Home | History | Annotate | Download | only in MatrixFunctions
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2011 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      5 // Copyright (C) 2011 Chen-Pang He <jdh8 (at) ms63.hinet.net>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_MATRIX_LOGARITHM
     12 #define EIGEN_MATRIX_LOGARITHM
     13 
     14 #ifndef M_PI
     15 #define M_PI 3.141592653589793238462643383279503L
     16 #endif
     17 
     18 namespace Eigen {
     19 
     20 /** \ingroup MatrixFunctions_Module
     21   * \class MatrixLogarithmAtomic
     22   * \brief Helper class for computing matrix logarithm of atomic matrices.
     23   *
     24   * \internal
     25   * Here, an atomic matrix is a triangular matrix whose diagonal
     26   * entries are close to each other.
     27   *
     28   * \sa class MatrixFunctionAtomic, MatrixBase::log()
     29   */
     30 template <typename MatrixType>
     31 class MatrixLogarithmAtomic
     32 {
     33 public:
     34 
     35   typedef typename MatrixType::Scalar Scalar;
     36   // typedef typename MatrixType::Index Index;
     37   typedef typename NumTraits<Scalar>::Real RealScalar;
     38   // typedef typename internal::stem_function<Scalar>::type StemFunction;
     39   // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
     40 
     41   /** \brief Constructor. */
     42   MatrixLogarithmAtomic() { }
     43 
     44   /** \brief Compute matrix logarithm of atomic matrix
     45     * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
     46     * \returns  The logarithm of \p A.
     47     */
     48   MatrixType compute(const MatrixType& A);
     49 
     50 private:
     51 
     52   void compute2x2(const MatrixType& A, MatrixType& result);
     53   void computeBig(const MatrixType& A, MatrixType& result);
     54   int getPadeDegree(float normTminusI);
     55   int getPadeDegree(double normTminusI);
     56   int getPadeDegree(long double normTminusI);
     57   void computePade(MatrixType& result, const MatrixType& T, int degree);
     58   void computePade3(MatrixType& result, const MatrixType& T);
     59   void computePade4(MatrixType& result, const MatrixType& T);
     60   void computePade5(MatrixType& result, const MatrixType& T);
     61   void computePade6(MatrixType& result, const MatrixType& T);
     62   void computePade7(MatrixType& result, const MatrixType& T);
     63   void computePade8(MatrixType& result, const MatrixType& T);
     64   void computePade9(MatrixType& result, const MatrixType& T);
     65   void computePade10(MatrixType& result, const MatrixType& T);
     66   void computePade11(MatrixType& result, const MatrixType& T);
     67 
     68   static const int minPadeDegree = 3;
     69   static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
     70                                    std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
     71                                    std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
     72                                    std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
     73                                                                                  11;  // quadruple precision
     74 
     75   // Prevent copying
     76   MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
     77   MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
     78 };
     79 
     80 /** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
     81 template <typename MatrixType>
     82 MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
     83 {
     84   using std::log;
     85   MatrixType result(A.rows(), A.rows());
     86   if (A.rows() == 1)
     87     result(0,0) = log(A(0,0));
     88   else if (A.rows() == 2)
     89     compute2x2(A, result);
     90   else
     91     computeBig(A, result);
     92   return result;
     93 }
     94 
     95 /** \brief Compute logarithm of 2x2 triangular matrix. */
     96 template <typename MatrixType>
     97 void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
     98 {
     99   using std::abs;
    100   using std::ceil;
    101   using std::imag;
    102   using std::log;
    103 
    104   Scalar logA00 = log(A(0,0));
    105   Scalar logA11 = log(A(1,1));
    106 
    107   result(0,0) = logA00;
    108   result(1,0) = Scalar(0);
    109   result(1,1) = logA11;
    110 
    111   if (A(0,0) == A(1,1)) {
    112     result(0,1) = A(0,1) / A(0,0);
    113   } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
    114     result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
    115   } else {
    116     // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
    117     int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
    118     Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
    119     result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
    120   }
    121 }
    122 
    123 /** \brief Compute logarithm of triangular matrices with size > 2.
    124   * \details This uses a inverse scale-and-square algorithm. */
    125 template <typename MatrixType>
    126 void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
    127 {
    128   using std::pow;
    129   int numberOfSquareRoots = 0;
    130   int numberOfExtraSquareRoots = 0;
    131   int degree;
    132   MatrixType T = A, sqrtT;
    133   const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:                     // single precision
    134                                     maxPadeDegree<= 7? 2.6429608311114350e-1:                     // double precision
    135                                     maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
    136                                     maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
    137                                                        1.1880960220216759245467951592883642e-1L;  // quadruple precision
    138 
    139   while (true) {
    140     RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
    141     if (normTminusI < maxNormForPade) {
    142       degree = getPadeDegree(normTminusI);
    143       int degree2 = getPadeDegree(normTminusI / RealScalar(2));
    144       if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1))
    145         break;
    146       ++numberOfExtraSquareRoots;
    147     }
    148     MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
    149     T = sqrtT.template triangularView<Upper>();
    150     ++numberOfSquareRoots;
    151   }
    152 
    153   computePade(result, T, degree);
    154   result *= pow(RealScalar(2), numberOfSquareRoots);
    155 }
    156 
    157 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
    158 template <typename MatrixType>
    159 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
    160 {
    161   const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
    162             5.3149729967117310e-1 };
    163   int degree = 3;
    164   for (; degree <= maxPadeDegree; ++degree)
    165     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
    166       break;
    167   return degree;
    168 }
    169 
    170 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
    171 template <typename MatrixType>
    172 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
    173 {
    174   const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
    175             1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
    176   int degree = 3;
    177   for (; degree <= maxPadeDegree; ++degree)
    178     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
    179       break;
    180   return degree;
    181 }
    182 
    183 /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
    184 template <typename MatrixType>
    185 int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
    186 {
    187 #if   LDBL_MANT_DIG == 53         // double precision
    188   const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
    189             1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
    190 #elif LDBL_MANT_DIG <= 64         // extended precision
    191   const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
    192             5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
    193             2.32777776523703892094e-1L };
    194 #elif LDBL_MANT_DIG <= 106        // double-double
    195   const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
    196             9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
    197             1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
    198             4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
    199             1.05026503471351080481093652651105e-1L };
    200 #else                             // quadruple precision
    201   const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
    202             5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
    203             8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
    204             3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
    205             8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
    206 #endif
    207   int degree = 3;
    208   for (; degree <= maxPadeDegree; ++degree)
    209     if (normTminusI <= maxNormForPade[degree - minPadeDegree])
    210       break;
    211   return degree;
    212 }
    213 
    214 /* \brief Compute Pade approximation to matrix logarithm */
    215 template <typename MatrixType>
    216 void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
    217 {
    218   switch (degree) {
    219     case 3:  computePade3(result, T);  break;
    220     case 4:  computePade4(result, T);  break;
    221     case 5:  computePade5(result, T);  break;
    222     case 6:  computePade6(result, T);  break;
    223     case 7:  computePade7(result, T);  break;
    224     case 8:  computePade8(result, T);  break;
    225     case 9:  computePade9(result, T);  break;
    226     case 10: computePade10(result, T); break;
    227     case 11: computePade11(result, T); break;
    228     default: assert(false); // should never happen
    229   }
    230 }
    231 
    232 template <typename MatrixType>
    233 void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
    234 {
    235   const int degree = 3;
    236   const RealScalar nodes[]   = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
    237             0.8872983346207416885179265399782400L };
    238   const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
    239             0.2777777777777777777777777777777778L };
    240   eigen_assert(degree <= maxPadeDegree);
    241   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    242   result.setZero(T.rows(), T.rows());
    243   for (int k = 0; k < degree; ++k)
    244     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    245                            .template triangularView<Upper>().solve(TminusI);
    246 }
    247 
    248 template <typename MatrixType>
    249 void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
    250 {
    251   const int degree = 4;
    252   const RealScalar nodes[]   = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
    253             0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
    254   const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
    255             0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
    256   eigen_assert(degree <= maxPadeDegree);
    257   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    258   result.setZero(T.rows(), T.rows());
    259   for (int k = 0; k < degree; ++k)
    260     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    261                            .template triangularView<Upper>().solve(TminusI);
    262 }
    263 
    264 template <typename MatrixType>
    265 void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
    266 {
    267   const int degree = 5;
    268   const RealScalar nodes[]   = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
    269             0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
    270             0.9530899229693319963988134391496965L };
    271   const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
    272             0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
    273             0.1184634425280945437571320203599587L };
    274   eigen_assert(degree <= maxPadeDegree);
    275   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    276   result.setZero(T.rows(), T.rows());
    277   for (int k = 0; k < degree; ++k)
    278     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    279                            .template triangularView<Upper>().solve(TminusI);
    280 }
    281 
    282 template <typename MatrixType>
    283 void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
    284 {
    285   const int degree = 6;
    286   const RealScalar nodes[]   = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
    287             0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
    288             0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
    289   const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
    290             0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
    291             0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
    292   eigen_assert(degree <= maxPadeDegree);
    293   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    294   result.setZero(T.rows(), T.rows());
    295   for (int k = 0; k < degree; ++k)
    296     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    297                            .template triangularView<Upper>().solve(TminusI);
    298 }
    299 
    300 template <typename MatrixType>
    301 void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
    302 {
    303   const int degree = 7;
    304   const RealScalar nodes[]   = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
    305             0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
    306             0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
    307             0.9745539561713792622630948420239256L };
    308   const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
    309             0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
    310             0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
    311             0.0647424830844348466353057163395410L };
    312   eigen_assert(degree <= maxPadeDegree);
    313   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    314   result.setZero(T.rows(), T.rows());
    315   for (int k = 0; k < degree; ++k)
    316     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    317                            .template triangularView<Upper>().solve(TminusI);
    318 }
    319 
    320 template <typename MatrixType>
    321 void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
    322 {
    323   const int degree = 8;
    324   const RealScalar nodes[]   = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
    325             0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
    326             0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
    327             0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
    328   const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
    329             0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
    330             0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
    331             0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
    332   eigen_assert(degree <= maxPadeDegree);
    333   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    334   result.setZero(T.rows(), T.rows());
    335   for (int k = 0; k < degree; ++k)
    336     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    337                            .template triangularView<Upper>().solve(TminusI);
    338 }
    339 
    340 template <typename MatrixType>
    341 void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
    342 {
    343   const int degree = 9;
    344   const RealScalar nodes[]   = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
    345             0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
    346             0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
    347             0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
    348             0.9840801197538130449177881014518364L };
    349   const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
    350             0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
    351             0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
    352             0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
    353             0.0406371941807872059859460790552618L };
    354   eigen_assert(degree <= maxPadeDegree);
    355   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    356   result.setZero(T.rows(), T.rows());
    357   for (int k = 0; k < degree; ++k)
    358     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    359                            .template triangularView<Upper>().solve(TminusI);
    360 }
    361 
    362 template <typename MatrixType>
    363 void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
    364 {
    365   const int degree = 10;
    366   const RealScalar nodes[]   = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
    367             0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
    368             0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
    369             0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
    370             0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
    371   const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
    372             0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
    373             0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
    374             0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
    375             0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
    376   eigen_assert(degree <= maxPadeDegree);
    377   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    378   result.setZero(T.rows(), T.rows());
    379   for (int k = 0; k < degree; ++k)
    380     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    381                            .template triangularView<Upper>().solve(TminusI);
    382 }
    383 
    384 template <typename MatrixType>
    385 void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
    386 {
    387   const int degree = 11;
    388   const RealScalar nodes[]   = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
    389             0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
    390             0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
    391             0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
    392             0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
    393             0.9891143290730284964019690005614287L };
    394   const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
    395             0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
    396             0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
    397             0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
    398             0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
    399             0.0278342835580868332413768602212743L };
    400   eigen_assert(degree <= maxPadeDegree);
    401   MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
    402   result.setZero(T.rows(), T.rows());
    403   for (int k = 0; k < degree; ++k)
    404     result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
    405                            .template triangularView<Upper>().solve(TminusI);
    406 }
    407 
    408 /** \ingroup MatrixFunctions_Module
    409   *
    410   * \brief Proxy for the matrix logarithm of some matrix (expression).
    411   *
    412   * \tparam Derived  Type of the argument to the matrix function.
    413   *
    414   * This class holds the argument to the matrix function until it is
    415   * assigned or evaluated for some other reason (so the argument
    416   * should not be changed in the meantime). It is the return type of
    417   * MatrixBase::log() and most of the time this is the only way it
    418   * is used.
    419   */
    420 template<typename Derived> class MatrixLogarithmReturnValue
    421 : public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
    422 {
    423 public:
    424 
    425   typedef typename Derived::Scalar Scalar;
    426   typedef typename Derived::Index Index;
    427 
    428   /** \brief Constructor.
    429     *
    430     * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
    431     */
    432   MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
    433 
    434   /** \brief Compute the matrix logarithm.
    435     *
    436     * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
    437     */
    438   template <typename ResultType>
    439   inline void evalTo(ResultType& result) const
    440   {
    441     typedef typename Derived::PlainObject PlainObject;
    442     typedef internal::traits<PlainObject> Traits;
    443     static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
    444     static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
    445     static const int Options = PlainObject::Options;
    446     typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    447     typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
    448     typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
    449     AtomicType atomic;
    450 
    451     const PlainObject Aevaluated = m_A.eval();
    452     MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
    453     mf.compute(result);
    454   }
    455 
    456   Index rows() const { return m_A.rows(); }
    457   Index cols() const { return m_A.cols(); }
    458 
    459 private:
    460   typename internal::nested<Derived>::type m_A;
    461 
    462   MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
    463 };
    464 
    465 namespace internal {
    466   template<typename Derived>
    467   struct traits<MatrixLogarithmReturnValue<Derived> >
    468   {
    469     typedef typename Derived::PlainObject ReturnType;
    470   };
    471 }
    472 
    473 
    474 /********** MatrixBase method **********/
    475 
    476 
    477 template <typename Derived>
    478 const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
    479 {
    480   eigen_assert(rows() == cols());
    481   return MatrixLogarithmReturnValue<Derived>(derived());
    482 }
    483 
    484 } // end namespace Eigen
    485 
    486 #endif // EIGEN_MATRIX_LOGARITHM
    487