1 //===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the MapValue function, which is shared by various parts of 11 // the lib/Transforms/Utils library. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Utils/ValueMapper.h" 16 #include "llvm/IR/CallSite.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/Function.h" 19 #include "llvm/IR/InlineAsm.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/Metadata.h" 22 #include "llvm/IR/Operator.h" 23 using namespace llvm; 24 25 // Out of line method to get vtable etc for class. 26 void ValueMapTypeRemapper::anchor() {} 27 void ValueMaterializer::anchor() {} 28 void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) { 29 } 30 31 Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags, 32 ValueMapTypeRemapper *TypeMapper, 33 ValueMaterializer *Materializer) { 34 ValueToValueMapTy::iterator I = VM.find(V); 35 36 // If the value already exists in the map, use it. 37 if (I != VM.end() && I->second) return I->second; 38 39 // If we have a materializer and it can materialize a value, use that. 40 if (Materializer) { 41 if (Value *NewV = 42 Materializer->materializeDeclFor(const_cast<Value *>(V))) { 43 VM[V] = NewV; 44 if (auto *NewGV = dyn_cast<GlobalValue>(NewV)) 45 Materializer->materializeInitFor( 46 NewGV, const_cast<GlobalValue *>(cast<GlobalValue>(V))); 47 return NewV; 48 } 49 } 50 51 // Global values do not need to be seeded into the VM if they 52 // are using the identity mapping. 53 if (isa<GlobalValue>(V)) { 54 if (Flags & RF_NullMapMissingGlobalValues) { 55 assert(!(Flags & RF_IgnoreMissingEntries) && 56 "Illegal to specify both RF_NullMapMissingGlobalValues and " 57 "RF_IgnoreMissingEntries"); 58 return nullptr; 59 } 60 return VM[V] = const_cast<Value*>(V); 61 } 62 63 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { 64 // Inline asm may need *type* remapping. 65 FunctionType *NewTy = IA->getFunctionType(); 66 if (TypeMapper) { 67 NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); 68 69 if (NewTy != IA->getFunctionType()) 70 V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), 71 IA->hasSideEffects(), IA->isAlignStack()); 72 } 73 74 return VM[V] = const_cast<Value*>(V); 75 } 76 77 if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { 78 const Metadata *MD = MDV->getMetadata(); 79 // If this is a module-level metadata and we know that nothing at the module 80 // level is changing, then use an identity mapping. 81 if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges)) 82 return VM[V] = const_cast<Value *>(V); 83 84 auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer); 85 if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries))) 86 return VM[V] = const_cast<Value *>(V); 87 88 // FIXME: This assert crashes during bootstrap, but I think it should be 89 // correct. For now, just match behaviour from before the metadata/value 90 // split. 91 // 92 // assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) && 93 // "Referenced metadata value not in value map"); 94 return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD); 95 } 96 97 // Okay, this either must be a constant (which may or may not be mappable) or 98 // is something that is not in the mapping table. 99 Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); 100 if (!C) 101 return nullptr; 102 103 if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) { 104 Function *F = 105 cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer)); 106 BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM, 107 Flags, TypeMapper, Materializer)); 108 return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock()); 109 } 110 111 // Otherwise, we have some other constant to remap. Start by checking to see 112 // if all operands have an identity remapping. 113 unsigned OpNo = 0, NumOperands = C->getNumOperands(); 114 Value *Mapped = nullptr; 115 for (; OpNo != NumOperands; ++OpNo) { 116 Value *Op = C->getOperand(OpNo); 117 Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer); 118 if (Mapped != C) break; 119 } 120 121 // See if the type mapper wants to remap the type as well. 122 Type *NewTy = C->getType(); 123 if (TypeMapper) 124 NewTy = TypeMapper->remapType(NewTy); 125 126 // If the result type and all operands match up, then just insert an identity 127 // mapping. 128 if (OpNo == NumOperands && NewTy == C->getType()) 129 return VM[V] = C; 130 131 // Okay, we need to create a new constant. We've already processed some or 132 // all of the operands, set them all up now. 133 SmallVector<Constant*, 8> Ops; 134 Ops.reserve(NumOperands); 135 for (unsigned j = 0; j != OpNo; ++j) 136 Ops.push_back(cast<Constant>(C->getOperand(j))); 137 138 // If one of the operands mismatch, push it and the other mapped operands. 139 if (OpNo != NumOperands) { 140 Ops.push_back(cast<Constant>(Mapped)); 141 142 // Map the rest of the operands that aren't processed yet. 143 for (++OpNo; OpNo != NumOperands; ++OpNo) 144 Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM, 145 Flags, TypeMapper, Materializer)); 146 } 147 Type *NewSrcTy = nullptr; 148 if (TypeMapper) 149 if (auto *GEPO = dyn_cast<GEPOperator>(C)) 150 NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); 151 152 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 153 return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); 154 if (isa<ConstantArray>(C)) 155 return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); 156 if (isa<ConstantStruct>(C)) 157 return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); 158 if (isa<ConstantVector>(C)) 159 return VM[V] = ConstantVector::get(Ops); 160 // If this is a no-operand constant, it must be because the type was remapped. 161 if (isa<UndefValue>(C)) 162 return VM[V] = UndefValue::get(NewTy); 163 if (isa<ConstantAggregateZero>(C)) 164 return VM[V] = ConstantAggregateZero::get(NewTy); 165 assert(isa<ConstantPointerNull>(C)); 166 return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); 167 } 168 169 static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key, 170 Metadata *Val, ValueMaterializer *Materializer, 171 RemapFlags Flags) { 172 VM.MD()[Key].reset(Val); 173 if (Materializer && !(Flags & RF_HaveUnmaterializedMetadata)) { 174 auto *N = dyn_cast_or_null<MDNode>(Val); 175 // Need to invoke this once we have non-temporary MD. 176 if (!N || !N->isTemporary()) 177 Materializer->replaceTemporaryMetadata(Key, Val); 178 } 179 return Val; 180 } 181 182 static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD, 183 ValueMaterializer *Materializer, RemapFlags Flags) { 184 return mapToMetadata(VM, MD, const_cast<Metadata *>(MD), Materializer, Flags); 185 } 186 187 static Metadata *MapMetadataImpl(const Metadata *MD, 188 SmallVectorImpl<MDNode *> &DistinctWorklist, 189 ValueToValueMapTy &VM, RemapFlags Flags, 190 ValueMapTypeRemapper *TypeMapper, 191 ValueMaterializer *Materializer); 192 193 static Metadata *mapMetadataOp(Metadata *Op, 194 SmallVectorImpl<MDNode *> &DistinctWorklist, 195 ValueToValueMapTy &VM, RemapFlags Flags, 196 ValueMapTypeRemapper *TypeMapper, 197 ValueMaterializer *Materializer) { 198 if (!Op) 199 return nullptr; 200 201 if (Materializer && !Materializer->isMetadataNeeded(Op)) 202 return nullptr; 203 204 if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags, 205 TypeMapper, Materializer)) 206 return MappedOp; 207 // Use identity map if MappedOp is null and we can ignore missing entries. 208 if (Flags & RF_IgnoreMissingEntries) 209 return Op; 210 211 // FIXME: This assert crashes during bootstrap, but I think it should be 212 // correct. For now, just match behaviour from before the metadata/value 213 // split. 214 // 215 // assert((Flags & RF_NullMapMissingGlobalValues) && 216 // "Referenced metadata not in value map!"); 217 return nullptr; 218 } 219 220 /// Resolve uniquing cycles involving the given metadata. 221 static void resolveCycles(Metadata *MD, bool MDMaterialized) { 222 if (auto *N = dyn_cast_or_null<MDNode>(MD)) { 223 if (!MDMaterialized && N->isTemporary()) 224 return; 225 if (!N->isResolved()) 226 N->resolveCycles(MDMaterialized); 227 } 228 } 229 230 /// Remap the operands of an MDNode. 231 /// 232 /// If \c Node is temporary, uniquing cycles are ignored. If \c Node is 233 /// distinct, uniquing cycles are resolved as they're found. 234 /// 235 /// \pre \c Node.isDistinct() or \c Node.isTemporary(). 236 static bool remapOperands(MDNode &Node, 237 SmallVectorImpl<MDNode *> &DistinctWorklist, 238 ValueToValueMapTy &VM, RemapFlags Flags, 239 ValueMapTypeRemapper *TypeMapper, 240 ValueMaterializer *Materializer) { 241 assert(!Node.isUniqued() && "Expected temporary or distinct node"); 242 const bool IsDistinct = Node.isDistinct(); 243 244 bool AnyChanged = false; 245 for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) { 246 Metadata *Old = Node.getOperand(I); 247 Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper, 248 Materializer); 249 if (Old != New) { 250 AnyChanged = true; 251 Node.replaceOperandWith(I, New); 252 253 // Resolve uniquing cycles underneath distinct nodes on the fly so they 254 // don't infect later operands. 255 if (IsDistinct) 256 resolveCycles(New, !(Flags & RF_HaveUnmaterializedMetadata)); 257 } 258 } 259 260 return AnyChanged; 261 } 262 263 /// Map a distinct MDNode. 264 /// 265 /// Whether distinct nodes change is independent of their operands. If \a 266 /// RF_MoveDistinctMDs, then they are reused, and their operands remapped in 267 /// place; effectively, they're moved from one graph to another. Otherwise, 268 /// they're cloned/duplicated, and the new copy's operands are remapped. 269 static Metadata *mapDistinctNode(const MDNode *Node, 270 SmallVectorImpl<MDNode *> &DistinctWorklist, 271 ValueToValueMapTy &VM, RemapFlags Flags, 272 ValueMapTypeRemapper *TypeMapper, 273 ValueMaterializer *Materializer) { 274 assert(Node->isDistinct() && "Expected distinct node"); 275 276 MDNode *NewMD; 277 if (Flags & RF_MoveDistinctMDs) 278 NewMD = const_cast<MDNode *>(Node); 279 else 280 NewMD = MDNode::replaceWithDistinct(Node->clone()); 281 282 // Remap operands later. 283 DistinctWorklist.push_back(NewMD); 284 return mapToMetadata(VM, Node, NewMD, Materializer, Flags); 285 } 286 287 /// \brief Map a uniqued MDNode. 288 /// 289 /// Uniqued nodes may not need to be recreated (they may map to themselves). 290 static Metadata *mapUniquedNode(const MDNode *Node, 291 SmallVectorImpl<MDNode *> &DistinctWorklist, 292 ValueToValueMapTy &VM, RemapFlags Flags, 293 ValueMapTypeRemapper *TypeMapper, 294 ValueMaterializer *Materializer) { 295 assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isUniqued()) && 296 "Expected uniqued node"); 297 298 // Create a temporary node and map it upfront in case we have a uniquing 299 // cycle. If necessary, this mapping will get updated by RAUW logic before 300 // returning. 301 auto ClonedMD = Node->clone(); 302 mapToMetadata(VM, Node, ClonedMD.get(), Materializer, Flags); 303 if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper, 304 Materializer)) { 305 // No operands changed, so use the original. 306 ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node)); 307 // Even though replaceAllUsesWith would have replaced the value map 308 // entry, we need to explictly map with the final non-temporary node 309 // to replace any temporary metadata via the callback. 310 return mapToSelf(VM, Node, Materializer, Flags); 311 } 312 313 // Uniquify the cloned node. Explicitly map it with the final non-temporary 314 // node so that replacement of temporary metadata via the callback occurs. 315 return mapToMetadata(VM, Node, 316 MDNode::replaceWithUniqued(std::move(ClonedMD)), 317 Materializer, Flags); 318 } 319 320 static Metadata *MapMetadataImpl(const Metadata *MD, 321 SmallVectorImpl<MDNode *> &DistinctWorklist, 322 ValueToValueMapTy &VM, RemapFlags Flags, 323 ValueMapTypeRemapper *TypeMapper, 324 ValueMaterializer *Materializer) { 325 // If the value already exists in the map, use it. 326 if (Metadata *NewMD = VM.MD().lookup(MD).get()) 327 return NewMD; 328 329 if (isa<MDString>(MD)) 330 return mapToSelf(VM, MD, Materializer, Flags); 331 332 if (isa<ConstantAsMetadata>(MD)) 333 if ((Flags & RF_NoModuleLevelChanges)) 334 return mapToSelf(VM, MD, Materializer, Flags); 335 336 if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) { 337 Value *MappedV = 338 MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer); 339 if (VMD->getValue() == MappedV || 340 (!MappedV && (Flags & RF_IgnoreMissingEntries))) 341 return mapToSelf(VM, MD, Materializer, Flags); 342 343 // FIXME: This assert crashes during bootstrap, but I think it should be 344 // correct. For now, just match behaviour from before the metadata/value 345 // split. 346 // 347 // assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) && 348 // "Referenced metadata not in value map!"); 349 if (MappedV) 350 return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV), Materializer, 351 Flags); 352 return nullptr; 353 } 354 355 // Note: this cast precedes the Flags check so we always get its associated 356 // assertion. 357 const MDNode *Node = cast<MDNode>(MD); 358 359 // If this is a module-level metadata and we know that nothing at the 360 // module level is changing, then use an identity mapping. 361 if (Flags & RF_NoModuleLevelChanges) 362 return mapToSelf(VM, MD, Materializer, Flags); 363 364 // Require resolved nodes whenever metadata might be remapped. 365 assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isResolved()) && 366 "Unexpected unresolved node"); 367 368 if (Materializer && Node->isTemporary()) { 369 assert(Flags & RF_HaveUnmaterializedMetadata); 370 Metadata *TempMD = 371 Materializer->mapTemporaryMetadata(const_cast<Metadata *>(MD)); 372 // If the above callback returned an existing temporary node, use it 373 // instead of the current temporary node. This happens when earlier 374 // function importing passes already created and saved a temporary 375 // metadata node for the same value id. 376 if (TempMD) { 377 mapToMetadata(VM, MD, TempMD, Materializer, Flags); 378 return TempMD; 379 } 380 } 381 382 if (Node->isDistinct()) 383 return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper, 384 Materializer); 385 386 return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper, 387 Materializer); 388 } 389 390 Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM, 391 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 392 ValueMaterializer *Materializer) { 393 SmallVector<MDNode *, 8> DistinctWorklist; 394 Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper, 395 Materializer); 396 397 // When there are no module-level changes, it's possible that the metadata 398 // graph has temporaries. Skip the logic to resolve cycles, since it's 399 // unnecessary (and invalid) in that case. 400 if (Flags & RF_NoModuleLevelChanges) 401 return NewMD; 402 403 // Resolve cycles involving the entry metadata. 404 resolveCycles(NewMD, !(Flags & RF_HaveUnmaterializedMetadata)); 405 406 // Remap the operands of distinct MDNodes. 407 while (!DistinctWorklist.empty()) 408 remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags, 409 TypeMapper, Materializer); 410 411 return NewMD; 412 } 413 414 MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM, 415 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 416 ValueMaterializer *Materializer) { 417 return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags, 418 TypeMapper, Materializer)); 419 } 420 421 /// RemapInstruction - Convert the instruction operands from referencing the 422 /// current values into those specified by VMap. 423 /// 424 void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap, 425 RemapFlags Flags, ValueMapTypeRemapper *TypeMapper, 426 ValueMaterializer *Materializer){ 427 // Remap operands. 428 for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) { 429 Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer); 430 // If we aren't ignoring missing entries, assert that something happened. 431 if (V) 432 *op = V; 433 else 434 assert((Flags & RF_IgnoreMissingEntries) && 435 "Referenced value not in value map!"); 436 } 437 438 // Remap phi nodes' incoming blocks. 439 if (PHINode *PN = dyn_cast<PHINode>(I)) { 440 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 441 Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags); 442 // If we aren't ignoring missing entries, assert that something happened. 443 if (V) 444 PN->setIncomingBlock(i, cast<BasicBlock>(V)); 445 else 446 assert((Flags & RF_IgnoreMissingEntries) && 447 "Referenced block not in value map!"); 448 } 449 } 450 451 // Remap attached metadata. 452 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; 453 I->getAllMetadata(MDs); 454 for (const auto &MI : MDs) { 455 MDNode *Old = MI.second; 456 MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer); 457 if (New != Old) 458 I->setMetadata(MI.first, New); 459 } 460 461 if (!TypeMapper) 462 return; 463 464 // If the instruction's type is being remapped, do so now. 465 if (auto CS = CallSite(I)) { 466 SmallVector<Type *, 3> Tys; 467 FunctionType *FTy = CS.getFunctionType(); 468 Tys.reserve(FTy->getNumParams()); 469 for (Type *Ty : FTy->params()) 470 Tys.push_back(TypeMapper->remapType(Ty)); 471 CS.mutateFunctionType(FunctionType::get( 472 TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); 473 return; 474 } 475 if (auto *AI = dyn_cast<AllocaInst>(I)) 476 AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); 477 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 478 GEP->setSourceElementType( 479 TypeMapper->remapType(GEP->getSourceElementType())); 480 GEP->setResultElementType( 481 TypeMapper->remapType(GEP->getResultElementType())); 482 } 483 I->mutateType(TypeMapper->remapType(I->getType())); 484 } 485