Home | History | Annotate | Download | only in IterativeSolvers
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_INCOMPLETE_CHOlESKY_H
     11 #define EIGEN_INCOMPLETE_CHOlESKY_H
     12 #include "Eigen/src/IterativeLinearSolvers/IncompleteLUT.h"
     13 #include <Eigen/OrderingMethods>
     14 #include <list>
     15 
     16 namespace Eigen {
     17 /**
     18  * \brief Modified Incomplete Cholesky with dual threshold
     19  *
     20  * References : C-J. Lin and J. J. Mor, Incomplete Cholesky Factorizations with
     21  *              Limited memory, SIAM J. Sci. Comput.  21(1), pp. 24-45, 1999
     22  *
     23  * \tparam _MatrixType The type of the sparse matrix. It should be a symmetric
     24  *                     matrix. It is advised to give  a row-oriented sparse matrix
     25  * \tparam _UpLo The triangular part of the matrix to reference.
     26  * \tparam _OrderingType
     27  */
     28 
     29 template <typename Scalar, int _UpLo = Lower, typename _OrderingType = NaturalOrdering<int> >
     30 class IncompleteCholesky : internal::noncopyable
     31 {
     32   public:
     33     typedef SparseMatrix<Scalar,ColMajor> MatrixType;
     34     typedef _OrderingType OrderingType;
     35     typedef typename MatrixType::RealScalar RealScalar;
     36     typedef typename MatrixType::Index Index;
     37     typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
     38     typedef Matrix<Scalar,Dynamic,1> ScalarType;
     39     typedef Matrix<Index,Dynamic, 1> IndexType;
     40     typedef std::vector<std::list<Index> > VectorList;
     41     enum { UpLo = _UpLo };
     42   public:
     43     IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
     44     IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
     45     {
     46       compute(matrix);
     47     }
     48 
     49     Index rows() const { return m_L.rows(); }
     50 
     51     Index cols() const { return m_L.cols(); }
     52 
     53 
     54     /** \brief Reports whether previous computation was successful.
     55       *
     56       * \returns \c Success if computation was succesful,
     57       *          \c NumericalIssue if the matrix appears to be negative.
     58       */
     59     ComputationInfo info() const
     60     {
     61       eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
     62       return m_info;
     63     }
     64 
     65     /**
     66      * \brief Set the initial shift parameter
     67      */
     68     void setShift( Scalar shift) { m_shift = shift; }
     69 
     70     /**
     71     * \brief Computes the fill reducing permutation vector.
     72     */
     73     template<typename MatrixType>
     74     void analyzePattern(const MatrixType& mat)
     75     {
     76       OrderingType ord;
     77       ord(mat.template selfadjointView<UpLo>(), m_perm);
     78       m_analysisIsOk = true;
     79     }
     80 
     81     template<typename MatrixType>
     82     void factorize(const MatrixType& amat);
     83 
     84     template<typename MatrixType>
     85     void compute (const MatrixType& matrix)
     86     {
     87       analyzePattern(matrix);
     88       factorize(matrix);
     89     }
     90 
     91     template<typename Rhs, typename Dest>
     92     void _solve(const Rhs& b, Dest& x) const
     93     {
     94       eigen_assert(m_factorizationIsOk && "factorize() should be called first");
     95       if (m_perm.rows() == b.rows())
     96         x = m_perm.inverse() * b;
     97       else
     98         x = b;
     99       x = m_scal.asDiagonal() * x;
    100       x = m_L.template triangularView<UnitLower>().solve(x);
    101       x = m_L.adjoint().template triangularView<Upper>().solve(x);
    102       if (m_perm.rows() == b.rows())
    103         x = m_perm * x;
    104       x = m_scal.asDiagonal() * x;
    105     }
    106     template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
    107     solve(const MatrixBase<Rhs>& b) const
    108     {
    109       eigen_assert(m_factorizationIsOk && "IncompleteLLT did not succeed");
    110       eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
    111       eigen_assert(cols()==b.rows()
    112                 && "IncompleteLLT::solve(): invalid number of rows of the right hand side matrix b");
    113       return internal::solve_retval<IncompleteCholesky, Rhs>(*this, b.derived());
    114     }
    115   protected:
    116     SparseMatrix<Scalar,ColMajor> m_L;  // The lower part stored in CSC
    117     ScalarType m_scal; // The vector for scaling the matrix
    118     Scalar m_shift; //The initial shift parameter
    119     bool m_analysisIsOk;
    120     bool m_factorizationIsOk;
    121     bool m_isInitialized;
    122     ComputationInfo m_info;
    123     PermutationType m_perm;
    124 
    125   private:
    126     template <typename IdxType, typename SclType>
    127     inline void updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol);
    128 };
    129 
    130 template<typename Scalar, int _UpLo, typename OrderingType>
    131 template<typename _MatrixType>
    132 void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat)
    133 {
    134   using std::sqrt;
    135   using std::min;
    136   eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
    137 
    138   // Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
    139 
    140   // Apply the fill-reducing permutation computed in analyzePattern()
    141   if (m_perm.rows() == mat.rows() ) // To detect the null permutation
    142     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
    143   else
    144     m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
    145 
    146   Index n = m_L.cols();
    147   Index nnz = m_L.nonZeros();
    148   Map<ScalarType> vals(m_L.valuePtr(), nnz); //values
    149   Map<IndexType> rowIdx(m_L.innerIndexPtr(), nnz);  //Row indices
    150   Map<IndexType> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row
    151   IndexType firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization
    152   VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
    153   ScalarType curCol(n); // Store a  nonzero values in each column
    154   IndexType irow(n); // Row indices of nonzero elements in each column
    155 
    156 
    157   // Computes the scaling factors
    158   m_scal.resize(n);
    159   for (int j = 0; j < n; j++)
    160   {
    161     m_scal(j) = m_L.col(j).norm();
    162     m_scal(j) = sqrt(m_scal(j));
    163   }
    164   // Scale and compute the shift for the matrix
    165   Scalar mindiag = vals[0];
    166   for (int j = 0; j < n; j++){
    167     for (int k = colPtr[j]; k < colPtr[j+1]; k++)
    168      vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
    169     mindiag = (min)(vals[colPtr[j]], mindiag);
    170   }
    171 
    172   if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
    173   // Apply the shift to the diagonal elements of the matrix
    174   for (int j = 0; j < n; j++)
    175     vals[colPtr[j]] += m_shift;
    176   // jki version of the Cholesky factorization
    177   for (int j=0; j < n; ++j)
    178   {
    179     //Left-looking factorize the column j
    180     // First, load the jth column into curCol
    181     Scalar diag = vals[colPtr[j]];  // It is assumed that only the lower part is stored
    182     curCol.setZero();
    183     irow.setLinSpaced(n,0,n-1);
    184     for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
    185     {
    186       curCol(rowIdx[i]) = vals[i];
    187       irow(rowIdx[i]) = rowIdx[i];
    188     }
    189     std::list<int>::iterator k;
    190     // Browse all previous columns that will update column j
    191     for(k = listCol[j].begin(); k != listCol[j].end(); k++)
    192     {
    193       int jk = firstElt(*k); // First element to use in the column
    194       jk += 1;
    195       for (int i = jk; i < colPtr[*k+1]; i++)
    196       {
    197         curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
    198       }
    199       updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
    200     }
    201 
    202     // Scale the current column
    203     if(RealScalar(diag) <= 0)
    204     {
    205       std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
    206       m_info = NumericalIssue;
    207       return;
    208     }
    209     RealScalar rdiag = sqrt(RealScalar(diag));
    210     vals[colPtr[j]] = rdiag;
    211     for (int i = j+1; i < n; i++)
    212     {
    213       //Scale
    214       curCol(i) /= rdiag;
    215       //Update the remaining diagonals with curCol
    216       vals[colPtr[i]] -= curCol(i) * curCol(i);
    217     }
    218     // Select the largest p elements
    219     //  p is the original number of elements in the column (without the diagonal)
    220     int p = colPtr[j+1] - colPtr[j] - 1 ;
    221     internal::QuickSplit(curCol, irow, p);
    222     // Insert the largest p elements in the matrix
    223     int cpt = 0;
    224     for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
    225     {
    226       vals[i] = curCol(cpt);
    227       rowIdx[i] = irow(cpt);
    228       cpt ++;
    229     }
    230     // Get the first smallest row index and put it after the diagonal element
    231     Index jk = colPtr(j)+1;
    232     updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
    233   }
    234   m_factorizationIsOk = true;
    235   m_isInitialized = true;
    236   m_info = Success;
    237 }
    238 
    239 template<typename Scalar, int _UpLo, typename OrderingType>
    240 template <typename IdxType, typename SclType>
    241 inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const IdxType& colPtr, IdxType& rowIdx, SclType& vals, const Index& col, const Index& jk, IndexType& firstElt, VectorList& listCol)
    242 {
    243   if (jk < colPtr(col+1) )
    244   {
    245     Index p = colPtr(col+1) - jk;
    246     Index minpos;
    247     rowIdx.segment(jk,p).minCoeff(&minpos);
    248     minpos += jk;
    249     if (rowIdx(minpos) != rowIdx(jk))
    250     {
    251       //Swap
    252       std::swap(rowIdx(jk),rowIdx(minpos));
    253       std::swap(vals(jk),vals(minpos));
    254     }
    255     firstElt(col) = jk;
    256     listCol[rowIdx(jk)].push_back(col);
    257   }
    258 }
    259 namespace internal {
    260 
    261 template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
    262 struct solve_retval<IncompleteCholesky<_Scalar,  _UpLo, OrderingType>, Rhs>
    263   : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
    264 {
    265   typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
    266   EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
    267 
    268   template<typename Dest> void evalTo(Dest& dst) const
    269   {
    270     dec()._solve(rhs(),dst);
    271   }
    272 };
    273 
    274 } // end namespace internal
    275 
    276 } // end namespace Eigen
    277 
    278 #endif
    279