Home | History | Annotate | Download | only in msa
      1 /*
      2  *  Copyright (c) 2015 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #ifndef VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_
     12 #define VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_
     13 
     14 #include <msa.h>
     15 
     16 #include "./vpx_config.h"
     17 #include "vpx/vpx_integer.h"
     18 
     19 #define LD_B(RTYPE, psrc) *((const RTYPE *)(psrc))
     20 #define LD_UB(...) LD_B(v16u8, __VA_ARGS__)
     21 #define LD_SB(...) LD_B(v16i8, __VA_ARGS__)
     22 
     23 #define LD_H(RTYPE, psrc) *((const RTYPE *)(psrc))
     24 #define LD_UH(...) LD_H(v8u16, __VA_ARGS__)
     25 #define LD_SH(...) LD_H(v8i16, __VA_ARGS__)
     26 
     27 #define LD_W(RTYPE, psrc) *((const RTYPE *)(psrc))
     28 #define LD_UW(...) LD_W(v4u32, __VA_ARGS__)
     29 #define LD_SW(...) LD_W(v4i32, __VA_ARGS__)
     30 
     31 #define ST_B(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
     32 #define ST_UB(...) ST_B(v16u8, __VA_ARGS__)
     33 #define ST_SB(...) ST_B(v16i8, __VA_ARGS__)
     34 
     35 #define ST_H(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
     36 #define ST_UH(...) ST_H(v8u16, __VA_ARGS__)
     37 #define ST_SH(...) ST_H(v8i16, __VA_ARGS__)
     38 
     39 #define ST_W(RTYPE, in, pdst) *((RTYPE *)(pdst)) = (in)
     40 #define ST_SW(...) ST_W(v4i32, __VA_ARGS__)
     41 
     42 #if (__mips_isa_rev >= 6)
     43 #define LW(psrc)                                      \
     44 ({                                                    \
     45     const uint8_t *psrc_m = (const uint8_t *)(psrc);  \
     46     uint32_t val_m;                                   \
     47                                                       \
     48     asm volatile (                                    \
     49         "lw  %[val_m],  %[psrc_m]  \n\t"              \
     50                                                       \
     51         : [val_m] "=r" (val_m)                        \
     52         : [psrc_m] "m" (*psrc_m)                      \
     53     );                                                \
     54                                                       \
     55     val_m;                                            \
     56 })
     57 
     58 #if (__mips == 64)
     59 #define LD(psrc)                                      \
     60 ({                                                    \
     61     const uint8_t *psrc_m = (const uint8_t *)(psrc);  \
     62     uint64_t val_m = 0;                               \
     63                                                       \
     64     asm volatile (                                    \
     65         "ld  %[val_m],  %[psrc_m]  \n\t"              \
     66                                                       \
     67         : [val_m] "=r" (val_m)                        \
     68         : [psrc_m] "m" (*psrc_m)                      \
     69     );                                                \
     70                                                       \
     71     val_m;                                            \
     72 })
     73 #else  // !(__mips == 64)
     74 #define LD(psrc)                                             \
     75 ({                                                           \
     76     const uint8_t *psrc_m = (const uint8_t *)(psrc);         \
     77     uint32_t val0_m, val1_m;                                 \
     78     uint64_t val_m = 0;                                      \
     79                                                              \
     80     val0_m = LW(psrc_m);                                     \
     81     val1_m = LW(psrc_m + 4);                                 \
     82                                                              \
     83     val_m = (uint64_t)(val1_m);                              \
     84     val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000);  \
     85     val_m = (uint64_t)(val_m | (uint64_t)val0_m);            \
     86                                                              \
     87     val_m;                                                   \
     88 })
     89 #endif  // (__mips == 64)
     90 
     91 #define SH(val, pdst)                     \
     92 {                                         \
     93     uint8_t *pdst_m = (uint8_t *)(pdst);  \
     94     const uint16_t val_m = (val);         \
     95                                           \
     96     asm volatile (                        \
     97         "sh  %[val_m],  %[pdst_m]  \n\t"  \
     98                                           \
     99         : [pdst_m] "=m" (*pdst_m)         \
    100         : [val_m] "r" (val_m)             \
    101     );                                    \
    102 }
    103 
    104 #define SW(val, pdst)                     \
    105 {                                         \
    106     uint8_t *pdst_m = (uint8_t *)(pdst);  \
    107     const uint32_t val_m = (val);         \
    108                                           \
    109     asm volatile (                        \
    110         "sw  %[val_m],  %[pdst_m]  \n\t"  \
    111                                           \
    112         : [pdst_m] "=m" (*pdst_m)         \
    113         : [val_m] "r" (val_m)             \
    114     );                                    \
    115 }
    116 
    117 #define SD(val, pdst)                     \
    118 {                                         \
    119     uint8_t *pdst_m = (uint8_t *)(pdst);  \
    120     const uint64_t val_m = (val);         \
    121                                           \
    122     asm volatile (                        \
    123         "sd  %[val_m],  %[pdst_m]  \n\t"  \
    124                                           \
    125         : [pdst_m] "=m" (*pdst_m)         \
    126         : [val_m] "r" (val_m)             \
    127     );                                    \
    128 }
    129 #else  // !(__mips_isa_rev >= 6)
    130 #define LW(psrc)                                      \
    131 ({                                                    \
    132     const uint8_t *psrc_m = (const uint8_t *)(psrc);  \
    133     uint32_t val_m;                                   \
    134                                                       \
    135     asm volatile (                                    \
    136         "ulw  %[val_m],  %[psrc_m]  \n\t"             \
    137                                                       \
    138         : [val_m] "=r" (val_m)                        \
    139         : [psrc_m] "m" (*psrc_m)                      \
    140     );                                                \
    141                                                       \
    142     val_m;                                            \
    143 })
    144 
    145 #if (__mips == 64)
    146 #define LD(psrc)                                      \
    147 ({                                                    \
    148     const uint8_t *psrc_m = (const uint8_t *)(psrc);  \
    149     uint64_t val_m = 0;                               \
    150                                                       \
    151     asm volatile (                                    \
    152         "uld  %[val_m],  %[psrc_m]  \n\t"             \
    153                                                       \
    154         : [val_m] "=r" (val_m)                        \
    155         : [psrc_m] "m" (*psrc_m)                      \
    156     );                                                \
    157                                                       \
    158     val_m;                                            \
    159 })
    160 #else  // !(__mips == 64)
    161 #define LD(psrc)                                             \
    162 ({                                                           \
    163     const uint8_t *psrc_m1 = (const uint8_t *)(psrc);        \
    164     uint32_t val0_m, val1_m;                                 \
    165     uint64_t val_m = 0;                                      \
    166                                                              \
    167     val0_m = LW(psrc_m1);                                    \
    168     val1_m = LW(psrc_m1 + 4);                                \
    169                                                              \
    170     val_m = (uint64_t)(val1_m);                              \
    171     val_m = (uint64_t)((val_m << 32) & 0xFFFFFFFF00000000);  \
    172     val_m = (uint64_t)(val_m | (uint64_t)val0_m);            \
    173                                                              \
    174     val_m;                                                   \
    175 })
    176 #endif  // (__mips == 64)
    177 #define SH(val, pdst)                      \
    178 {                                          \
    179     uint8_t *pdst_m = (uint8_t *)(pdst);   \
    180     const uint16_t val_m = (val);          \
    181                                            \
    182     asm volatile (                         \
    183         "ush  %[val_m],  %[pdst_m]  \n\t"  \
    184                                            \
    185         : [pdst_m] "=m" (*pdst_m)          \
    186         : [val_m] "r" (val_m)              \
    187     );                                     \
    188 }
    189 
    190 #define SW(val, pdst)                      \
    191 {                                          \
    192     uint8_t *pdst_m = (uint8_t *)(pdst);   \
    193     const uint32_t val_m = (val);          \
    194                                            \
    195     asm volatile (                         \
    196         "usw  %[val_m],  %[pdst_m]  \n\t"  \
    197                                            \
    198         : [pdst_m] "=m" (*pdst_m)          \
    199         : [val_m] "r" (val_m)              \
    200     );                                     \
    201 }
    202 
    203 #define SD(val, pdst)                                         \
    204 {                                                             \
    205     uint8_t *pdst_m1 = (uint8_t *)(pdst);                     \
    206     uint32_t val0_m, val1_m;                                  \
    207                                                               \
    208     val0_m = (uint32_t)((val) & 0x00000000FFFFFFFF);          \
    209     val1_m = (uint32_t)(((val) >> 32) & 0x00000000FFFFFFFF);  \
    210                                                               \
    211     SW(val0_m, pdst_m1);                                      \
    212     SW(val1_m, pdst_m1 + 4);                                  \
    213 }
    214 #endif  // (__mips_isa_rev >= 6)
    215 
    216 /* Description : Load 4 words with stride
    217    Arguments   : Inputs  - psrc, stride
    218                  Outputs - out0, out1, out2, out3
    219    Details     : Load word in 'out0' from (psrc)
    220                  Load word in 'out1' from (psrc + stride)
    221                  Load word in 'out2' from (psrc + 2 * stride)
    222                  Load word in 'out3' from (psrc + 3 * stride)
    223 */
    224 #define LW4(psrc, stride, out0, out1, out2, out3)  \
    225 {                                                  \
    226     out0 = LW((psrc));                             \
    227     out1 = LW((psrc) + stride);                    \
    228     out2 = LW((psrc) + 2 * stride);                \
    229     out3 = LW((psrc) + 3 * stride);                \
    230 }
    231 
    232 /* Description : Load double words with stride
    233    Arguments   : Inputs  - psrc, stride
    234                  Outputs - out0, out1
    235    Details     : Load double word in 'out0' from (psrc)
    236                  Load double word in 'out1' from (psrc + stride)
    237 */
    238 #define LD2(psrc, stride, out0, out1)  \
    239 {                                      \
    240     out0 = LD((psrc));                 \
    241     out1 = LD((psrc) + stride);        \
    242 }
    243 #define LD4(psrc, stride, out0, out1, out2, out3)  \
    244 {                                                  \
    245     LD2((psrc), stride, out0, out1);               \
    246     LD2((psrc) + 2 * stride, stride, out2, out3);  \
    247 }
    248 
    249 /* Description : Store 4 words with stride
    250    Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
    251    Details     : Store word from 'in0' to (pdst)
    252                  Store word from 'in1' to (pdst + stride)
    253                  Store word from 'in2' to (pdst + 2 * stride)
    254                  Store word from 'in3' to (pdst + 3 * stride)
    255 */
    256 #define SW4(in0, in1, in2, in3, pdst, stride)  \
    257 {                                              \
    258     SW(in0, (pdst));                           \
    259     SW(in1, (pdst) + stride);                  \
    260     SW(in2, (pdst) + 2 * stride);              \
    261     SW(in3, (pdst) + 3 * stride);              \
    262 }
    263 
    264 /* Description : Store 4 double words with stride
    265    Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
    266    Details     : Store double word from 'in0' to (pdst)
    267                  Store double word from 'in1' to (pdst + stride)
    268                  Store double word from 'in2' to (pdst + 2 * stride)
    269                  Store double word from 'in3' to (pdst + 3 * stride)
    270 */
    271 #define SD4(in0, in1, in2, in3, pdst, stride)  \
    272 {                                              \
    273     SD(in0, (pdst));                           \
    274     SD(in1, (pdst) + stride);                  \
    275     SD(in2, (pdst) + 2 * stride);              \
    276     SD(in3, (pdst) + 3 * stride);              \
    277 }
    278 
    279 /* Description : Load vectors with 16 byte elements with stride
    280    Arguments   : Inputs  - psrc, stride
    281                  Outputs - out0, out1
    282                  Return Type - as per RTYPE
    283    Details     : Load 16 byte elements in 'out0' from (psrc)
    284                  Load 16 byte elements in 'out1' from (psrc + stride)
    285 */
    286 #define LD_B2(RTYPE, psrc, stride, out0, out1)  \
    287 {                                               \
    288     out0 = LD_B(RTYPE, (psrc));                 \
    289     out1 = LD_B(RTYPE, (psrc) + stride);        \
    290 }
    291 #define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__)
    292 #define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__)
    293 
    294 #define LD_B3(RTYPE, psrc, stride, out0, out1, out2)  \
    295 {                                                     \
    296     LD_B2(RTYPE, (psrc), stride, out0, out1);         \
    297     out2 = LD_B(RTYPE, (psrc) + 2 * stride);          \
    298 }
    299 #define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__)
    300 #define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__)
    301 
    302 #define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3)   \
    303 {                                                            \
    304     LD_B2(RTYPE, (psrc), stride, out0, out1);                \
    305     LD_B2(RTYPE, (psrc) + 2 * stride , stride, out2, out3);  \
    306 }
    307 #define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__)
    308 #define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__)
    309 
    310 #define LD_B5(RTYPE, psrc, stride, out0, out1, out2, out3, out4)  \
    311 {                                                                 \
    312     LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3);         \
    313     out4 = LD_B(RTYPE, (psrc) + 4 * stride);                      \
    314 }
    315 #define LD_UB5(...) LD_B5(v16u8, __VA_ARGS__)
    316 #define LD_SB5(...) LD_B5(v16i8, __VA_ARGS__)
    317 
    318 #define LD_B8(RTYPE, psrc, stride,                                      \
    319               out0, out1, out2, out3, out4, out5, out6, out7)           \
    320 {                                                                       \
    321     LD_B4(RTYPE, (psrc), stride, out0, out1, out2, out3);               \
    322     LD_B4(RTYPE, (psrc) + 4 * stride, stride, out4, out5, out6, out7);  \
    323 }
    324 #define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__)
    325 #define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__)
    326 
    327 /* Description : Load vectors with 8 halfword elements with stride
    328    Arguments   : Inputs  - psrc, stride
    329                  Outputs - out0, out1
    330    Details     : Load 8 halfword elements in 'out0' from (psrc)
    331                  Load 8 halfword elements in 'out1' from (psrc + stride)
    332 */
    333 #define LD_H2(RTYPE, psrc, stride, out0, out1)  \
    334 {                                               \
    335     out0 = LD_H(RTYPE, (psrc));                 \
    336     out1 = LD_H(RTYPE, (psrc) + (stride));      \
    337 }
    338 #define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__)
    339 
    340 #define LD_H4(RTYPE, psrc, stride, out0, out1, out2, out3)  \
    341 {                                                           \
    342     LD_H2(RTYPE, (psrc), stride, out0, out1);               \
    343     LD_H2(RTYPE, (psrc) + 2 * stride, stride, out2, out3);  \
    344 }
    345 #define LD_SH4(...) LD_H4(v8i16, __VA_ARGS__)
    346 
    347 /* Description : Load 2 vectors of signed word elements with stride
    348    Arguments   : Inputs  - psrc, stride
    349                  Outputs - out0, out1
    350                  Return Type - signed word
    351 */
    352 #define LD_SW2(psrc, stride, out0, out1)  \
    353 {                                         \
    354     out0 = LD_SW((psrc));                 \
    355     out1 = LD_SW((psrc) + stride);        \
    356 }
    357 
    358 /* Description : Store vectors of 16 byte elements with stride
    359    Arguments   : Inputs - in0, in1, pdst, stride
    360    Details     : Store 16 byte elements from 'in0' to (pdst)
    361                  Store 16 byte elements from 'in1' to (pdst + stride)
    362 */
    363 #define ST_B2(RTYPE, in0, in1, pdst, stride)  \
    364 {                                             \
    365     ST_B(RTYPE, in0, (pdst));                 \
    366     ST_B(RTYPE, in1, (pdst) + stride);        \
    367 }
    368 #define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__)
    369 
    370 #define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride)    \
    371 {                                                         \
    372     ST_B2(RTYPE, in0, in1, (pdst), stride);               \
    373     ST_B2(RTYPE, in2, in3, (pdst) + 2 * stride, stride);  \
    374 }
    375 #define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__)
    376 #define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__)
    377 
    378 #define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,        \
    379               pdst, stride)                                         \
    380 {                                                                   \
    381     ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride);                 \
    382     ST_B4(RTYPE, in4, in5, in6, in7, (pdst) + 4 * stride, stride);  \
    383 }
    384 #define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__)
    385 
    386 /* Description : Store vectors of 8 halfword elements with stride
    387    Arguments   : Inputs - in0, in1, pdst, stride
    388    Details     : Store 8 halfword elements from 'in0' to (pdst)
    389                  Store 8 halfword elements from 'in1' to (pdst + stride)
    390 */
    391 #define ST_H2(RTYPE, in0, in1, pdst, stride)  \
    392 {                                             \
    393     ST_H(RTYPE, in0, (pdst));                 \
    394     ST_H(RTYPE, in1, (pdst) + stride);        \
    395 }
    396 #define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__)
    397 
    398 /* Description : Store vectors of word elements with stride
    399    Arguments   : Inputs - in0, in1, pdst, stride
    400    Details     : Store 4 word elements from 'in0' to (pdst)
    401                  Store 4 word elements from 'in1' to (pdst + stride)
    402 */
    403 #define ST_SW2(in0, in1, pdst, stride)  \
    404 {                                       \
    405     ST_SW(in0, (pdst));                 \
    406     ST_SW(in1, (pdst) + stride);        \
    407 }
    408 
    409 /* Description : Store 2x4 byte block to destination memory from input vector
    410    Arguments   : Inputs - in, stidx, pdst, stride
    411    Details     : Index 'stidx' halfword element from 'in' vector is copied to
    412                  the GP register and stored to (pdst)
    413                  Index 'stidx+1' halfword element from 'in' vector is copied to
    414                  the GP register and stored to (pdst + stride)
    415                  Index 'stidx+2' halfword element from 'in' vector is copied to
    416                  the GP register and stored to (pdst + 2 * stride)
    417                  Index 'stidx+3' halfword element from 'in' vector is copied to
    418                  the GP register and stored to (pdst + 3 * stride)
    419 */
    420 #define ST2x4_UB(in, stidx, pdst, stride)             \
    421 {                                                     \
    422     uint16_t out0_m, out1_m, out2_m, out3_m;          \
    423     uint8_t *pblk_2x4_m = (uint8_t *)(pdst);          \
    424                                                       \
    425     out0_m = __msa_copy_u_h((v8i16)in, (stidx));      \
    426     out1_m = __msa_copy_u_h((v8i16)in, (stidx + 1));  \
    427     out2_m = __msa_copy_u_h((v8i16)in, (stidx + 2));  \
    428     out3_m = __msa_copy_u_h((v8i16)in, (stidx + 3));  \
    429                                                       \
    430     SH(out0_m, pblk_2x4_m);                           \
    431     SH(out1_m, pblk_2x4_m + stride);                  \
    432     SH(out2_m, pblk_2x4_m + 2 * stride);              \
    433     SH(out3_m, pblk_2x4_m + 3 * stride);              \
    434 }
    435 
    436 /* Description : Store 4x4 byte block to destination memory from input vector
    437    Arguments   : Inputs - in0, in1, pdst, stride
    438    Details     : 'Idx0' word element from input vector 'in0' is copied to the
    439                  GP register and stored to (pdst)
    440                  'Idx1' word element from input vector 'in0' is copied to the
    441                  GP register and stored to (pdst + stride)
    442                  'Idx2' word element from input vector 'in0' is copied to the
    443                  GP register and stored to (pdst + 2 * stride)
    444                  'Idx3' word element from input vector 'in0' is copied to the
    445                  GP register and stored to (pdst + 3 * stride)
    446 */
    447 #define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride)  \
    448 {                                                                 \
    449     uint32_t out0_m, out1_m, out2_m, out3_m;                      \
    450     uint8_t *pblk_4x4_m = (uint8_t *)(pdst);                      \
    451                                                                   \
    452     out0_m = __msa_copy_u_w((v4i32)in0, idx0);                    \
    453     out1_m = __msa_copy_u_w((v4i32)in0, idx1);                    \
    454     out2_m = __msa_copy_u_w((v4i32)in1, idx2);                    \
    455     out3_m = __msa_copy_u_w((v4i32)in1, idx3);                    \
    456                                                                   \
    457     SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride);      \
    458 }
    459 #define ST4x8_UB(in0, in1, pdst, stride)                            \
    460 {                                                                   \
    461     uint8_t *pblk_4x8 = (uint8_t *)(pdst);                          \
    462                                                                     \
    463     ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride);               \
    464     ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride);  \
    465 }
    466 
    467 /* Description : Store 8x1 byte block to destination memory from input vector
    468    Arguments   : Inputs - in, pdst
    469    Details     : Index 0 double word element from 'in' vector is copied to the
    470                  GP register and stored to (pdst)
    471 */
    472 #define ST8x1_UB(in, pdst)                  \
    473 {                                           \
    474     uint64_t out0_m;                        \
    475                                             \
    476     out0_m = __msa_copy_u_d((v2i64)in, 0);  \
    477     SD(out0_m, pdst);                       \
    478 }
    479 
    480 /* Description : Store 8x2 byte block to destination memory from input vector
    481    Arguments   : Inputs - in, pdst, stride
    482    Details     : Index 0 double word element from 'in' vector is copied to the
    483                  GP register and stored to (pdst)
    484                  Index 1 double word element from 'in' vector is copied to the
    485                  GP register and stored to (pdst + stride)
    486 */
    487 #define ST8x2_UB(in, pdst, stride)            \
    488 {                                             \
    489     uint64_t out0_m, out1_m;                  \
    490     uint8_t *pblk_8x2_m = (uint8_t *)(pdst);  \
    491                                               \
    492     out0_m = __msa_copy_u_d((v2i64)in, 0);    \
    493     out1_m = __msa_copy_u_d((v2i64)in, 1);    \
    494                                               \
    495     SD(out0_m, pblk_8x2_m);                   \
    496     SD(out1_m, pblk_8x2_m + stride);          \
    497 }
    498 
    499 /* Description : Store 8x4 byte block to destination memory from input
    500                  vectors
    501    Arguments   : Inputs - in0, in1, pdst, stride
    502    Details     : Index 0 double word element from 'in0' vector is copied to the
    503                  GP register and stored to (pdst)
    504                  Index 1 double word element from 'in0' vector is copied to the
    505                  GP register and stored to (pdst + stride)
    506                  Index 0 double word element from 'in1' vector is copied to the
    507                  GP register and stored to (pdst + 2 * stride)
    508                  Index 1 double word element from 'in1' vector is copied to the
    509                  GP register and stored to (pdst + 3 * stride)
    510 */
    511 #define ST8x4_UB(in0, in1, pdst, stride)                      \
    512 {                                                             \
    513     uint64_t out0_m, out1_m, out2_m, out3_m;                  \
    514     uint8_t *pblk_8x4_m = (uint8_t *)(pdst);                  \
    515                                                               \
    516     out0_m = __msa_copy_u_d((v2i64)in0, 0);                   \
    517     out1_m = __msa_copy_u_d((v2i64)in0, 1);                   \
    518     out2_m = __msa_copy_u_d((v2i64)in1, 0);                   \
    519     out3_m = __msa_copy_u_d((v2i64)in1, 1);                   \
    520                                                               \
    521     SD4(out0_m, out1_m, out2_m, out3_m, pblk_8x4_m, stride);  \
    522 }
    523 
    524 /* Description : Immediate number of elements to slide with zero
    525    Arguments   : Inputs  - in0, in1, slide_val
    526                  Outputs - out0, out1
    527                  Return Type - as per RTYPE
    528    Details     : Byte elements from 'zero_m' vector are slid into 'in0' by
    529                  value specified in the 'slide_val'
    530 */
    531 #define SLDI_B2_0(RTYPE, in0, in1, out0, out1, slide_val)              \
    532 {                                                                      \
    533     v16i8 zero_m = { 0 };                                              \
    534                                                                        \
    535     out0 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in0, slide_val);  \
    536     out1 = (RTYPE)__msa_sldi_b((v16i8)zero_m, (v16i8)in1, slide_val);  \
    537 }
    538 #define SLDI_B2_0_UB(...) SLDI_B2_0(v16u8, __VA_ARGS__)
    539 
    540 /* Description : Immediate number of elements to slide
    541    Arguments   : Inputs  - in0_0, in0_1, in1_0, in1_1, slide_val
    542                  Outputs - out0, out1
    543                  Return Type - as per RTYPE
    544    Details     : Byte elements from 'in0_0' vector are slid into 'in1_0' by
    545                  value specified in the 'slide_val'
    546 */
    547 #define SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val)  \
    548 {                                                                          \
    549     out0 = (RTYPE)__msa_sldi_b((v16i8)in0_0, (v16i8)in1_0, slide_val);     \
    550     out1 = (RTYPE)__msa_sldi_b((v16i8)in0_1, (v16i8)in1_1, slide_val);     \
    551 }
    552 
    553 #define SLDI_B3(RTYPE, in0_0, in0_1, in0_2, in1_0, in1_1, in1_2,        \
    554                 out0, out1, out2, slide_val)                            \
    555 {                                                                       \
    556     SLDI_B2(RTYPE, in0_0, in0_1, in1_0, in1_1, out0, out1, slide_val);  \
    557     out2 = (RTYPE)__msa_sldi_b((v16i8)in0_2, (v16i8)in1_2, slide_val);  \
    558 }
    559 #define SLDI_B3_UH(...) SLDI_B3(v8u16, __VA_ARGS__)
    560 
    561 /* Description : Shuffle byte vector elements as per mask vector
    562    Arguments   : Inputs  - in0, in1, in2, in3, mask0, mask1
    563                  Outputs - out0, out1
    564                  Return Type - as per RTYPE
    565    Details     : Byte elements from 'in0' & 'in1' are copied selectively to
    566                  'out0' as per control vector 'mask0'
    567 */
    568 #define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1)   \
    569 {                                                                      \
    570     out0 = (RTYPE)__msa_vshf_b((v16i8)mask0, (v16i8)in1, (v16i8)in0);  \
    571     out1 = (RTYPE)__msa_vshf_b((v16i8)mask1, (v16i8)in3, (v16i8)in2);  \
    572 }
    573 #define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
    574 #define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__)
    575 #define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__)
    576 
    577 #define VSHF_B3(RTYPE, in0, in1, in2, in3, in4, in5, mask0, mask1, mask2,  \
    578                 out0, out1, out2)                                          \
    579 {                                                                          \
    580     VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1);          \
    581     out2 = (RTYPE)__msa_vshf_b((v16i8)mask2, (v16i8)in5, (v16i8)in4);      \
    582 }
    583 #define VSHF_B3_SB(...) VSHF_B3(v16i8, __VA_ARGS__)
    584 
    585 /* Description : Shuffle halfword vector elements as per mask vector
    586    Arguments   : Inputs  - in0, in1, in2, in3, mask0, mask1
    587                  Outputs - out0, out1
    588                  Return Type - as per RTYPE
    589    Details     : halfword elements from 'in0' & 'in1' are copied selectively to
    590                  'out0' as per control vector 'mask0'
    591 */
    592 #define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1)   \
    593 {                                                                      \
    594     out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0);  \
    595     out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2);  \
    596 }
    597 #define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__)
    598 
    599 /* Description : Dot product of byte vector elements
    600    Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
    601                  Outputs - out0, out1
    602                  Return Type - as per RTYPE
    603    Details     : Unsigned byte elements from 'mult0' are multiplied with
    604                  unsigned byte elements from 'cnst0' producing a result
    605                  twice the size of input i.e. unsigned halfword.
    606                  The multiplication result of adjacent odd-even elements
    607                  are added together and written to the 'out0' vector
    608 */
    609 #define DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1)  \
    610 {                                                                \
    611     out0 = (RTYPE)__msa_dotp_u_h((v16u8)mult0, (v16u8)cnst0);    \
    612     out1 = (RTYPE)__msa_dotp_u_h((v16u8)mult1, (v16u8)cnst1);    \
    613 }
    614 #define DOTP_UB2_UH(...) DOTP_UB2(v8u16, __VA_ARGS__)
    615 
    616 #define DOTP_UB4(RTYPE, mult0, mult1, mult2, mult3,           \
    617                  cnst0, cnst1, cnst2, cnst3,                  \
    618                  out0, out1, out2, out3)                      \
    619 {                                                             \
    620     DOTP_UB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1);  \
    621     DOTP_UB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3);  \
    622 }
    623 #define DOTP_UB4_UH(...) DOTP_UB4(v8u16, __VA_ARGS__)
    624 
    625 /* Description : Dot product of byte vector elements
    626    Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
    627                  Outputs - out0, out1
    628                  Return Type - as per RTYPE
    629    Details     : Signed byte elements from 'mult0' are multiplied with
    630                  signed byte elements from 'cnst0' producing a result
    631                  twice the size of input i.e. signed halfword.
    632                  The multiplication result of adjacent odd-even elements
    633                  are added together and written to the 'out0' vector
    634 */
    635 #define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1)  \
    636 {                                                                \
    637     out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0);    \
    638     out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1);    \
    639 }
    640 #define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__)
    641 
    642 #define DOTP_SB4(RTYPE, mult0, mult1, mult2, mult3,                   \
    643                  cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3)  \
    644 {                                                                     \
    645     DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1);          \
    646     DOTP_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3);          \
    647 }
    648 #define DOTP_SB4_SH(...) DOTP_SB4(v8i16, __VA_ARGS__)
    649 
    650 /* Description : Dot product of halfword vector elements
    651    Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
    652                  Outputs - out0, out1
    653                  Return Type - as per RTYPE
    654    Details     : Signed halfword elements from 'mult0' are multiplied with
    655                  signed halfword elements from 'cnst0' producing a result
    656                  twice the size of input i.e. signed word.
    657                  The multiplication result of adjacent odd-even elements
    658                  are added together and written to the 'out0' vector
    659 */
    660 #define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1)  \
    661 {                                                                \
    662     out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0);    \
    663     out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1);    \
    664 }
    665 
    666 #define DOTP_SH4(RTYPE, mult0, mult1, mult2, mult3,           \
    667                  cnst0, cnst1, cnst2, cnst3,                  \
    668                  out0, out1, out2, out3)                      \
    669 {                                                             \
    670     DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1);  \
    671     DOTP_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3);  \
    672 }
    673 #define DOTP_SH4_SW(...) DOTP_SH4(v4i32, __VA_ARGS__)
    674 
    675 /* Description : Dot product of word vector elements
    676    Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
    677                  Outputs - out0, out1
    678                  Return Type - as per RTYPE
    679    Details     : Signed word elements from 'mult0' are multiplied with
    680                  signed word elements from 'cnst0' producing a result
    681                  twice the size of input i.e. signed double word.
    682                  The multiplication result of adjacent odd-even elements
    683                  are added together and written to the 'out0' vector
    684 */
    685 #define DOTP_SW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1)  \
    686 {                                                                \
    687     out0 = (RTYPE)__msa_dotp_s_d((v4i32)mult0, (v4i32)cnst0);    \
    688     out1 = (RTYPE)__msa_dotp_s_d((v4i32)mult1, (v4i32)cnst1);    \
    689 }
    690 #define DOTP_SW2_SD(...) DOTP_SW2(v2i64, __VA_ARGS__)
    691 
    692 /* Description : Dot product & addition of byte vector elements
    693    Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
    694                  Outputs - out0, out1
    695                  Return Type - as per RTYPE
    696    Details     : Signed byte elements from 'mult0' are multiplied with
    697                  signed byte elements from 'cnst0' producing a result
    698                  twice the size of input i.e. signed halfword.
    699                  The multiplication result of adjacent odd-even elements
    700                  are added to the 'out0' vector
    701 */
    702 #define DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1)             \
    703 {                                                                            \
    704     out0 = (RTYPE)__msa_dpadd_s_h((v8i16)out0, (v16i8)mult0, (v16i8)cnst0);  \
    705     out1 = (RTYPE)__msa_dpadd_s_h((v8i16)out1, (v16i8)mult1, (v16i8)cnst1);  \
    706 }
    707 #define DPADD_SB2_SH(...) DPADD_SB2(v8i16, __VA_ARGS__)
    708 
    709 #define DPADD_SB4(RTYPE, mult0, mult1, mult2, mult3,                   \
    710                   cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3)  \
    711 {                                                                      \
    712     DPADD_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1);          \
    713     DPADD_SB2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3);          \
    714 }
    715 #define DPADD_SB4_SH(...) DPADD_SB4(v8i16, __VA_ARGS__)
    716 
    717 /* Description : Dot product & addition of halfword vector elements
    718    Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
    719                  Outputs - out0, out1
    720                  Return Type - as per RTYPE
    721    Details     : Signed halfword elements from 'mult0' are multiplied with
    722                  signed halfword elements from 'cnst0' producing a result
    723                  twice the size of input i.e. signed word.
    724                  The multiplication result of adjacent odd-even elements
    725                  are added to the 'out0' vector
    726 */
    727 #define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1)             \
    728 {                                                                            \
    729     out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0);  \
    730     out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1);  \
    731 }
    732 #define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__)
    733 
    734 #define DPADD_SH4(RTYPE, mult0, mult1, mult2, mult3,                   \
    735                   cnst0, cnst1, cnst2, cnst3, out0, out1, out2, out3)  \
    736 {                                                                      \
    737     DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1);          \
    738     DPADD_SH2(RTYPE, mult2, mult3, cnst2, cnst3, out2, out3);          \
    739 }
    740 #define DPADD_SH4_SW(...) DPADD_SH4(v4i32, __VA_ARGS__)
    741 
    742 /* Description : Dot product & addition of double word vector elements
    743    Arguments   : Inputs  - mult0, mult1
    744                  Outputs - out0, out1
    745                  Return Type - as per RTYPE
    746    Details     : Each signed word element from 'mult0' is multiplied with itself
    747                  producing an intermediate result twice the size of it
    748                  i.e. signed double word
    749                  The multiplication result of adjacent odd-even elements
    750                  are added to the 'out0' vector
    751 */
    752 #define DPADD_SD2(RTYPE, mult0, mult1, out0, out1)                           \
    753 {                                                                            \
    754     out0 = (RTYPE)__msa_dpadd_s_d((v2i64)out0, (v4i32)mult0, (v4i32)mult0);  \
    755     out1 = (RTYPE)__msa_dpadd_s_d((v2i64)out1, (v4i32)mult1, (v4i32)mult1);  \
    756 }
    757 #define DPADD_SD2_SD(...) DPADD_SD2(v2i64, __VA_ARGS__)
    758 
    759 /* Description : Clips all signed halfword elements of input vector
    760                  between 0 & 255
    761    Arguments   : Input  - in
    762                  Output - out_m
    763                  Return Type - signed halfword
    764 */
    765 #define CLIP_SH_0_255(in)                               \
    766 ({                                                      \
    767     v8i16 max_m = __msa_ldi_h(255);                     \
    768     v8i16 out_m;                                        \
    769                                                         \
    770     out_m = __msa_maxi_s_h((v8i16)in, 0);               \
    771     out_m = __msa_min_s_h((v8i16)max_m, (v8i16)out_m);  \
    772     out_m;                                              \
    773 })
    774 #define CLIP_SH2_0_255(in0, in1)  \
    775 {                                 \
    776     in0 = CLIP_SH_0_255(in0);     \
    777     in1 = CLIP_SH_0_255(in1);     \
    778 }
    779 #define CLIP_SH4_0_255(in0, in1, in2, in3)  \
    780 {                                           \
    781     CLIP_SH2_0_255(in0, in1);               \
    782     CLIP_SH2_0_255(in2, in3);               \
    783 }
    784 
    785 /* Description : Clips all signed word elements of input vector
    786                  between 0 & 255
    787    Arguments   : Input  - in
    788                  Output - out_m
    789                  Return Type - signed word
    790 */
    791 #define CLIP_SW_0_255(in)                               \
    792 ({                                                      \
    793     v4i32 max_m = __msa_ldi_w(255);                     \
    794     v4i32 out_m;                                        \
    795                                                         \
    796     out_m = __msa_maxi_s_w((v4i32)in, 0);               \
    797     out_m = __msa_min_s_w((v4i32)max_m, (v4i32)out_m);  \
    798     out_m;                                              \
    799 })
    800 
    801 /* Description : Horizontal addition of 4 signed word elements of input vector
    802    Arguments   : Input  - in       (signed word vector)
    803                  Output - sum_m    (i32 sum)
    804                  Return Type - signed word (GP)
    805    Details     : 4 signed word elements of 'in' vector are added together and
    806                  the resulting integer sum is returned
    807 */
    808 #define HADD_SW_S32(in)                             \
    809 ({                                                  \
    810     v2i64 res0_m, res1_m;                           \
    811     int32_t sum_m;                                  \
    812                                                     \
    813     res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in);  \
    814     res1_m = __msa_splati_d(res0_m, 1);             \
    815     res0_m = res0_m + res1_m;                       \
    816     sum_m = __msa_copy_s_w((v4i32)res0_m, 0);       \
    817     sum_m;                                          \
    818 })
    819 
    820 /* Description : Horizontal addition of 8 unsigned halfword elements
    821    Arguments   : Inputs  - in       (unsigned halfword vector)
    822                  Outputs - sum_m    (u32 sum)
    823                  Return Type - unsigned word
    824    Details     : 8 unsigned halfword elements of input vector are added
    825                  together and the resulting integer sum is returned
    826 */
    827 #define HADD_UH_U32(in)                                \
    828 ({                                                     \
    829     v4u32 res_m;                                       \
    830     v2u64 res0_m, res1_m;                              \
    831     uint32_t sum_m;                                    \
    832                                                        \
    833     res_m = __msa_hadd_u_w((v8u16)in, (v8u16)in);      \
    834     res0_m = __msa_hadd_u_d(res_m, res_m);             \
    835     res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1);  \
    836     res0_m = res0_m + res1_m;                          \
    837     sum_m = __msa_copy_u_w((v4i32)res0_m, 0);          \
    838     sum_m;                                             \
    839 })
    840 
    841 /* Description : Horizontal addition of unsigned byte vector elements
    842    Arguments   : Inputs  - in0, in1
    843                  Outputs - out0, out1
    844                  Return Type - as per RTYPE
    845    Details     : Each unsigned odd byte element from 'in0' is added to
    846                  even unsigned byte element from 'in0' (pairwise) and the
    847                  halfword result is written to 'out0'
    848 */
    849 #define HADD_UB2(RTYPE, in0, in1, out0, out1)              \
    850 {                                                          \
    851     out0 = (RTYPE)__msa_hadd_u_h((v16u8)in0, (v16u8)in0);  \
    852     out1 = (RTYPE)__msa_hadd_u_h((v16u8)in1, (v16u8)in1);  \
    853 }
    854 #define HADD_UB2_UH(...) HADD_UB2(v8u16, __VA_ARGS__)
    855 
    856 /* Description : Horizontal subtraction of unsigned byte vector elements
    857    Arguments   : Inputs  - in0, in1
    858                  Outputs - out0, out1
    859                  Return Type - as per RTYPE
    860    Details     : Each unsigned odd byte element from 'in0' is subtracted from
    861                  even unsigned byte element from 'in0' (pairwise) and the
    862                  halfword result is written to 'out0'
    863 */
    864 #define HSUB_UB2(RTYPE, in0, in1, out0, out1)              \
    865 {                                                          \
    866     out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0);  \
    867     out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1);  \
    868 }
    869 #define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__)
    870 
    871 /* Description : Horizontal subtraction of signed halfword vector elements
    872    Arguments   : Inputs  - in0, in1
    873                  Outputs - out0, out1
    874                  Return Type - as per RTYPE
    875    Details     : Each signed odd halfword element from 'in0' is subtracted from
    876                  even signed halfword element from 'in0' (pairwise) and the
    877                  word result is written to 'out0'
    878 */
    879 #define HSUB_UH2(RTYPE, in0, in1, out0, out1)              \
    880 {                                                          \
    881     out0 = (RTYPE)__msa_hsub_s_w((v8i16)in0, (v8i16)in0);  \
    882     out1 = (RTYPE)__msa_hsub_s_w((v8i16)in1, (v8i16)in1);  \
    883 }
    884 #define HSUB_UH2_SW(...) HSUB_UH2(v4i32, __VA_ARGS__)
    885 
    886 /* Description : Set element n input vector to GPR value
    887    Arguments   : Inputs - in0, in1, in2, in3
    888                  Output - out
    889                  Return Type - as per RTYPE
    890    Details     : Set element 0 in vector 'out' to value specified in 'in0'
    891 */
    892 #define INSERT_D2(RTYPE, in0, in1, out)               \
    893 {                                                     \
    894     out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0);  \
    895     out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1);  \
    896 }
    897 #define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__)
    898 
    899 /* Description : Interleave even byte elements from vectors
    900    Arguments   : Inputs  - in0, in1, in2, in3
    901                  Outputs - out0, out1
    902                  Return Type - as per RTYPE
    903    Details     : Even byte elements of 'in0' and 'in1' are interleaved
    904                  and written to 'out0'
    905 */
    906 #define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1)   \
    907 {                                                         \
    908     out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0);  \
    909     out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2);  \
    910 }
    911 #define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__)
    912 #define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__)
    913 #define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__)
    914 
    915 /* Description : Interleave even halfword elements from vectors
    916    Arguments   : Inputs  - in0, in1, in2, in3
    917                  Outputs - out0, out1
    918                  Return Type - as per RTYPE
    919    Details     : Even halfword elements of 'in0' and 'in1' are interleaved
    920                  and written to 'out0'
    921 */
    922 #define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1)   \
    923 {                                                         \
    924     out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0);  \
    925     out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2);  \
    926 }
    927 #define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__)
    928 #define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__)
    929 
    930 /* Description : Interleave even word elements from vectors
    931    Arguments   : Inputs  - in0, in1, in2, in3
    932                  Outputs - out0, out1
    933                  Return Type - as per RTYPE
    934    Details     : Even word elements of 'in0' and 'in1' are interleaved
    935                  and written to 'out0'
    936 */
    937 #define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1)   \
    938 {                                                         \
    939     out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0);  \
    940     out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2);  \
    941 }
    942 #define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__)
    943 
    944 /* Description : Interleave even double word elements from vectors
    945    Arguments   : Inputs  - in0, in1, in2, in3
    946                  Outputs - out0, out1
    947                  Return Type - as per RTYPE
    948    Details     : Even double word elements of 'in0' and 'in1' are interleaved
    949                  and written to 'out0'
    950 */
    951 #define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1)   \
    952 {                                                         \
    953     out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0);  \
    954     out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2);  \
    955 }
    956 #define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__)
    957 
    958 /* Description : Interleave left half of byte elements from vectors
    959    Arguments   : Inputs  - in0, in1, in2, in3
    960                  Outputs - out0, out1
    961                  Return Type - as per RTYPE
    962    Details     : Left half of byte elements of 'in0' and 'in1' are interleaved
    963                  and written to 'out0'.
    964 */
    965 #define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1)   \
    966 {                                                        \
    967     out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1);  \
    968     out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3);  \
    969 }
    970 #define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__)
    971 #define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__)
    972 #define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__)
    973 
    974 #define ILVL_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
    975                 out0, out1, out2, out3)                         \
    976 {                                                               \
    977     ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1);             \
    978     ILVL_B2(RTYPE, in4, in5, in6, in7, out2, out3);             \
    979 }
    980 #define ILVL_B4_SB(...) ILVL_B4(v16i8, __VA_ARGS__)
    981 #define ILVL_B4_SH(...) ILVL_B4(v8i16, __VA_ARGS__)
    982 
    983 /* Description : Interleave left half of halfword elements from vectors
    984    Arguments   : Inputs  - in0, in1, in2, in3
    985                  Outputs - out0, out1
    986                  Return Type - as per RTYPE
    987    Details     : Left half of halfword elements of 'in0' and 'in1' are
    988                  interleaved and written to 'out0'.
    989 */
    990 #define ILVL_H2(RTYPE, in0, in1, in2, in3, out0, out1)   \
    991 {                                                        \
    992     out0 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1);  \
    993     out1 = (RTYPE)__msa_ilvl_h((v8i16)in2, (v8i16)in3);  \
    994 }
    995 #define ILVL_H2_SH(...) ILVL_H2(v8i16, __VA_ARGS__)
    996 #define ILVL_H2_SW(...) ILVL_H2(v4i32, __VA_ARGS__)
    997 
    998 /* Description : Interleave left half of word elements from vectors
    999    Arguments   : Inputs  - in0, in1, in2, in3
   1000                  Outputs - out0, out1
   1001                  Return Type - as per RTYPE
   1002    Details     : Left half of word elements of 'in0' and 'in1' are interleaved
   1003                  and written to 'out0'.
   1004 */
   1005 #define ILVL_W2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1006 {                                                        \
   1007     out0 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1);  \
   1008     out1 = (RTYPE)__msa_ilvl_w((v4i32)in2, (v4i32)in3);  \
   1009 }
   1010 #define ILVL_W2_SH(...) ILVL_W2(v8i16, __VA_ARGS__)
   1011 
   1012 /* Description : Interleave right half of byte elements from vectors
   1013    Arguments   : Inputs  - in0, in1, in2, in3
   1014                  Outputs - out0, out1
   1015                  Return Type - as per RTYPE
   1016    Details     : Right half of byte elements of 'in0' and 'in1' are interleaved
   1017                  and written to out0.
   1018 */
   1019 #define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1020 {                                                        \
   1021     out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1);  \
   1022     out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3);  \
   1023 }
   1024 #define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__)
   1025 #define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__)
   1026 #define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__)
   1027 #define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__)
   1028 
   1029 #define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
   1030                 out0, out1, out2, out3)                         \
   1031 {                                                               \
   1032     ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1);             \
   1033     ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3);             \
   1034 }
   1035 #define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__)
   1036 #define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__)
   1037 #define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__)
   1038 #define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__)
   1039 #define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__)
   1040 
   1041 /* Description : Interleave right half of halfword elements from vectors
   1042    Arguments   : Inputs  - in0, in1, in2, in3
   1043                  Outputs - out0, out1
   1044                  Return Type - as per RTYPE
   1045    Details     : Right half of halfword elements of 'in0' and 'in1' are
   1046                  interleaved and written to 'out0'.
   1047 */
   1048 #define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1049 {                                                        \
   1050     out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1);  \
   1051     out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3);  \
   1052 }
   1053 #define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__)
   1054 #define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__)
   1055 
   1056 #define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
   1057                 out0, out1, out2, out3)                         \
   1058 {                                                               \
   1059     ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1);             \
   1060     ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3);             \
   1061 }
   1062 #define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__)
   1063 #define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__)
   1064 
   1065 #define ILVR_W2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1066 {                                                        \
   1067     out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1);  \
   1068     out1 = (RTYPE)__msa_ilvr_w((v4i32)in2, (v4i32)in3);  \
   1069 }
   1070 #define ILVR_W2_SH(...) ILVR_W2(v8i16, __VA_ARGS__)
   1071 
   1072 /* Description : Interleave right half of double word elements from vectors
   1073    Arguments   : Inputs  - in0, in1, in2, in3
   1074                  Outputs - out0, out1
   1075                  Return Type - as per RTYPE
   1076    Details     : Right half of double word elements of 'in0' and 'in1' are
   1077                  interleaved and written to 'out0'.
   1078 */
   1079 #define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1)       \
   1080 {                                                            \
   1081     out0 = (RTYPE)__msa_ilvr_d((v2i64)(in0), (v2i64)(in1));  \
   1082     out1 = (RTYPE)__msa_ilvr_d((v2i64)(in2), (v2i64)(in3));  \
   1083 }
   1084 #define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__)
   1085 #define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__)
   1086 #define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__)
   1087 
   1088 #define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
   1089                 out0, out1, out2, out3)                         \
   1090 {                                                               \
   1091     ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1);             \
   1092     ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3);             \
   1093 }
   1094 #define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__)
   1095 #define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__)
   1096 
   1097 /* Description : Interleave both left and right half of input vectors
   1098    Arguments   : Inputs  - in0, in1
   1099                  Outputs - out0, out1
   1100                  Return Type - as per RTYPE
   1101    Details     : Right half of byte elements from 'in0' and 'in1' are
   1102                  interleaved and written to 'out0'
   1103 */
   1104 #define ILVRL_B2(RTYPE, in0, in1, out0, out1)            \
   1105 {                                                        \
   1106     out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1);  \
   1107     out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1);  \
   1108 }
   1109 #define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__)
   1110 #define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__)
   1111 #define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__)
   1112 #define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__)
   1113 
   1114 #define ILVRL_H2(RTYPE, in0, in1, out0, out1)            \
   1115 {                                                        \
   1116     out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1);  \
   1117     out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1);  \
   1118 }
   1119 #define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__)
   1120 #define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__)
   1121 
   1122 #define ILVRL_W2(RTYPE, in0, in1, out0, out1)            \
   1123 {                                                        \
   1124     out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1);  \
   1125     out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1);  \
   1126 }
   1127 #define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__)
   1128 #define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__)
   1129 #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
   1130 
   1131 /* Description : Maximum values between signed elements of vector and
   1132                  5-bit signed immediate value are copied to the output vector
   1133    Arguments   : Inputs  - in0, in1, in2, in3, max_val
   1134                  Outputs - in place operation
   1135                  Return Type - unsigned halfword
   1136    Details     : Maximum of signed halfword element values from 'in0' and
   1137                  'max_val' are written in place
   1138 */
   1139 #define MAXI_SH2(RTYPE, in0, in1, max_val)               \
   1140 {                                                        \
   1141     in0 = (RTYPE)__msa_maxi_s_h((v8i16)in0, (max_val));  \
   1142     in1 = (RTYPE)__msa_maxi_s_h((v8i16)in1, (max_val));  \
   1143 }
   1144 #define MAXI_SH2_SH(...) MAXI_SH2(v8i16, __VA_ARGS__)
   1145 
   1146 /* Description : Saturate the halfword element values to the max
   1147                  unsigned value of (sat_val + 1) bits
   1148                  The element data width remains unchanged
   1149    Arguments   : Inputs  - in0, in1, sat_val
   1150                  Outputs - in place operation
   1151                  Return Type - as per RTYPE
   1152    Details     : Each unsigned halfword element from 'in0' is saturated to the
   1153                  value generated with (sat_val + 1) bit range.
   1154                  The results are written in place
   1155 */
   1156 #define SAT_UH2(RTYPE, in0, in1, sat_val)             \
   1157 {                                                     \
   1158     in0 = (RTYPE)__msa_sat_u_h((v8u16)in0, sat_val);  \
   1159     in1 = (RTYPE)__msa_sat_u_h((v8u16)in1, sat_val);  \
   1160 }
   1161 #define SAT_UH2_SH(...) SAT_UH2(v8i16, __VA_ARGS__)
   1162 
   1163 /* Description : Saturate the halfword element values to the max
   1164                  unsigned value of (sat_val + 1) bits
   1165                  The element data width remains unchanged
   1166    Arguments   : Inputs  - in0, in1, sat_val
   1167                  Outputs - in place operation
   1168                  Return Type - as per RTYPE
   1169    Details     : Each unsigned halfword element from 'in0' is saturated to the
   1170                  value generated with (sat_val + 1) bit range
   1171                  The results are written in place
   1172 */
   1173 #define SAT_SH2(RTYPE, in0, in1, sat_val)             \
   1174 {                                                     \
   1175     in0 = (RTYPE)__msa_sat_s_h((v8i16)in0, sat_val);  \
   1176     in1 = (RTYPE)__msa_sat_s_h((v8i16)in1, sat_val);  \
   1177 }
   1178 #define SAT_SH2_SH(...) SAT_SH2(v8i16, __VA_ARGS__)
   1179 
   1180 #define SAT_SH4(RTYPE, in0, in1, in2, in3, sat_val)  \
   1181 {                                                    \
   1182     SAT_SH2(RTYPE, in0, in1, sat_val);               \
   1183     SAT_SH2(RTYPE, in2, in3, sat_val);               \
   1184 }
   1185 #define SAT_SH4_SH(...) SAT_SH4(v8i16, __VA_ARGS__)
   1186 
   1187 /* Description : Indexed halfword element values are replicated to all
   1188                  elements in output vector
   1189    Arguments   : Inputs  - in, idx0, idx1
   1190                  Outputs - out0, out1
   1191                  Return Type - as per RTYPE
   1192    Details     : 'idx0' element value from 'in' vector is replicated to all
   1193                   elements in 'out0' vector
   1194                   Valid index range for halfword operation is 0-7
   1195 */
   1196 #define SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1)  \
   1197 {                                                     \
   1198     out0 = (RTYPE)__msa_splati_h((v8i16)in, idx0);    \
   1199     out1 = (RTYPE)__msa_splati_h((v8i16)in, idx1);    \
   1200 }
   1201 #define SPLATI_H2_SB(...) SPLATI_H2(v16i8, __VA_ARGS__)
   1202 #define SPLATI_H2_SH(...) SPLATI_H2(v8i16, __VA_ARGS__)
   1203 
   1204 #define SPLATI_H3(RTYPE, in, idx0, idx1, idx2,      \
   1205                   out0, out1, out2)                 \
   1206 {                                                   \
   1207     SPLATI_H2(RTYPE, in, idx0, idx1, out0, out1);   \
   1208     out2 = (RTYPE)__msa_splati_h((v8i16)in, idx2);  \
   1209 }
   1210 #define SPLATI_H3_SB(...) SPLATI_H3(v16i8, __VA_ARGS__)
   1211 #define SPLATI_H3_SH(...) SPLATI_H3(v8i16, __VA_ARGS__)
   1212 
   1213 /* Description : Indexed word element values are replicated to all
   1214                  elements in output vector
   1215    Arguments   : Inputs  - in, stidx
   1216                  Outputs - out0, out1
   1217                  Return Type - as per RTYPE
   1218    Details     : 'stidx' element value from 'in' vector is replicated to all
   1219                  elements in 'out0' vector
   1220                  'stidx + 1' element value from 'in' vector is replicated to all
   1221                  elements in 'out1' vector
   1222                  Valid index range for word operation is 0-3
   1223 */
   1224 #define SPLATI_W2(RTYPE, in, stidx, out0, out1)          \
   1225 {                                                        \
   1226     out0 = (RTYPE)__msa_splati_w((v4i32)in, stidx);      \
   1227     out1 = (RTYPE)__msa_splati_w((v4i32)in, (stidx+1));  \
   1228 }
   1229 #define SPLATI_W2_SW(...) SPLATI_W2(v4i32, __VA_ARGS__)
   1230 
   1231 /* Description : Pack even byte elements of vector pairs
   1232    Arguments   : Inputs  - in0, in1, in2, in3
   1233                  Outputs - out0, out1
   1234                  Return Type - as per RTYPE
   1235    Details     : Even byte elements of 'in0' are copied to the left half of
   1236                  'out0' & even byte elements of 'in1' are copied to the right
   1237                  half of 'out0'.
   1238 */
   1239 #define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1240 {                                                         \
   1241     out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1);  \
   1242     out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3);  \
   1243 }
   1244 #define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__)
   1245 #define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__)
   1246 
   1247 #define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
   1248                  out0, out1, out2, out3)                         \
   1249 {                                                                \
   1250     PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1);             \
   1251     PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3);             \
   1252 }
   1253 #define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__)
   1254 #define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__)
   1255 #define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__)
   1256 
   1257 /* Description : Pack even halfword elements of vector pairs
   1258    Arguments   : Inputs  - in0, in1, in2, in3
   1259                  Outputs - out0, out1
   1260                  Return Type - as per RTYPE
   1261    Details     : Even halfword elements of 'in0' are copied to the left half of
   1262                  'out0' & even halfword elements of 'in1' are copied to the
   1263                  right half of 'out0'.
   1264 */
   1265 #define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1266 {                                                         \
   1267     out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1);  \
   1268     out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3);  \
   1269 }
   1270 #define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__)
   1271 
   1272 #define PCKEV_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
   1273                  out0, out1, out2, out3)                         \
   1274 {                                                                \
   1275     PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1);             \
   1276     PCKEV_H2(RTYPE, in4, in5, in6, in7, out2, out3);             \
   1277 }
   1278 #define PCKEV_H4_SH(...) PCKEV_H4(v8i16, __VA_ARGS__)
   1279 
   1280 /* Description : Pack even double word elements of vector pairs
   1281    Arguments   : Inputs  - in0, in1, in2, in3
   1282                  Outputs - out0, out1
   1283                  Return Type - as per RTYPE
   1284    Details     : Even double elements of 'in0' are copied to the left half of
   1285                  'out0' & even double elements of 'in1' are copied to the right
   1286                  half of 'out0'.
   1287 */
   1288 #define PCKEV_D2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1289 {                                                         \
   1290     out0 = (RTYPE)__msa_pckev_d((v2i64)in0, (v2i64)in1);  \
   1291     out1 = (RTYPE)__msa_pckev_d((v2i64)in2, (v2i64)in3);  \
   1292 }
   1293 #define PCKEV_D2_UB(...) PCKEV_D2(v16u8, __VA_ARGS__)
   1294 #define PCKEV_D2_SH(...) PCKEV_D2(v8i16, __VA_ARGS__)
   1295 
   1296 /* Description : Pack odd double word elements of vector pairs
   1297    Arguments   : Inputs  - in0, in1, in2, in3
   1298                  Outputs - out0, out1
   1299                  Return Type - as per RTYPE
   1300    Details     : Odd double word elements of 'in0' are copied to the left half
   1301                  of 'out0' & odd double word elements of 'in1' are copied to
   1302                  the right half of 'out0'.
   1303 */
   1304 #define PCKOD_D2(RTYPE, in0, in1, in2, in3, out0, out1)   \
   1305 {                                                         \
   1306     out0 = (RTYPE)__msa_pckod_d((v2i64)in0, (v2i64)in1);  \
   1307     out1 = (RTYPE)__msa_pckod_d((v2i64)in2, (v2i64)in3);  \
   1308 }
   1309 #define PCKOD_D2_UB(...) PCKOD_D2(v16u8, __VA_ARGS__)
   1310 #define PCKOD_D2_SH(...) PCKOD_D2(v8i16, __VA_ARGS__)
   1311 
   1312 /* Description : Each byte element is logically xor'ed with immediate 128
   1313    Arguments   : Inputs  - in0, in1
   1314                  Outputs - in place operation
   1315                  Return Type - as per RTYPE
   1316    Details     : Each unsigned byte element from input vector 'in0' is
   1317                  logically xor'ed with 128 and the result is stored in-place.
   1318 */
   1319 #define XORI_B2_128(RTYPE, in0, in1)             \
   1320 {                                                \
   1321     in0 = (RTYPE)__msa_xori_b((v16u8)in0, 128);  \
   1322     in1 = (RTYPE)__msa_xori_b((v16u8)in1, 128);  \
   1323 }
   1324 #define XORI_B2_128_UB(...) XORI_B2_128(v16u8, __VA_ARGS__)
   1325 #define XORI_B2_128_SB(...) XORI_B2_128(v16i8, __VA_ARGS__)
   1326 
   1327 #define XORI_B3_128(RTYPE, in0, in1, in2)        \
   1328 {                                                \
   1329     XORI_B2_128(RTYPE, in0, in1);                \
   1330     in2 = (RTYPE)__msa_xori_b((v16u8)in2, 128);  \
   1331 }
   1332 #define XORI_B3_128_SB(...) XORI_B3_128(v16i8, __VA_ARGS__)
   1333 
   1334 #define XORI_B4_128(RTYPE, in0, in1, in2, in3)  \
   1335 {                                               \
   1336     XORI_B2_128(RTYPE, in0, in1);               \
   1337     XORI_B2_128(RTYPE, in2, in3);               \
   1338 }
   1339 #define XORI_B4_128_UB(...) XORI_B4_128(v16u8, __VA_ARGS__)
   1340 #define XORI_B4_128_SB(...) XORI_B4_128(v16i8, __VA_ARGS__)
   1341 
   1342 #define XORI_B5_128(RTYPE, in0, in1, in2, in3, in4)  \
   1343 {                                                    \
   1344     XORI_B3_128(RTYPE, in0, in1, in2);               \
   1345     XORI_B2_128(RTYPE, in3, in4);                    \
   1346 }
   1347 #define XORI_B5_128_SB(...) XORI_B5_128(v16i8, __VA_ARGS__)
   1348 
   1349 #define XORI_B8_128(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7)  \
   1350 {                                                                   \
   1351     XORI_B4_128(RTYPE, in0, in1, in2, in3);                         \
   1352     XORI_B4_128(RTYPE, in4, in5, in6, in7);                         \
   1353 }
   1354 #define XORI_B8_128_SB(...) XORI_B8_128(v16i8, __VA_ARGS__)
   1355 
   1356 /* Description : Shift left all elements of vector (generic for all data types)
   1357    Arguments   : Inputs  - in0, in1, in2, in3, shift
   1358                  Outputs - in place operation
   1359                  Return Type - as per input vector RTYPE
   1360    Details     : Each element of vector 'in0' is left shifted by 'shift' and
   1361                  the result is written in-place.
   1362 */
   1363 #define SLLI_4V(in0, in1, in2, in3, shift)  \
   1364 {                                           \
   1365     in0 = in0 << shift;                     \
   1366     in1 = in1 << shift;                     \
   1367     in2 = in2 << shift;                     \
   1368     in3 = in3 << shift;                     \
   1369 }
   1370 
   1371 /* Description : Arithmetic shift right all elements of vector
   1372                  (generic for all data types)
   1373    Arguments   : Inputs  - in0, in1, in2, in3, shift
   1374                  Outputs - in place operation
   1375                  Return Type - as per input vector RTYPE
   1376    Details     : Each element of vector 'in0' is right shifted by 'shift' and
   1377                  the result is written in-place. 'shift' is a GP variable.
   1378 */
   1379 #define SRA_4V(in0, in1, in2, in3, shift)  \
   1380 {                                          \
   1381     in0 = in0 >> shift;                    \
   1382     in1 = in1 >> shift;                    \
   1383     in2 = in2 >> shift;                    \
   1384     in3 = in3 >> shift;                    \
   1385 }
   1386 
   1387 /* Description : Shift right arithmetic rounded words
   1388    Arguments   : Inputs  - in0, in1, shift
   1389                  Outputs - in place operation
   1390                  Return Type - as per RTYPE
   1391    Details     : Each element of vector 'in0' is shifted right arithmetically by
   1392                  the number of bits in the corresponding element in the vector
   1393                  'shift'. The last discarded bit is added to shifted value for
   1394                  rounding and the result is written in-place.
   1395                  'shift' is a vector.
   1396 */
   1397 #define SRAR_W2(RTYPE, in0, in1, shift)                   \
   1398 {                                                         \
   1399     in0 = (RTYPE)__msa_srar_w((v4i32)in0, (v4i32)shift);  \
   1400     in1 = (RTYPE)__msa_srar_w((v4i32)in1, (v4i32)shift);  \
   1401 }
   1402 
   1403 #define SRAR_W4(RTYPE, in0, in1, in2, in3, shift)  \
   1404 {                                                  \
   1405     SRAR_W2(RTYPE, in0, in1, shift);               \
   1406     SRAR_W2(RTYPE, in2, in3, shift);               \
   1407 }
   1408 #define SRAR_W4_SW(...) SRAR_W4(v4i32, __VA_ARGS__)
   1409 
   1410 /* Description : Shift right arithmetic rounded (immediate)
   1411    Arguments   : Inputs  - in0, in1, shift
   1412                  Outputs - in place operation
   1413                  Return Type - as per RTYPE
   1414    Details     : Each element of vector 'in0' is shifted right arithmetically by
   1415                  the value in 'shift'. The last discarded bit is added to the
   1416                  shifted value for rounding and the result is written in-place.
   1417                  'shift' is an immediate value.
   1418 */
   1419 #define SRARI_H2(RTYPE, in0, in1, shift)            \
   1420 {                                                   \
   1421     in0 = (RTYPE)__msa_srari_h((v8i16)in0, shift);  \
   1422     in1 = (RTYPE)__msa_srari_h((v8i16)in1, shift);  \
   1423 }
   1424 #define SRARI_H2_UH(...) SRARI_H2(v8u16, __VA_ARGS__)
   1425 #define SRARI_H2_SH(...) SRARI_H2(v8i16, __VA_ARGS__)
   1426 
   1427 #define SRARI_H4(RTYPE, in0, in1, in2, in3, shift)  \
   1428 {                                                   \
   1429     SRARI_H2(RTYPE, in0, in1, shift);               \
   1430     SRARI_H2(RTYPE, in2, in3, shift);               \
   1431 }
   1432 #define SRARI_H4_UH(...) SRARI_H4(v8u16, __VA_ARGS__)
   1433 #define SRARI_H4_SH(...) SRARI_H4(v8i16, __VA_ARGS__)
   1434 
   1435 #define SRARI_W2(RTYPE, in0, in1, shift)            \
   1436 {                                                   \
   1437     in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift);  \
   1438     in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift);  \
   1439 }
   1440 
   1441 #define SRARI_W4(RTYPE, in0, in1, in2, in3, shift)  \
   1442 {                                                   \
   1443     SRARI_W2(RTYPE, in0, in1, shift);               \
   1444     SRARI_W2(RTYPE, in2, in3, shift);               \
   1445 }
   1446 #define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__)
   1447 
   1448 /* Description : Multiplication of pairs of vectors
   1449    Arguments   : Inputs  - in0, in1, in2, in3
   1450                  Outputs - out0, out1
   1451    Details     : Each element from 'in0' is multiplied with elements from 'in1'
   1452                  and the result is written to 'out0'
   1453 */
   1454 #define MUL2(in0, in1, in2, in3, out0, out1)  \
   1455 {                                             \
   1456     out0 = in0 * in1;                         \
   1457     out1 = in2 * in3;                         \
   1458 }
   1459 #define MUL4(in0, in1, in2, in3, in4, in5, in6, in7,  \
   1460              out0, out1, out2, out3)                  \
   1461 {                                                     \
   1462     MUL2(in0, in1, in2, in3, out0, out1);             \
   1463     MUL2(in4, in5, in6, in7, out2, out3);             \
   1464 }
   1465 
   1466 /* Description : Addition of 2 pairs of vectors
   1467    Arguments   : Inputs  - in0, in1, in2, in3
   1468                  Outputs - out0, out1
   1469    Details     : Each element in 'in0' is added to 'in1' and result is written
   1470                  to 'out0'.
   1471 */
   1472 #define ADD2(in0, in1, in2, in3, out0, out1)  \
   1473 {                                             \
   1474     out0 = in0 + in1;                         \
   1475     out1 = in2 + in3;                         \
   1476 }
   1477 #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7,  \
   1478              out0, out1, out2, out3)                  \
   1479 {                                                     \
   1480     ADD2(in0, in1, in2, in3, out0, out1);             \
   1481     ADD2(in4, in5, in6, in7, out2, out3);             \
   1482 }
   1483 
   1484 /* Description : Subtraction of 2 pairs of vectors
   1485    Arguments   : Inputs  - in0, in1, in2, in3
   1486                  Outputs - out0, out1
   1487    Details     : Each element in 'in1' is subtracted from 'in0' and result is
   1488                  written to 'out0'.
   1489 */
   1490 #define SUB2(in0, in1, in2, in3, out0, out1)  \
   1491 {                                             \
   1492     out0 = in0 - in1;                         \
   1493     out1 = in2 - in3;                         \
   1494 }
   1495 #define SUB4(in0, in1, in2, in3, in4, in5, in6, in7,  \
   1496              out0, out1, out2, out3)                  \
   1497 {                                                     \
   1498     out0 = in0 - in1;                                 \
   1499     out1 = in2 - in3;                                 \
   1500     out2 = in4 - in5;                                 \
   1501     out3 = in6 - in7;                                 \
   1502 }
   1503 
   1504 /* Description : Sign extend halfword elements from right half of the vector
   1505    Arguments   : Input  - in    (halfword vector)
   1506                  Output - out   (sign extended word vector)
   1507                  Return Type - signed word
   1508    Details     : Sign bit of halfword elements from input vector 'in' is
   1509                  extracted and interleaved with same vector 'in0' to generate
   1510                  4 word elements keeping sign intact
   1511 */
   1512 #define UNPCK_R_SH_SW(in, out)                     \
   1513 {                                                  \
   1514     v8i16 sign_m;                                  \
   1515                                                    \
   1516     sign_m = __msa_clti_s_h((v8i16)in, 0);         \
   1517     out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in);  \
   1518 }
   1519 
   1520 /* Description : Zero extend unsigned byte elements to halfword elements
   1521    Arguments   : Input   - in          (unsigned byte vector)
   1522                  Outputs - out0, out1  (unsigned  halfword vectors)
   1523                  Return Type - signed halfword
   1524    Details     : Zero extended right half of vector is returned in 'out0'
   1525                  Zero extended left half of vector is returned in 'out1'
   1526 */
   1527 #define UNPCK_UB_SH(in, out0, out1)       \
   1528 {                                         \
   1529     v16i8 zero_m = { 0 };                 \
   1530                                           \
   1531     ILVRL_B2_SH(zero_m, in, out0, out1);  \
   1532 }
   1533 
   1534 /* Description : Sign extend halfword elements from input vector and return
   1535                  the result in pair of vectors
   1536    Arguments   : Input   - in            (halfword vector)
   1537                  Outputs - out0, out1   (sign extended word vectors)
   1538                  Return Type - signed word
   1539    Details     : Sign bit of halfword elements from input vector 'in' is
   1540                  extracted and interleaved right with same vector 'in0' to
   1541                  generate 4 signed word elements in 'out0'
   1542                  Then interleaved left with same vector 'in0' to
   1543                  generate 4 signed word elements in 'out1'
   1544 */
   1545 #define UNPCK_SH_SW(in, out0, out1)        \
   1546 {                                          \
   1547     v8i16 tmp_m;                           \
   1548                                            \
   1549     tmp_m = __msa_clti_s_h((v8i16)in, 0);  \
   1550     ILVRL_H2_SW(tmp_m, in, out0, out1);    \
   1551 }
   1552 
   1553 /* Description : Butterfly of 4 input vectors
   1554    Arguments   : Inputs  - in0, in1, in2, in3
   1555                  Outputs - out0, out1, out2, out3
   1556    Details     : Butterfly operation
   1557 */
   1558 #define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3)  \
   1559 {                                                                \
   1560     out0 = in0 + in3;                                            \
   1561     out1 = in1 + in2;                                            \
   1562                                                                  \
   1563     out2 = in1 - in2;                                            \
   1564     out3 = in0 - in3;                                            \
   1565 }
   1566 
   1567 /* Description : Transpose input 8x8 byte block
   1568    Arguments   : Inputs  - in0, in1, in2, in3, in4, in5, in6, in7
   1569                  Outputs - out0, out1, out2, out3, out4, out5, out6, out7
   1570                  Return Type - as per RTYPE
   1571 */
   1572 #define TRANSPOSE8x8_UB(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,   \
   1573                         out0, out1, out2, out3, out4, out5, out6, out7)  \
   1574 {                                                                        \
   1575     v16i8 tmp0_m, tmp1_m, tmp2_m, tmp3_m;                                \
   1576     v16i8 tmp4_m, tmp5_m, tmp6_m, tmp7_m;                                \
   1577                                                                          \
   1578     ILVR_B4_SB(in2, in0, in3, in1, in6, in4, in7, in5,                   \
   1579                tmp0_m, tmp1_m, tmp2_m, tmp3_m);                          \
   1580     ILVRL_B2_SB(tmp1_m, tmp0_m, tmp4_m, tmp5_m);                         \
   1581     ILVRL_B2_SB(tmp3_m, tmp2_m, tmp6_m, tmp7_m);                         \
   1582     ILVRL_W2(RTYPE, tmp6_m, tmp4_m, out0, out2);                         \
   1583     ILVRL_W2(RTYPE, tmp7_m, tmp5_m, out4, out6);                         \
   1584     SLDI_B2_0(RTYPE, out0, out2, out1, out3, 8);                         \
   1585     SLDI_B2_0(RTYPE, out4, out6, out5, out7, 8);                         \
   1586 }
   1587 #define TRANSPOSE8x8_UB_UB(...) TRANSPOSE8x8_UB(v16u8, __VA_ARGS__)
   1588 
   1589 /* Description : Transpose 16x4 block into 4x16 with byte elements in vectors
   1590    Arguments   : Inputs  - in0, in1, in2, in3, in4, in5, in6, in7,
   1591                            in8, in9, in10, in11, in12, in13, in14, in15
   1592                  Outputs - out0, out1, out2, out3
   1593                  Return Type - unsigned byte
   1594 */
   1595 #define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7,        \
   1596                             in8, in9, in10, in11, in12, in13, in14, in15,  \
   1597                             out0, out1, out2, out3)                        \
   1598 {                                                                          \
   1599     v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m;                                  \
   1600                                                                            \
   1601     ILVEV_W2_SD(in0, in4, in8, in12, tmp0_m, tmp1_m);                      \
   1602     out1 = (v16u8)__msa_ilvev_d(tmp1_m, tmp0_m);                           \
   1603                                                                            \
   1604     ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m);                      \
   1605     out3 = (v16u8)__msa_ilvev_d(tmp1_m, tmp0_m);                           \
   1606                                                                            \
   1607     ILVEV_W2_SD(in2, in6, in10, in14, tmp0_m, tmp1_m);                     \
   1608                                                                            \
   1609     tmp2_m = __msa_ilvev_d(tmp1_m, tmp0_m);                                \
   1610     ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m);                     \
   1611                                                                            \
   1612     tmp3_m = __msa_ilvev_d(tmp1_m, tmp0_m);                                \
   1613     ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m);               \
   1614     out0 = (v16u8)__msa_ilvev_h((v8i16)tmp1_m, (v8i16)tmp0_m);             \
   1615     out2 = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m);             \
   1616                                                                            \
   1617     tmp0_m = (v2i64)__msa_ilvod_b((v16i8)out3, (v16i8)out1);               \
   1618     tmp1_m = (v2i64)__msa_ilvod_b((v16i8)tmp3_m, (v16i8)tmp2_m);           \
   1619     out1 = (v16u8)__msa_ilvev_h((v8i16)tmp1_m, (v8i16)tmp0_m);             \
   1620     out3 = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m);             \
   1621 }
   1622 
   1623 /* Description : Transpose 16x8 block into 8x16 with byte elements in vectors
   1624    Arguments   : Inputs  - in0, in1, in2, in3, in4, in5, in6, in7,
   1625                            in8, in9, in10, in11, in12, in13, in14, in15
   1626                  Outputs - out0, out1, out2, out3, out4, out5, out6, out7
   1627                  Return Type - unsigned byte
   1628 */
   1629 #define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7,          \
   1630                             in8, in9, in10, in11, in12, in13, in14, in15,    \
   1631                             out0, out1, out2, out3, out4, out5, out6, out7)  \
   1632 {                                                                            \
   1633     v16u8 tmp0_m, tmp1_m, tmp2_m, tmp3_m;                                    \
   1634     v16u8 tmp4_m, tmp5_m, tmp6_m, tmp7_m;                                    \
   1635                                                                              \
   1636     ILVEV_D2_UB(in0, in8, in1, in9, out7, out6);                             \
   1637     ILVEV_D2_UB(in2, in10, in3, in11, out5, out4);                           \
   1638     ILVEV_D2_UB(in4, in12, in5, in13, out3, out2);                           \
   1639     ILVEV_D2_UB(in6, in14, in7, in15, out1, out0);                           \
   1640                                                                              \
   1641     tmp0_m = (v16u8)__msa_ilvev_b((v16i8)out6, (v16i8)out7);                 \
   1642     tmp4_m = (v16u8)__msa_ilvod_b((v16i8)out6, (v16i8)out7);                 \
   1643     tmp1_m = (v16u8)__msa_ilvev_b((v16i8)out4, (v16i8)out5);                 \
   1644     tmp5_m = (v16u8)__msa_ilvod_b((v16i8)out4, (v16i8)out5);                 \
   1645     out5 = (v16u8)__msa_ilvev_b((v16i8)out2, (v16i8)out3);                   \
   1646     tmp6_m = (v16u8)__msa_ilvod_b((v16i8)out2, (v16i8)out3);                 \
   1647     out7 = (v16u8)__msa_ilvev_b((v16i8)out0, (v16i8)out1);                   \
   1648     tmp7_m = (v16u8)__msa_ilvod_b((v16i8)out0, (v16i8)out1);                 \
   1649                                                                              \
   1650     ILVEV_H2_UB(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m);                 \
   1651     out0 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1652     out4 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1653                                                                              \
   1654     tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp1_m, (v8i16)tmp0_m);             \
   1655     tmp3_m = (v16u8)__msa_ilvod_h((v8i16)out7, (v8i16)out5);                 \
   1656     out2 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1657     out6 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1658                                                                              \
   1659     ILVEV_H2_UB(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m);             \
   1660     out1 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1661     out5 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1662                                                                              \
   1663     tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m);             \
   1664     tmp2_m = (v16u8)__msa_ilvod_h((v8i16)tmp5_m, (v8i16)tmp4_m);             \
   1665     tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m);             \
   1666     tmp3_m = (v16u8)__msa_ilvod_h((v8i16)tmp7_m, (v8i16)tmp6_m);             \
   1667     out3 = (v16u8)__msa_ilvev_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1668     out7 = (v16u8)__msa_ilvod_w((v4i32)tmp3_m, (v4i32)tmp2_m);               \
   1669 }
   1670 
   1671 /* Description : Transpose 4x4 block with half word elements in vectors
   1672    Arguments   : Inputs  - in0, in1, in2, in3
   1673                  Outputs - out0, out1, out2, out3
   1674                  Return Type - signed halfword
   1675 */
   1676 #define TRANSPOSE4x4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3)  \
   1677 {                                                                       \
   1678     v8i16 s0_m, s1_m;                                                   \
   1679                                                                         \
   1680     ILVR_H2_SH(in1, in0, in3, in2, s0_m, s1_m);                         \
   1681     ILVRL_W2_SH(s1_m, s0_m, out0, out2);                                \
   1682     out1 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out0);               \
   1683     out3 = (v8i16)__msa_ilvl_d((v2i64)out0, (v2i64)out2);               \
   1684 }
   1685 
   1686 /* Description : Transpose 8x4 block with half word elements in vectors
   1687    Arguments   : Inputs  - in0, in1, in2, in3, in4, in5, in6, in7
   1688                  Outputs - out0, out1, out2, out3, out4, out5, out6, out7
   1689                  Return Type - signed halfword
   1690 */
   1691 #define TRANSPOSE8X4_SH_SH(in0, in1, in2, in3, out0, out1, out2, out3)  \
   1692 {                                                                       \
   1693     v8i16 tmp0_m, tmp1_m, tmp2_m, tmp3_m;                               \
   1694                                                                         \
   1695     ILVR_H2_SH(in1, in0, in3, in2, tmp0_m, tmp1_m);                     \
   1696     ILVL_H2_SH(in1, in0, in3, in2, tmp2_m, tmp3_m);                     \
   1697     ILVR_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out0, out2);             \
   1698     ILVL_W2_SH(tmp1_m, tmp0_m, tmp3_m, tmp2_m, out1, out3);             \
   1699 }
   1700 
   1701 /* Description : Transpose 4x4 block with word elements in vectors
   1702    Arguments   : Inputs  - in0, in1, in2, in3
   1703                  Outputs - out0, out1, out2, out3
   1704                  Return Type - signed word
   1705 */
   1706 #define TRANSPOSE4x4_SW_SW(in0, in1, in2, in3, out0, out1, out2, out3)  \
   1707 {                                                                       \
   1708     v4i32 s0_m, s1_m, s2_m, s3_m;                                       \
   1709                                                                         \
   1710     ILVRL_W2_SW(in1, in0, s0_m, s1_m);                                  \
   1711     ILVRL_W2_SW(in3, in2, s2_m, s3_m);                                  \
   1712                                                                         \
   1713     out0 = (v4i32)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m);               \
   1714     out1 = (v4i32)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m);               \
   1715     out2 = (v4i32)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m);               \
   1716     out3 = (v4i32)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m);               \
   1717 }
   1718 
   1719 /* Description : Dot product and addition of 3 signed halfword input vectors
   1720    Arguments   : Inputs - in0, in1, in2, coeff0, coeff1, coeff2
   1721                  Output - out0_m
   1722                  Return Type - signed halfword
   1723    Details     : Dot product of 'in0' with 'coeff0'
   1724                  Dot product of 'in1' with 'coeff1'
   1725                  Dot product of 'in2' with 'coeff2'
   1726                  Addition of all the 3 vector results
   1727                  out0_m = (in0 * coeff0) + (in1 * coeff1) + (in2 * coeff2)
   1728 */
   1729 #define DPADD_SH3_SH(in0, in1, in2, coeff0, coeff1, coeff2)       \
   1730 ({                                                                \
   1731     v8i16 tmp1_m;                                                 \
   1732     v8i16 out0_m;                                                 \
   1733                                                                   \
   1734     out0_m = __msa_dotp_s_h((v16i8)in0, (v16i8)coeff0);           \
   1735     out0_m = __msa_dpadd_s_h(out0_m, (v16i8)in1, (v16i8)coeff1);  \
   1736     tmp1_m = __msa_dotp_s_h((v16i8)in2, (v16i8)coeff2);           \
   1737     out0_m = __msa_adds_s_h(out0_m, tmp1_m);                      \
   1738                                                                   \
   1739     out0_m;                                                       \
   1740 })
   1741 
   1742 /* Description : Pack even elements of input vectors & xor with 128
   1743    Arguments   : Inputs - in0, in1
   1744                  Output - out_m
   1745                  Return Type - unsigned byte
   1746    Details     : Signed byte even elements from 'in0' and 'in1' are packed
   1747                  together in one vector and the resulting vector is xor'ed with
   1748                  128 to shift the range from signed to unsigned byte
   1749 */
   1750 #define PCKEV_XORI128_UB(in0, in1)                         \
   1751 ({                                                         \
   1752     v16u8 out_m;                                           \
   1753     out_m = (v16u8)__msa_pckev_b((v16i8)in1, (v16i8)in0);  \
   1754     out_m = (v16u8)__msa_xori_b((v16u8)out_m, 128);        \
   1755     out_m;                                                 \
   1756 })
   1757 
   1758 /* Description : Pack even byte elements and store byte vector in destination
   1759                  memory
   1760    Arguments   : Inputs - in0, in1, pdst
   1761 */
   1762 #define PCKEV_ST_SB(in0, in1, pdst)                 \
   1763 {                                                   \
   1764     v16i8 tmp_m;                                    \
   1765     tmp_m = __msa_pckev_b((v16i8)in1, (v16i8)in0);  \
   1766     ST_SB(tmp_m, (pdst));                           \
   1767 }
   1768 
   1769 /* Description : Horizontal 2 tap filter kernel code
   1770    Arguments   : Inputs - in0, in1, mask, coeff, shift
   1771 */
   1772 #define HORIZ_2TAP_FILT_UH(in0, in1, mask, coeff, shift)         \
   1773 ({                                                               \
   1774     v16i8 tmp0_m;                                                \
   1775     v8u16 tmp1_m;                                                \
   1776                                                                  \
   1777     tmp0_m = __msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0);  \
   1778     tmp1_m = __msa_dotp_u_h((v16u8)tmp0_m, (v16u8)coeff);        \
   1779     tmp1_m = (v8u16)__msa_srari_h((v8i16)tmp1_m, shift);         \
   1780                                                                  \
   1781     tmp1_m;                                                      \
   1782 })
   1783 #endif  /* VP8_COMMON_MIPS_MSA_VP8_MACROS_MSA_H_ */
   1784