1 /* 2 * Copyright (c) 1997, 2002, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package sun.security.x509; 27 28 import java.io.IOException; 29 import java.lang.Integer; 30 import java.net.InetAddress; 31 import java.util.Arrays; 32 import sun.misc.HexDumpEncoder; 33 import sun.security.util.BitArray; 34 import sun.security.util.DerOutputStream; 35 import sun.security.util.DerValue; 36 37 /** 38 * This class implements the IPAddressName as required by the GeneralNames 39 * ASN.1 object. Both IPv4 and IPv6 addresses are supported using the 40 * formats specified in IETF PKIX RFC2459. 41 * <p> 42 * [RFC2459 4.2.1.7 Subject Alternative Name] 43 * When the subjectAltName extension contains a iPAddress, the address 44 * MUST be stored in the octet string in "network byte order," as 45 * specified in RFC 791. The least significant bit (LSB) of 46 * each octet is the LSB of the corresponding byte in the network 47 * address. For IP Version 4, as specified in RFC 791, the octet string 48 * MUST contain exactly four octets. For IP Version 6, as specified in 49 * RFC 1883, the octet string MUST contain exactly sixteen octets. 50 * <p> 51 * [RFC2459 4.2.1.11 Name Constraints] 52 * The syntax of iPAddress MUST be as described in section 4.2.1.7 with 53 * the following additions specifically for Name Constraints. For IPv4 54 * addresses, the ipAddress field of generalName MUST contain eight (8) 55 * octets, encoded in the style of RFC 1519 (CIDR) to represent an 56 * address range.[RFC 1519] For IPv6 addresses, the ipAddress field 57 * MUST contain 32 octets similarly encoded. For example, a name 58 * constraint for "class C" subnet 10.9.8.0 shall be represented as the 59 * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation 60 * 10.9.8.0/255.255.255.0. 61 * <p> 62 * @see GeneralName 63 * @see GeneralNameInterface 64 * @see GeneralNames 65 * 66 * 67 * @author Amit Kapoor 68 * @author Hemma Prafullchandra 69 */ 70 public class IPAddressName implements GeneralNameInterface { 71 private byte[] address; 72 private boolean isIPv4; 73 private String name; 74 75 /** 76 * Create the IPAddressName object from the passed encoded Der value. 77 * 78 * @params derValue the encoded DER IPAddressName. 79 * @exception IOException on error. 80 */ 81 public IPAddressName(DerValue derValue) throws IOException { 82 this(derValue.getOctetString()); 83 } 84 85 /** 86 * Create the IPAddressName object with the specified octets. 87 * 88 * @params address the IP address 89 * @throws IOException if address is not a valid IPv4 or IPv6 address 90 */ 91 public IPAddressName(byte[] address) throws IOException { 92 /* 93 * A valid address must consist of 4 bytes of address and 94 * optional 4 bytes of 4 bytes of mask, or 16 bytes of address 95 * and optional 16 bytes of mask. 96 */ 97 if (address.length == 4 || address.length == 8) { 98 isIPv4 = true; 99 } else if (address.length == 16 || address.length == 32) { 100 isIPv4 = false; 101 } else { 102 throw new IOException("Invalid IPAddressName"); 103 } 104 this.address = address; 105 } 106 107 /** 108 * Create an IPAddressName from a String. 109 * [IETF RFC1338 Supernetting & IETF RFC1519 Classless Inter-Domain 110 * Routing (CIDR)] For IPv4 addresses, the forms are 111 * "b1.b2.b3.b4" or "b1.b2.b3.b4/m1.m2.m3.m4", where b1 - b4 are decimal 112 * byte values 0-255 and m1 - m4 are decimal mask values 113 * 0 - 255. 114 * <p> 115 * [IETF RFC2373 IP Version 6 Addressing Architecture] 116 * For IPv6 addresses, the forms are "a1:a2:...:a8" or "a1:a2:...:a8/n", 117 * where a1-a8 are hexadecimal values representing the eight 16-bit pieces 118 * of the address. If /n is used, n is a decimal number indicating how many 119 * of the leftmost contiguous bits of the address comprise the prefix for 120 * this subnet. Internally, a mask value is created using the prefix length. 121 * <p> 122 * @param name String form of IPAddressName 123 * @throws IOException if name can not be converted to a valid IPv4 or IPv6 124 * address 125 */ 126 public IPAddressName(String name) throws IOException { 127 128 if (name == null || name.length() == 0) { 129 throw new IOException("IPAddress cannot be null or empty"); 130 } 131 if (name.charAt(name.length() - 1) == '/') { 132 throw new IOException("Invalid IPAddress: " + name); 133 } 134 135 if (name.indexOf(':') >= 0) { 136 // name is IPv6: uses colons as value separators 137 // Parse name into byte-value address components and optional 138 // prefix 139 parseIPv6(name); 140 isIPv4 = false; 141 } else if (name.indexOf('.') >= 0) { 142 //name is IPv4: uses dots as value separators 143 parseIPv4(name); 144 isIPv4 = true; 145 } else { 146 throw new IOException("Invalid IPAddress: " + name); 147 } 148 } 149 150 /** 151 * Parse an IPv4 address. 152 * 153 * @param name IPv4 address with optional mask values 154 * @throws IOException on error 155 */ 156 private void parseIPv4(String name) throws IOException { 157 158 // Parse name into byte-value address components 159 int slashNdx = name.indexOf('/'); 160 if (slashNdx == -1) { 161 address = InetAddress.getByName(name).getAddress(); 162 } else { 163 address = new byte[8]; 164 165 // parse mask 166 byte[] mask = InetAddress.getByName 167 (name.substring(slashNdx+1)).getAddress(); 168 169 // parse base address 170 byte[] host = InetAddress.getByName 171 (name.substring(0, slashNdx)).getAddress(); 172 173 System.arraycopy(host, 0, address, 0, 4); 174 System.arraycopy(mask, 0, address, 4, 4); 175 } 176 } 177 178 /** 179 * Parse an IPv6 address. 180 * 181 * @param name String IPv6 address with optional /<prefix length> 182 * If /<prefix length> is present, address[] array will 183 * be 32 bytes long, otherwise 16. 184 * @throws IOException on error 185 */ 186 private final static int MASKSIZE = 16; 187 private void parseIPv6(String name) throws IOException { 188 189 int slashNdx = name.indexOf('/'); 190 if (slashNdx == -1) { 191 address = InetAddress.getByName(name).getAddress(); 192 } else { 193 address = new byte[32]; 194 byte[] base = InetAddress.getByName 195 (name.substring(0, slashNdx)).getAddress(); 196 System.arraycopy(base, 0, address, 0, 16); 197 198 // append a mask corresponding to the num of prefix bits specified 199 int prefixLen = Integer.parseInt(name.substring(slashNdx+1)); 200 if (prefixLen > 128) 201 throw new IOException("IPv6Address prefix is longer than 128"); 202 203 // create new bit array initialized to zeros 204 BitArray bitArray = new BitArray(MASKSIZE * 8); 205 206 // set all most significant bits up to prefix length 207 for (int i = 0; i < prefixLen; i++) 208 bitArray.set(i, true); 209 byte[] maskArray = bitArray.toByteArray(); 210 211 // copy mask bytes into mask portion of address 212 for (int i = 0; i < MASKSIZE; i++) 213 address[MASKSIZE+i] = maskArray[i]; 214 } 215 } 216 217 /** 218 * Return the type of the GeneralName. 219 */ 220 public int getType() { 221 return NAME_IP; 222 } 223 224 /** 225 * Encode the IPAddress name into the DerOutputStream. 226 * 227 * @params out the DER stream to encode the IPAddressName to. 228 * @exception IOException on encoding errors. 229 */ 230 public void encode(DerOutputStream out) throws IOException { 231 out.putOctetString(address); 232 } 233 234 /** 235 * Return a printable string of IPaddress 236 */ 237 public String toString() { 238 try { 239 return "IPAddress: " + getName(); 240 } catch (IOException ioe) { 241 // dump out hex rep for debugging purposes 242 HexDumpEncoder enc = new HexDumpEncoder(); 243 return "IPAddress: " + enc.encodeBuffer(address); 244 } 245 } 246 247 /** 248 * Return a standard String representation of IPAddress. 249 * See IPAddressName(String) for the formats used for IPv4 250 * and IPv6 addresses. 251 * 252 * @throws IOException if the IPAddress cannot be converted to a String 253 */ 254 public String getName() throws IOException { 255 if (name != null) 256 return name; 257 258 if (isIPv4) { 259 //IPv4 address or subdomain 260 byte[] host = new byte[4]; 261 System.arraycopy(address, 0, host, 0, 4); 262 name = InetAddress.getByAddress(host).getHostAddress(); 263 if (address.length == 8) { 264 byte[] mask = new byte[4]; 265 System.arraycopy(address, 4, mask, 0, 4); 266 name = name + "/" + 267 InetAddress.getByAddress(mask).getHostAddress(); 268 } 269 } else { 270 //IPv6 address or subdomain 271 byte[] host = new byte[16]; 272 System.arraycopy(address, 0, host, 0, 16); 273 name = InetAddress.getByAddress(host).getHostAddress(); 274 if (address.length == 32) { 275 // IPv6 subdomain: display prefix length 276 277 // copy subdomain into new array and convert to BitArray 278 byte[] maskBytes = new byte[16]; 279 for (int i=16; i < 32; i++) 280 maskBytes[i-16] = address[i]; 281 BitArray ba = new BitArray(16*8, maskBytes); 282 // Find first zero bit 283 int i=0; 284 for (; i < 16*8; i++) { 285 if (!ba.get(i)) 286 break; 287 } 288 name = name + "/" + i; 289 // Verify remaining bits 0 290 for (; i < 16*8; i++) { 291 if (ba.get(i)) { 292 throw new IOException("Invalid IPv6 subdomain - set " + 293 "bit " + i + " not contiguous"); 294 } 295 } 296 } 297 } 298 return name; 299 } 300 301 /** 302 * Returns this IPAddress name as a byte array. 303 */ 304 public byte[] getBytes() { 305 return address.clone(); 306 } 307 308 /** 309 * Compares this name with another, for equality. 310 * 311 * @return true iff the names are identical. 312 */ 313 public boolean equals(Object obj) { 314 if (this == obj) 315 return true; 316 317 if (!(obj instanceof IPAddressName)) 318 return false; 319 320 byte[] other = ((IPAddressName)obj).getBytes(); 321 322 if (other.length != address.length) 323 return false; 324 325 if (address.length == 8 || address.length == 32) { 326 // Two subnet addresses 327 // Mask each and compare masked values 328 int maskLen = address.length/2; 329 byte[] maskedThis = new byte[maskLen]; 330 byte[] maskedOther = new byte[maskLen]; 331 for (int i=0; i < maskLen; i++) { 332 maskedThis[i] = (byte)(address[i] & address[i+maskLen]); 333 maskedOther[i] = (byte)(other[i] & other[i+maskLen]); 334 if (maskedThis[i] != maskedOther[i]) { 335 return false; 336 } 337 } 338 // Now compare masks 339 for (int i=maskLen; i < address.length; i++) 340 if (address[i] != other[i]) 341 return false; 342 return true; 343 } else { 344 // Two IPv4 host addresses or two IPv6 host addresses 345 // Compare bytes 346 return Arrays.equals(other, address); 347 } 348 } 349 350 /** 351 * Returns the hash code value for this object. 352 * 353 * @return a hash code value for this object. 354 */ 355 public int hashCode() { 356 int retval = 0; 357 358 for (int i=0; i<address.length; i++) 359 retval += address[i] * i; 360 361 return retval; 362 } 363 364 /** 365 * Return type of constraint inputName places on this name:<ul> 366 * <li>NAME_DIFF_TYPE = -1: input name is different type from name 367 * (i.e. does not constrain). 368 * <li>NAME_MATCH = 0: input name matches name. 369 * <li>NAME_NARROWS = 1: input name narrows name (is lower in the naming 370 * subtree) 371 * <li>NAME_WIDENS = 2: input name widens name (is higher in the naming 372 * subtree) 373 * <li>NAME_SAME_TYPE = 3: input name does not match or narrow name, but 374 * is same type. 375 * </ul>. These results are used in checking NameConstraints during 376 * certification path verification. 377 * <p> 378 * [RFC2459] The syntax of iPAddress MUST be as described in section 379 * 4.2.1.7 with the following additions specifically for Name Constraints. 380 * For IPv4 addresses, the ipAddress field of generalName MUST contain 381 * eight (8) octets, encoded in the style of RFC 1519 (CIDR) to represent an 382 * address range.[RFC 1519] For IPv6 addresses, the ipAddress field 383 * MUST contain 32 octets similarly encoded. For example, a name 384 * constraint for "class C" subnet 10.9.8.0 shall be represented as the 385 * octets 0A 09 08 00 FF FF FF 00, representing the CIDR notation 386 * 10.9.8.0/255.255.255.0. 387 * <p> 388 * @param inputName to be checked for being constrained 389 * @returns constraint type above 390 * @throws UnsupportedOperationException if name is not exact match, but 391 * narrowing and widening are not supported for this name type. 392 */ 393 public int constrains(GeneralNameInterface inputName) 394 throws UnsupportedOperationException { 395 int constraintType; 396 if (inputName == null) 397 constraintType = NAME_DIFF_TYPE; 398 else if (inputName.getType() != NAME_IP) 399 constraintType = NAME_DIFF_TYPE; 400 else if (((IPAddressName)inputName).equals(this)) 401 constraintType = NAME_MATCH; 402 else { 403 byte[] otherAddress = ((IPAddressName)inputName).getBytes(); 404 if (otherAddress.length == 4 && address.length == 4) 405 // Two host addresses 406 constraintType = NAME_SAME_TYPE; 407 else if ((otherAddress.length == 8 && address.length == 8) || 408 (otherAddress.length == 32 && address.length == 32)) { 409 // Two subnet addresses 410 // See if one address fully encloses the other address 411 boolean otherSubsetOfThis = true; 412 boolean thisSubsetOfOther = true; 413 boolean thisEmpty = false; 414 boolean otherEmpty = false; 415 int maskOffset = address.length/2; 416 for (int i=0; i < maskOffset; i++) { 417 if ((byte)(address[i] & address[i+maskOffset]) != address[i]) 418 thisEmpty=true; 419 if ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) != otherAddress[i]) 420 otherEmpty=true; 421 if (!(((byte)(address[i+maskOffset] & otherAddress[i+maskOffset]) == address[i+maskOffset]) && 422 ((byte)(address[i] & address[i+maskOffset]) == (byte)(otherAddress[i] & address[i+maskOffset])))) { 423 otherSubsetOfThis = false; 424 } 425 if (!(((byte)(otherAddress[i+maskOffset] & address[i+maskOffset]) == otherAddress[i+maskOffset]) && 426 ((byte)(otherAddress[i] & otherAddress[i+maskOffset]) == (byte)(address[i] & otherAddress[i+maskOffset])))) { 427 thisSubsetOfOther = false; 428 } 429 } 430 if (thisEmpty || otherEmpty) { 431 if (thisEmpty && otherEmpty) 432 constraintType = NAME_MATCH; 433 else if (thisEmpty) 434 constraintType = NAME_WIDENS; 435 else 436 constraintType = NAME_NARROWS; 437 } else if (otherSubsetOfThis) 438 constraintType = NAME_NARROWS; 439 else if (thisSubsetOfOther) 440 constraintType = NAME_WIDENS; 441 else 442 constraintType = NAME_SAME_TYPE; 443 } else if (otherAddress.length == 8 || otherAddress.length == 32) { 444 //Other is a subnet, this is a host address 445 int i = 0; 446 int maskOffset = otherAddress.length/2; 447 for (; i < maskOffset; i++) { 448 // Mask this address by other address mask and compare to other address 449 // If all match, then this address is in other address subnet 450 if ((address[i] & otherAddress[i+maskOffset]) != otherAddress[i]) 451 break; 452 } 453 if (i == maskOffset) 454 constraintType = NAME_WIDENS; 455 else 456 constraintType = NAME_SAME_TYPE; 457 } else if (address.length == 8 || address.length == 32) { 458 //This is a subnet, other is a host address 459 int i = 0; 460 int maskOffset = address.length/2; 461 for (; i < maskOffset; i++) { 462 // Mask other address by this address mask and compare to this address 463 if ((otherAddress[i] & address[i+maskOffset]) != address[i]) 464 break; 465 } 466 if (i == maskOffset) 467 constraintType = NAME_NARROWS; 468 else 469 constraintType = NAME_SAME_TYPE; 470 } else { 471 constraintType = NAME_SAME_TYPE; 472 } 473 } 474 return constraintType; 475 } 476 477 /** 478 * Return subtree depth of this name for purposes of determining 479 * NameConstraints minimum and maximum bounds and for calculating 480 * path lengths in name subtrees. 481 * 482 * @returns distance of name from root 483 * @throws UnsupportedOperationException if not supported for this name type 484 */ 485 public int subtreeDepth() throws UnsupportedOperationException { 486 throw new UnsupportedOperationException 487 ("subtreeDepth() not defined for IPAddressName"); 488 } 489 } 490