1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the structures used for instruction 11 // itineraries, stages, and operand reads/writes. This is used by 12 // schedulers to determine instruction stages and latencies. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_MC_MCINSTRITINERARIES_H 17 #define LLVM_MC_MCINSTRITINERARIES_H 18 19 #include "llvm/MC/MCSchedule.h" 20 #include <algorithm> 21 22 namespace llvm { 23 24 //===----------------------------------------------------------------------===// 25 /// These values represent a non-pipelined step in 26 /// the execution of an instruction. Cycles represents the number of 27 /// discrete time slots needed to complete the stage. Units represent 28 /// the choice of functional units that can be used to complete the 29 /// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many 30 /// cycles should elapse from the start of this stage to the start of 31 /// the next stage in the itinerary. A value of -1 indicates that the 32 /// next stage should start immediately after the current one. 33 /// For example: 34 /// 35 /// { 1, x, -1 } 36 /// indicates that the stage occupies FU x for 1 cycle and that 37 /// the next stage starts immediately after this one. 38 /// 39 /// { 2, x|y, 1 } 40 /// indicates that the stage occupies either FU x or FU y for 2 41 /// consecutive cycles and that the next stage starts one cycle 42 /// after this stage starts. That is, the stage requirements 43 /// overlap in time. 44 /// 45 /// { 1, x, 0 } 46 /// indicates that the stage occupies FU x for 1 cycle and that 47 /// the next stage starts in this same cycle. This can be used to 48 /// indicate that the instruction requires multiple stages at the 49 /// same time. 50 /// 51 /// FU reservation can be of two different kinds: 52 /// - FUs which instruction actually requires 53 /// - FUs which instruction just reserves. Reserved unit is not available for 54 /// execution of other instruction. However, several instructions can reserve 55 /// the same unit several times. 56 /// Such two types of units reservation is used to model instruction domain 57 /// change stalls, FUs using the same resource (e.g. same register file), etc. 58 59 struct InstrStage { 60 enum ReservationKinds { 61 Required = 0, 62 Reserved = 1 63 }; 64 65 unsigned Cycles_; ///< Length of stage in machine cycles 66 unsigned Units_; ///< Choice of functional units 67 int NextCycles_; ///< Number of machine cycles to next stage 68 ReservationKinds Kind_; ///< Kind of the FU reservation 69 70 /// \brief Returns the number of cycles the stage is occupied. 71 unsigned getCycles() const { 72 return Cycles_; 73 } 74 75 /// \brief Returns the choice of FUs. 76 unsigned getUnits() const { 77 return Units_; 78 } 79 80 ReservationKinds getReservationKind() const { 81 return Kind_; 82 } 83 84 /// \brief Returns the number of cycles from the start of this stage to the 85 /// start of the next stage in the itinerary 86 unsigned getNextCycles() const { 87 return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_; 88 } 89 }; 90 91 92 //===----------------------------------------------------------------------===// 93 /// An itinerary represents the scheduling information for an instruction. 94 /// This includes a set of stages occupied by the instruction and the pipeline 95 /// cycle in which operands are read and written. 96 /// 97 struct InstrItinerary { 98 int NumMicroOps; ///< # of micro-ops, -1 means it's variable 99 unsigned FirstStage; ///< Index of first stage in itinerary 100 unsigned LastStage; ///< Index of last + 1 stage in itinerary 101 unsigned FirstOperandCycle; ///< Index of first operand rd/wr 102 unsigned LastOperandCycle; ///< Index of last + 1 operand rd/wr 103 }; 104 105 106 //===----------------------------------------------------------------------===// 107 /// Itinerary data supplied by a subtarget to be used by a target. 108 /// 109 class InstrItineraryData { 110 public: 111 MCSchedModel SchedModel; ///< Basic machine properties. 112 const InstrStage *Stages; ///< Array of stages selected 113 const unsigned *OperandCycles; ///< Array of operand cycles selected 114 const unsigned *Forwardings; ///< Array of pipeline forwarding pathes 115 const InstrItinerary *Itineraries; ///< Array of itineraries selected 116 117 /// Ctors. 118 InstrItineraryData() : SchedModel(MCSchedModel::GetDefaultSchedModel()), 119 Stages(nullptr), OperandCycles(nullptr), 120 Forwardings(nullptr), Itineraries(nullptr) {} 121 122 InstrItineraryData(const MCSchedModel &SM, const InstrStage *S, 123 const unsigned *OS, const unsigned *F) 124 : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F), 125 Itineraries(SchedModel.InstrItineraries) {} 126 127 /// \brief Returns true if there are no itineraries. 128 bool isEmpty() const { return Itineraries == nullptr; } 129 130 /// \brief Returns true if the index is for the end marker itinerary. 131 bool isEndMarker(unsigned ItinClassIndx) const { 132 return ((Itineraries[ItinClassIndx].FirstStage == ~0U) && 133 (Itineraries[ItinClassIndx].LastStage == ~0U)); 134 } 135 136 /// \brief Return the first stage of the itinerary. 137 const InstrStage *beginStage(unsigned ItinClassIndx) const { 138 unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage; 139 return Stages + StageIdx; 140 } 141 142 /// \brief Return the last+1 stage of the itinerary. 143 const InstrStage *endStage(unsigned ItinClassIndx) const { 144 unsigned StageIdx = Itineraries[ItinClassIndx].LastStage; 145 return Stages + StageIdx; 146 } 147 148 /// \brief Return the total stage latency of the given class. The latency is 149 /// the maximum completion time for any stage in the itinerary. If no stages 150 /// exist, it defaults to one cycle. 151 unsigned getStageLatency(unsigned ItinClassIndx) const { 152 // If the target doesn't provide itinerary information, use a simple 153 // non-zero default value for all instructions. 154 if (isEmpty()) 155 return 1; 156 157 // Calculate the maximum completion time for any stage. 158 unsigned Latency = 0, StartCycle = 0; 159 for (const InstrStage *IS = beginStage(ItinClassIndx), 160 *E = endStage(ItinClassIndx); IS != E; ++IS) { 161 Latency = std::max(Latency, StartCycle + IS->getCycles()); 162 StartCycle += IS->getNextCycles(); 163 } 164 return Latency; 165 } 166 167 /// \brief Return the cycle for the given class and operand. Return -1 if no 168 /// cycle is specified for the operand. 169 int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const { 170 if (isEmpty()) 171 return -1; 172 173 unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle; 174 unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle; 175 if ((FirstIdx + OperandIdx) >= LastIdx) 176 return -1; 177 178 return (int)OperandCycles[FirstIdx + OperandIdx]; 179 } 180 181 /// \brief Return true if there is a pipeline forwarding between instructions 182 /// of itinerary classes DefClass and UseClasses so that value produced by an 183 /// instruction of itinerary class DefClass, operand index DefIdx can be 184 /// bypassed when it's read by an instruction of itinerary class UseClass, 185 /// operand index UseIdx. 186 bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx, 187 unsigned UseClass, unsigned UseIdx) const { 188 unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle; 189 unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle; 190 if ((FirstDefIdx + DefIdx) >= LastDefIdx) 191 return false; 192 if (Forwardings[FirstDefIdx + DefIdx] == 0) 193 return false; 194 195 unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle; 196 unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle; 197 if ((FirstUseIdx + UseIdx) >= LastUseIdx) 198 return false; 199 200 return Forwardings[FirstDefIdx + DefIdx] == 201 Forwardings[FirstUseIdx + UseIdx]; 202 } 203 204 /// \brief Compute and return the use operand latency of a given itinerary 205 /// class and operand index if the value is produced by an instruction of the 206 /// specified itinerary class and def operand index. 207 int getOperandLatency(unsigned DefClass, unsigned DefIdx, 208 unsigned UseClass, unsigned UseIdx) const { 209 if (isEmpty()) 210 return -1; 211 212 int DefCycle = getOperandCycle(DefClass, DefIdx); 213 if (DefCycle == -1) 214 return -1; 215 216 int UseCycle = getOperandCycle(UseClass, UseIdx); 217 if (UseCycle == -1) 218 return -1; 219 220 UseCycle = DefCycle - UseCycle + 1; 221 if (UseCycle > 0 && 222 hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx)) 223 // FIXME: This assumes one cycle benefit for every pipeline forwarding. 224 --UseCycle; 225 return UseCycle; 226 } 227 228 /// \brief Return the number of micro-ops that the given class decodes to. 229 /// Return -1 for classes that require dynamic lookup via TargetInstrInfo. 230 int getNumMicroOps(unsigned ItinClassIndx) const { 231 if (isEmpty()) 232 return 1; 233 return Itineraries[ItinClassIndx].NumMicroOps; 234 } 235 }; 236 237 } // End llvm namespace 238 239 #endif 240