Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CodeGenFunction.h"
     15 #include "CGCXXABI.h"
     16 #include "CGDebugInfo.h"
     17 #include "CGObjCRuntime.h"
     18 #include "CodeGenModule.h"
     19 #include "TargetInfo.h"
     20 #include "clang/AST/ASTContext.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/RecordLayout.h"
     23 #include "clang/AST/StmtVisitor.h"
     24 #include "clang/Basic/TargetInfo.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/IR/CFG.h"
     27 #include "llvm/IR/Constants.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/Function.h"
     30 #include "llvm/IR/GlobalVariable.h"
     31 #include "llvm/IR/Intrinsics.h"
     32 #include "llvm/IR/Module.h"
     33 #include <cstdarg>
     34 
     35 using namespace clang;
     36 using namespace CodeGen;
     37 using llvm::Value;
     38 
     39 //===----------------------------------------------------------------------===//
     40 //                         Scalar Expression Emitter
     41 //===----------------------------------------------------------------------===//
     42 
     43 namespace {
     44 struct BinOpInfo {
     45   Value *LHS;
     46   Value *RHS;
     47   QualType Ty;  // Computation Type.
     48   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
     49   bool FPContractable;
     50   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
     51 };
     52 
     53 static bool MustVisitNullValue(const Expr *E) {
     54   // If a null pointer expression's type is the C++0x nullptr_t, then
     55   // it's not necessarily a simple constant and it must be evaluated
     56   // for its potential side effects.
     57   return E->getType()->isNullPtrType();
     58 }
     59 
     60 class ScalarExprEmitter
     61   : public StmtVisitor<ScalarExprEmitter, Value*> {
     62   CodeGenFunction &CGF;
     63   CGBuilderTy &Builder;
     64   bool IgnoreResultAssign;
     65   llvm::LLVMContext &VMContext;
     66 public:
     67 
     68   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
     69     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
     70       VMContext(cgf.getLLVMContext()) {
     71   }
     72 
     73   //===--------------------------------------------------------------------===//
     74   //                               Utilities
     75   //===--------------------------------------------------------------------===//
     76 
     77   bool TestAndClearIgnoreResultAssign() {
     78     bool I = IgnoreResultAssign;
     79     IgnoreResultAssign = false;
     80     return I;
     81   }
     82 
     83   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
     84   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
     85   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
     86     return CGF.EmitCheckedLValue(E, TCK);
     87   }
     88 
     89   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
     90                       const BinOpInfo &Info);
     91 
     92   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
     93     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
     94   }
     95 
     96   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
     97     const AlignValueAttr *AVAttr = nullptr;
     98     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
     99       const ValueDecl *VD = DRE->getDecl();
    100 
    101       if (VD->getType()->isReferenceType()) {
    102         if (const auto *TTy =
    103             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
    104           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
    105       } else {
    106         // Assumptions for function parameters are emitted at the start of the
    107         // function, so there is no need to repeat that here.
    108         if (isa<ParmVarDecl>(VD))
    109           return;
    110 
    111         AVAttr = VD->getAttr<AlignValueAttr>();
    112       }
    113     }
    114 
    115     if (!AVAttr)
    116       if (const auto *TTy =
    117           dyn_cast<TypedefType>(E->getType()))
    118         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
    119 
    120     if (!AVAttr)
    121       return;
    122 
    123     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
    124     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
    125     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
    126   }
    127 
    128   /// EmitLoadOfLValue - Given an expression with complex type that represents a
    129   /// value l-value, this method emits the address of the l-value, then loads
    130   /// and returns the result.
    131   Value *EmitLoadOfLValue(const Expr *E) {
    132     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
    133                                 E->getExprLoc());
    134 
    135     EmitLValueAlignmentAssumption(E, V);
    136     return V;
    137   }
    138 
    139   /// EmitConversionToBool - Convert the specified expression value to a
    140   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    141   Value *EmitConversionToBool(Value *Src, QualType DstTy);
    142 
    143   /// Emit a check that a conversion to or from a floating-point type does not
    144   /// overflow.
    145   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
    146                                 Value *Src, QualType SrcType, QualType DstType,
    147                                 llvm::Type *DstTy, SourceLocation Loc);
    148 
    149   /// Emit a conversion from the specified type to the specified destination
    150   /// type, both of which are LLVM scalar types.
    151   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
    152                               SourceLocation Loc);
    153 
    154   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy,
    155                               SourceLocation Loc, bool TreatBooleanAsSigned);
    156 
    157   /// Emit a conversion from the specified complex type to the specified
    158   /// destination type, where the destination type is an LLVM scalar type.
    159   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
    160                                        QualType SrcTy, QualType DstTy,
    161                                        SourceLocation Loc);
    162 
    163   /// EmitNullValue - Emit a value that corresponds to null for the given type.
    164   Value *EmitNullValue(QualType Ty);
    165 
    166   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
    167   Value *EmitFloatToBoolConversion(Value *V) {
    168     // Compare against 0.0 for fp scalars.
    169     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
    170     return Builder.CreateFCmpUNE(V, Zero, "tobool");
    171   }
    172 
    173   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
    174   Value *EmitPointerToBoolConversion(Value *V) {
    175     Value *Zero = llvm::ConstantPointerNull::get(
    176                                       cast<llvm::PointerType>(V->getType()));
    177     return Builder.CreateICmpNE(V, Zero, "tobool");
    178   }
    179 
    180   Value *EmitIntToBoolConversion(Value *V) {
    181     // Because of the type rules of C, we often end up computing a
    182     // logical value, then zero extending it to int, then wanting it
    183     // as a logical value again.  Optimize this common case.
    184     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
    185       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
    186         Value *Result = ZI->getOperand(0);
    187         // If there aren't any more uses, zap the instruction to save space.
    188         // Note that there can be more uses, for example if this
    189         // is the result of an assignment.
    190         if (ZI->use_empty())
    191           ZI->eraseFromParent();
    192         return Result;
    193       }
    194     }
    195 
    196     return Builder.CreateIsNotNull(V, "tobool");
    197   }
    198 
    199   //===--------------------------------------------------------------------===//
    200   //                            Visitor Methods
    201   //===--------------------------------------------------------------------===//
    202 
    203   Value *Visit(Expr *E) {
    204     ApplyDebugLocation DL(CGF, E);
    205     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
    206   }
    207 
    208   Value *VisitStmt(Stmt *S) {
    209     S->dump(CGF.getContext().getSourceManager());
    210     llvm_unreachable("Stmt can't have complex result type!");
    211   }
    212   Value *VisitExpr(Expr *S);
    213 
    214   Value *VisitParenExpr(ParenExpr *PE) {
    215     return Visit(PE->getSubExpr());
    216   }
    217   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
    218     return Visit(E->getReplacement());
    219   }
    220   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
    221     return Visit(GE->getResultExpr());
    222   }
    223 
    224   // Leaves.
    225   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
    226     return Builder.getInt(E->getValue());
    227   }
    228   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
    229     return llvm::ConstantFP::get(VMContext, E->getValue());
    230   }
    231   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
    232     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    233   }
    234   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
    235     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    236   }
    237   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
    238     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    239   }
    240   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
    241     return EmitNullValue(E->getType());
    242   }
    243   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
    244     return EmitNullValue(E->getType());
    245   }
    246   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
    247   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
    248   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
    249     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
    250     return Builder.CreateBitCast(V, ConvertType(E->getType()));
    251   }
    252 
    253   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
    254     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
    255   }
    256 
    257   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
    258     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
    259   }
    260 
    261   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
    262     if (E->isGLValue())
    263       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
    264 
    265     // Otherwise, assume the mapping is the scalar directly.
    266     return CGF.getOpaqueRValueMapping(E).getScalarVal();
    267   }
    268 
    269   // l-values.
    270   Value *VisitDeclRefExpr(DeclRefExpr *E) {
    271     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
    272       if (result.isReference())
    273         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
    274                                 E->getExprLoc());
    275       return result.getValue();
    276     }
    277     return EmitLoadOfLValue(E);
    278   }
    279 
    280   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
    281     return CGF.EmitObjCSelectorExpr(E);
    282   }
    283   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
    284     return CGF.EmitObjCProtocolExpr(E);
    285   }
    286   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
    287     return EmitLoadOfLValue(E);
    288   }
    289   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
    290     if (E->getMethodDecl() &&
    291         E->getMethodDecl()->getReturnType()->isReferenceType())
    292       return EmitLoadOfLValue(E);
    293     return CGF.EmitObjCMessageExpr(E).getScalarVal();
    294   }
    295 
    296   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
    297     LValue LV = CGF.EmitObjCIsaExpr(E);
    298     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
    299     return V;
    300   }
    301 
    302   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
    303   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
    304   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
    305   Value *VisitMemberExpr(MemberExpr *E);
    306   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
    307   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
    308     return EmitLoadOfLValue(E);
    309   }
    310 
    311   Value *VisitInitListExpr(InitListExpr *E);
    312 
    313   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
    314     return EmitNullValue(E->getType());
    315   }
    316   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
    317     CGF.CGM.EmitExplicitCastExprType(E, &CGF);
    318     return VisitCastExpr(E);
    319   }
    320   Value *VisitCastExpr(CastExpr *E);
    321 
    322   Value *VisitCallExpr(const CallExpr *E) {
    323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
    324       return EmitLoadOfLValue(E);
    325 
    326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
    327 
    328     EmitLValueAlignmentAssumption(E, V);
    329     return V;
    330   }
    331 
    332   Value *VisitStmtExpr(const StmtExpr *E);
    333 
    334   // Unary Operators.
    335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
    336     LValue LV = EmitLValue(E->getSubExpr());
    337     return EmitScalarPrePostIncDec(E, LV, false, false);
    338   }
    339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
    340     LValue LV = EmitLValue(E->getSubExpr());
    341     return EmitScalarPrePostIncDec(E, LV, true, false);
    342   }
    343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
    344     LValue LV = EmitLValue(E->getSubExpr());
    345     return EmitScalarPrePostIncDec(E, LV, false, true);
    346   }
    347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
    348     LValue LV = EmitLValue(E->getSubExpr());
    349     return EmitScalarPrePostIncDec(E, LV, true, true);
    350   }
    351 
    352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
    353                                                   llvm::Value *InVal,
    354                                                   bool IsInc);
    355 
    356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
    357                                        bool isInc, bool isPre);
    358 
    359 
    360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
    361     if (isa<MemberPointerType>(E->getType())) // never sugared
    362       return CGF.CGM.getMemberPointerConstant(E);
    363 
    364     return EmitLValue(E->getSubExpr()).getPointer();
    365   }
    366   Value *VisitUnaryDeref(const UnaryOperator *E) {
    367     if (E->getType()->isVoidType())
    368       return Visit(E->getSubExpr()); // the actual value should be unused
    369     return EmitLoadOfLValue(E);
    370   }
    371   Value *VisitUnaryPlus(const UnaryOperator *E) {
    372     // This differs from gcc, though, most likely due to a bug in gcc.
    373     TestAndClearIgnoreResultAssign();
    374     return Visit(E->getSubExpr());
    375   }
    376   Value *VisitUnaryMinus    (const UnaryOperator *E);
    377   Value *VisitUnaryNot      (const UnaryOperator *E);
    378   Value *VisitUnaryLNot     (const UnaryOperator *E);
    379   Value *VisitUnaryReal     (const UnaryOperator *E);
    380   Value *VisitUnaryImag     (const UnaryOperator *E);
    381   Value *VisitUnaryExtension(const UnaryOperator *E) {
    382     return Visit(E->getSubExpr());
    383   }
    384 
    385   // C++
    386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
    387     return EmitLoadOfLValue(E);
    388   }
    389 
    390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
    391     return Visit(DAE->getExpr());
    392   }
    393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
    394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
    395     return Visit(DIE->getExpr());
    396   }
    397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
    398     return CGF.LoadCXXThis();
    399   }
    400 
    401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
    402     CGF.enterFullExpression(E);
    403     CodeGenFunction::RunCleanupsScope Scope(CGF);
    404     return Visit(E->getSubExpr());
    405   }
    406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
    407     return CGF.EmitCXXNewExpr(E);
    408   }
    409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
    410     CGF.EmitCXXDeleteExpr(E);
    411     return nullptr;
    412   }
    413 
    414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
    415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
    416   }
    417 
    418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
    419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
    420   }
    421 
    422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
    423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
    424   }
    425 
    426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
    427     // C++ [expr.pseudo]p1:
    428     //   The result shall only be used as the operand for the function call
    429     //   operator (), and the result of such a call has type void. The only
    430     //   effect is the evaluation of the postfix-expression before the dot or
    431     //   arrow.
    432     CGF.EmitScalarExpr(E->getBase());
    433     return nullptr;
    434   }
    435 
    436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
    437     return EmitNullValue(E->getType());
    438   }
    439 
    440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
    441     CGF.EmitCXXThrowExpr(E);
    442     return nullptr;
    443   }
    444 
    445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
    446     return Builder.getInt1(E->getValue());
    447   }
    448 
    449   // Binary Operators.
    450   Value *EmitMul(const BinOpInfo &Ops) {
    451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
    452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
    453       case LangOptions::SOB_Defined:
    454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    455       case LangOptions::SOB_Undefined:
    456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
    457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
    458         // Fall through.
    459       case LangOptions::SOB_Trapping:
    460         return EmitOverflowCheckedBinOp(Ops);
    461       }
    462     }
    463 
    464     if (Ops.Ty->isUnsignedIntegerType() &&
    465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
    466       return EmitOverflowCheckedBinOp(Ops);
    467 
    468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
    469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
    470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
    471   }
    472   /// Create a binary op that checks for overflow.
    473   /// Currently only supports +, - and *.
    474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
    475 
    476   // Check for undefined division and modulus behaviors.
    477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
    478                                                   llvm::Value *Zero,bool isDiv);
    479   // Common helper for getting how wide LHS of shift is.
    480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
    481   Value *EmitDiv(const BinOpInfo &Ops);
    482   Value *EmitRem(const BinOpInfo &Ops);
    483   Value *EmitAdd(const BinOpInfo &Ops);
    484   Value *EmitSub(const BinOpInfo &Ops);
    485   Value *EmitShl(const BinOpInfo &Ops);
    486   Value *EmitShr(const BinOpInfo &Ops);
    487   Value *EmitAnd(const BinOpInfo &Ops) {
    488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
    489   }
    490   Value *EmitXor(const BinOpInfo &Ops) {
    491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
    492   }
    493   Value *EmitOr (const BinOpInfo &Ops) {
    494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
    495   }
    496 
    497   BinOpInfo EmitBinOps(const BinaryOperator *E);
    498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
    499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
    500                                   Value *&Result);
    501 
    502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
    503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
    504 
    505   // Binary operators and binary compound assignment operators.
    506 #define HANDLEBINOP(OP) \
    507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
    508     return Emit ## OP(EmitBinOps(E));                                      \
    509   }                                                                        \
    510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
    511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
    512   }
    513   HANDLEBINOP(Mul)
    514   HANDLEBINOP(Div)
    515   HANDLEBINOP(Rem)
    516   HANDLEBINOP(Add)
    517   HANDLEBINOP(Sub)
    518   HANDLEBINOP(Shl)
    519   HANDLEBINOP(Shr)
    520   HANDLEBINOP(And)
    521   HANDLEBINOP(Xor)
    522   HANDLEBINOP(Or)
    523 #undef HANDLEBINOP
    524 
    525   // Comparisons.
    526   Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc,
    527                      llvm::CmpInst::Predicate SICmpOpc,
    528                      llvm::CmpInst::Predicate FCmpOpc);
    529 #define VISITCOMP(CODE, UI, SI, FP) \
    530     Value *VisitBin##CODE(const BinaryOperator *E) { \
    531       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
    532                          llvm::FCmpInst::FP); }
    533   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
    534   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
    535   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
    536   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
    537   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
    538   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
    539 #undef VISITCOMP
    540 
    541   Value *VisitBinAssign     (const BinaryOperator *E);
    542 
    543   Value *VisitBinLAnd       (const BinaryOperator *E);
    544   Value *VisitBinLOr        (const BinaryOperator *E);
    545   Value *VisitBinComma      (const BinaryOperator *E);
    546 
    547   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
    548   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
    549 
    550   // Other Operators.
    551   Value *VisitBlockExpr(const BlockExpr *BE);
    552   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
    553   Value *VisitChooseExpr(ChooseExpr *CE);
    554   Value *VisitVAArgExpr(VAArgExpr *VE);
    555   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
    556     return CGF.EmitObjCStringLiteral(E);
    557   }
    558   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
    559     return CGF.EmitObjCBoxedExpr(E);
    560   }
    561   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
    562     return CGF.EmitObjCArrayLiteral(E);
    563   }
    564   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
    565     return CGF.EmitObjCDictionaryLiteral(E);
    566   }
    567   Value *VisitAsTypeExpr(AsTypeExpr *CE);
    568   Value *VisitAtomicExpr(AtomicExpr *AE);
    569 };
    570 }  // end anonymous namespace.
    571 
    572 //===----------------------------------------------------------------------===//
    573 //                                Utilities
    574 //===----------------------------------------------------------------------===//
    575 
    576 /// EmitConversionToBool - Convert the specified expression value to a
    577 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
    578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
    579   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
    580 
    581   if (SrcType->isRealFloatingType())
    582     return EmitFloatToBoolConversion(Src);
    583 
    584   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
    585     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
    586 
    587   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
    588          "Unknown scalar type to convert");
    589 
    590   if (isa<llvm::IntegerType>(Src->getType()))
    591     return EmitIntToBoolConversion(Src);
    592 
    593   assert(isa<llvm::PointerType>(Src->getType()));
    594   return EmitPointerToBoolConversion(Src);
    595 }
    596 
    597 void ScalarExprEmitter::EmitFloatConversionCheck(
    598     Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType,
    599     QualType DstType, llvm::Type *DstTy, SourceLocation Loc) {
    600   CodeGenFunction::SanitizerScope SanScope(&CGF);
    601   using llvm::APFloat;
    602   using llvm::APSInt;
    603 
    604   llvm::Type *SrcTy = Src->getType();
    605 
    606   llvm::Value *Check = nullptr;
    607   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
    608     // Integer to floating-point. This can fail for unsigned short -> __half
    609     // or unsigned __int128 -> float.
    610     assert(DstType->isFloatingType());
    611     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
    612 
    613     APFloat LargestFloat =
    614       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
    615     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
    616 
    617     bool IsExact;
    618     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
    619                                       &IsExact) != APFloat::opOK)
    620       // The range of representable values of this floating point type includes
    621       // all values of this integer type. Don't need an overflow check.
    622       return;
    623 
    624     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
    625     if (SrcIsUnsigned)
    626       Check = Builder.CreateICmpULE(Src, Max);
    627     else {
    628       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
    629       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
    630       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
    631       Check = Builder.CreateAnd(GE, LE);
    632     }
    633   } else {
    634     const llvm::fltSemantics &SrcSema =
    635       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
    636     if (isa<llvm::IntegerType>(DstTy)) {
    637       // Floating-point to integer. This has undefined behavior if the source is
    638       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
    639       // to an integer).
    640       unsigned Width = CGF.getContext().getIntWidth(DstType);
    641       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
    642 
    643       APSInt Min = APSInt::getMinValue(Width, Unsigned);
    644       APFloat MinSrc(SrcSema, APFloat::uninitialized);
    645       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
    646           APFloat::opOverflow)
    647         // Don't need an overflow check for lower bound. Just check for
    648         // -Inf/NaN.
    649         MinSrc = APFloat::getInf(SrcSema, true);
    650       else
    651         // Find the largest value which is too small to represent (before
    652         // truncation toward zero).
    653         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
    654 
    655       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
    656       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
    657       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
    658           APFloat::opOverflow)
    659         // Don't need an overflow check for upper bound. Just check for
    660         // +Inf/NaN.
    661         MaxSrc = APFloat::getInf(SrcSema, false);
    662       else
    663         // Find the smallest value which is too large to represent (before
    664         // truncation toward zero).
    665         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
    666 
    667       // If we're converting from __half, convert the range to float to match
    668       // the type of src.
    669       if (OrigSrcType->isHalfType()) {
    670         const llvm::fltSemantics &Sema =
    671           CGF.getContext().getFloatTypeSemantics(SrcType);
    672         bool IsInexact;
    673         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    674         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
    675       }
    676 
    677       llvm::Value *GE =
    678         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
    679       llvm::Value *LE =
    680         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
    681       Check = Builder.CreateAnd(GE, LE);
    682     } else {
    683       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
    684       //
    685       // Floating-point to floating-point. This has undefined behavior if the
    686       // source is not in the range of representable values of the destination
    687       // type. The C and C++ standards are spectacularly unclear here. We
    688       // diagnose finite out-of-range conversions, but allow infinities and NaNs
    689       // to convert to the corresponding value in the smaller type.
    690       //
    691       // C11 Annex F gives all such conversions defined behavior for IEC 60559
    692       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
    693       // does not.
    694 
    695       // Converting from a lower rank to a higher rank can never have
    696       // undefined behavior, since higher-rank types must have a superset
    697       // of values of lower-rank types.
    698       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
    699         return;
    700 
    701       assert(!OrigSrcType->isHalfType() &&
    702              "should not check conversion from __half, it has the lowest rank");
    703 
    704       const llvm::fltSemantics &DstSema =
    705         CGF.getContext().getFloatTypeSemantics(DstType);
    706       APFloat MinBad = APFloat::getLargest(DstSema, false);
    707       APFloat MaxBad = APFloat::getInf(DstSema, false);
    708 
    709       bool IsInexact;
    710       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    711       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
    712 
    713       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
    714         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
    715       llvm::Value *GE =
    716         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
    717       llvm::Value *LE =
    718         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
    719       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
    720     }
    721   }
    722 
    723   llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc),
    724                                   CGF.EmitCheckTypeDescriptor(OrigSrcType),
    725                                   CGF.EmitCheckTypeDescriptor(DstType)};
    726   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
    727                 "float_cast_overflow", StaticArgs, OrigSrc);
    728 }
    729 
    730 /// Emit a conversion from the specified type to the specified destination type,
    731 /// both of which are LLVM scalar types.
    732 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    733                                                QualType DstType,
    734                                                SourceLocation Loc) {
    735   return EmitScalarConversion(Src, SrcType, DstType, Loc, false);
    736 }
    737 
    738 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
    739                                                QualType DstType,
    740                                                SourceLocation Loc,
    741                                                bool TreatBooleanAsSigned) {
    742   SrcType = CGF.getContext().getCanonicalType(SrcType);
    743   DstType = CGF.getContext().getCanonicalType(DstType);
    744   if (SrcType == DstType) return Src;
    745 
    746   if (DstType->isVoidType()) return nullptr;
    747 
    748   llvm::Value *OrigSrc = Src;
    749   QualType OrigSrcType = SrcType;
    750   llvm::Type *SrcTy = Src->getType();
    751 
    752   // Handle conversions to bool first, they are special: comparisons against 0.
    753   if (DstType->isBooleanType())
    754     return EmitConversionToBool(Src, SrcType);
    755 
    756   llvm::Type *DstTy = ConvertType(DstType);
    757 
    758   // Cast from half through float if half isn't a native type.
    759   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    760     // Cast to FP using the intrinsic if the half type itself isn't supported.
    761     if (DstTy->isFloatingPointTy()) {
    762       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
    763         return Builder.CreateCall(
    764             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
    765             Src);
    766     } else {
    767       // Cast to other types through float, using either the intrinsic or FPExt,
    768       // depending on whether the half type itself is supported
    769       // (as opposed to operations on half, available with NativeHalfType).
    770       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
    771         Src = Builder.CreateCall(
    772             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
    773                                  CGF.CGM.FloatTy),
    774             Src);
    775       } else {
    776         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
    777       }
    778       SrcType = CGF.getContext().FloatTy;
    779       SrcTy = CGF.FloatTy;
    780     }
    781   }
    782 
    783   // Ignore conversions like int -> uint.
    784   if (SrcTy == DstTy)
    785     return Src;
    786 
    787   // Handle pointer conversions next: pointers can only be converted to/from
    788   // other pointers and integers. Check for pointer types in terms of LLVM, as
    789   // some native types (like Obj-C id) may map to a pointer type.
    790   if (isa<llvm::PointerType>(DstTy)) {
    791     // The source value may be an integer, or a pointer.
    792     if (isa<llvm::PointerType>(SrcTy))
    793       return Builder.CreateBitCast(Src, DstTy, "conv");
    794 
    795     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
    796     // First, convert to the correct width so that we control the kind of
    797     // extension.
    798     llvm::Type *MiddleTy = CGF.IntPtrTy;
    799     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    800     llvm::Value* IntResult =
    801         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
    802     // Then, cast to pointer.
    803     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
    804   }
    805 
    806   if (isa<llvm::PointerType>(SrcTy)) {
    807     // Must be an ptr to int cast.
    808     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
    809     return Builder.CreatePtrToInt(Src, DstTy, "conv");
    810   }
    811 
    812   // A scalar can be splatted to an extended vector of the same element type
    813   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
    814     // Cast the scalar to element type
    815     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
    816     llvm::Value *Elt = EmitScalarConversion(
    817         Src, SrcType, EltTy, Loc, CGF.getContext().getLangOpts().OpenCL);
    818 
    819     // Splat the element across to all elements
    820     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
    821     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
    822   }
    823 
    824   // Allow bitcast from vector to integer/fp of the same size.
    825   if (isa<llvm::VectorType>(SrcTy) ||
    826       isa<llvm::VectorType>(DstTy))
    827     return Builder.CreateBitCast(Src, DstTy, "conv");
    828 
    829   // Finally, we have the arithmetic types: real int/float.
    830   Value *Res = nullptr;
    831   llvm::Type *ResTy = DstTy;
    832 
    833   // An overflowing conversion has undefined behavior if either the source type
    834   // or the destination type is a floating-point type.
    835   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
    836       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
    837     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy,
    838                              Loc);
    839 
    840   // Cast to half through float if half isn't a native type.
    841   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
    842     // Make sure we cast in a single step if from another FP type.
    843     if (SrcTy->isFloatingPointTy()) {
    844       // Use the intrinsic if the half type itself isn't supported
    845       // (as opposed to operations on half, available with NativeHalfType).
    846       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
    847         return Builder.CreateCall(
    848             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
    849       // If the half type is supported, just use an fptrunc.
    850       return Builder.CreateFPTrunc(Src, DstTy);
    851     }
    852     DstTy = CGF.FloatTy;
    853   }
    854 
    855   if (isa<llvm::IntegerType>(SrcTy)) {
    856     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
    857     if (SrcType->isBooleanType() && TreatBooleanAsSigned) {
    858       InputSigned = true;
    859     }
    860     if (isa<llvm::IntegerType>(DstTy))
    861       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
    862     else if (InputSigned)
    863       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
    864     else
    865       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
    866   } else if (isa<llvm::IntegerType>(DstTy)) {
    867     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
    868     if (DstType->isSignedIntegerOrEnumerationType())
    869       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
    870     else
    871       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
    872   } else {
    873     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
    874            "Unknown real conversion");
    875     if (DstTy->getTypeID() < SrcTy->getTypeID())
    876       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
    877     else
    878       Res = Builder.CreateFPExt(Src, DstTy, "conv");
    879   }
    880 
    881   if (DstTy != ResTy) {
    882     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
    883       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
    884       Res = Builder.CreateCall(
    885         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
    886         Res);
    887     } else {
    888       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
    889     }
    890   }
    891 
    892   return Res;
    893 }
    894 
    895 /// Emit a conversion from the specified complex type to the specified
    896 /// destination type, where the destination type is an LLVM scalar type.
    897 Value *ScalarExprEmitter::EmitComplexToScalarConversion(
    898     CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy,
    899     SourceLocation Loc) {
    900   // Get the source element type.
    901   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
    902 
    903   // Handle conversions to bool first, they are special: comparisons against 0.
    904   if (DstTy->isBooleanType()) {
    905     //  Complex != 0  -> (Real != 0) | (Imag != 0)
    906     Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
    907     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc);
    908     return Builder.CreateOr(Src.first, Src.second, "tobool");
    909   }
    910 
    911   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
    912   // the imaginary part of the complex value is discarded and the value of the
    913   // real part is converted according to the conversion rules for the
    914   // corresponding real type.
    915   return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc);
    916 }
    917 
    918 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
    919   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
    920 }
    921 
    922 /// \brief Emit a sanitization check for the given "binary" operation (which
    923 /// might actually be a unary increment which has been lowered to a binary
    924 /// operation). The check passes if all values in \p Checks (which are \c i1),
    925 /// are \c true.
    926 void ScalarExprEmitter::EmitBinOpCheck(
    927     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
    928   assert(CGF.IsSanitizerScope);
    929   StringRef CheckName;
    930   SmallVector<llvm::Constant *, 4> StaticData;
    931   SmallVector<llvm::Value *, 2> DynamicData;
    932 
    933   BinaryOperatorKind Opcode = Info.Opcode;
    934   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
    935     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
    936 
    937   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
    938   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
    939   if (UO && UO->getOpcode() == UO_Minus) {
    940     CheckName = "negate_overflow";
    941     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
    942     DynamicData.push_back(Info.RHS);
    943   } else {
    944     if (BinaryOperator::isShiftOp(Opcode)) {
    945       // Shift LHS negative or too large, or RHS out of bounds.
    946       CheckName = "shift_out_of_bounds";
    947       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
    948       StaticData.push_back(
    949         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
    950       StaticData.push_back(
    951         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
    952     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
    953       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
    954       CheckName = "divrem_overflow";
    955       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    956     } else {
    957       // Arithmetic overflow (+, -, *).
    958       switch (Opcode) {
    959       case BO_Add: CheckName = "add_overflow"; break;
    960       case BO_Sub: CheckName = "sub_overflow"; break;
    961       case BO_Mul: CheckName = "mul_overflow"; break;
    962       default: llvm_unreachable("unexpected opcode for bin op check");
    963       }
    964       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
    965     }
    966     DynamicData.push_back(Info.LHS);
    967     DynamicData.push_back(Info.RHS);
    968   }
    969 
    970   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
    971 }
    972 
    973 //===----------------------------------------------------------------------===//
    974 //                            Visitor Methods
    975 //===----------------------------------------------------------------------===//
    976 
    977 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
    978   CGF.ErrorUnsupported(E, "scalar expression");
    979   if (E->getType()->isVoidType())
    980     return nullptr;
    981   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
    982 }
    983 
    984 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
    985   // Vector Mask Case
    986   if (E->getNumSubExprs() == 2 ||
    987       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
    988     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
    989     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
    990     Value *Mask;
    991 
    992     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
    993     unsigned LHSElts = LTy->getNumElements();
    994 
    995     if (E->getNumSubExprs() == 3) {
    996       Mask = CGF.EmitScalarExpr(E->getExpr(2));
    997 
    998       // Shuffle LHS & RHS into one input vector.
    999       SmallVector<llvm::Constant*, 32> concat;
   1000       for (unsigned i = 0; i != LHSElts; ++i) {
   1001         concat.push_back(Builder.getInt32(2*i));
   1002         concat.push_back(Builder.getInt32(2*i+1));
   1003       }
   1004 
   1005       Value* CV = llvm::ConstantVector::get(concat);
   1006       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
   1007       LHSElts *= 2;
   1008     } else {
   1009       Mask = RHS;
   1010     }
   1011 
   1012     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
   1013 
   1014     // Mask off the high bits of each shuffle index.
   1015     Value *MaskBits =
   1016         llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1);
   1017     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
   1018 
   1019     // newv = undef
   1020     // mask = mask & maskbits
   1021     // for each elt
   1022     //   n = extract mask i
   1023     //   x = extract val n
   1024     //   newv = insert newv, x, i
   1025     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
   1026                                                   MTy->getNumElements());
   1027     Value* NewV = llvm::UndefValue::get(RTy);
   1028     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
   1029       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
   1030       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
   1031 
   1032       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
   1033       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
   1034     }
   1035     return NewV;
   1036   }
   1037 
   1038   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
   1039   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
   1040 
   1041   SmallVector<llvm::Constant*, 32> indices;
   1042   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
   1043     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
   1044     // Check for -1 and output it as undef in the IR.
   1045     if (Idx.isSigned() && Idx.isAllOnesValue())
   1046       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   1047     else
   1048       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
   1049   }
   1050 
   1051   Value *SV = llvm::ConstantVector::get(indices);
   1052   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
   1053 }
   1054 
   1055 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
   1056   QualType SrcType = E->getSrcExpr()->getType(),
   1057            DstType = E->getType();
   1058 
   1059   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   1060 
   1061   SrcType = CGF.getContext().getCanonicalType(SrcType);
   1062   DstType = CGF.getContext().getCanonicalType(DstType);
   1063   if (SrcType == DstType) return Src;
   1064 
   1065   assert(SrcType->isVectorType() &&
   1066          "ConvertVector source type must be a vector");
   1067   assert(DstType->isVectorType() &&
   1068          "ConvertVector destination type must be a vector");
   1069 
   1070   llvm::Type *SrcTy = Src->getType();
   1071   llvm::Type *DstTy = ConvertType(DstType);
   1072 
   1073   // Ignore conversions like int -> uint.
   1074   if (SrcTy == DstTy)
   1075     return Src;
   1076 
   1077   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
   1078            DstEltType = DstType->getAs<VectorType>()->getElementType();
   1079 
   1080   assert(SrcTy->isVectorTy() &&
   1081          "ConvertVector source IR type must be a vector");
   1082   assert(DstTy->isVectorTy() &&
   1083          "ConvertVector destination IR type must be a vector");
   1084 
   1085   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
   1086              *DstEltTy = DstTy->getVectorElementType();
   1087 
   1088   if (DstEltType->isBooleanType()) {
   1089     assert((SrcEltTy->isFloatingPointTy() ||
   1090             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
   1091 
   1092     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
   1093     if (SrcEltTy->isFloatingPointTy()) {
   1094       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
   1095     } else {
   1096       return Builder.CreateICmpNE(Src, Zero, "tobool");
   1097     }
   1098   }
   1099 
   1100   // We have the arithmetic types: real int/float.
   1101   Value *Res = nullptr;
   1102 
   1103   if (isa<llvm::IntegerType>(SrcEltTy)) {
   1104     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
   1105     if (isa<llvm::IntegerType>(DstEltTy))
   1106       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
   1107     else if (InputSigned)
   1108       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
   1109     else
   1110       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
   1111   } else if (isa<llvm::IntegerType>(DstEltTy)) {
   1112     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
   1113     if (DstEltType->isSignedIntegerOrEnumerationType())
   1114       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
   1115     else
   1116       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
   1117   } else {
   1118     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
   1119            "Unknown real conversion");
   1120     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
   1121       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
   1122     else
   1123       Res = Builder.CreateFPExt(Src, DstTy, "conv");
   1124   }
   1125 
   1126   return Res;
   1127 }
   1128 
   1129 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
   1130   llvm::APSInt Value;
   1131   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
   1132     if (E->isArrow())
   1133       CGF.EmitScalarExpr(E->getBase());
   1134     else
   1135       EmitLValue(E->getBase());
   1136     return Builder.getInt(Value);
   1137   }
   1138 
   1139   return EmitLoadOfLValue(E);
   1140 }
   1141 
   1142 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
   1143   TestAndClearIgnoreResultAssign();
   1144 
   1145   // Emit subscript expressions in rvalue context's.  For most cases, this just
   1146   // loads the lvalue formed by the subscript expr.  However, we have to be
   1147   // careful, because the base of a vector subscript is occasionally an rvalue,
   1148   // so we can't get it as an lvalue.
   1149   if (!E->getBase()->getType()->isVectorType())
   1150     return EmitLoadOfLValue(E);
   1151 
   1152   // Handle the vector case.  The base must be a vector, the index must be an
   1153   // integer value.
   1154   Value *Base = Visit(E->getBase());
   1155   Value *Idx  = Visit(E->getIdx());
   1156   QualType IdxTy = E->getIdx()->getType();
   1157 
   1158   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
   1159     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
   1160 
   1161   return Builder.CreateExtractElement(Base, Idx, "vecext");
   1162 }
   1163 
   1164 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
   1165                                   unsigned Off, llvm::Type *I32Ty) {
   1166   int MV = SVI->getMaskValue(Idx);
   1167   if (MV == -1)
   1168     return llvm::UndefValue::get(I32Ty);
   1169   return llvm::ConstantInt::get(I32Ty, Off+MV);
   1170 }
   1171 
   1172 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) {
   1173   if (C->getBitWidth() != 32) {
   1174       assert(llvm::ConstantInt::isValueValidForType(I32Ty,
   1175                                                     C->getZExtValue()) &&
   1176              "Index operand too large for shufflevector mask!");
   1177       return llvm::ConstantInt::get(I32Ty, C->getZExtValue());
   1178   }
   1179   return C;
   1180 }
   1181 
   1182 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
   1183   bool Ignore = TestAndClearIgnoreResultAssign();
   1184   (void)Ignore;
   1185   assert (Ignore == false && "init list ignored");
   1186   unsigned NumInitElements = E->getNumInits();
   1187 
   1188   if (E->hadArrayRangeDesignator())
   1189     CGF.ErrorUnsupported(E, "GNU array range designator extension");
   1190 
   1191   llvm::VectorType *VType =
   1192     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
   1193 
   1194   if (!VType) {
   1195     if (NumInitElements == 0) {
   1196       // C++11 value-initialization for the scalar.
   1197       return EmitNullValue(E->getType());
   1198     }
   1199     // We have a scalar in braces. Just use the first element.
   1200     return Visit(E->getInit(0));
   1201   }
   1202 
   1203   unsigned ResElts = VType->getNumElements();
   1204 
   1205   // Loop over initializers collecting the Value for each, and remembering
   1206   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
   1207   // us to fold the shuffle for the swizzle into the shuffle for the vector
   1208   // initializer, since LLVM optimizers generally do not want to touch
   1209   // shuffles.
   1210   unsigned CurIdx = 0;
   1211   bool VIsUndefShuffle = false;
   1212   llvm::Value *V = llvm::UndefValue::get(VType);
   1213   for (unsigned i = 0; i != NumInitElements; ++i) {
   1214     Expr *IE = E->getInit(i);
   1215     Value *Init = Visit(IE);
   1216     SmallVector<llvm::Constant*, 16> Args;
   1217 
   1218     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
   1219 
   1220     // Handle scalar elements.  If the scalar initializer is actually one
   1221     // element of a different vector of the same width, use shuffle instead of
   1222     // extract+insert.
   1223     if (!VVT) {
   1224       if (isa<ExtVectorElementExpr>(IE)) {
   1225         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
   1226 
   1227         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
   1228           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
   1229           Value *LHS = nullptr, *RHS = nullptr;
   1230           if (CurIdx == 0) {
   1231             // insert into undef -> shuffle (src, undef)
   1232             // shufflemask must use an i32
   1233             Args.push_back(getAsInt32(C, CGF.Int32Ty));
   1234             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1235 
   1236             LHS = EI->getVectorOperand();
   1237             RHS = V;
   1238             VIsUndefShuffle = true;
   1239           } else if (VIsUndefShuffle) {
   1240             // insert into undefshuffle && size match -> shuffle (v, src)
   1241             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
   1242             for (unsigned j = 0; j != CurIdx; ++j)
   1243               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
   1244             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
   1245             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1246 
   1247             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1248             RHS = EI->getVectorOperand();
   1249             VIsUndefShuffle = false;
   1250           }
   1251           if (!Args.empty()) {
   1252             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1253             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
   1254             ++CurIdx;
   1255             continue;
   1256           }
   1257         }
   1258       }
   1259       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
   1260                                       "vecinit");
   1261       VIsUndefShuffle = false;
   1262       ++CurIdx;
   1263       continue;
   1264     }
   1265 
   1266     unsigned InitElts = VVT->getNumElements();
   1267 
   1268     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
   1269     // input is the same width as the vector being constructed, generate an
   1270     // optimized shuffle of the swizzle input into the result.
   1271     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
   1272     if (isa<ExtVectorElementExpr>(IE)) {
   1273       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
   1274       Value *SVOp = SVI->getOperand(0);
   1275       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
   1276 
   1277       if (OpTy->getNumElements() == ResElts) {
   1278         for (unsigned j = 0; j != CurIdx; ++j) {
   1279           // If the current vector initializer is a shuffle with undef, merge
   1280           // this shuffle directly into it.
   1281           if (VIsUndefShuffle) {
   1282             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
   1283                                       CGF.Int32Ty));
   1284           } else {
   1285             Args.push_back(Builder.getInt32(j));
   1286           }
   1287         }
   1288         for (unsigned j = 0, je = InitElts; j != je; ++j)
   1289           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
   1290         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1291 
   1292         if (VIsUndefShuffle)
   1293           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
   1294 
   1295         Init = SVOp;
   1296       }
   1297     }
   1298 
   1299     // Extend init to result vector length, and then shuffle its contribution
   1300     // to the vector initializer into V.
   1301     if (Args.empty()) {
   1302       for (unsigned j = 0; j != InitElts; ++j)
   1303         Args.push_back(Builder.getInt32(j));
   1304       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1305       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1306       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
   1307                                          Mask, "vext");
   1308 
   1309       Args.clear();
   1310       for (unsigned j = 0; j != CurIdx; ++j)
   1311         Args.push_back(Builder.getInt32(j));
   1312       for (unsigned j = 0; j != InitElts; ++j)
   1313         Args.push_back(Builder.getInt32(j+Offset));
   1314       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
   1315     }
   1316 
   1317     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
   1318     // merging subsequent shuffles into this one.
   1319     if (CurIdx == 0)
   1320       std::swap(V, Init);
   1321     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   1322     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
   1323     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
   1324     CurIdx += InitElts;
   1325   }
   1326 
   1327   // FIXME: evaluate codegen vs. shuffling against constant null vector.
   1328   // Emit remaining default initializers.
   1329   llvm::Type *EltTy = VType->getElementType();
   1330 
   1331   // Emit remaining default initializers
   1332   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
   1333     Value *Idx = Builder.getInt32(CurIdx);
   1334     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
   1335     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
   1336   }
   1337   return V;
   1338 }
   1339 
   1340 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) {
   1341   const Expr *E = CE->getSubExpr();
   1342 
   1343   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
   1344     return false;
   1345 
   1346   if (isa<CXXThisExpr>(E->IgnoreParens())) {
   1347     // We always assume that 'this' is never null.
   1348     return false;
   1349   }
   1350 
   1351   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
   1352     // And that glvalue casts are never null.
   1353     if (ICE->getValueKind() != VK_RValue)
   1354       return false;
   1355   }
   1356 
   1357   return true;
   1358 }
   1359 
   1360 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
   1361 // have to handle a more broad range of conversions than explicit casts, as they
   1362 // handle things like function to ptr-to-function decay etc.
   1363 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
   1364   Expr *E = CE->getSubExpr();
   1365   QualType DestTy = CE->getType();
   1366   CastKind Kind = CE->getCastKind();
   1367 
   1368   if (!DestTy->isVoidType())
   1369     TestAndClearIgnoreResultAssign();
   1370 
   1371   // Since almost all cast kinds apply to scalars, this switch doesn't have
   1372   // a default case, so the compiler will warn on a missing case.  The cases
   1373   // are in the same order as in the CastKind enum.
   1374   switch (Kind) {
   1375   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
   1376   case CK_BuiltinFnToFnPtr:
   1377     llvm_unreachable("builtin functions are handled elsewhere");
   1378 
   1379   case CK_LValueBitCast:
   1380   case CK_ObjCObjectLValueCast: {
   1381     Address Addr = EmitLValue(E).getAddress();
   1382     Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy));
   1383     LValue LV = CGF.MakeAddrLValue(Addr, DestTy);
   1384     return EmitLoadOfLValue(LV, CE->getExprLoc());
   1385   }
   1386 
   1387   case CK_CPointerToObjCPointerCast:
   1388   case CK_BlockPointerToObjCPointerCast:
   1389   case CK_AnyPointerToBlockPointerCast:
   1390   case CK_BitCast: {
   1391     Value *Src = Visit(const_cast<Expr*>(E));
   1392     llvm::Type *SrcTy = Src->getType();
   1393     llvm::Type *DstTy = ConvertType(DestTy);
   1394     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
   1395         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
   1396       llvm_unreachable("wrong cast for pointers in different address spaces"
   1397                        "(must be an address space cast)!");
   1398     }
   1399 
   1400     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
   1401       if (auto PT = DestTy->getAs<PointerType>())
   1402         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
   1403                                       /*MayBeNull=*/true,
   1404                                       CodeGenFunction::CFITCK_UnrelatedCast,
   1405                                       CE->getLocStart());
   1406     }
   1407 
   1408     return Builder.CreateBitCast(Src, DstTy);
   1409   }
   1410   case CK_AddressSpaceConversion: {
   1411     Value *Src = Visit(const_cast<Expr*>(E));
   1412     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
   1413   }
   1414   case CK_AtomicToNonAtomic:
   1415   case CK_NonAtomicToAtomic:
   1416   case CK_NoOp:
   1417   case CK_UserDefinedConversion:
   1418     return Visit(const_cast<Expr*>(E));
   1419 
   1420   case CK_BaseToDerived: {
   1421     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
   1422     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
   1423 
   1424     Address Base = CGF.EmitPointerWithAlignment(E);
   1425     Address Derived =
   1426       CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl,
   1427                                    CE->path_begin(), CE->path_end(),
   1428                                    CGF.ShouldNullCheckClassCastValue(CE));
   1429 
   1430     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
   1431     // performed and the object is not of the derived type.
   1432     if (CGF.sanitizePerformTypeCheck())
   1433       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
   1434                         Derived.getPointer(), DestTy->getPointeeType());
   1435 
   1436     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
   1437       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(),
   1438                                     Derived.getPointer(),
   1439                                     /*MayBeNull=*/true,
   1440                                     CodeGenFunction::CFITCK_DerivedCast,
   1441                                     CE->getLocStart());
   1442 
   1443     return Derived.getPointer();
   1444   }
   1445   case CK_UncheckedDerivedToBase:
   1446   case CK_DerivedToBase: {
   1447     // The EmitPointerWithAlignment path does this fine; just discard
   1448     // the alignment.
   1449     return CGF.EmitPointerWithAlignment(CE).getPointer();
   1450   }
   1451 
   1452   case CK_Dynamic: {
   1453     Address V = CGF.EmitPointerWithAlignment(E);
   1454     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
   1455     return CGF.EmitDynamicCast(V, DCE);
   1456   }
   1457 
   1458   case CK_ArrayToPointerDecay:
   1459     return CGF.EmitArrayToPointerDecay(E).getPointer();
   1460   case CK_FunctionToPointerDecay:
   1461     return EmitLValue(E).getPointer();
   1462 
   1463   case CK_NullToPointer:
   1464     if (MustVisitNullValue(E))
   1465       (void) Visit(E);
   1466 
   1467     return llvm::ConstantPointerNull::get(
   1468                                cast<llvm::PointerType>(ConvertType(DestTy)));
   1469 
   1470   case CK_NullToMemberPointer: {
   1471     if (MustVisitNullValue(E))
   1472       (void) Visit(E);
   1473 
   1474     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
   1475     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
   1476   }
   1477 
   1478   case CK_ReinterpretMemberPointer:
   1479   case CK_BaseToDerivedMemberPointer:
   1480   case CK_DerivedToBaseMemberPointer: {
   1481     Value *Src = Visit(E);
   1482 
   1483     // Note that the AST doesn't distinguish between checked and
   1484     // unchecked member pointer conversions, so we always have to
   1485     // implement checked conversions here.  This is inefficient when
   1486     // actual control flow may be required in order to perform the
   1487     // check, which it is for data member pointers (but not member
   1488     // function pointers on Itanium and ARM).
   1489     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
   1490   }
   1491 
   1492   case CK_ARCProduceObject:
   1493     return CGF.EmitARCRetainScalarExpr(E);
   1494   case CK_ARCConsumeObject:
   1495     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
   1496   case CK_ARCReclaimReturnedObject: {
   1497     llvm::Value *value = Visit(E);
   1498     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   1499     return CGF.EmitObjCConsumeObject(E->getType(), value);
   1500   }
   1501   case CK_ARCExtendBlockObject:
   1502     return CGF.EmitARCExtendBlockObject(E);
   1503 
   1504   case CK_CopyAndAutoreleaseBlockObject:
   1505     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
   1506 
   1507   case CK_FloatingRealToComplex:
   1508   case CK_FloatingComplexCast:
   1509   case CK_IntegralRealToComplex:
   1510   case CK_IntegralComplexCast:
   1511   case CK_IntegralComplexToFloatingComplex:
   1512   case CK_FloatingComplexToIntegralComplex:
   1513   case CK_ConstructorConversion:
   1514   case CK_ToUnion:
   1515     llvm_unreachable("scalar cast to non-scalar value");
   1516 
   1517   case CK_LValueToRValue:
   1518     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
   1519     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
   1520     return Visit(const_cast<Expr*>(E));
   1521 
   1522   case CK_IntegralToPointer: {
   1523     Value *Src = Visit(const_cast<Expr*>(E));
   1524 
   1525     // First, convert to the correct width so that we control the kind of
   1526     // extension.
   1527     llvm::Type *MiddleTy = CGF.IntPtrTy;
   1528     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
   1529     llvm::Value* IntResult =
   1530       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
   1531 
   1532     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
   1533   }
   1534   case CK_PointerToIntegral:
   1535     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
   1536     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
   1537 
   1538   case CK_ToVoid: {
   1539     CGF.EmitIgnoredExpr(E);
   1540     return nullptr;
   1541   }
   1542   case CK_VectorSplat: {
   1543     llvm::Type *DstTy = ConvertType(DestTy);
   1544     // Need an IgnoreImpCasts here as by default a boolean will be promoted to
   1545     // an int, which will not perform the sign extension, so if we know we are
   1546     // going to cast to a vector we have to strip the implicit cast off.
   1547     Value *Elt = Visit(const_cast<Expr*>(E->IgnoreImpCasts()));
   1548     Elt = EmitScalarConversion(Elt, E->IgnoreImpCasts()->getType(),
   1549                                DestTy->getAs<VectorType>()->getElementType(),
   1550                                CE->getExprLoc(),
   1551                                CGF.getContext().getLangOpts().OpenCL);
   1552 
   1553     // Splat the element across to all elements
   1554     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
   1555     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
   1556   }
   1557 
   1558   case CK_IntegralCast:
   1559   case CK_IntegralToFloating:
   1560   case CK_FloatingToIntegral:
   1561   case CK_FloatingCast:
   1562     return EmitScalarConversion(Visit(E), E->getType(), DestTy,
   1563                                 CE->getExprLoc());
   1564   case CK_IntegralToBoolean:
   1565     return EmitIntToBoolConversion(Visit(E));
   1566   case CK_PointerToBoolean:
   1567     return EmitPointerToBoolConversion(Visit(E));
   1568   case CK_FloatingToBoolean:
   1569     return EmitFloatToBoolConversion(Visit(E));
   1570   case CK_MemberPointerToBoolean: {
   1571     llvm::Value *MemPtr = Visit(E);
   1572     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
   1573     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
   1574   }
   1575 
   1576   case CK_FloatingComplexToReal:
   1577   case CK_IntegralComplexToReal:
   1578     return CGF.EmitComplexExpr(E, false, true).first;
   1579 
   1580   case CK_FloatingComplexToBoolean:
   1581   case CK_IntegralComplexToBoolean: {
   1582     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
   1583 
   1584     // TODO: kill this function off, inline appropriate case here
   1585     return EmitComplexToScalarConversion(V, E->getType(), DestTy,
   1586                                          CE->getExprLoc());
   1587   }
   1588 
   1589   case CK_ZeroToOCLEvent: {
   1590     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
   1591     return llvm::Constant::getNullValue(ConvertType(DestTy));
   1592   }
   1593 
   1594   }
   1595 
   1596   llvm_unreachable("unknown scalar cast");
   1597 }
   1598 
   1599 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
   1600   CodeGenFunction::StmtExprEvaluation eval(CGF);
   1601   Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
   1602                                            !E->getType()->isVoidType());
   1603   if (!RetAlloca.isValid())
   1604     return nullptr;
   1605   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
   1606                               E->getExprLoc());
   1607 }
   1608 
   1609 //===----------------------------------------------------------------------===//
   1610 //                             Unary Operators
   1611 //===----------------------------------------------------------------------===//
   1612 
   1613 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
   1614                                            llvm::Value *InVal, bool IsInc) {
   1615   BinOpInfo BinOp;
   1616   BinOp.LHS = InVal;
   1617   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
   1618   BinOp.Ty = E->getType();
   1619   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
   1620   BinOp.FPContractable = false;
   1621   BinOp.E = E;
   1622   return BinOp;
   1623 }
   1624 
   1625 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
   1626     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
   1627   llvm::Value *Amount =
   1628       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
   1629   StringRef Name = IsInc ? "inc" : "dec";
   1630   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   1631   case LangOptions::SOB_Defined:
   1632     return Builder.CreateAdd(InVal, Amount, Name);
   1633   case LangOptions::SOB_Undefined:
   1634     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   1635       return Builder.CreateNSWAdd(InVal, Amount, Name);
   1636     // Fall through.
   1637   case LangOptions::SOB_Trapping:
   1638     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
   1639   }
   1640   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
   1641 }
   1642 
   1643 llvm::Value *
   1644 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1645                                            bool isInc, bool isPre) {
   1646 
   1647   QualType type = E->getSubExpr()->getType();
   1648   llvm::PHINode *atomicPHI = nullptr;
   1649   llvm::Value *value;
   1650   llvm::Value *input;
   1651 
   1652   int amount = (isInc ? 1 : -1);
   1653 
   1654   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
   1655     type = atomicTy->getValueType();
   1656     if (isInc && type->isBooleanType()) {
   1657       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
   1658       if (isPre) {
   1659         Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified())
   1660           ->setAtomic(llvm::SequentiallyConsistent);
   1661         return Builder.getTrue();
   1662       }
   1663       // For atomic bool increment, we just store true and return it for
   1664       // preincrement, do an atomic swap with true for postincrement
   1665         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
   1666             LV.getPointer(), True, llvm::SequentiallyConsistent);
   1667     }
   1668     // Special case for atomic increment / decrement on integers, emit
   1669     // atomicrmw instructions.  We skip this if we want to be doing overflow
   1670     // checking, and fall into the slow path with the atomic cmpxchg loop.
   1671     if (!type->isBooleanType() && type->isIntegerType() &&
   1672         !(type->isUnsignedIntegerType() &&
   1673           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
   1674         CGF.getLangOpts().getSignedOverflowBehavior() !=
   1675             LangOptions::SOB_Trapping) {
   1676       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
   1677         llvm::AtomicRMWInst::Sub;
   1678       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
   1679         llvm::Instruction::Sub;
   1680       llvm::Value *amt = CGF.EmitToMemory(
   1681           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
   1682       llvm::Value *old = Builder.CreateAtomicRMW(aop,
   1683           LV.getPointer(), amt, llvm::SequentiallyConsistent);
   1684       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
   1685     }
   1686     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1687     input = value;
   1688     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
   1689     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   1690     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   1691     value = CGF.EmitToMemory(value, type);
   1692     Builder.CreateBr(opBB);
   1693     Builder.SetInsertPoint(opBB);
   1694     atomicPHI = Builder.CreatePHI(value->getType(), 2);
   1695     atomicPHI->addIncoming(value, startBB);
   1696     value = atomicPHI;
   1697   } else {
   1698     value = EmitLoadOfLValue(LV, E->getExprLoc());
   1699     input = value;
   1700   }
   1701 
   1702   // Special case of integer increment that we have to check first: bool++.
   1703   // Due to promotion rules, we get:
   1704   //   bool++ -> bool = bool + 1
   1705   //          -> bool = (int)bool + 1
   1706   //          -> bool = ((int)bool + 1 != 0)
   1707   // An interesting aspect of this is that increment is always true.
   1708   // Decrement does not have this property.
   1709   if (isInc && type->isBooleanType()) {
   1710     value = Builder.getTrue();
   1711 
   1712   // Most common case by far: integer increment.
   1713   } else if (type->isIntegerType()) {
   1714     // Note that signed integer inc/dec with width less than int can't
   1715     // overflow because of promotion rules; we're just eliding a few steps here.
   1716     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
   1717                        CGF.IntTy->getIntegerBitWidth();
   1718     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
   1719       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
   1720     } else if (CanOverflow && type->isUnsignedIntegerType() &&
   1721                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
   1722       value =
   1723           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
   1724     } else {
   1725       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
   1726       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1727     }
   1728 
   1729   // Next most common: pointer increment.
   1730   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
   1731     QualType type = ptr->getPointeeType();
   1732 
   1733     // VLA types don't have constant size.
   1734     if (const VariableArrayType *vla
   1735           = CGF.getContext().getAsVariableArrayType(type)) {
   1736       llvm::Value *numElts = CGF.getVLASize(vla).first;
   1737       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
   1738       if (CGF.getLangOpts().isSignedOverflowDefined())
   1739         value = Builder.CreateGEP(value, numElts, "vla.inc");
   1740       else
   1741         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
   1742 
   1743     // Arithmetic on function pointers (!) is just +-1.
   1744     } else if (type->isFunctionType()) {
   1745       llvm::Value *amt = Builder.getInt32(amount);
   1746 
   1747       value = CGF.EmitCastToVoidPtr(value);
   1748       if (CGF.getLangOpts().isSignedOverflowDefined())
   1749         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
   1750       else
   1751         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
   1752       value = Builder.CreateBitCast(value, input->getType());
   1753 
   1754     // For everything else, we can just do a simple increment.
   1755     } else {
   1756       llvm::Value *amt = Builder.getInt32(amount);
   1757       if (CGF.getLangOpts().isSignedOverflowDefined())
   1758         value = Builder.CreateGEP(value, amt, "incdec.ptr");
   1759       else
   1760         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
   1761     }
   1762 
   1763   // Vector increment/decrement.
   1764   } else if (type->isVectorType()) {
   1765     if (type->hasIntegerRepresentation()) {
   1766       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
   1767 
   1768       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
   1769     } else {
   1770       value = Builder.CreateFAdd(
   1771                   value,
   1772                   llvm::ConstantFP::get(value->getType(), amount),
   1773                   isInc ? "inc" : "dec");
   1774     }
   1775 
   1776   // Floating point.
   1777   } else if (type->isRealFloatingType()) {
   1778     // Add the inc/dec to the real part.
   1779     llvm::Value *amt;
   1780 
   1781     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1782       // Another special case: half FP increment should be done via float
   1783       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
   1784         value = Builder.CreateCall(
   1785             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
   1786                                  CGF.CGM.FloatTy),
   1787             input, "incdec.conv");
   1788       } else {
   1789         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
   1790       }
   1791     }
   1792 
   1793     if (value->getType()->isFloatTy())
   1794       amt = llvm::ConstantFP::get(VMContext,
   1795                                   llvm::APFloat(static_cast<float>(amount)));
   1796     else if (value->getType()->isDoubleTy())
   1797       amt = llvm::ConstantFP::get(VMContext,
   1798                                   llvm::APFloat(static_cast<double>(amount)));
   1799     else {
   1800       // Remaining types are either Half or LongDouble.  Convert from float.
   1801       llvm::APFloat F(static_cast<float>(amount));
   1802       bool ignored;
   1803       // Don't use getFloatTypeSemantics because Half isn't
   1804       // necessarily represented using the "half" LLVM type.
   1805       F.convert(value->getType()->isHalfTy()
   1806                     ? CGF.getTarget().getHalfFormat()
   1807                     : CGF.getTarget().getLongDoubleFormat(),
   1808                 llvm::APFloat::rmTowardZero, &ignored);
   1809       amt = llvm::ConstantFP::get(VMContext, F);
   1810     }
   1811     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
   1812 
   1813     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
   1814       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
   1815         value = Builder.CreateCall(
   1816             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
   1817                                  CGF.CGM.FloatTy),
   1818             value, "incdec.conv");
   1819       } else {
   1820         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
   1821       }
   1822     }
   1823 
   1824   // Objective-C pointer types.
   1825   } else {
   1826     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
   1827     value = CGF.EmitCastToVoidPtr(value);
   1828 
   1829     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
   1830     if (!isInc) size = -size;
   1831     llvm::Value *sizeValue =
   1832       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
   1833 
   1834     if (CGF.getLangOpts().isSignedOverflowDefined())
   1835       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
   1836     else
   1837       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
   1838     value = Builder.CreateBitCast(value, input->getType());
   1839   }
   1840 
   1841   if (atomicPHI) {
   1842     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   1843     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   1844     auto Pair = CGF.EmitAtomicCompareExchange(
   1845         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
   1846     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
   1847     llvm::Value *success = Pair.second;
   1848     atomicPHI->addIncoming(old, opBB);
   1849     Builder.CreateCondBr(success, contBB, opBB);
   1850     Builder.SetInsertPoint(contBB);
   1851     return isPre ? value : input;
   1852   }
   1853 
   1854   // Store the updated result through the lvalue.
   1855   if (LV.isBitField())
   1856     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
   1857   else
   1858     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
   1859 
   1860   // If this is a postinc, return the value read from memory, otherwise use the
   1861   // updated value.
   1862   return isPre ? value : input;
   1863 }
   1864 
   1865 
   1866 
   1867 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
   1868   TestAndClearIgnoreResultAssign();
   1869   // Emit unary minus with EmitSub so we handle overflow cases etc.
   1870   BinOpInfo BinOp;
   1871   BinOp.RHS = Visit(E->getSubExpr());
   1872 
   1873   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
   1874     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
   1875   else
   1876     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
   1877   BinOp.Ty = E->getType();
   1878   BinOp.Opcode = BO_Sub;
   1879   BinOp.FPContractable = false;
   1880   BinOp.E = E;
   1881   return EmitSub(BinOp);
   1882 }
   1883 
   1884 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
   1885   TestAndClearIgnoreResultAssign();
   1886   Value *Op = Visit(E->getSubExpr());
   1887   return Builder.CreateNot(Op, "neg");
   1888 }
   1889 
   1890 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
   1891   // Perform vector logical not on comparison with zero vector.
   1892   if (E->getType()->isExtVectorType()) {
   1893     Value *Oper = Visit(E->getSubExpr());
   1894     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
   1895     Value *Result;
   1896     if (Oper->getType()->isFPOrFPVectorTy())
   1897       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
   1898     else
   1899       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
   1900     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   1901   }
   1902 
   1903   // Compare operand to zero.
   1904   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
   1905 
   1906   // Invert value.
   1907   // TODO: Could dynamically modify easy computations here.  For example, if
   1908   // the operand is an icmp ne, turn into icmp eq.
   1909   BoolVal = Builder.CreateNot(BoolVal, "lnot");
   1910 
   1911   // ZExt result to the expr type.
   1912   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
   1913 }
   1914 
   1915 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
   1916   // Try folding the offsetof to a constant.
   1917   llvm::APSInt Value;
   1918   if (E->EvaluateAsInt(Value, CGF.getContext()))
   1919     return Builder.getInt(Value);
   1920 
   1921   // Loop over the components of the offsetof to compute the value.
   1922   unsigned n = E->getNumComponents();
   1923   llvm::Type* ResultType = ConvertType(E->getType());
   1924   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
   1925   QualType CurrentType = E->getTypeSourceInfo()->getType();
   1926   for (unsigned i = 0; i != n; ++i) {
   1927     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
   1928     llvm::Value *Offset = nullptr;
   1929     switch (ON.getKind()) {
   1930     case OffsetOfExpr::OffsetOfNode::Array: {
   1931       // Compute the index
   1932       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
   1933       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
   1934       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
   1935       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
   1936 
   1937       // Save the element type
   1938       CurrentType =
   1939           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
   1940 
   1941       // Compute the element size
   1942       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
   1943           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
   1944 
   1945       // Multiply out to compute the result
   1946       Offset = Builder.CreateMul(Idx, ElemSize);
   1947       break;
   1948     }
   1949 
   1950     case OffsetOfExpr::OffsetOfNode::Field: {
   1951       FieldDecl *MemberDecl = ON.getField();
   1952       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1953       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1954 
   1955       // Compute the index of the field in its parent.
   1956       unsigned i = 0;
   1957       // FIXME: It would be nice if we didn't have to loop here!
   1958       for (RecordDecl::field_iterator Field = RD->field_begin(),
   1959                                       FieldEnd = RD->field_end();
   1960            Field != FieldEnd; ++Field, ++i) {
   1961         if (*Field == MemberDecl)
   1962           break;
   1963       }
   1964       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
   1965 
   1966       // Compute the offset to the field
   1967       int64_t OffsetInt = RL.getFieldOffset(i) /
   1968                           CGF.getContext().getCharWidth();
   1969       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
   1970 
   1971       // Save the element type.
   1972       CurrentType = MemberDecl->getType();
   1973       break;
   1974     }
   1975 
   1976     case OffsetOfExpr::OffsetOfNode::Identifier:
   1977       llvm_unreachable("dependent __builtin_offsetof");
   1978 
   1979     case OffsetOfExpr::OffsetOfNode::Base: {
   1980       if (ON.getBase()->isVirtual()) {
   1981         CGF.ErrorUnsupported(E, "virtual base in offsetof");
   1982         continue;
   1983       }
   1984 
   1985       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
   1986       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
   1987 
   1988       // Save the element type.
   1989       CurrentType = ON.getBase()->getType();
   1990 
   1991       // Compute the offset to the base.
   1992       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
   1993       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
   1994       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
   1995       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
   1996       break;
   1997     }
   1998     }
   1999     Result = Builder.CreateAdd(Result, Offset);
   2000   }
   2001   return Result;
   2002 }
   2003 
   2004 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
   2005 /// argument of the sizeof expression as an integer.
   2006 Value *
   2007 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
   2008                               const UnaryExprOrTypeTraitExpr *E) {
   2009   QualType TypeToSize = E->getTypeOfArgument();
   2010   if (E->getKind() == UETT_SizeOf) {
   2011     if (const VariableArrayType *VAT =
   2012           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
   2013       if (E->isArgumentType()) {
   2014         // sizeof(type) - make sure to emit the VLA size.
   2015         CGF.EmitVariablyModifiedType(TypeToSize);
   2016       } else {
   2017         // C99 6.5.3.4p2: If the argument is an expression of type
   2018         // VLA, it is evaluated.
   2019         CGF.EmitIgnoredExpr(E->getArgumentExpr());
   2020       }
   2021 
   2022       QualType eltType;
   2023       llvm::Value *numElts;
   2024       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
   2025 
   2026       llvm::Value *size = numElts;
   2027 
   2028       // Scale the number of non-VLA elements by the non-VLA element size.
   2029       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
   2030       if (!eltSize.isOne())
   2031         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
   2032 
   2033       return size;
   2034     }
   2035   } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) {
   2036     auto Alignment =
   2037         CGF.getContext()
   2038             .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign(
   2039                 E->getTypeOfArgument()->getPointeeType()))
   2040             .getQuantity();
   2041     return llvm::ConstantInt::get(CGF.SizeTy, Alignment);
   2042   }
   2043 
   2044   // If this isn't sizeof(vla), the result must be constant; use the constant
   2045   // folding logic so we don't have to duplicate it here.
   2046   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
   2047 }
   2048 
   2049 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
   2050   Expr *Op = E->getSubExpr();
   2051   if (Op->getType()->isAnyComplexType()) {
   2052     // If it's an l-value, load through the appropriate subobject l-value.
   2053     // Note that we have to ask E because Op might be an l-value that
   2054     // this won't work for, e.g. an Obj-C property.
   2055     if (E->isGLValue())
   2056       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   2057                                   E->getExprLoc()).getScalarVal();
   2058 
   2059     // Otherwise, calculate and project.
   2060     return CGF.EmitComplexExpr(Op, false, true).first;
   2061   }
   2062 
   2063   return Visit(Op);
   2064 }
   2065 
   2066 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
   2067   Expr *Op = E->getSubExpr();
   2068   if (Op->getType()->isAnyComplexType()) {
   2069     // If it's an l-value, load through the appropriate subobject l-value.
   2070     // Note that we have to ask E because Op might be an l-value that
   2071     // this won't work for, e.g. an Obj-C property.
   2072     if (Op->isGLValue())
   2073       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
   2074                                   E->getExprLoc()).getScalarVal();
   2075 
   2076     // Otherwise, calculate and project.
   2077     return CGF.EmitComplexExpr(Op, true, false).second;
   2078   }
   2079 
   2080   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
   2081   // effects are evaluated, but not the actual value.
   2082   if (Op->isGLValue())
   2083     CGF.EmitLValue(Op);
   2084   else
   2085     CGF.EmitScalarExpr(Op, true);
   2086   return llvm::Constant::getNullValue(ConvertType(E->getType()));
   2087 }
   2088 
   2089 //===----------------------------------------------------------------------===//
   2090 //                           Binary Operators
   2091 //===----------------------------------------------------------------------===//
   2092 
   2093 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
   2094   TestAndClearIgnoreResultAssign();
   2095   BinOpInfo Result;
   2096   Result.LHS = Visit(E->getLHS());
   2097   Result.RHS = Visit(E->getRHS());
   2098   Result.Ty  = E->getType();
   2099   Result.Opcode = E->getOpcode();
   2100   Result.FPContractable = E->isFPContractable();
   2101   Result.E = E;
   2102   return Result;
   2103 }
   2104 
   2105 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
   2106                                               const CompoundAssignOperator *E,
   2107                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
   2108                                                    Value *&Result) {
   2109   QualType LHSTy = E->getLHS()->getType();
   2110   BinOpInfo OpInfo;
   2111 
   2112   if (E->getComputationResultType()->isAnyComplexType())
   2113     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
   2114 
   2115   // Emit the RHS first.  __block variables need to have the rhs evaluated
   2116   // first, plus this should improve codegen a little.
   2117   OpInfo.RHS = Visit(E->getRHS());
   2118   OpInfo.Ty = E->getComputationResultType();
   2119   OpInfo.Opcode = E->getOpcode();
   2120   OpInfo.FPContractable = E->isFPContractable();
   2121   OpInfo.E = E;
   2122   // Load/convert the LHS.
   2123   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   2124 
   2125   llvm::PHINode *atomicPHI = nullptr;
   2126   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
   2127     QualType type = atomicTy->getValueType();
   2128     if (!type->isBooleanType() && type->isIntegerType() &&
   2129         !(type->isUnsignedIntegerType() &&
   2130           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
   2131         CGF.getLangOpts().getSignedOverflowBehavior() !=
   2132             LangOptions::SOB_Trapping) {
   2133       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
   2134       switch (OpInfo.Opcode) {
   2135         // We don't have atomicrmw operands for *, %, /, <<, >>
   2136         case BO_MulAssign: case BO_DivAssign:
   2137         case BO_RemAssign:
   2138         case BO_ShlAssign:
   2139         case BO_ShrAssign:
   2140           break;
   2141         case BO_AddAssign:
   2142           aop = llvm::AtomicRMWInst::Add;
   2143           break;
   2144         case BO_SubAssign:
   2145           aop = llvm::AtomicRMWInst::Sub;
   2146           break;
   2147         case BO_AndAssign:
   2148           aop = llvm::AtomicRMWInst::And;
   2149           break;
   2150         case BO_XorAssign:
   2151           aop = llvm::AtomicRMWInst::Xor;
   2152           break;
   2153         case BO_OrAssign:
   2154           aop = llvm::AtomicRMWInst::Or;
   2155           break;
   2156         default:
   2157           llvm_unreachable("Invalid compound assignment type");
   2158       }
   2159       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
   2160         llvm::Value *amt = CGF.EmitToMemory(
   2161             EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy,
   2162                                  E->getExprLoc()),
   2163             LHSTy);
   2164         Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt,
   2165             llvm::SequentiallyConsistent);
   2166         return LHSLV;
   2167       }
   2168     }
   2169     // FIXME: For floating point types, we should be saving and restoring the
   2170     // floating point environment in the loop.
   2171     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
   2172     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
   2173     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2174     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
   2175     Builder.CreateBr(opBB);
   2176     Builder.SetInsertPoint(opBB);
   2177     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
   2178     atomicPHI->addIncoming(OpInfo.LHS, startBB);
   2179     OpInfo.LHS = atomicPHI;
   2180   }
   2181   else
   2182     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
   2183 
   2184   SourceLocation Loc = E->getExprLoc();
   2185   OpInfo.LHS =
   2186       EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc);
   2187 
   2188   // Expand the binary operator.
   2189   Result = (this->*Func)(OpInfo);
   2190 
   2191   // Convert the result back to the LHS type.
   2192   Result =
   2193       EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc);
   2194 
   2195   if (atomicPHI) {
   2196     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
   2197     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
   2198     auto Pair = CGF.EmitAtomicCompareExchange(
   2199         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
   2200     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
   2201     llvm::Value *success = Pair.second;
   2202     atomicPHI->addIncoming(old, opBB);
   2203     Builder.CreateCondBr(success, contBB, opBB);
   2204     Builder.SetInsertPoint(contBB);
   2205     return LHSLV;
   2206   }
   2207 
   2208   // Store the result value into the LHS lvalue. Bit-fields are handled
   2209   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
   2210   // 'An assignment expression has the value of the left operand after the
   2211   // assignment...'.
   2212   if (LHSLV.isBitField())
   2213     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
   2214   else
   2215     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
   2216 
   2217   return LHSLV;
   2218 }
   2219 
   2220 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
   2221                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
   2222   bool Ignore = TestAndClearIgnoreResultAssign();
   2223   Value *RHS;
   2224   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
   2225 
   2226   // If the result is clearly ignored, return now.
   2227   if (Ignore)
   2228     return nullptr;
   2229 
   2230   // The result of an assignment in C is the assigned r-value.
   2231   if (!CGF.getLangOpts().CPlusPlus)
   2232     return RHS;
   2233 
   2234   // If the lvalue is non-volatile, return the computed value of the assignment.
   2235   if (!LHS.isVolatileQualified())
   2236     return RHS;
   2237 
   2238   // Otherwise, reload the value.
   2239   return EmitLoadOfLValue(LHS, E->getExprLoc());
   2240 }
   2241 
   2242 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
   2243     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
   2244   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
   2245 
   2246   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
   2247     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
   2248                                     SanitizerKind::IntegerDivideByZero));
   2249   }
   2250 
   2251   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
   2252       Ops.Ty->hasSignedIntegerRepresentation()) {
   2253     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
   2254 
   2255     llvm::Value *IntMin =
   2256       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
   2257     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
   2258 
   2259     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
   2260     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
   2261     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
   2262     Checks.push_back(
   2263         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
   2264   }
   2265 
   2266   if (Checks.size() > 0)
   2267     EmitBinOpCheck(Checks, Ops);
   2268 }
   2269 
   2270 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
   2271   {
   2272     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2273     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
   2274          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
   2275         Ops.Ty->isIntegerType()) {
   2276       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2277       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
   2278     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
   2279                Ops.Ty->isRealFloatingType()) {
   2280       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2281       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
   2282       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
   2283                      Ops);
   2284     }
   2285   }
   2286 
   2287   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
   2288     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
   2289     if (CGF.getLangOpts().OpenCL) {
   2290       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
   2291       llvm::Type *ValTy = Val->getType();
   2292       if (ValTy->isFloatTy() ||
   2293           (isa<llvm::VectorType>(ValTy) &&
   2294            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
   2295         CGF.SetFPAccuracy(Val, 2.5);
   2296     }
   2297     return Val;
   2298   }
   2299   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2300     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
   2301   else
   2302     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
   2303 }
   2304 
   2305 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
   2306   // Rem in C can't be a floating point type: C99 6.5.5p2.
   2307   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
   2308     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2309     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
   2310 
   2311     if (Ops.Ty->isIntegerType())
   2312       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
   2313   }
   2314 
   2315   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2316     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
   2317   else
   2318     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
   2319 }
   2320 
   2321 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
   2322   unsigned IID;
   2323   unsigned OpID = 0;
   2324 
   2325   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
   2326   switch (Ops.Opcode) {
   2327   case BO_Add:
   2328   case BO_AddAssign:
   2329     OpID = 1;
   2330     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
   2331                      llvm::Intrinsic::uadd_with_overflow;
   2332     break;
   2333   case BO_Sub:
   2334   case BO_SubAssign:
   2335     OpID = 2;
   2336     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
   2337                      llvm::Intrinsic::usub_with_overflow;
   2338     break;
   2339   case BO_Mul:
   2340   case BO_MulAssign:
   2341     OpID = 3;
   2342     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
   2343                      llvm::Intrinsic::umul_with_overflow;
   2344     break;
   2345   default:
   2346     llvm_unreachable("Unsupported operation for overflow detection");
   2347   }
   2348   OpID <<= 1;
   2349   if (isSigned)
   2350     OpID |= 1;
   2351 
   2352   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
   2353 
   2354   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
   2355 
   2356   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
   2357   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
   2358   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
   2359 
   2360   // Handle overflow with llvm.trap if no custom handler has been specified.
   2361   const std::string *handlerName =
   2362     &CGF.getLangOpts().OverflowHandler;
   2363   if (handlerName->empty()) {
   2364     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
   2365     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
   2366     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
   2367       CodeGenFunction::SanitizerScope SanScope(&CGF);
   2368       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
   2369       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
   2370                               : SanitizerKind::UnsignedIntegerOverflow;
   2371       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
   2372     } else
   2373       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
   2374     return result;
   2375   }
   2376 
   2377   // Branch in case of overflow.
   2378   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
   2379   llvm::Function::iterator insertPt = initialBB->getIterator();
   2380   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
   2381                                                       &*std::next(insertPt));
   2382   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
   2383 
   2384   Builder.CreateCondBr(overflow, overflowBB, continueBB);
   2385 
   2386   // If an overflow handler is set, then we want to call it and then use its
   2387   // result, if it returns.
   2388   Builder.SetInsertPoint(overflowBB);
   2389 
   2390   // Get the overflow handler.
   2391   llvm::Type *Int8Ty = CGF.Int8Ty;
   2392   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
   2393   llvm::FunctionType *handlerTy =
   2394       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
   2395   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
   2396 
   2397   // Sign extend the args to 64-bit, so that we can use the same handler for
   2398   // all types of overflow.
   2399   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
   2400   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
   2401 
   2402   // Call the handler with the two arguments, the operation, and the size of
   2403   // the result.
   2404   llvm::Value *handlerArgs[] = {
   2405     lhs,
   2406     rhs,
   2407     Builder.getInt8(OpID),
   2408     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
   2409   };
   2410   llvm::Value *handlerResult =
   2411     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
   2412 
   2413   // Truncate the result back to the desired size.
   2414   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
   2415   Builder.CreateBr(continueBB);
   2416 
   2417   Builder.SetInsertPoint(continueBB);
   2418   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
   2419   phi->addIncoming(result, initialBB);
   2420   phi->addIncoming(handlerResult, overflowBB);
   2421 
   2422   return phi;
   2423 }
   2424 
   2425 /// Emit pointer + index arithmetic.
   2426 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
   2427                                     const BinOpInfo &op,
   2428                                     bool isSubtraction) {
   2429   // Must have binary (not unary) expr here.  Unary pointer
   2430   // increment/decrement doesn't use this path.
   2431   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2432 
   2433   Value *pointer = op.LHS;
   2434   Expr *pointerOperand = expr->getLHS();
   2435   Value *index = op.RHS;
   2436   Expr *indexOperand = expr->getRHS();
   2437 
   2438   // In a subtraction, the LHS is always the pointer.
   2439   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
   2440     std::swap(pointer, index);
   2441     std::swap(pointerOperand, indexOperand);
   2442   }
   2443 
   2444   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
   2445   if (width != CGF.PointerWidthInBits) {
   2446     // Zero-extend or sign-extend the pointer value according to
   2447     // whether the index is signed or not.
   2448     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
   2449     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
   2450                                       "idx.ext");
   2451   }
   2452 
   2453   // If this is subtraction, negate the index.
   2454   if (isSubtraction)
   2455     index = CGF.Builder.CreateNeg(index, "idx.neg");
   2456 
   2457   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
   2458     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
   2459                         /*Accessed*/ false);
   2460 
   2461   const PointerType *pointerType
   2462     = pointerOperand->getType()->getAs<PointerType>();
   2463   if (!pointerType) {
   2464     QualType objectType = pointerOperand->getType()
   2465                                         ->castAs<ObjCObjectPointerType>()
   2466                                         ->getPointeeType();
   2467     llvm::Value *objectSize
   2468       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
   2469 
   2470     index = CGF.Builder.CreateMul(index, objectSize);
   2471 
   2472     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2473     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2474     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2475   }
   2476 
   2477   QualType elementType = pointerType->getPointeeType();
   2478   if (const VariableArrayType *vla
   2479         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2480     // The element count here is the total number of non-VLA elements.
   2481     llvm::Value *numElements = CGF.getVLASize(vla).first;
   2482 
   2483     // Effectively, the multiply by the VLA size is part of the GEP.
   2484     // GEP indexes are signed, and scaling an index isn't permitted to
   2485     // signed-overflow, so we use the same semantics for our explicit
   2486     // multiply.  We suppress this if overflow is not undefined behavior.
   2487     if (CGF.getLangOpts().isSignedOverflowDefined()) {
   2488       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
   2489       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2490     } else {
   2491       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
   2492       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2493     }
   2494     return pointer;
   2495   }
   2496 
   2497   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
   2498   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
   2499   // future proof.
   2500   if (elementType->isVoidType() || elementType->isFunctionType()) {
   2501     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
   2502     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
   2503     return CGF.Builder.CreateBitCast(result, pointer->getType());
   2504   }
   2505 
   2506   if (CGF.getLangOpts().isSignedOverflowDefined())
   2507     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
   2508 
   2509   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
   2510 }
   2511 
   2512 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
   2513 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
   2514 // the add operand respectively. This allows fmuladd to represent a*b-c, or
   2515 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
   2516 // efficient operations.
   2517 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
   2518                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2519                            bool negMul, bool negAdd) {
   2520   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
   2521 
   2522   Value *MulOp0 = MulOp->getOperand(0);
   2523   Value *MulOp1 = MulOp->getOperand(1);
   2524   if (negMul) {
   2525     MulOp0 =
   2526       Builder.CreateFSub(
   2527         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
   2528         "neg");
   2529   } else if (negAdd) {
   2530     Addend =
   2531       Builder.CreateFSub(
   2532         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
   2533         "neg");
   2534   }
   2535 
   2536   Value *FMulAdd = Builder.CreateCall(
   2537       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
   2538       {MulOp0, MulOp1, Addend});
   2539    MulOp->eraseFromParent();
   2540 
   2541    return FMulAdd;
   2542 }
   2543 
   2544 // Check whether it would be legal to emit an fmuladd intrinsic call to
   2545 // represent op and if so, build the fmuladd.
   2546 //
   2547 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
   2548 // Does NOT check the type of the operation - it's assumed that this function
   2549 // will be called from contexts where it's known that the type is contractable.
   2550 static Value* tryEmitFMulAdd(const BinOpInfo &op,
   2551                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
   2552                          bool isSub=false) {
   2553 
   2554   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
   2555           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
   2556          "Only fadd/fsub can be the root of an fmuladd.");
   2557 
   2558   // Check whether this op is marked as fusable.
   2559   if (!op.FPContractable)
   2560     return nullptr;
   2561 
   2562   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
   2563   // either disabled, or handled entirely by the LLVM backend).
   2564   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
   2565     return nullptr;
   2566 
   2567   // We have a potentially fusable op. Look for a mul on one of the operands.
   2568   // Also, make sure that the mul result isn't used directly. In that case,
   2569   // there's no point creating a muladd operation.
   2570   if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
   2571     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul &&
   2572         LHSBinOp->use_empty())
   2573       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
   2574   }
   2575   if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) {
   2576     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul &&
   2577         RHSBinOp->use_empty())
   2578       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
   2579   }
   2580 
   2581   return nullptr;
   2582 }
   2583 
   2584 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
   2585   if (op.LHS->getType()->isPointerTy() ||
   2586       op.RHS->getType()->isPointerTy())
   2587     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
   2588 
   2589   if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2590     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2591     case LangOptions::SOB_Defined:
   2592       return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2593     case LangOptions::SOB_Undefined:
   2594       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   2595         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
   2596       // Fall through.
   2597     case LangOptions::SOB_Trapping:
   2598       return EmitOverflowCheckedBinOp(op);
   2599     }
   2600   }
   2601 
   2602   if (op.Ty->isUnsignedIntegerType() &&
   2603       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
   2604     return EmitOverflowCheckedBinOp(op);
   2605 
   2606   if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2607     // Try to form an fmuladd.
   2608     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
   2609       return FMulAdd;
   2610 
   2611     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
   2612   }
   2613 
   2614   return Builder.CreateAdd(op.LHS, op.RHS, "add");
   2615 }
   2616 
   2617 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
   2618   // The LHS is always a pointer if either side is.
   2619   if (!op.LHS->getType()->isPointerTy()) {
   2620     if (op.Ty->isSignedIntegerOrEnumerationType()) {
   2621       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
   2622       case LangOptions::SOB_Defined:
   2623         return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2624       case LangOptions::SOB_Undefined:
   2625         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
   2626           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
   2627         // Fall through.
   2628       case LangOptions::SOB_Trapping:
   2629         return EmitOverflowCheckedBinOp(op);
   2630       }
   2631     }
   2632 
   2633     if (op.Ty->isUnsignedIntegerType() &&
   2634         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
   2635       return EmitOverflowCheckedBinOp(op);
   2636 
   2637     if (op.LHS->getType()->isFPOrFPVectorTy()) {
   2638       // Try to form an fmuladd.
   2639       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
   2640         return FMulAdd;
   2641       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
   2642     }
   2643 
   2644     return Builder.CreateSub(op.LHS, op.RHS, "sub");
   2645   }
   2646 
   2647   // If the RHS is not a pointer, then we have normal pointer
   2648   // arithmetic.
   2649   if (!op.RHS->getType()->isPointerTy())
   2650     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
   2651 
   2652   // Otherwise, this is a pointer subtraction.
   2653 
   2654   // Do the raw subtraction part.
   2655   llvm::Value *LHS
   2656     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
   2657   llvm::Value *RHS
   2658     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
   2659   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
   2660 
   2661   // Okay, figure out the element size.
   2662   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
   2663   QualType elementType = expr->getLHS()->getType()->getPointeeType();
   2664 
   2665   llvm::Value *divisor = nullptr;
   2666 
   2667   // For a variable-length array, this is going to be non-constant.
   2668   if (const VariableArrayType *vla
   2669         = CGF.getContext().getAsVariableArrayType(elementType)) {
   2670     llvm::Value *numElements;
   2671     std::tie(numElements, elementType) = CGF.getVLASize(vla);
   2672 
   2673     divisor = numElements;
   2674 
   2675     // Scale the number of non-VLA elements by the non-VLA element size.
   2676     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
   2677     if (!eltSize.isOne())
   2678       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
   2679 
   2680   // For everything elese, we can just compute it, safe in the
   2681   // assumption that Sema won't let anything through that we can't
   2682   // safely compute the size of.
   2683   } else {
   2684     CharUnits elementSize;
   2685     // Handle GCC extension for pointer arithmetic on void* and
   2686     // function pointer types.
   2687     if (elementType->isVoidType() || elementType->isFunctionType())
   2688       elementSize = CharUnits::One();
   2689     else
   2690       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
   2691 
   2692     // Don't even emit the divide for element size of 1.
   2693     if (elementSize.isOne())
   2694       return diffInChars;
   2695 
   2696     divisor = CGF.CGM.getSize(elementSize);
   2697   }
   2698 
   2699   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
   2700   // pointer difference in C is only defined in the case where both operands
   2701   // are pointing to elements of an array.
   2702   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
   2703 }
   2704 
   2705 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
   2706   llvm::IntegerType *Ty;
   2707   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
   2708     Ty = cast<llvm::IntegerType>(VT->getElementType());
   2709   else
   2710     Ty = cast<llvm::IntegerType>(LHS->getType());
   2711   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
   2712 }
   2713 
   2714 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
   2715   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2716   // RHS to the same size as the LHS.
   2717   Value *RHS = Ops.RHS;
   2718   if (Ops.LHS->getType() != RHS->getType())
   2719     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2720 
   2721   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
   2722                       Ops.Ty->hasSignedIntegerRepresentation();
   2723   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
   2724   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2725   if (CGF.getLangOpts().OpenCL)
   2726     RHS =
   2727         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
   2728   else if ((SanitizeBase || SanitizeExponent) &&
   2729            isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2730     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2731     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
   2732     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
   2733     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
   2734 
   2735     if (SanitizeExponent) {
   2736       Checks.push_back(
   2737           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
   2738     }
   2739 
   2740     if (SanitizeBase) {
   2741       // Check whether we are shifting any non-zero bits off the top of the
   2742       // integer. We only emit this check if exponent is valid - otherwise
   2743       // instructions below will have undefined behavior themselves.
   2744       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
   2745       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
   2746       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
   2747       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
   2748       CGF.EmitBlock(CheckShiftBase);
   2749       llvm::Value *BitsShiftedOff =
   2750         Builder.CreateLShr(Ops.LHS,
   2751                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
   2752                                              /*NUW*/true, /*NSW*/true),
   2753                            "shl.check");
   2754       if (CGF.getLangOpts().CPlusPlus) {
   2755         // In C99, we are not permitted to shift a 1 bit into the sign bit.
   2756         // Under C++11's rules, shifting a 1 bit into the sign bit is
   2757         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
   2758         // define signed left shifts, so we use the C99 and C++11 rules there).
   2759         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
   2760         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
   2761       }
   2762       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
   2763       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
   2764       CGF.EmitBlock(Cont);
   2765       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
   2766       BaseCheck->addIncoming(Builder.getTrue(), Orig);
   2767       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
   2768       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
   2769     }
   2770 
   2771     assert(!Checks.empty());
   2772     EmitBinOpCheck(Checks, Ops);
   2773   }
   2774 
   2775   return Builder.CreateShl(Ops.LHS, RHS, "shl");
   2776 }
   2777 
   2778 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
   2779   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
   2780   // RHS to the same size as the LHS.
   2781   Value *RHS = Ops.RHS;
   2782   if (Ops.LHS->getType() != RHS->getType())
   2783     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
   2784 
   2785   // OpenCL 6.3j: shift values are effectively % word size of LHS.
   2786   if (CGF.getLangOpts().OpenCL)
   2787     RHS =
   2788         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
   2789   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
   2790            isa<llvm::IntegerType>(Ops.LHS->getType())) {
   2791     CodeGenFunction::SanitizerScope SanScope(&CGF);
   2792     llvm::Value *Valid =
   2793         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
   2794     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
   2795   }
   2796 
   2797   if (Ops.Ty->hasUnsignedIntegerRepresentation())
   2798     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
   2799   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
   2800 }
   2801 
   2802 enum IntrinsicType { VCMPEQ, VCMPGT };
   2803 // return corresponding comparison intrinsic for given vector type
   2804 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
   2805                                         BuiltinType::Kind ElemKind) {
   2806   switch (ElemKind) {
   2807   default: llvm_unreachable("unexpected element type");
   2808   case BuiltinType::Char_U:
   2809   case BuiltinType::UChar:
   2810     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2811                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
   2812   case BuiltinType::Char_S:
   2813   case BuiltinType::SChar:
   2814     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
   2815                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
   2816   case BuiltinType::UShort:
   2817     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2818                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
   2819   case BuiltinType::Short:
   2820     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
   2821                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
   2822   case BuiltinType::UInt:
   2823   case BuiltinType::ULong:
   2824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2825                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
   2826   case BuiltinType::Int:
   2827   case BuiltinType::Long:
   2828     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
   2829                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
   2830   case BuiltinType::Float:
   2831     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
   2832                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
   2833   }
   2834 }
   2835 
   2836 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,
   2837                                       llvm::CmpInst::Predicate UICmpOpc,
   2838                                       llvm::CmpInst::Predicate SICmpOpc,
   2839                                       llvm::CmpInst::Predicate FCmpOpc) {
   2840   TestAndClearIgnoreResultAssign();
   2841   Value *Result;
   2842   QualType LHSTy = E->getLHS()->getType();
   2843   QualType RHSTy = E->getRHS()->getType();
   2844   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
   2845     assert(E->getOpcode() == BO_EQ ||
   2846            E->getOpcode() == BO_NE);
   2847     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
   2848     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
   2849     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
   2850                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
   2851   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
   2852     Value *LHS = Visit(E->getLHS());
   2853     Value *RHS = Visit(E->getRHS());
   2854 
   2855     // If AltiVec, the comparison results in a numeric type, so we use
   2856     // intrinsics comparing vectors and giving 0 or 1 as a result
   2857     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
   2858       // constants for mapping CR6 register bits to predicate result
   2859       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
   2860 
   2861       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
   2862 
   2863       // in several cases vector arguments order will be reversed
   2864       Value *FirstVecArg = LHS,
   2865             *SecondVecArg = RHS;
   2866 
   2867       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
   2868       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
   2869       BuiltinType::Kind ElementKind = BTy->getKind();
   2870 
   2871       switch(E->getOpcode()) {
   2872       default: llvm_unreachable("is not a comparison operation");
   2873       case BO_EQ:
   2874         CR6 = CR6_LT;
   2875         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2876         break;
   2877       case BO_NE:
   2878         CR6 = CR6_EQ;
   2879         ID = GetIntrinsic(VCMPEQ, ElementKind);
   2880         break;
   2881       case BO_LT:
   2882         CR6 = CR6_LT;
   2883         ID = GetIntrinsic(VCMPGT, ElementKind);
   2884         std::swap(FirstVecArg, SecondVecArg);
   2885         break;
   2886       case BO_GT:
   2887         CR6 = CR6_LT;
   2888         ID = GetIntrinsic(VCMPGT, ElementKind);
   2889         break;
   2890       case BO_LE:
   2891         if (ElementKind == BuiltinType::Float) {
   2892           CR6 = CR6_LT;
   2893           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2894           std::swap(FirstVecArg, SecondVecArg);
   2895         }
   2896         else {
   2897           CR6 = CR6_EQ;
   2898           ID = GetIntrinsic(VCMPGT, ElementKind);
   2899         }
   2900         break;
   2901       case BO_GE:
   2902         if (ElementKind == BuiltinType::Float) {
   2903           CR6 = CR6_LT;
   2904           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
   2905         }
   2906         else {
   2907           CR6 = CR6_EQ;
   2908           ID = GetIntrinsic(VCMPGT, ElementKind);
   2909           std::swap(FirstVecArg, SecondVecArg);
   2910         }
   2911         break;
   2912       }
   2913 
   2914       Value *CR6Param = Builder.getInt32(CR6);
   2915       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
   2916       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
   2917       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
   2918                                   E->getExprLoc());
   2919     }
   2920 
   2921     if (LHS->getType()->isFPOrFPVectorTy()) {
   2922       Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp");
   2923     } else if (LHSTy->hasSignedIntegerRepresentation()) {
   2924       Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp");
   2925     } else {
   2926       // Unsigned integers and pointers.
   2927       Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp");
   2928     }
   2929 
   2930     // If this is a vector comparison, sign extend the result to the appropriate
   2931     // vector integer type and return it (don't convert to bool).
   2932     if (LHSTy->isVectorType())
   2933       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
   2934 
   2935   } else {
   2936     // Complex Comparison: can only be an equality comparison.
   2937     CodeGenFunction::ComplexPairTy LHS, RHS;
   2938     QualType CETy;
   2939     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
   2940       LHS = CGF.EmitComplexExpr(E->getLHS());
   2941       CETy = CTy->getElementType();
   2942     } else {
   2943       LHS.first = Visit(E->getLHS());
   2944       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
   2945       CETy = LHSTy;
   2946     }
   2947     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
   2948       RHS = CGF.EmitComplexExpr(E->getRHS());
   2949       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
   2950                                                      CTy->getElementType()) &&
   2951              "The element types must always match.");
   2952       (void)CTy;
   2953     } else {
   2954       RHS.first = Visit(E->getRHS());
   2955       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
   2956       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
   2957              "The element types must always match.");
   2958     }
   2959 
   2960     Value *ResultR, *ResultI;
   2961     if (CETy->isRealFloatingType()) {
   2962       ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r");
   2963       ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i");
   2964     } else {
   2965       // Complex comparisons can only be equality comparisons.  As such, signed
   2966       // and unsigned opcodes are the same.
   2967       ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r");
   2968       ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i");
   2969     }
   2970 
   2971     if (E->getOpcode() == BO_EQ) {
   2972       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
   2973     } else {
   2974       assert(E->getOpcode() == BO_NE &&
   2975              "Complex comparison other than == or != ?");
   2976       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
   2977     }
   2978   }
   2979 
   2980   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(),
   2981                               E->getExprLoc());
   2982 }
   2983 
   2984 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
   2985   bool Ignore = TestAndClearIgnoreResultAssign();
   2986 
   2987   Value *RHS;
   2988   LValue LHS;
   2989 
   2990   switch (E->getLHS()->getType().getObjCLifetime()) {
   2991   case Qualifiers::OCL_Strong:
   2992     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
   2993     break;
   2994 
   2995   case Qualifiers::OCL_Autoreleasing:
   2996     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
   2997     break;
   2998 
   2999   case Qualifiers::OCL_Weak:
   3000     RHS = Visit(E->getRHS());
   3001     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   3002     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
   3003     break;
   3004 
   3005   // No reason to do any of these differently.
   3006   case Qualifiers::OCL_None:
   3007   case Qualifiers::OCL_ExplicitNone:
   3008     // __block variables need to have the rhs evaluated first, plus
   3009     // this should improve codegen just a little.
   3010     RHS = Visit(E->getRHS());
   3011     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
   3012 
   3013     // Store the value into the LHS.  Bit-fields are handled specially
   3014     // because the result is altered by the store, i.e., [C99 6.5.16p1]
   3015     // 'An assignment expression has the value of the left operand after
   3016     // the assignment...'.
   3017     if (LHS.isBitField())
   3018       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
   3019     else
   3020       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
   3021   }
   3022 
   3023   // If the result is clearly ignored, return now.
   3024   if (Ignore)
   3025     return nullptr;
   3026 
   3027   // The result of an assignment in C is the assigned r-value.
   3028   if (!CGF.getLangOpts().CPlusPlus)
   3029     return RHS;
   3030 
   3031   // If the lvalue is non-volatile, return the computed value of the assignment.
   3032   if (!LHS.isVolatileQualified())
   3033     return RHS;
   3034 
   3035   // Otherwise, reload the value.
   3036   return EmitLoadOfLValue(LHS, E->getExprLoc());
   3037 }
   3038 
   3039 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
   3040   // Perform vector logical and on comparisons with zero vectors.
   3041   if (E->getType()->isVectorType()) {
   3042     CGF.incrementProfileCounter(E);
   3043 
   3044     Value *LHS = Visit(E->getLHS());
   3045     Value *RHS = Visit(E->getRHS());
   3046     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   3047     if (LHS->getType()->isFPOrFPVectorTy()) {
   3048       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   3049       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   3050     } else {
   3051       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   3052       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   3053     }
   3054     Value *And = Builder.CreateAnd(LHS, RHS);
   3055     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
   3056   }
   3057 
   3058   llvm::Type *ResTy = ConvertType(E->getType());
   3059 
   3060   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
   3061   // If we have 1 && X, just emit X without inserting the control flow.
   3062   bool LHSCondVal;
   3063   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   3064     if (LHSCondVal) { // If we have 1 && X, just emit X.
   3065       CGF.incrementProfileCounter(E);
   3066 
   3067       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3068       // ZExt result to int or bool.
   3069       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
   3070     }
   3071 
   3072     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
   3073     if (!CGF.ContainsLabel(E->getRHS()))
   3074       return llvm::Constant::getNullValue(ResTy);
   3075   }
   3076 
   3077   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
   3078   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
   3079 
   3080   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3081 
   3082   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
   3083   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
   3084                            CGF.getProfileCount(E->getRHS()));
   3085 
   3086   // Any edges into the ContBlock are now from an (indeterminate number of)
   3087   // edges from this first condition.  All of these values will be false.  Start
   3088   // setting up the PHI node in the Cont Block for this.
   3089   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3090                                             "", ContBlock);
   3091   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3092        PI != PE; ++PI)
   3093     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
   3094 
   3095   eval.begin(CGF);
   3096   CGF.EmitBlock(RHSBlock);
   3097   CGF.incrementProfileCounter(E);
   3098   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3099   eval.end(CGF);
   3100 
   3101   // Reaquire the RHS block, as there may be subblocks inserted.
   3102   RHSBlock = Builder.GetInsertBlock();
   3103 
   3104   // Emit an unconditional branch from this block to ContBlock.
   3105   {
   3106     // There is no need to emit line number for unconditional branch.
   3107     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
   3108     CGF.EmitBlock(ContBlock);
   3109   }
   3110   // Insert an entry into the phi node for the edge with the value of RHSCond.
   3111   PN->addIncoming(RHSCond, RHSBlock);
   3112 
   3113   // ZExt result to int.
   3114   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
   3115 }
   3116 
   3117 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
   3118   // Perform vector logical or on comparisons with zero vectors.
   3119   if (E->getType()->isVectorType()) {
   3120     CGF.incrementProfileCounter(E);
   3121 
   3122     Value *LHS = Visit(E->getLHS());
   3123     Value *RHS = Visit(E->getRHS());
   3124     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
   3125     if (LHS->getType()->isFPOrFPVectorTy()) {
   3126       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
   3127       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
   3128     } else {
   3129       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
   3130       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
   3131     }
   3132     Value *Or = Builder.CreateOr(LHS, RHS);
   3133     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
   3134   }
   3135 
   3136   llvm::Type *ResTy = ConvertType(E->getType());
   3137 
   3138   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
   3139   // If we have 0 || X, just emit X without inserting the control flow.
   3140   bool LHSCondVal;
   3141   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
   3142     if (!LHSCondVal) { // If we have 0 || X, just emit X.
   3143       CGF.incrementProfileCounter(E);
   3144 
   3145       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3146       // ZExt result to int or bool.
   3147       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
   3148     }
   3149 
   3150     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
   3151     if (!CGF.ContainsLabel(E->getRHS()))
   3152       return llvm::ConstantInt::get(ResTy, 1);
   3153   }
   3154 
   3155   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
   3156   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
   3157 
   3158   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3159 
   3160   // Branch on the LHS first.  If it is true, go to the success (cont) block.
   3161   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
   3162                            CGF.getCurrentProfileCount() -
   3163                                CGF.getProfileCount(E->getRHS()));
   3164 
   3165   // Any edges into the ContBlock are now from an (indeterminate number of)
   3166   // edges from this first condition.  All of these values will be true.  Start
   3167   // setting up the PHI node in the Cont Block for this.
   3168   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
   3169                                             "", ContBlock);
   3170   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
   3171        PI != PE; ++PI)
   3172     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
   3173 
   3174   eval.begin(CGF);
   3175 
   3176   // Emit the RHS condition as a bool value.
   3177   CGF.EmitBlock(RHSBlock);
   3178   CGF.incrementProfileCounter(E);
   3179   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
   3180 
   3181   eval.end(CGF);
   3182 
   3183   // Reaquire the RHS block, as there may be subblocks inserted.
   3184   RHSBlock = Builder.GetInsertBlock();
   3185 
   3186   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
   3187   // into the phi node for the edge with the value of RHSCond.
   3188   CGF.EmitBlock(ContBlock);
   3189   PN->addIncoming(RHSCond, RHSBlock);
   3190 
   3191   // ZExt result to int.
   3192   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
   3193 }
   3194 
   3195 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
   3196   CGF.EmitIgnoredExpr(E->getLHS());
   3197   CGF.EnsureInsertPoint();
   3198   return Visit(E->getRHS());
   3199 }
   3200 
   3201 //===----------------------------------------------------------------------===//
   3202 //                             Other Operators
   3203 //===----------------------------------------------------------------------===//
   3204 
   3205 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
   3206 /// expression is cheap enough and side-effect-free enough to evaluate
   3207 /// unconditionally instead of conditionally.  This is used to convert control
   3208 /// flow into selects in some cases.
   3209 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
   3210                                                    CodeGenFunction &CGF) {
   3211   // Anything that is an integer or floating point constant is fine.
   3212   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
   3213 
   3214   // Even non-volatile automatic variables can't be evaluated unconditionally.
   3215   // Referencing a thread_local may cause non-trivial initialization work to
   3216   // occur. If we're inside a lambda and one of the variables is from the scope
   3217   // outside the lambda, that function may have returned already. Reading its
   3218   // locals is a bad idea. Also, these reads may introduce races there didn't
   3219   // exist in the source-level program.
   3220 }
   3221 
   3222 
   3223 Value *ScalarExprEmitter::
   3224 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
   3225   TestAndClearIgnoreResultAssign();
   3226 
   3227   // Bind the common expression if necessary.
   3228   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
   3229 
   3230   Expr *condExpr = E->getCond();
   3231   Expr *lhsExpr = E->getTrueExpr();
   3232   Expr *rhsExpr = E->getFalseExpr();
   3233 
   3234   // If the condition constant folds and can be elided, try to avoid emitting
   3235   // the condition and the dead arm.
   3236   bool CondExprBool;
   3237   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
   3238     Expr *live = lhsExpr, *dead = rhsExpr;
   3239     if (!CondExprBool) std::swap(live, dead);
   3240 
   3241     // If the dead side doesn't have labels we need, just emit the Live part.
   3242     if (!CGF.ContainsLabel(dead)) {
   3243       if (CondExprBool)
   3244         CGF.incrementProfileCounter(E);
   3245       Value *Result = Visit(live);
   3246 
   3247       // If the live part is a throw expression, it acts like it has a void
   3248       // type, so evaluating it returns a null Value*.  However, a conditional
   3249       // with non-void type must return a non-null Value*.
   3250       if (!Result && !E->getType()->isVoidType())
   3251         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
   3252 
   3253       return Result;
   3254     }
   3255   }
   3256 
   3257   // OpenCL: If the condition is a vector, we can treat this condition like
   3258   // the select function.
   3259   if (CGF.getLangOpts().OpenCL
   3260       && condExpr->getType()->isVectorType()) {
   3261     CGF.incrementProfileCounter(E);
   3262 
   3263     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
   3264     llvm::Value *LHS = Visit(lhsExpr);
   3265     llvm::Value *RHS = Visit(rhsExpr);
   3266 
   3267     llvm::Type *condType = ConvertType(condExpr->getType());
   3268     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
   3269 
   3270     unsigned numElem = vecTy->getNumElements();
   3271     llvm::Type *elemType = vecTy->getElementType();
   3272 
   3273     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
   3274     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
   3275     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
   3276                                           llvm::VectorType::get(elemType,
   3277                                                                 numElem),
   3278                                           "sext");
   3279     llvm::Value *tmp2 = Builder.CreateNot(tmp);
   3280 
   3281     // Cast float to int to perform ANDs if necessary.
   3282     llvm::Value *RHSTmp = RHS;
   3283     llvm::Value *LHSTmp = LHS;
   3284     bool wasCast = false;
   3285     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
   3286     if (rhsVTy->getElementType()->isFloatingPointTy()) {
   3287       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
   3288       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
   3289       wasCast = true;
   3290     }
   3291 
   3292     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
   3293     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
   3294     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
   3295     if (wasCast)
   3296       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
   3297 
   3298     return tmp5;
   3299   }
   3300 
   3301   // If this is a really simple expression (like x ? 4 : 5), emit this as a
   3302   // select instead of as control flow.  We can only do this if it is cheap and
   3303   // safe to evaluate the LHS and RHS unconditionally.
   3304   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
   3305       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
   3306     CGF.incrementProfileCounter(E);
   3307 
   3308     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
   3309     llvm::Value *LHS = Visit(lhsExpr);
   3310     llvm::Value *RHS = Visit(rhsExpr);
   3311     if (!LHS) {
   3312       // If the conditional has void type, make sure we return a null Value*.
   3313       assert(!RHS && "LHS and RHS types must match");
   3314       return nullptr;
   3315     }
   3316     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
   3317   }
   3318 
   3319   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
   3320   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
   3321   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
   3322 
   3323   CodeGenFunction::ConditionalEvaluation eval(CGF);
   3324   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
   3325                            CGF.getProfileCount(lhsExpr));
   3326 
   3327   CGF.EmitBlock(LHSBlock);
   3328   CGF.incrementProfileCounter(E);
   3329   eval.begin(CGF);
   3330   Value *LHS = Visit(lhsExpr);
   3331   eval.end(CGF);
   3332 
   3333   LHSBlock = Builder.GetInsertBlock();
   3334   Builder.CreateBr(ContBlock);
   3335 
   3336   CGF.EmitBlock(RHSBlock);
   3337   eval.begin(CGF);
   3338   Value *RHS = Visit(rhsExpr);
   3339   eval.end(CGF);
   3340 
   3341   RHSBlock = Builder.GetInsertBlock();
   3342   CGF.EmitBlock(ContBlock);
   3343 
   3344   // If the LHS or RHS is a throw expression, it will be legitimately null.
   3345   if (!LHS)
   3346     return RHS;
   3347   if (!RHS)
   3348     return LHS;
   3349 
   3350   // Create a PHI node for the real part.
   3351   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
   3352   PN->addIncoming(LHS, LHSBlock);
   3353   PN->addIncoming(RHS, RHSBlock);
   3354   return PN;
   3355 }
   3356 
   3357 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
   3358   return Visit(E->getChosenSubExpr());
   3359 }
   3360 
   3361 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
   3362   QualType Ty = VE->getType();
   3363 
   3364   if (Ty->isVariablyModifiedType())
   3365     CGF.EmitVariablyModifiedType(Ty);
   3366 
   3367   Address ArgValue = Address::invalid();
   3368   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
   3369 
   3370   llvm::Type *ArgTy = ConvertType(VE->getType());
   3371 
   3372   // If EmitVAArg fails, we fall back to the LLVM instruction.
   3373   if (!ArgPtr.isValid())
   3374     return Builder.CreateVAArg(ArgValue.getPointer(), ArgTy);
   3375 
   3376   // FIXME Volatility.
   3377   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
   3378 
   3379   // If EmitVAArg promoted the type, we must truncate it.
   3380   if (ArgTy != Val->getType()) {
   3381     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
   3382       Val = Builder.CreateIntToPtr(Val, ArgTy);
   3383     else
   3384       Val = Builder.CreateTrunc(Val, ArgTy);
   3385   }
   3386 
   3387   return Val;
   3388 }
   3389 
   3390 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
   3391   return CGF.EmitBlockLiteral(block);
   3392 }
   3393 
   3394 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
   3395   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
   3396   llvm::Type *DstTy = ConvertType(E->getType());
   3397 
   3398   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
   3399   // a shuffle vector instead of a bitcast.
   3400   llvm::Type *SrcTy = Src->getType();
   3401   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
   3402     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
   3403     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
   3404     if ((numElementsDst == 3 && numElementsSrc == 4)
   3405         || (numElementsDst == 4 && numElementsSrc == 3)) {
   3406 
   3407 
   3408       // In the case of going from int4->float3, a bitcast is needed before
   3409       // doing a shuffle.
   3410       llvm::Type *srcElemTy =
   3411       cast<llvm::VectorType>(SrcTy)->getElementType();
   3412       llvm::Type *dstElemTy =
   3413       cast<llvm::VectorType>(DstTy)->getElementType();
   3414 
   3415       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
   3416           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
   3417         // Create a float type of the same size as the source or destination.
   3418         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
   3419                                                                  numElementsSrc);
   3420 
   3421         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
   3422       }
   3423 
   3424       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
   3425 
   3426       SmallVector<llvm::Constant*, 3> Args;
   3427       Args.push_back(Builder.getInt32(0));
   3428       Args.push_back(Builder.getInt32(1));
   3429       Args.push_back(Builder.getInt32(2));
   3430 
   3431       if (numElementsDst == 4)
   3432         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
   3433 
   3434       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
   3435 
   3436       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
   3437     }
   3438   }
   3439 
   3440   return Builder.CreateBitCast(Src, DstTy, "astype");
   3441 }
   3442 
   3443 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
   3444   return CGF.EmitAtomicExpr(E).getScalarVal();
   3445 }
   3446 
   3447 //===----------------------------------------------------------------------===//
   3448 //                         Entry Point into this File
   3449 //===----------------------------------------------------------------------===//
   3450 
   3451 /// Emit the computation of the specified expression of scalar type, ignoring
   3452 /// the result.
   3453 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
   3454   assert(E && hasScalarEvaluationKind(E->getType()) &&
   3455          "Invalid scalar expression to emit");
   3456 
   3457   return ScalarExprEmitter(*this, IgnoreResultAssign)
   3458       .Visit(const_cast<Expr *>(E));
   3459 }
   3460 
   3461 /// Emit a conversion from the specified type to the specified destination type,
   3462 /// both of which are LLVM scalar types.
   3463 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
   3464                                              QualType DstTy,
   3465                                              SourceLocation Loc) {
   3466   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
   3467          "Invalid scalar expression to emit");
   3468   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc);
   3469 }
   3470 
   3471 /// Emit a conversion from the specified complex type to the specified
   3472 /// destination type, where the destination type is an LLVM scalar type.
   3473 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
   3474                                                       QualType SrcTy,
   3475                                                       QualType DstTy,
   3476                                                       SourceLocation Loc) {
   3477   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
   3478          "Invalid complex -> scalar conversion");
   3479   return ScalarExprEmitter(*this)
   3480       .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc);
   3481 }
   3482 
   3483 
   3484 llvm::Value *CodeGenFunction::
   3485 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   3486                         bool isInc, bool isPre) {
   3487   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
   3488 }
   3489 
   3490 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
   3491   // object->isa or (*object).isa
   3492   // Generate code as for: *(Class*)object
   3493 
   3494   Expr *BaseExpr = E->getBase();
   3495   Address Addr = Address::invalid();
   3496   if (BaseExpr->isRValue()) {
   3497     Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign());
   3498   } else {
   3499     Addr = EmitLValue(BaseExpr).getAddress();
   3500   }
   3501 
   3502   // Cast the address to Class*.
   3503   Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType()));
   3504   return MakeAddrLValue(Addr, E->getType());
   3505 }
   3506 
   3507 
   3508 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
   3509                                             const CompoundAssignOperator *E) {
   3510   ScalarExprEmitter Scalar(*this);
   3511   Value *Result = nullptr;
   3512   switch (E->getOpcode()) {
   3513 #define COMPOUND_OP(Op)                                                       \
   3514     case BO_##Op##Assign:                                                     \
   3515       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
   3516                                              Result)
   3517   COMPOUND_OP(Mul);
   3518   COMPOUND_OP(Div);
   3519   COMPOUND_OP(Rem);
   3520   COMPOUND_OP(Add);
   3521   COMPOUND_OP(Sub);
   3522   COMPOUND_OP(Shl);
   3523   COMPOUND_OP(Shr);
   3524   COMPOUND_OP(And);
   3525   COMPOUND_OP(Xor);
   3526   COMPOUND_OP(Or);
   3527 #undef COMPOUND_OP
   3528 
   3529   case BO_PtrMemD:
   3530   case BO_PtrMemI:
   3531   case BO_Mul:
   3532   case BO_Div:
   3533   case BO_Rem:
   3534   case BO_Add:
   3535   case BO_Sub:
   3536   case BO_Shl:
   3537   case BO_Shr:
   3538   case BO_LT:
   3539   case BO_GT:
   3540   case BO_LE:
   3541   case BO_GE:
   3542   case BO_EQ:
   3543   case BO_NE:
   3544   case BO_And:
   3545   case BO_Xor:
   3546   case BO_Or:
   3547   case BO_LAnd:
   3548   case BO_LOr:
   3549   case BO_Assign:
   3550   case BO_Comma:
   3551     llvm_unreachable("Not valid compound assignment operators");
   3552   }
   3553 
   3554   llvm_unreachable("Unhandled compound assignment operator");
   3555 }
   3556