va_list args; 2246 va_start(args, fmt); 2247 ThrowNewExceptionV(exception_class_descriptor, fmt, args); 2248 va_end(args); 2249 } 2250 2251 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, 2252 const char* fmt, va_list ap) { 2253 std::string msg; 2254 StringAppendV(&msg, fmt, ap); 2255 ThrowNewException(exception_class_descriptor, msg.c_str()); 2256 } 2257 2258 void Thread::ThrowNewException(const char* exception_class_descriptor, 2259 const char* msg) { 2260 // Callers should either clear or call ThrowNewWrappedException. 2261 AssertNoPendingExceptionForNewException(msg); 2262 ThrowNewWrappedException(exception_class_descriptor, msg); 2263 } 2264 2265 static mirror::ClassLoader* GetCurrentClassLoader(Thread* self) 2266 SHARED_REQUIRES(Locks::mutator_lock_) { 2267 ArtMethod* method = self->GetCurrentMethod(nullptr); 2268 return method != nullptr 2269 ? method->GetDeclaringClass()->GetClassLoader() 2270 : nullptr; 2271 } 2272 2273 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, 2274 const char* msg) { 2275 DCHECK_EQ(this, Thread::Current()); 2276 ScopedObjectAccessUnchecked soa(this); 2277 StackHandleScope<3> hs(soa.Self()); 2278 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self()))); 2279 ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException())); 2280 ClearException(); 2281 Runtime* runtime = Runtime::Current(); 2282 auto* cl = runtime->GetClassLinker(); 2283 Handle<mirror::Class> exception_class( 2284 hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader))); 2285 if (UNLIKELY(exception_class.Get() == nullptr)) { 2286 CHECK(IsExceptionPending()); 2287 LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor); 2288 return; 2289 } 2290 2291 if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true, 2292 true))) { 2293 DCHECK(IsExceptionPending()); 2294 return; 2295 } 2296 DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass()); 2297 Handle<mirror::Throwable> exception( 2298 hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this)))); 2299 2300 // If we couldn't allocate the exception, throw the pre-allocated out of memory exception. 2301 if (exception.Get() == nullptr) { 2302 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 2303 return; 2304 } 2305 2306 // Choose an appropriate constructor and set up the arguments. 2307 const char* signature; 2308 ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr); 2309 if (msg != nullptr) { 2310 // Ensure we remember this and the method over the String allocation. 2311 msg_string.reset( 2312 soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg))); 2313 if (UNLIKELY(msg_string.get() == nullptr)) { 2314 CHECK(IsExceptionPending()); // OOME. 2315 return; 2316 } 2317 if (cause.get() == nullptr) { 2318 signature = "(Ljava/lang/String;)V"; 2319 } else { 2320 signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V"; 2321 } 2322 } else { 2323 if (cause.get() == nullptr) { 2324 signature = "()V"; 2325 } else { 2326 signature = "(Ljava/lang/Throwable;)V"; 2327 } 2328 } 2329 ArtMethod* exception_init_method = 2330 exception_class->FindDeclaredDirectMethod("<init>", signature, cl->GetImagePointerSize()); 2331 2332 CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in " 2333 << PrettyDescriptor(exception_class_descriptor); 2334 2335 if (UNLIKELY(!runtime->IsStarted())) { 2336 // Something is trying to throw an exception without a started runtime, which is the common 2337 // case in the compiler. We won't be able to invoke the constructor of the exception, so set 2338 // the exception fields directly. 2339 if (msg != nullptr) { 2340 exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get()))); 2341 } 2342 if (cause.get() != nullptr) { 2343 exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get()))); 2344 } 2345 ScopedLocalRef<jobject> trace(GetJniEnv(), 2346 Runtime::Current()->IsActiveTransaction() 2347 ? CreateInternalStackTrace<true>(soa) 2348 : CreateInternalStackTrace<false>(soa)); 2349 if (trace.get() != nullptr) { 2350 exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get()))); 2351 } 2352 SetException(exception.Get()); 2353 } else { 2354 jvalue jv_args[2]; 2355 size_t i = 0; 2356 2357 if (msg != nullptr) { 2358 jv_args[i].l = msg_string.get(); 2359 ++i; 2360 } 2361 if (cause.get() != nullptr) { 2362 jv_args[i].l = cause.get(); 2363 ++i; 2364 } 2365 ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get())); 2366 InvokeWithJValues(soa, ref.get(), soa.EncodeMethod(exception_init_method), jv_args); 2367 if (LIKELY(!IsExceptionPending())) { 2368 SetException(exception.Get()); 2369 } 2370 } 2371 } 2372 2373 void Thread::ThrowOutOfMemoryError(const char* msg) { 2374 LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", 2375 msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : "")); 2376 if (!tls32_.throwing_OutOfMemoryError) { 2377 tls32_.throwing_OutOfMemoryError = true; 2378 ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); 2379 tls32_.throwing_OutOfMemoryError = false; 2380 } else { 2381 Dump(LOG(WARNING)); // The pre-allocated OOME has no stack, so help out and log one. 2382 SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); 2383 } 2384 } 2385 2386 Thread* Thread::CurrentFromGdb() { 2387 return Thread::Current(); 2388 } 2389 2390 void Thread::DumpFromGdb() const { 2391 std::ostringstream ss; 2392 Dump(ss); 2393 std::string str(ss.str()); 2394 // log to stderr for debugging command line processes 2395 std::cerr << str; 2396 #ifdef __ANDROID__ 2397 // log to logcat for debugging frameworks processes 2398 LOG(INFO) << str; 2399 #endif 2400 } 2401 2402 // Explicitly instantiate 32 and 64bit thread offset dumping support. 2403 template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset); 2404 template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset); 2405 2406 template<size_t ptr_size> 2407 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) { 2408 #define DO_THREAD_OFFSET(x, y) \ 2409 if (offset == x.Uint32Value()) { \ 2410 os << y; \ 2411 return; \ 2412 } 2413 DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags") 2414 DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table") 2415 DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception") 2416 DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer"); 2417 DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env") 2418 DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self") 2419 DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end") 2420 DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id") 2421 DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method") 2422 DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame") 2423 DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope") 2424 DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger") 2425 #undef DO_THREAD_OFFSET 2426 2427 #define JNI_ENTRY_POINT_INFO(x) \ 2428 if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 2429 os << #x; \ 2430 return; \ 2431 } 2432 JNI_ENTRY_POINT_INFO(pDlsymLookup) 2433 #undef JNI_ENTRY_POINT_INFO 2434 2435 #define QUICK_ENTRY_POINT_INFO(x) \ 2436 if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \ 2437 os << #x; \ 2438 return; \ 2439 } 2440 QUICK_ENTRY_POINT_INFO(pAllocArray) 2441 QUICK_ENTRY_POINT_INFO(pAllocArrayResolved) 2442 QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck) 2443 QUICK_ENTRY_POINT_INFO(pAllocObject) 2444 QUICK_ENTRY_POINT_INFO(pAllocObjectResolved) 2445 QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized) 2446 QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck) 2447 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray) 2448 QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck) 2449 QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes) 2450 QUICK_ENTRY_POINT_INFO(pAllocStringFromChars) 2451 QUICK_ENTRY_POINT_INFO(pAllocStringFromString) 2452 QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial) 2453 QUICK_ENTRY_POINT_INFO(pCheckCast) 2454 QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage) 2455 QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess) 2456 QUICK_ENTRY_POINT_INFO(pInitializeType) 2457 QUICK_ENTRY_POINT_INFO(pResolveString) 2458 QUICK_ENTRY_POINT_INFO(pSet8Instance) 2459 QUICK_ENTRY_POINT_INFO(pSet8Static) 2460 QUICK_ENTRY_POINT_INFO(pSet16Instance) 2461 QUICK_ENTRY_POINT_INFO(pSet16Static) 2462 QUICK_ENTRY_POINT_INFO(pSet32Instance) 2463 QUICK_ENTRY_POINT_INFO(pSet32Static) 2464 QUICK_ENTRY_POINT_INFO(pSet64Instance) 2465 QUICK_ENTRY_POINT_INFO(pSet64Static) 2466 QUICK_ENTRY_POINT_INFO(pSetObjInstance) 2467 QUICK_ENTRY_POINT_INFO(pSetObjStatic) 2468 QUICK_ENTRY_POINT_INFO(pGetByteInstance) 2469 QUICK_ENTRY_POINT_INFO(pGetBooleanInstance) 2470 QUICK_ENTRY_POINT_INFO(pGetByteStatic) 2471 QUICK_ENTRY_POINT_INFO(pGetBooleanStatic) 2472 QUICK_ENTRY_POINT_INFO(pGetShortInstance) 2473 QUICK_ENTRY_POINT_INFO(pGetCharInstance) 2474 QUICK_ENTRY_POINT_INFO(pGetShortStatic) 2475 QUICK_ENTRY_POINT_INFO(pGetCharStatic) 2476 QUICK_ENTRY_POINT_INFO(pGet32Instance) 2477 QUICK_ENTRY_POINT_INFO(pGet32Static) 2478 QUICK_ENTRY_POINT_INFO(pGet64Instance) 2479 QUICK_ENTRY_POINT_INFO(pGet64Static) 2480 QUICK_ENTRY_POINT_INFO(pGetObjInstance) 2481 QUICK_ENTRY_POINT_INFO(pGetObjStatic) 2482 QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck) 2483 QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck) 2484 QUICK_ENTRY_POINT_INFO(pAputObject) 2485 QUICK_ENTRY_POINT_INFO(pHandleFillArrayData) 2486 QUICK_ENTRY_POINT_INFO(pJniMethodStart) 2487 QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized) 2488 QUICK_ENTRY_POINT_INFO(pJniMethodEnd) 2489 QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized) 2490 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference) 2491 QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized) 2492 QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline) 2493 QUICK_ENTRY_POINT_INFO(pLockObject) 2494 QUICK_ENTRY_POINT_INFO(pUnlockObject) 2495 QUICK_ENTRY_POINT_INFO(pCmpgDouble) 2496 QUICK_ENTRY_POINT_INFO(pCmpgFloat) 2497 QUICK_ENTRY_POINT_INFO(pCmplDouble) 2498 QUICK_ENTRY_POINT_INFO(pCmplFloat) 2499 QUICK_ENTRY_POINT_INFO(pCos) 2500 QUICK_ENTRY_POINT_INFO(pSin) 2501 QUICK_ENTRY_POINT_INFO(pAcos) 2502 QUICK_ENTRY_POINT_INFO(pAsin) 2503 QUICK_ENTRY_POINT_INFO(pAtan) 2504 QUICK_ENTRY_POINT_INFO(pAtan2) 2505 QUICK_ENTRY_POINT_INFO(pCbrt) 2506 QUICK_ENTRY_POINT_INFO(pCosh) 2507 QUICK_ENTRY_POINT_INFO(pExp) 2508 QUICK_ENTRY_POINT_INFO(pExpm1) 2509 QUICK_ENTRY_POINT_INFO(pHypot) 2510 QUICK_ENTRY_POINT_INFO(pLog) 2511 QUICK_ENTRY_POINT_INFO(pLog10) 2512 QUICK_ENTRY_POINT_INFO(pNextAfter) 2513 QUICK_ENTRY_POINT_INFO(pSinh) 2514 QUICK_ENTRY_POINT_INFO(pTan) 2515 QUICK_ENTRY_POINT_INFO(pTanh) 2516 QUICK_ENTRY_POINT_INFO(pFmod) 2517 QUICK_ENTRY_POINT_INFO(pL2d) 2518 QUICK_ENTRY_POINT_INFO(pFmodf) 2519 QUICK_ENTRY_POINT_INFO(pL2f) 2520 QUICK_ENTRY_POINT_INFO(pD2iz) 2521 QUICK_ENTRY_POINT_INFO(pF2iz) 2522 QUICK_ENTRY_POINT_INFO(pIdivmod) 2523 QUICK_ENTRY_POINT_INFO(pD2l) 2524 QUICK_ENTRY_POINT_INFO(pF2l) 2525 QUICK_ENTRY_POINT_INFO(pLdiv) 2526 QUICK_ENTRY_POINT_INFO(pLmod) 2527 QUICK_ENTRY_POINT_INFO(pLmul) 2528 QUICK_ENTRY_POINT_INFO(pShlLong) 2529 QUICK_ENTRY_POINT_INFO(pShrLong) 2530 QUICK_ENTRY_POINT_INFO(pUshrLong) 2531 QUICK_ENTRY_POINT_INFO(pIndexOf) 2532 QUICK_ENTRY_POINT_INFO(pStringCompareTo) 2533 QUICK_ENTRY_POINT_INFO(pMemcpy) 2534 QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline) 2535 QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline) 2536 QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge) 2537 QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck) 2538 QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck) 2539 QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck) 2540 QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck) 2541 QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck) 2542 QUICK_ENTRY_POINT_INFO(pTestSuspend) 2543 QUICK_ENTRY_POINT_INFO(pDeliverException) 2544 QUICK_ENTRY_POINT_INFO(pThrowArrayBounds) 2545 QUICK_ENTRY_POINT_INFO(pThrowDivZero) 2546 QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod) 2547 QUICK_ENTRY_POINT_INFO(pThrowNullPointer) 2548 QUICK_ENTRY_POINT_INFO(pThrowStackOverflow) 2549 QUICK_ENTRY_POINT_INFO(pDeoptimize) 2550 QUICK_ENTRY_POINT_INFO(pA64Load) 2551 QUICK_ENTRY_POINT_INFO(pA64Store) 2552 QUICK_ENTRY_POINT_INFO(pNewEmptyString) 2553 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B) 2554 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI) 2555 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII) 2556 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII) 2557 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString) 2558 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString) 2559 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset) 2560 QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset) 2561 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C) 2562 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII) 2563 QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC) 2564 QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints) 2565 QUICK_ENTRY_POINT_INFO(pNewStringFromString) 2566 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer) 2567 QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder) 2568 QUICK_ENTRY_POINT_INFO(pReadBarrierJni) 2569 QUICK_ENTRY_POINT_INFO(pReadBarrierMark) 2570 QUICK_ENTRY_POINT_INFO(pReadBarrierSlow) 2571 QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow) 2572 #undef QUICK_ENTRY_POINT_INFO 2573 2574 os << offset; 2575 } 2576 2577 void Thread::QuickDeliverException() { 2578 // Get exception from thread. 2579 mirror::Throwable* exception = GetException(); 2580 CHECK(exception != nullptr); 2581 bool is_deoptimization = (exception == GetDeoptimizationException()); 2582 if (!is_deoptimization) { 2583 // This is a real exception: let the instrumentation know about it. 2584 instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); 2585 if (instrumentation->HasExceptionCaughtListeners() && 2586 IsExceptionThrownByCurrentMethod(exception)) { 2587 // Instrumentation may cause GC so keep the exception object safe. 2588 StackHandleScope<1> hs(this); 2589 HandleWrapper<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception)); 2590 instrumentation->ExceptionCaughtEvent(this, exception); 2591 } 2592 // Does instrumentation need to deoptimize the stack? 2593 // Note: we do this *after* reporting the exception to instrumentation in case it 2594 // now requires deoptimization. It may happen if a debugger is attached and requests 2595 // new events (single-step, breakpoint, ...) when the exception is reported. 2596 is_deoptimization = Dbg::IsForcedInterpreterNeededForException(this); 2597 if (is_deoptimization) { 2598 // Save the exception into the deoptimization context so it can be restored 2599 // before entering the interpreter. 2600 PushDeoptimizationContext( 2601 JValue(), /*is_reference */ false, /* from_code */ false, exception); 2602 } 2603 } 2604 // Don't leave exception visible while we try to find the handler, which may cause class 2605 // resolution. 2606 ClearException(); 2607 QuickExceptionHandler exception_handler(this, is_deoptimization); 2608 if (is_deoptimization) { 2609 exception_handler.DeoptimizeStack(); 2610 } else { 2611 exception_handler.FindCatch(exception); 2612 } 2613 exception_handler.UpdateInstrumentationStack(); 2614 exception_handler.DoLongJump(); 2615 } 2616 2617 Context* Thread::GetLongJumpContext() { 2618 Context* result = tlsPtr_.long_jump_context; 2619 if (result == nullptr) { 2620 result = Context::Create(); 2621 } else { 2622 tlsPtr_.long_jump_context = nullptr; // Avoid context being shared. 2623 result->Reset(); 2624 } 2625 return result; 2626 } 2627 2628 // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is 2629 // so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack. 2630 struct CurrentMethodVisitor FINAL : public StackVisitor { 2631 CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error) 2632 SHARED_REQUIRES(Locks::mutator_lock_) 2633 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames), 2634 this_object_(nullptr), 2635 method_(nullptr), 2636 dex_pc_(0), 2637 abort_on_error_(abort_on_error) {} 2638 bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 2639 ArtMethod* m = GetMethod(); 2640 if (m->IsRuntimeMethod()) { 2641 // Continue if this is a runtime method. 2642 return true; 2643 } 2644 if (context_ != nullptr) { 2645 this_object_ = GetThisObject(); 2646 } 2647 method_ = m; 2648 dex_pc_ = GetDexPc(abort_on_error_); 2649 return false; 2650 } 2651 mirror::Object* this_object_; 2652 ArtMethod* method_; 2653 uint32_t dex_pc_; 2654 const bool abort_on_error_; 2655 }; 2656 2657 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const { 2658 CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error); 2659 visitor.WalkStack(false); 2660 if (dex_pc != nullptr) { 2661 *dex_pc = visitor.dex_pc_; 2662 } 2663 return visitor.method_; 2664 } 2665 2666 bool Thread::HoldsLock(mirror::Object* object) const { 2667 if (object == nullptr) { 2668 return false; 2669 } 2670 return object->GetLockOwnerThreadId() == GetThreadId(); 2671 } 2672 2673 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor). 2674 template <typename RootVisitor> 2675 class ReferenceMapVisitor : public StackVisitor { 2676 public: 2677 ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor) 2678 SHARED_REQUIRES(Locks::mutator_lock_) 2679 // We are visiting the references in compiled frames, so we do not need 2680 // to know the inlined frames. 2681 : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames), 2682 visitor_(visitor) {} 2683 2684 bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) { 2685 if (false) { 2686 LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) 2687 << StringPrintf("@ PC:%04x", GetDexPc()); 2688 } 2689 ShadowFrame* shadow_frame = GetCurrentShadowFrame(); 2690 if (shadow_frame != nullptr) { 2691 VisitShadowFrame(shadow_frame); 2692 } else { 2693 VisitQuickFrame(); 2694 } 2695 return true; 2696 } 2697 2698 void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_REQUIRES(Locks::mutator_lock_) { 2699 ArtMethod* m = shadow_frame->GetMethod(); 2700 VisitDeclaringClass(m); 2701 DCHECK(m != nullptr); 2702 size_t num_regs = shadow_frame->NumberOfVRegs(); 2703 DCHECK(m->IsNative() || shadow_frame->HasReferenceArray()); 2704 // handle scope for JNI or References for interpreter. 2705 for (size_t reg = 0; reg < num_regs; ++reg) { 2706 mirror::Object* ref = shadow_frame->GetVRegReference(reg); 2707 if (ref != nullptr) { 2708 mirror::Object* new_ref = ref; 2709 visitor_(&new_ref, reg, this); 2710 if (new_ref != ref) { 2711 shadow_frame->SetVRegReference(reg, new_ref); 2712 } 2713 } 2714 } 2715 // Mark lock count map required for structured locking checks. 2716 shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this); 2717 } 2718 2719 private: 2720 // Visiting the declaring class is necessary so that we don't unload the class of a method that 2721 // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since 2722 // the threads do not all hold the heap bitmap lock for parallel GC. 2723 void VisitDeclaringClass(ArtMethod* method) 2724 SHARED_REQUIRES(Locks::mutator_lock_) 2725 NO_THREAD_SAFETY_ANALYSIS { 2726 mirror::Class* klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>(); 2727 // klass can be null for runtime methods. 2728 if (klass != nullptr) { 2729 if (kVerifyImageObjectsMarked) { 2730 gc::Heap* const heap = Runtime::Current()->GetHeap(); 2731 gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass, 2732 /*fail_ok*/true); 2733 if (space != nullptr && space->IsImageSpace()) { 2734 bool failed = false; 2735 if (!space->GetLiveBitmap()->Test(klass)) { 2736 failed = true; 2737 LOG(INTERNAL_FATAL) << "Unmarked object in image " << *space; 2738 } else if (!heap->GetLiveBitmap()->Test(klass)) { 2739 failed = true; 2740 LOG(INTERNAL_FATAL) << "Unmarked object in image through live bitmap " << *space; 2741 } 2742 if (failed) { 2743 GetThread()->Dump(LOG(INTERNAL_FATAL)); 2744 space->AsImageSpace()->DumpSections(LOG(INTERNAL_FATAL)); 2745 LOG(INTERNAL_FATAL) << "Method@" << method->GetDexMethodIndex() << ":" << method 2746 << " klass@" << klass; 2747 // Pretty info last in case it crashes. 2748 LOG(FATAL) << "Method " << PrettyMethod(method) << " klass " << PrettyClass(klass); 2749 } 2750 } 2751 } 2752 mirror::Object* new_ref = klass; 2753 visitor_(&new_ref, -1, this); 2754 if (new_ref != klass) { 2755 method->CASDeclaringClass(klass, new_ref->AsClass()); 2756 } 2757 } 2758 } 2759 2760 void VisitQuickFrame() SHARED_REQUIRES(Locks::mutator_lock_) { 2761 ArtMethod** cur_quick_frame = GetCurrentQuickFrame(); 2762 DCHECK(cur_quick_frame != nullptr); 2763 ArtMethod* m = *cur_quick_frame; 2764 VisitDeclaringClass(m); 2765 2766 // Process register map (which native and runtime methods don't have) 2767 if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) { 2768 const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader(); 2769 DCHECK(method_header->IsOptimized()); 2770 auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>( 2771 reinterpret_cast<uintptr_t>(cur_quick_frame)); 2772 uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc()); 2773 CodeInfo code_info = method_header->GetOptimizedCodeInfo(); 2774 CodeInfoEncoding encoding = code_info.ExtractEncoding(); 2775 StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding); 2776 DCHECK(map.IsValid()); 2777 // Visit stack entries that hold pointers. 2778 size_t number_of_bits = map.GetNumberOfStackMaskBits(encoding.stack_map_encoding); 2779 for (size_t i = 0; i < number_of_bits; ++i) { 2780 if (map.GetStackMaskBit(encoding.stack_map_encoding, i)) { 2781 auto* ref_addr = vreg_base + i; 2782 mirror::Object* ref = ref_addr->AsMirrorPtr(); 2783 if (ref != nullptr) { 2784 mirror::Object* new_ref = ref; 2785 visitor_(&new_ref, -1, this); 2786 if (ref != new_ref) { 2787 ref_addr->Assign(new_ref); 2788 } 2789 } 2790 } 2791 } 2792 // Visit callee-save registers that hold pointers. 2793 uint32_t register_mask = map.GetRegisterMask(encoding.stack_map_encoding); 2794 for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) { 2795 if (register_mask & (1 << i)) { 2796 mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i)); 2797 if (*ref_addr != nullptr) { 2798 visitor_(ref_addr, -1, this); 2799 } 2800 } 2801 } 2802 } 2803 } 2804 2805 // Visitor for when we visit a root. 2806 RootVisitor& visitor_; 2807 }; 2808 2809 class RootCallbackVisitor { 2810 public: 2811 RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {} 2812 2813 void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const 2814 SHARED_REQUIRES(Locks::mutator_lock_) { 2815 visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg)); 2816 } 2817 2818 private: 2819 RootVisitor* const visitor_; 2820 const uint32_t tid_; 2821 }; 2822 2823 void Thread::VisitRoots(RootVisitor* visitor) { 2824 const uint32_t thread_id = GetThreadId(); 2825 visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id)); 2826 if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) { 2827 visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), 2828 RootInfo(kRootNativeStack, thread_id)); 2829 } 2830 visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id)); 2831 tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id)); 2832 tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id)); 2833 HandleScopeVisitRoots(visitor, thread_id); 2834 if (tlsPtr_.debug_invoke_req != nullptr) { 2835 tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id)); 2836 } 2837 // Visit roots for deoptimization. 2838 if (tlsPtr_.stacked_shadow_frame_record != nullptr) { 2839 RootCallbackVisitor visitor_to_callback(visitor, thread_id); 2840 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback); 2841 for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record; 2842 record != nullptr; 2843 record = record->GetLink()) { 2844 for (ShadowFrame* shadow_frame = record->GetShadowFrame(); 2845 shadow_frame != nullptr; 2846 shadow_frame = shadow_frame->GetLink()) { 2847 mapper.VisitShadowFrame(shadow_frame); 2848 } 2849 } 2850 } 2851 for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack; 2852 record != nullptr; 2853 record = record->GetLink()) { 2854 if (record->IsReference()) { 2855 visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(), 2856 RootInfo(kRootThreadObject, thread_id)); 2857 } 2858 visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(), 2859 RootInfo(kRootThreadObject, thread_id)); 2860 } 2861 if (tlsPtr_.frame_id_to_shadow_frame != nullptr) { 2862 RootCallbackVisitor visitor_to_callback(visitor, thread_id); 2863 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitor_to_callback); 2864 for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame; 2865 record != nullptr; 2866 record = record->GetNext()) { 2867 mapper.VisitShadowFrame(record->GetShadowFrame()); 2868 } 2869 } 2870 for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) { 2871 verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id)); 2872 } 2873 // Visit roots on this thread's stack 2874 Context* context = GetLongJumpContext(); 2875 RootCallbackVisitor visitor_to_callback(visitor, thread_id); 2876 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitor_to_callback); 2877 mapper.WalkStack(); 2878 ReleaseLongJumpContext(context); 2879 for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) { 2880 visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id)); 2881 } 2882 } 2883 2884 class VerifyRootVisitor : public SingleRootVisitor { 2885 public: 2886 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED) 2887 OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) { 2888 VerifyObject(root); 2889 } 2890 }; 2891 2892 void Thread::VerifyStackImpl() { 2893 VerifyRootVisitor visitor; 2894 std::unique_ptr<Context> context(Context::Create()); 2895 RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId()); 2896 ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback); 2897 mapper.WalkStack(); 2898 } 2899 2900 // Set the stack end to that to be used during a stack overflow 2901 void Thread::SetStackEndForStackOverflow() { 2902 // During stack overflow we allow use of the full stack. 2903 if (tlsPtr_.stack_end == tlsPtr_.stack_begin) { 2904 // However, we seem to have already extended to use the full stack. 2905 LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently " 2906 << GetStackOverflowReservedBytes(kRuntimeISA) << ")?"; 2907 DumpStack(LOG(ERROR)); 2908 LOG(FATAL) << "Recursive stack overflow."; 2909 } 2910 2911 tlsPtr_.stack_end = tlsPtr_.stack_begin; 2912 2913 // Remove the stack overflow protection if is it set up. 2914 bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks(); 2915 if (implicit_stack_check) { 2916 if (!UnprotectStack()) { 2917 LOG(ERROR) << "Unable to remove stack protection for stack overflow"; 2918 } 2919 } 2920 } 2921 2922 void Thread::SetTlab(uint8_t* start, uint8_t* end) { 2923 DCHECK_LE(start, end); 2924 tlsPtr_.thread_local_start = start; 2925 tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start; 2926 tlsPtr_.thread_local_end = end; 2927 tlsPtr_.thread_local_objects = 0; 2928 } 2929 2930 bool Thread::HasTlab() const { 2931 bool has_tlab = tlsPtr_.thread_local_pos != nullptr; 2932 if (has_tlab) { 2933 DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr); 2934 } else { 2935 DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr); 2936 } 2937 return has_tlab; 2938 } 2939 2940 std::ostream& operator<<(std::ostream& os, const Thread& thread) { 2941 thread.ShortDump(os); 2942 return os; 2943 } 2944 2945 bool Thread::ProtectStack(bool fatal_on_error) { 2946 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 2947 VLOG(threads) << "Protecting stack at " << pregion; 2948 if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) { 2949 if (fatal_on_error) { 2950 LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. " 2951 "Reason: " 2952 << strerror(errno) << " size: " << kStackOverflowProtectedSize; 2953 } 2954 return false; 2955 } 2956 return true; 2957 } 2958 2959 bool Thread::UnprotectStack() { 2960 void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize; 2961 VLOG(threads) << "Unprotecting stack at " << pregion; 2962 return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0; 2963 } 2964 2965 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) { 2966 CHECK(Dbg::IsDebuggerActive()); 2967 CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this; 2968 CHECK(ssc != nullptr); 2969 tlsPtr_.single_step_control = ssc; 2970 } 2971 2972 void Thread::DeactivateSingleStepControl() { 2973 CHECK(Dbg::IsDebuggerActive()); 2974 CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this; 2975 SingleStepControl* ssc = GetSingleStepControl(); 2976 tlsPtr_.single_step_control = nullptr; 2977 delete ssc; 2978 } 2979 2980 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) { 2981 CHECK(Dbg::IsDebuggerActive()); 2982 CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this; 2983 CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself"; 2984 CHECK(req != nullptr); 2985 tlsPtr_.debug_invoke_req = req; 2986 } 2987 2988 void Thread::ClearDebugInvokeReq() { 2989 CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this; 2990 CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself"; 2991 DebugInvokeReq* req = tlsPtr_.debug_invoke_req; 2992 tlsPtr_.debug_invoke_req = nullptr; 2993 delete req; 2994 } 2995 2996 void Thread::PushVerifier(verifier::MethodVerifier* verifier) { 2997 verifier->link_ = tlsPtr_.method_verifier; 2998 tlsPtr_.method_verifier = verifier; 2999 } 3000 3001 void Thread::PopVerifier(verifier::MethodVerifier* verifier) { 3002 CHECK_EQ(tlsPtr_.method_verifier, verifier); 3003 tlsPtr_.method_verifier = verifier->link_; 3004 } 3005 3006 size_t Thread::NumberOfHeldMutexes() const { 3007 size_t count = 0; 3008 for (BaseMutex* mu : tlsPtr_.held_mutexes) { 3009 count += mu != nullptr ? 1 : 0; 3010 } 3011 return count; 3012 } 3013 3014 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) { 3015 DCHECK_EQ(GetException(), Thread::GetDeoptimizationException()); 3016 ClearException(); 3017 ShadowFrame* shadow_frame = 3018 PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame); 3019 mirror::Throwable* pending_exception = nullptr; 3020 bool from_code = false; 3021 PopDeoptimizationContext(result, &pending_exception, &from_code); 3022 CHECK(!from_code) << "Deoptimizing from code should be done with single frame deoptimization"; 3023 SetTopOfStack(nullptr); 3024 SetTopOfShadowStack(shadow_frame); 3025 3026 // Restore the exception that was pending before deoptimization then interpret the 3027 // deoptimized frames. 3028 if (pending_exception != nullptr) { 3029 SetException(pending_exception); 3030 } 3031 interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result); 3032 } 3033 3034 void Thread::SetException(mirror::Throwable* new_exception) { 3035 CHECK(new_exception != nullptr); 3036 // TODO: DCHECK(!IsExceptionPending()); 3037 tlsPtr_.exception = new_exception; 3038 // LOG(ERROR) << new_exception->Dump(); 3039 } 3040 3041 } // namespace art 3042