1 2 /* ----------------------------------------------------------------------------------------------------------- 3 Software License for The Fraunhofer FDK AAC Codec Library for Android 4 5 Copyright 1995 - 2015 Fraunhofer-Gesellschaft zur Frderung der angewandten Forschung e.V. 6 All rights reserved. 7 8 1. INTRODUCTION 9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements 10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio. 11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices. 12 13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual 14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by 15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part 16 of the MPEG specifications. 17 18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer) 19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners 20 individually for the purpose of encoding or decoding bit streams in products that are compliant with 21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license 22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec 23 software may already be covered under those patent licenses when it is used for those licensed purposes only. 24 25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality, 26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional 27 applications information and documentation. 28 29 2. COPYRIGHT LICENSE 30 31 Redistribution and use in source and binary forms, with or without modification, are permitted without 32 payment of copyright license fees provided that you satisfy the following conditions: 33 34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or 35 your modifications thereto in source code form. 36 37 You must retain the complete text of this software license in the documentation and/or other materials 38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form. 39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your 40 modifications thereto to recipients of copies in binary form. 41 42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without 43 prior written permission. 44 45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec 46 software or your modifications thereto. 47 48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software 49 and the date of any change. For modified versions of the FDK AAC Codec, the term 50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term 51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android." 52 53 3. NO PATENT LICENSE 54 55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer, 56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with 57 respect to this software. 58 59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized 60 by appropriate patent licenses. 61 62 4. DISCLAIMER 63 64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors 65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties 66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR 67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages, 68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits, 69 or business interruption, however caused and on any theory of liability, whether in contract, strict 70 liability, or tort (including negligence), arising in any way out of the use of this software, even if 71 advised of the possibility of such damage. 72 73 5. CONTACT INFORMATION 74 75 Fraunhofer Institute for Integrated Circuits IIS 76 Attention: Audio and Multimedia Departments - FDK AAC LL 77 Am Wolfsmantel 33 78 91058 Erlangen, Germany 79 80 www.iis.fraunhofer.de/amm 81 amm-info (at) iis.fraunhofer.de 82 ----------------------------------------------------------------------------------------------------------- */ 83 84 /*************************** Fraunhofer IIS FDK Tools ********************** 85 86 Author(s): M. Gayer 87 Description: Fixed point specific mathematical functions 88 89 ******************************************************************************/ 90 91 #ifndef __fixpoint_math_H 92 #define __fixpoint_math_H 93 94 95 #include "common_fix.h" 96 97 #if !defined(FUNCTION_fIsLessThan) 98 /** 99 * \brief Compares two fixpoint values incl. scaling. 100 * \param a_m mantissa of the first input value. 101 * \param a_e exponent of the first input value. 102 * \param b_m mantissa of the second input value. 103 * \param b_e exponent of the second input value. 104 * \return non-zero if (a_m*2^a_e) < (b_m*2^b_e), 0 otherwise 105 */ 106 FDK_INLINE INT fIsLessThan(FIXP_DBL a_m, INT a_e, FIXP_DBL b_m, INT b_e) 107 { 108 if (a_e > b_e) { 109 return (b_m >> fMin(a_e-b_e, DFRACT_BITS-1) > a_m); 110 } else { 111 return (a_m >> fMin(b_e-a_e, DFRACT_BITS-1) < b_m); 112 } 113 } 114 115 FDK_INLINE INT fIsLessThan(FIXP_SGL a_m, INT a_e, FIXP_SGL b_m, INT b_e) 116 { 117 if (a_e > b_e) { 118 return (b_m >> fMin(a_e-b_e, FRACT_BITS-1) > a_m); 119 } else { 120 return (a_m >> fMin(b_e-a_e, FRACT_BITS-1) < b_m); 121 } 122 } 123 #endif 124 125 126 127 #define LD_DATA_SCALING (64.0f) 128 #define LD_DATA_SHIFT 6 /* pow(2, LD_DATA_SHIFT) = LD_DATA_SCALING */ 129 130 /** 131 * \brief deprecated. Use fLog2() instead. 132 */ 133 FIXP_DBL CalcLdData(FIXP_DBL op); 134 135 void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT number); 136 137 FIXP_DBL CalcInvLdData(FIXP_DBL op); 138 139 140 void InitLdInt(); 141 FIXP_DBL CalcLdInt(INT i); 142 143 extern const USHORT sqrt_tab[49]; 144 145 inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x) 146 { 147 UINT y = (INT)x; 148 UCHAR is_zero=(y==0); 149 INT zeros=fixnormz_D(y) & 0x1e; 150 y<<=zeros; 151 UINT idx=(y>>26)-16; 152 USHORT frac=(y>>10)&0xffff; 153 USHORT nfrac=0xffff^frac; 154 UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; 155 t=t>>(zeros>>1); 156 return(is_zero ? 0 : t); 157 } 158 159 inline FIXP_DBL sqrtFixp_lookup(FIXP_DBL x, INT *x_e) 160 { 161 UINT y = (INT)x; 162 INT e; 163 164 if (x == (FIXP_DBL)0) { 165 return x; 166 } 167 168 /* Normalize */ 169 e=fixnormz_D(y); 170 y<<=e; 171 e = *x_e - e + 2; 172 173 /* Correct odd exponent. */ 174 if (e & 1) { 175 y >>= 1; 176 e ++; 177 } 178 /* Get square root */ 179 UINT idx=(y>>26)-16; 180 USHORT frac=(y>>10)&0xffff; 181 USHORT nfrac=0xffff^frac; 182 UINT t=nfrac*sqrt_tab[idx]+frac*sqrt_tab[idx+1]; 183 184 /* Write back exponent */ 185 *x_e = e >> 1; 186 return (FIXP_DBL)(LONG)(t>>1); 187 } 188 189 190 191 FIXP_DBL sqrtFixp(FIXP_DBL op); 192 193 void InitInvSqrtTab(); 194 195 FIXP_DBL invSqrtNorm2(FIXP_DBL op, INT *shift); 196 197 /***************************************************************************** 198 199 functionname: invFixp 200 description: delivers 1/(op) 201 202 *****************************************************************************/ 203 inline FIXP_DBL invFixp(FIXP_DBL op) 204 { 205 INT tmp_exp ; 206 FIXP_DBL tmp_inv = invSqrtNorm2(op, &tmp_exp) ; 207 FDK_ASSERT((31-(2*tmp_exp+1))>=0) ; 208 return ( fPow2Div2( (FIXP_DBL)tmp_inv ) >> (31-(2*tmp_exp+1)) ) ; 209 } 210 211 212 213 #if defined(__mips__) && (__GNUC__==2) 214 215 #define FUNCTION_schur_div 216 inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) 217 { 218 INT result, tmp ; 219 __asm__ ("srl %1, %2, 15\n" 220 "div %3, %1\n" : "=lo" (result) 221 : "%d" (tmp), "d" (denum) , "d" (num) 222 : "hi" ) ; 223 return result<<16 ; 224 } 225 226 /*###########################################################################################*/ 227 #elif defined(__mips__) && (__GNUC__==3) 228 229 #define FUNCTION_schur_div 230 inline FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count) 231 { 232 INT result, tmp; 233 234 __asm__ ("srl %[tmp], %[denum], 15\n" 235 "div %[result], %[num], %[tmp]\n" 236 : [tmp] "+r" (tmp), [result]"=r"(result) 237 : [denum]"r"(denum), [num]"r"(num) 238 : "hi", "lo"); 239 return result << (DFRACT_BITS-16); 240 } 241 242 /*###########################################################################################*/ 243 #elif defined(SIMULATE_MIPS_DIV) 244 245 #define FUNCTION_schur_div 246 inline FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) 247 { 248 FDK_ASSERT (count<=DFRACT_BITS-1); 249 FDK_ASSERT (num>=(FIXP_DBL)0); 250 FDK_ASSERT (denum>(FIXP_DBL)0); 251 FDK_ASSERT (num <= denum); 252 253 INT tmp = denum >> (count-1); 254 INT result = 0; 255 256 while (num > tmp) 257 { 258 num -= tmp; 259 result++; 260 } 261 262 return result << (DFRACT_BITS-count); 263 } 264 265 /*###########################################################################################*/ 266 #endif /* target architecture selector */ 267 268 #if !defined(FUNCTION_schur_div) 269 /** 270 * \brief Divide two FIXP_DBL values with given precision. 271 * \param num dividend 272 * \param denum divisor 273 * \param count amount of significant bits of the result (starting to the MSB) 274 * \return num/divisor 275 */ 276 FIXP_DBL schur_div(FIXP_DBL num,FIXP_DBL denum, INT count); 277 #endif 278 279 280 281 FIXP_DBL mul_dbl_sgl_rnd (const FIXP_DBL op1, 282 const FIXP_SGL op2); 283 284 /** 285 * \brief multiply two values with normalization, thus max precision. 286 * Author: Robert Weidner 287 * 288 * \param f1 first factor 289 * \param f2 secod factor 290 * \param result_e pointer to an INT where the exponent of the result is stored into 291 * \return mantissa of the product f1*f2 292 */ 293 FIXP_DBL fMultNorm( 294 FIXP_DBL f1, 295 FIXP_DBL f2, 296 INT *result_e 297 ); 298 299 inline FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2) 300 { 301 FIXP_DBL m; 302 INT e; 303 304 m = fMultNorm(f1, f2, &e); 305 306 m = scaleValueSaturate(m, e); 307 308 return m; 309 } 310 311 /** 312 * \brief Divide 2 FIXP_DBL values with normalization of input values. 313 * \param num numerator 314 * \param denum denomintator 315 * \return num/denum with exponent = 0 316 */ 317 FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom, INT *result_e); 318 319 /** 320 * \brief Divide 2 FIXP_DBL values with normalization of input values. 321 * \param num numerator 322 * \param denum denomintator 323 * \param result_e pointer to an INT where the exponent of the result is stored into 324 * \return num/denum with exponent = *result_e 325 */ 326 FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom); 327 328 /** 329 * \brief Divide 2 FIXP_DBL values with normalization of input values. 330 * \param num numerator 331 * \param denum denomintator 332 * \return num/denum with exponent = 0 333 */ 334 FIXP_DBL fDivNormHighPrec(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e); 335 336 /** 337 * \brief Calculate log(argument)/log(2) (logarithm with base 2). deprecated. Use fLog2() instead. 338 * \param arg mantissa of the argument 339 * \param arg_e exponent of the argument 340 * \param result_e pointer to an INT to store the exponent of the result 341 * \return the mantissa of the result. 342 * \param 343 */ 344 FIXP_DBL CalcLog2(FIXP_DBL arg, INT arg_e, INT *result_e); 345 346 /** 347 * \brief return 2 ^ (exp * 2^exp_e) 348 * \param exp_m mantissa of the exponent to 2.0f 349 * \param exp_e exponent of the exponent to 2.0f 350 * \param result_e pointer to a INT where the exponent of the result will be stored into 351 * \return mantissa of the result 352 */ 353 FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e); 354 355 /** 356 * \brief return 2 ^ (exp_m * 2^exp_e). This version returns only the mantissa with implicit exponent of zero. 357 * \param exp_m mantissa of the exponent to 2.0f 358 * \param exp_e exponent of the exponent to 2.0f 359 * \return mantissa of the result 360 */ 361 FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e); 362 363 /** 364 * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves 365 * the need to compute log2() of constant values (when x is a constant). 366 * \param ldx_m mantissa of log2() of x. 367 * \param ldx_e exponent of log2() of x. 368 * \param exp_m mantissa of the exponent to 2.0f 369 * \param exp_e exponent of the exponent to 2.0f 370 * \param result_e pointer to a INT where the exponent of the result will be stored into 371 * \return mantissa of the result 372 */ 373 FIXP_DBL fLdPow( 374 FIXP_DBL baseLd_m, 375 INT baseLd_e, 376 FIXP_DBL exp_m, INT exp_e, 377 INT *result_e 378 ); 379 380 /** 381 * \brief return x ^ (exp * 2^exp_e), where log2(x) = baseLd_m * 2^(baseLd_e). This saves 382 * the need to compute log2() of constant values (when x is a constant). This version 383 * does not return an exponent, which is implicitly 0. 384 * \param ldx_m mantissa of log2() of x. 385 * \param ldx_e exponent of log2() of x. 386 * \param exp_m mantissa of the exponent to 2.0f 387 * \param exp_e exponent of the exponent to 2.0f 388 * \return mantissa of the result 389 */ 390 FIXP_DBL fLdPow( 391 FIXP_DBL baseLd_m, INT baseLd_e, 392 FIXP_DBL exp_m, INT exp_e 393 ); 394 395 /** 396 * \brief return (base * 2^base_e) ^ (exp * 2^exp_e). Use fLdPow() instead whenever possible. 397 * \param base_m mantissa of the base. 398 * \param base_e exponent of the base. 399 * \param exp_m mantissa of power to be calculated of the base. 400 * \param exp_e exponent of power to be calculated of the base. 401 * \param result_e pointer to a INT where the exponent of the result will be stored into. 402 * \return mantissa of the result. 403 */ 404 FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, INT *result_e); 405 406 /** 407 * \brief return (base * 2^base_e) ^ N 408 * \param base mantissa of the base 409 * \param base_e exponent of the base 410 * \param power to be calculated of the base 411 * \param result_e pointer to a INT where the exponent of the result will be stored into 412 * \return mantissa of the result 413 */ 414 FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT N, INT *result_e); 415 416 /** 417 * \brief calculate logarithm of base 2 of x_m * 2^(x_e) 418 * \param x_m mantissa of the input value. 419 * \param x_e exponent of the input value. 420 * \param pointer to an INT where the exponent of the result is returned into. 421 * \return mantissa of the result. 422 */ 423 FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e, INT *result_e); 424 425 /** 426 * \brief calculate logarithm of base 2 of x_m * 2^(x_e) 427 * \param x_m mantissa of the input value. 428 * \param x_e exponent of the input value. 429 * \return mantissa of the result with implicit exponent of LD_DATA_SHIFT. 430 */ 431 FIXP_DBL fLog2(FIXP_DBL x_m, INT x_e); 432 433 /** 434 * \brief Add with saturation of the result. 435 * \param a first summand 436 * \param b second summand 437 * \return saturated sum of a and b. 438 */ 439 inline FIXP_SGL fAddSaturate(const FIXP_SGL a, const FIXP_SGL b) 440 { 441 LONG sum; 442 443 sum = (LONG)(SHORT)a + (LONG)(SHORT)b; 444 sum = fMax(fMin((INT)sum, (INT)MAXVAL_SGL), (INT)MINVAL_SGL); 445 return (FIXP_SGL)(SHORT)sum; 446 } 447 448 /** 449 * \brief Add with saturation of the result. 450 * \param a first summand 451 * \param b second summand 452 * \return saturated sum of a and b. 453 */ 454 inline FIXP_DBL fAddSaturate(const FIXP_DBL a, const FIXP_DBL b) 455 { 456 LONG sum; 457 458 sum = (LONG)(a>>1) + (LONG)(b>>1); 459 sum = fMax(fMin((INT)sum, (INT)(MAXVAL_DBL>>1)), (INT)(MINVAL_DBL>>1)); 460 return (FIXP_DBL)(LONG)(sum<<1); 461 } 462 463 //#define TEST_ROUNDING 464 465 466 467 468 /***************************************************************************** 469 470 array for 1/n, n=1..80 471 472 ****************************************************************************/ 473 474 extern const FIXP_DBL invCount[80]; 475 476 LNK_SECTION_INITCODE 477 inline void InitInvInt(void) {} 478 479 480 /** 481 * \brief Calculate the value of 1/i where i is a integer value. It supports 482 * input values from 1 upto 80. 483 * \param intValue Integer input value. 484 * \param FIXP_DBL representation of 1/intValue 485 */ 486 inline FIXP_DBL GetInvInt(int intValue) 487 { 488 FDK_ASSERT((intValue > 0) && (intValue < 80)); 489 FDK_ASSERT(intValue<80); 490 return invCount[intValue]; 491 } 492 493 494 #endif 495 496