Home | History | Annotate | Download | only in Analysis
      1 //===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the classes used to generate code from scalar expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
     15 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPANDER_H
     16 
     17 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     18 #include "llvm/Analysis/ScalarEvolutionNormalization.h"
     19 #include "llvm/Analysis/TargetFolder.h"
     20 #include "llvm/IR/IRBuilder.h"
     21 #include "llvm/IR/ValueHandle.h"
     22 #include <set>
     23 
     24 namespace llvm {
     25   class TargetTransformInfo;
     26 
     27   /// Return true if the given expression is safe to expand in the sense that
     28   /// all materialized values are safe to speculate.
     29   bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE);
     30 
     31   /// This class uses information about analyze scalars to
     32   /// rewrite expressions in canonical form.
     33   ///
     34   /// Clients should create an instance of this class when rewriting is needed,
     35   /// and destroy it when finished to allow the release of the associated
     36   /// memory.
     37   class SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
     38     ScalarEvolution &SE;
     39     const DataLayout &DL;
     40 
     41     // New instructions receive a name to identifies them with the current pass.
     42     const char* IVName;
     43 
     44     // InsertedExpressions caches Values for reuse, so must track RAUW.
     45     std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >
     46       InsertedExpressions;
     47     // InsertedValues only flags inserted instructions so needs no RAUW.
     48     std::set<AssertingVH<Value> > InsertedValues;
     49     std::set<AssertingVH<Value> > InsertedPostIncValues;
     50 
     51     /// A memoization of the "relevant" loop for a given SCEV.
     52     DenseMap<const SCEV *, const Loop *> RelevantLoops;
     53 
     54     /// \brief Addrecs referring to any of the given loops are expanded
     55     /// in post-inc mode. For example, expanding {1,+,1}<L> in post-inc mode
     56     /// returns the add instruction that adds one to the phi for {0,+,1}<L>,
     57     /// as opposed to a new phi starting at 1. This is only supported in
     58     /// non-canonical mode.
     59     PostIncLoopSet PostIncLoops;
     60 
     61     /// \brief When this is non-null, addrecs expanded in the loop it indicates
     62     /// should be inserted with increments at IVIncInsertPos.
     63     const Loop *IVIncInsertLoop;
     64 
     65     /// \brief When expanding addrecs in the IVIncInsertLoop loop, insert the IV
     66     /// increment at this position.
     67     Instruction *IVIncInsertPos;
     68 
     69     /// \brief Phis that complete an IV chain. Reuse
     70     std::set<AssertingVH<PHINode> > ChainedPhis;
     71 
     72     /// \brief When true, expressions are expanded in "canonical" form. In
     73     /// particular, addrecs are expanded as arithmetic based on a canonical
     74     /// induction variable. When false, expression are expanded in a more
     75     /// literal form.
     76     bool CanonicalMode;
     77 
     78     /// \brief When invoked from LSR, the expander is in "strength reduction"
     79     /// mode. The only difference is that phi's are only reused if they are
     80     /// already in "expanded" form.
     81     bool LSRMode;
     82 
     83     typedef IRBuilder<true, TargetFolder> BuilderType;
     84     BuilderType Builder;
     85 
     86 #ifndef NDEBUG
     87     const char *DebugType;
     88 #endif
     89 
     90     friend struct SCEVVisitor<SCEVExpander, Value*>;
     91 
     92   public:
     93     /// \brief Construct a SCEVExpander in "canonical" mode.
     94     explicit SCEVExpander(ScalarEvolution &se, const DataLayout &DL,
     95                           const char *name)
     96         : SE(se), DL(DL), IVName(name), IVIncInsertLoop(nullptr),
     97           IVIncInsertPos(nullptr), CanonicalMode(true), LSRMode(false),
     98           Builder(se.getContext(), TargetFolder(DL)) {
     99 #ifndef NDEBUG
    100       DebugType = "";
    101 #endif
    102     }
    103 
    104 #ifndef NDEBUG
    105     void setDebugType(const char* s) { DebugType = s; }
    106 #endif
    107 
    108     /// \brief Erase the contents of the InsertedExpressions map so that users
    109     /// trying to expand the same expression into multiple BasicBlocks or
    110     /// different places within the same BasicBlock can do so.
    111     void clear() {
    112       InsertedExpressions.clear();
    113       InsertedValues.clear();
    114       InsertedPostIncValues.clear();
    115       ChainedPhis.clear();
    116     }
    117 
    118     /// \brief Return true for expressions that may incur non-trivial cost to
    119     /// evaluate at runtime.
    120     ///
    121     /// At is an optional parameter which specifies point in code where user is
    122     /// going to expand this expression. Sometimes this knowledge can lead to a
    123     /// more accurate cost estimation.
    124     bool isHighCostExpansion(const SCEV *Expr, Loop *L,
    125                              const Instruction *At = nullptr) {
    126       SmallPtrSet<const SCEV *, 8> Processed;
    127       return isHighCostExpansionHelper(Expr, L, At, Processed);
    128     }
    129 
    130     /// \brief This method returns the canonical induction variable of the
    131     /// specified type for the specified loop (inserting one if there is none).
    132     /// A canonical induction variable starts at zero and steps by one on each
    133     /// iteration.
    134     PHINode *getOrInsertCanonicalInductionVariable(const Loop *L, Type *Ty);
    135 
    136     /// \brief Return the induction variable increment's IV operand.
    137     Instruction *getIVIncOperand(Instruction *IncV, Instruction *InsertPos,
    138                                  bool allowScale);
    139 
    140     /// \brief Utility for hoisting an IV increment.
    141     bool hoistIVInc(Instruction *IncV, Instruction *InsertPos);
    142 
    143     /// \brief replace congruent phis with their most canonical
    144     /// representative. Return the number of phis eliminated.
    145     unsigned replaceCongruentIVs(Loop *L, const DominatorTree *DT,
    146                                  SmallVectorImpl<WeakVH> &DeadInsts,
    147                                  const TargetTransformInfo *TTI = nullptr);
    148 
    149     /// \brief Insert code to directly compute the specified SCEV expression
    150     /// into the program.  The inserted code is inserted into the specified
    151     /// block.
    152     Value *expandCodeFor(const SCEV *SH, Type *Ty, Instruction *I);
    153 
    154     /// \brief Generates a code sequence that evaluates this predicate.
    155     /// The inserted instructions will be at position \p Loc.
    156     /// The result will be of type i1 and will have a value of 0 when the
    157     /// predicate is false and 1 otherwise.
    158     Value *expandCodeForPredicate(const SCEVPredicate *Pred, Instruction *Loc);
    159 
    160     /// \brief A specialized variant of expandCodeForPredicate, handling the
    161     /// case when we are expanding code for a SCEVEqualPredicate.
    162     Value *expandEqualPredicate(const SCEVEqualPredicate *Pred,
    163                                 Instruction *Loc);
    164 
    165     /// \brief A specialized variant of expandCodeForPredicate, handling the
    166     /// case when we are expanding code for a SCEVUnionPredicate.
    167     Value *expandUnionPredicate(const SCEVUnionPredicate *Pred,
    168                                 Instruction *Loc);
    169 
    170     /// \brief Set the current IV increment loop and position.
    171     void setIVIncInsertPos(const Loop *L, Instruction *Pos) {
    172       assert(!CanonicalMode &&
    173              "IV increment positions are not supported in CanonicalMode");
    174       IVIncInsertLoop = L;
    175       IVIncInsertPos = Pos;
    176     }
    177 
    178     /// \brief Enable post-inc expansion for addrecs referring to the given
    179     /// loops. Post-inc expansion is only supported in non-canonical mode.
    180     void setPostInc(const PostIncLoopSet &L) {
    181       assert(!CanonicalMode &&
    182              "Post-inc expansion is not supported in CanonicalMode");
    183       PostIncLoops = L;
    184     }
    185 
    186     /// \brief Disable all post-inc expansion.
    187     void clearPostInc() {
    188       PostIncLoops.clear();
    189 
    190       // When we change the post-inc loop set, cached expansions may no
    191       // longer be valid.
    192       InsertedPostIncValues.clear();
    193     }
    194 
    195     /// \brief Disable the behavior of expanding expressions in canonical form
    196     /// rather than in a more literal form. Non-canonical mode is useful for
    197     /// late optimization passes.
    198     void disableCanonicalMode() { CanonicalMode = false; }
    199 
    200     void enableLSRMode() { LSRMode = true; }
    201 
    202     /// \brief Clear the current insertion point. This is useful if the
    203     /// instruction that had been serving as the insertion point may have been
    204     /// deleted.
    205     void clearInsertPoint() {
    206       Builder.ClearInsertionPoint();
    207     }
    208 
    209     /// \brief Return true if the specified instruction was inserted by the code
    210     /// rewriter.  If so, the client should not modify the instruction.
    211     bool isInsertedInstruction(Instruction *I) const {
    212       return InsertedValues.count(I) || InsertedPostIncValues.count(I);
    213     }
    214 
    215     void setChainedPhi(PHINode *PN) { ChainedPhis.insert(PN); }
    216 
    217     /// \brief Try to find LLVM IR value for S available at the point At.
    218     ///
    219     /// L is a hint which tells in which loop to look for the suitable value.
    220     /// On success return value which is equivalent to the expanded S at point
    221     /// At. Return nullptr if value was not found.
    222     ///
    223     /// Note that this function does not perform an exhaustive search. I.e if it
    224     /// didn't find any value it does not mean that there is no such value.
    225     Value *findExistingExpansion(const SCEV *S, const Instruction *At, Loop *L);
    226 
    227   private:
    228     LLVMContext &getContext() const { return SE.getContext(); }
    229 
    230     /// \brief Recursive helper function for isHighCostExpansion.
    231     bool isHighCostExpansionHelper(const SCEV *S, Loop *L,
    232                                    const Instruction *At,
    233                                    SmallPtrSetImpl<const SCEV *> &Processed);
    234 
    235     /// \brief Insert the specified binary operator, doing a small amount
    236     /// of work to avoid inserting an obviously redundant operation.
    237     Value *InsertBinop(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS);
    238 
    239     /// \brief Arrange for there to be a cast of V to Ty at IP, reusing an
    240     /// existing cast if a suitable one exists, moving an existing cast if a
    241     /// suitable one exists but isn't in the right place, or or creating a new
    242     /// one.
    243     Value *ReuseOrCreateCast(Value *V, Type *Ty,
    244                              Instruction::CastOps Op,
    245                              BasicBlock::iterator IP);
    246 
    247     /// \brief Insert a cast of V to the specified type, which must be possible
    248     /// with a noop cast, doing what we can to share the casts.
    249     Value *InsertNoopCastOfTo(Value *V, Type *Ty);
    250 
    251     /// \brief Expand a SCEVAddExpr with a pointer type into a GEP
    252     /// instead of using ptrtoint+arithmetic+inttoptr.
    253     Value *expandAddToGEP(const SCEV *const *op_begin,
    254                           const SCEV *const *op_end,
    255                           PointerType *PTy, Type *Ty, Value *V);
    256 
    257     Value *expand(const SCEV *S);
    258 
    259     /// \brief Insert code to directly compute the specified SCEV expression
    260     /// into the program.  The inserted code is inserted into the SCEVExpander's
    261     /// current insertion point. If a type is specified, the result will be
    262     /// expanded to have that type, with a cast if necessary.
    263     Value *expandCodeFor(const SCEV *SH, Type *Ty = nullptr);
    264 
    265     /// \brief Determine the most "relevant" loop for the given SCEV.
    266     const Loop *getRelevantLoop(const SCEV *);
    267 
    268     Value *visitConstant(const SCEVConstant *S) {
    269       return S->getValue();
    270     }
    271 
    272     Value *visitTruncateExpr(const SCEVTruncateExpr *S);
    273 
    274     Value *visitZeroExtendExpr(const SCEVZeroExtendExpr *S);
    275 
    276     Value *visitSignExtendExpr(const SCEVSignExtendExpr *S);
    277 
    278     Value *visitAddExpr(const SCEVAddExpr *S);
    279 
    280     Value *visitMulExpr(const SCEVMulExpr *S);
    281 
    282     Value *visitUDivExpr(const SCEVUDivExpr *S);
    283 
    284     Value *visitAddRecExpr(const SCEVAddRecExpr *S);
    285 
    286     Value *visitSMaxExpr(const SCEVSMaxExpr *S);
    287 
    288     Value *visitUMaxExpr(const SCEVUMaxExpr *S);
    289 
    290     Value *visitUnknown(const SCEVUnknown *S) {
    291       return S->getValue();
    292     }
    293 
    294     void rememberInstruction(Value *I);
    295 
    296     bool isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
    297 
    298     bool isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, const Loop *L);
    299 
    300     Value *expandAddRecExprLiterally(const SCEVAddRecExpr *);
    301     PHINode *getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
    302                                        const Loop *L,
    303                                        Type *ExpandTy,
    304                                        Type *IntTy,
    305                                        Type *&TruncTy,
    306                                        bool &InvertStep);
    307     Value *expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
    308                        Type *ExpandTy, Type *IntTy, bool useSubtract);
    309   };
    310 }
    311 
    312 #endif
    313