Home | History | Annotate | Download | only in a64
      1 // Copyright 2015, ARM Limited
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are met:
      6 //
      7 //   * Redistributions of source code must retain the above copyright notice,
      8 //     this list of conditions and the following disclaimer.
      9 //   * Redistributions in binary form must reproduce the above copyright notice,
     10 //     this list of conditions and the following disclaimer in the documentation
     11 //     and/or other materials provided with the distribution.
     12 //   * Neither the name of ARM Limited nor the names of its contributors may be
     13 //     used to endorse or promote products derived from this software without
     14 //     specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
     17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
     18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
     19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
     20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
     23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     26 
     27 #include "vixl/a64/instructions-a64.h"
     28 #include "vixl/a64/assembler-a64.h"
     29 
     30 namespace vixl {
     31 
     32 
     33 // Floating-point infinity values.
     34 const float16 kFP16PositiveInfinity = 0x7c00;
     35 const float16 kFP16NegativeInfinity = 0xfc00;
     36 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
     37 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
     38 const double kFP64PositiveInfinity =
     39     rawbits_to_double(UINT64_C(0x7ff0000000000000));
     40 const double kFP64NegativeInfinity =
     41     rawbits_to_double(UINT64_C(0xfff0000000000000));
     42 
     43 
     44 // The default NaN values (for FPCR.DN=1).
     45 const double kFP64DefaultNaN = rawbits_to_double(UINT64_C(0x7ff8000000000000));
     46 const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
     47 const float16 kFP16DefaultNaN = 0x7e00;
     48 
     49 
     50 static uint64_t RotateRight(uint64_t value,
     51                             unsigned int rotate,
     52                             unsigned int width) {
     53   VIXL_ASSERT(width <= 64);
     54   rotate &= 63;
     55   return ((value & ((UINT64_C(1) << rotate) - 1)) <<
     56           (width - rotate)) | (value >> rotate);
     57 }
     58 
     59 
     60 static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
     61                                     uint64_t value,
     62                                     unsigned width) {
     63   VIXL_ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
     64               (width == 32));
     65   VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
     66   uint64_t result = value & ((UINT64_C(1) << width) - 1);
     67   for (unsigned i = width; i < reg_size; i *= 2) {
     68     result |= (result << i);
     69   }
     70   return result;
     71 }
     72 
     73 
     74 bool Instruction::IsLoad() const {
     75   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
     76     return false;
     77   }
     78 
     79   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
     80     return Mask(LoadStorePairLBit) != 0;
     81   } else {
     82     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
     83     switch (op) {
     84       case LDRB_w:
     85       case LDRH_w:
     86       case LDR_w:
     87       case LDR_x:
     88       case LDRSB_w:
     89       case LDRSB_x:
     90       case LDRSH_w:
     91       case LDRSH_x:
     92       case LDRSW_x:
     93       case LDR_b:
     94       case LDR_h:
     95       case LDR_s:
     96       case LDR_d:
     97       case LDR_q: return true;
     98       default: return false;
     99     }
    100   }
    101 }
    102 
    103 
    104 bool Instruction::IsStore() const {
    105   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
    106     return false;
    107   }
    108 
    109   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
    110     return Mask(LoadStorePairLBit) == 0;
    111   } else {
    112     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
    113     switch (op) {
    114       case STRB_w:
    115       case STRH_w:
    116       case STR_w:
    117       case STR_x:
    118       case STR_b:
    119       case STR_h:
    120       case STR_s:
    121       case STR_d:
    122       case STR_q: return true;
    123       default: return false;
    124     }
    125   }
    126 }
    127 
    128 
    129 // Logical immediates can't encode zero, so a return value of zero is used to
    130 // indicate a failure case. Specifically, where the constraints on imm_s are
    131 // not met.
    132 uint64_t Instruction::ImmLogical() const {
    133   unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
    134   int32_t n = BitN();
    135   int32_t imm_s = ImmSetBits();
    136   int32_t imm_r = ImmRotate();
    137 
    138   // An integer is constructed from the n, imm_s and imm_r bits according to
    139   // the following table:
    140   //
    141   //  N   imms    immr    size        S             R
    142   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
    143   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
    144   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
    145   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
    146   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
    147   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
    148   // (s bits must not be all set)
    149   //
    150   // A pattern is constructed of size bits, where the least significant S+1
    151   // bits are set. The pattern is rotated right by R, and repeated across a
    152   // 32 or 64-bit value, depending on destination register width.
    153   //
    154 
    155   if (n == 1) {
    156     if (imm_s == 0x3f) {
    157       return 0;
    158     }
    159     uint64_t bits = (UINT64_C(1) << (imm_s + 1)) - 1;
    160     return RotateRight(bits, imm_r, 64);
    161   } else {
    162     if ((imm_s >> 1) == 0x1f) {
    163       return 0;
    164     }
    165     for (int width = 0x20; width >= 0x2; width >>= 1) {
    166       if ((imm_s & width) == 0) {
    167         int mask = width - 1;
    168         if ((imm_s & mask) == mask) {
    169           return 0;
    170         }
    171         uint64_t bits = (UINT64_C(1) << ((imm_s & mask) + 1)) - 1;
    172         return RepeatBitsAcrossReg(reg_size,
    173                                    RotateRight(bits, imm_r & mask, width),
    174                                    width);
    175       }
    176     }
    177   }
    178   VIXL_UNREACHABLE();
    179   return 0;
    180 }
    181 
    182 
    183 uint32_t Instruction::ImmNEONabcdefgh() const {
    184   return ImmNEONabc() << 5 | ImmNEONdefgh();
    185 }
    186 
    187 
    188 float Instruction::Imm8ToFP32(uint32_t imm8) {
    189   //   Imm8: abcdefgh (8 bits)
    190   // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
    191   // where B is b ^ 1
    192   uint32_t bits = imm8;
    193   uint32_t bit7 = (bits >> 7) & 0x1;
    194   uint32_t bit6 = (bits >> 6) & 0x1;
    195   uint32_t bit5_to_0 = bits & 0x3f;
    196   uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
    197 
    198   return rawbits_to_float(result);
    199 }
    200 
    201 
    202 float Instruction::ImmFP32() const {
    203   return Imm8ToFP32(ImmFP());
    204 }
    205 
    206 
    207 double Instruction::Imm8ToFP64(uint32_t imm8) {
    208   //   Imm8: abcdefgh (8 bits)
    209   // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
    210   //         0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
    211   // where B is b ^ 1
    212   uint32_t bits = imm8;
    213   uint64_t bit7 = (bits >> 7) & 0x1;
    214   uint64_t bit6 = (bits >> 6) & 0x1;
    215   uint64_t bit5_to_0 = bits & 0x3f;
    216   uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
    217 
    218   return rawbits_to_double(result);
    219 }
    220 
    221 
    222 double Instruction::ImmFP64() const {
    223   return Imm8ToFP64(ImmFP());
    224 }
    225 
    226 
    227 float Instruction::ImmNEONFP32() const {
    228   return Imm8ToFP32(ImmNEONabcdefgh());
    229 }
    230 
    231 
    232 double Instruction::ImmNEONFP64() const {
    233   return Imm8ToFP64(ImmNEONabcdefgh());
    234 }
    235 
    236 
    237 unsigned CalcLSDataSize(LoadStoreOp op) {
    238   VIXL_ASSERT((LSSize_offset + LSSize_width) == (kInstructionSize * 8));
    239   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
    240   if ((op & LSVector_mask) != 0) {
    241     // Vector register memory operations encode the access size in the "size"
    242     // and "opc" fields.
    243     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
    244       size = kQRegSizeInBytesLog2;
    245     }
    246   }
    247   return size;
    248 }
    249 
    250 
    251 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
    252   VIXL_STATIC_ASSERT(kXRegSizeInBytes == kDRegSizeInBytes);
    253   VIXL_STATIC_ASSERT(kWRegSizeInBytes == kSRegSizeInBytes);
    254   switch (op) {
    255     case STP_q:
    256     case LDP_q: return kQRegSizeInBytesLog2;
    257     case STP_x:
    258     case LDP_x:
    259     case STP_d:
    260     case LDP_d: return kXRegSizeInBytesLog2;
    261     default: return kWRegSizeInBytesLog2;
    262   }
    263 }
    264 
    265 
    266 int Instruction::ImmBranchRangeBitwidth(ImmBranchType branch_type) {
    267   switch (branch_type) {
    268     case UncondBranchType:
    269       return ImmUncondBranch_width;
    270     case CondBranchType:
    271       return ImmCondBranch_width;
    272     case CompareBranchType:
    273       return ImmCmpBranch_width;
    274     case TestBranchType:
    275       return ImmTestBranch_width;
    276     default:
    277       VIXL_UNREACHABLE();
    278       return 0;
    279   }
    280 }
    281 
    282 
    283 int32_t Instruction::ImmBranchForwardRange(ImmBranchType branch_type) {
    284   int32_t encoded_max = 1 << (ImmBranchRangeBitwidth(branch_type) - 1);
    285   return encoded_max * kInstructionSize;
    286 }
    287 
    288 
    289 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
    290                                      int64_t offset) {
    291   return is_intn(ImmBranchRangeBitwidth(branch_type), offset);
    292 }
    293 
    294 
    295 const Instruction* Instruction::ImmPCOffsetTarget() const {
    296   const Instruction * base = this;
    297   ptrdiff_t offset;
    298   if (IsPCRelAddressing()) {
    299     // ADR and ADRP.
    300     offset = ImmPCRel();
    301     if (Mask(PCRelAddressingMask) == ADRP) {
    302       base = AlignDown(base, kPageSize);
    303       offset *= kPageSize;
    304     } else {
    305       VIXL_ASSERT(Mask(PCRelAddressingMask) == ADR);
    306     }
    307   } else {
    308     // All PC-relative branches.
    309     VIXL_ASSERT(BranchType() != UnknownBranchType);
    310     // Relative branch offsets are instruction-size-aligned.
    311     offset = ImmBranch() << kInstructionSizeLog2;
    312   }
    313   return base + offset;
    314 }
    315 
    316 
    317 int Instruction::ImmBranch() const {
    318   switch (BranchType()) {
    319     case CondBranchType: return ImmCondBranch();
    320     case UncondBranchType: return ImmUncondBranch();
    321     case CompareBranchType: return ImmCmpBranch();
    322     case TestBranchType: return ImmTestBranch();
    323     default: VIXL_UNREACHABLE();
    324   }
    325   return 0;
    326 }
    327 
    328 
    329 void Instruction::SetImmPCOffsetTarget(const Instruction* target) {
    330   if (IsPCRelAddressing()) {
    331     SetPCRelImmTarget(target);
    332   } else {
    333     SetBranchImmTarget(target);
    334   }
    335 }
    336 
    337 
    338 void Instruction::SetPCRelImmTarget(const Instruction* target) {
    339   ptrdiff_t imm21;
    340   if ((Mask(PCRelAddressingMask) == ADR)) {
    341     imm21 = target - this;
    342   } else {
    343     VIXL_ASSERT(Mask(PCRelAddressingMask) == ADRP);
    344     uintptr_t this_page = reinterpret_cast<uintptr_t>(this) / kPageSize;
    345     uintptr_t target_page = reinterpret_cast<uintptr_t>(target) / kPageSize;
    346     imm21 = target_page - this_page;
    347   }
    348   Instr imm = Assembler::ImmPCRelAddress(static_cast<int32_t>(imm21));
    349 
    350   SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
    351 }
    352 
    353 
    354 void Instruction::SetBranchImmTarget(const Instruction* target) {
    355   VIXL_ASSERT(((target - this) & 3) == 0);
    356   Instr branch_imm = 0;
    357   uint32_t imm_mask = 0;
    358   int offset = static_cast<int>((target - this) >> kInstructionSizeLog2);
    359   switch (BranchType()) {
    360     case CondBranchType: {
    361       branch_imm = Assembler::ImmCondBranch(offset);
    362       imm_mask = ImmCondBranch_mask;
    363       break;
    364     }
    365     case UncondBranchType: {
    366       branch_imm = Assembler::ImmUncondBranch(offset);
    367       imm_mask = ImmUncondBranch_mask;
    368       break;
    369     }
    370     case CompareBranchType: {
    371       branch_imm = Assembler::ImmCmpBranch(offset);
    372       imm_mask = ImmCmpBranch_mask;
    373       break;
    374     }
    375     case TestBranchType: {
    376       branch_imm = Assembler::ImmTestBranch(offset);
    377       imm_mask = ImmTestBranch_mask;
    378       break;
    379     }
    380     default: VIXL_UNREACHABLE();
    381   }
    382   SetInstructionBits(Mask(~imm_mask) | branch_imm);
    383 }
    384 
    385 
    386 void Instruction::SetImmLLiteral(const Instruction* source) {
    387   VIXL_ASSERT(IsWordAligned(source));
    388   ptrdiff_t offset = (source - this) >> kLiteralEntrySizeLog2;
    389   Instr imm = Assembler::ImmLLiteral(static_cast<int>(offset));
    390   Instr mask = ImmLLiteral_mask;
    391 
    392   SetInstructionBits(Mask(~mask) | imm);
    393 }
    394 
    395 
    396 VectorFormat VectorFormatHalfWidth(const VectorFormat vform) {
    397   VIXL_ASSERT(vform == kFormat8H || vform == kFormat4S || vform == kFormat2D ||
    398               vform == kFormatH || vform == kFormatS || vform == kFormatD);
    399   switch (vform) {
    400     case kFormat8H: return kFormat8B;
    401     case kFormat4S: return kFormat4H;
    402     case kFormat2D: return kFormat2S;
    403     case kFormatH:  return kFormatB;
    404     case kFormatS:  return kFormatH;
    405     case kFormatD:  return kFormatS;
    406     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    407   }
    408 }
    409 
    410 
    411 VectorFormat VectorFormatDoubleWidth(const VectorFormat vform) {
    412   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S ||
    413               vform == kFormatB || vform == kFormatH || vform == kFormatS);
    414   switch (vform) {
    415     case kFormat8B: return kFormat8H;
    416     case kFormat4H: return kFormat4S;
    417     case kFormat2S: return kFormat2D;
    418     case kFormatB:  return kFormatH;
    419     case kFormatH:  return kFormatS;
    420     case kFormatS:  return kFormatD;
    421     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    422   }
    423 }
    424 
    425 
    426 VectorFormat VectorFormatFillQ(const VectorFormat vform) {
    427   switch (vform) {
    428     case kFormatB:
    429     case kFormat8B:
    430     case kFormat16B: return kFormat16B;
    431     case kFormatH:
    432     case kFormat4H:
    433     case kFormat8H:  return kFormat8H;
    434     case kFormatS:
    435     case kFormat2S:
    436     case kFormat4S:  return kFormat4S;
    437     case kFormatD:
    438     case kFormat1D:
    439     case kFormat2D:  return kFormat2D;
    440     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    441   }
    442 }
    443 
    444 VectorFormat VectorFormatHalfWidthDoubleLanes(const VectorFormat vform) {
    445   switch (vform) {
    446     case kFormat4H: return kFormat8B;
    447     case kFormat8H: return kFormat16B;
    448     case kFormat2S: return kFormat4H;
    449     case kFormat4S: return kFormat8H;
    450     case kFormat1D: return kFormat2S;
    451     case kFormat2D: return kFormat4S;
    452     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    453   }
    454 }
    455 
    456 VectorFormat VectorFormatDoubleLanes(const VectorFormat vform) {
    457   VIXL_ASSERT(vform == kFormat8B || vform == kFormat4H || vform == kFormat2S);
    458   switch (vform) {
    459     case kFormat8B: return kFormat16B;
    460     case kFormat4H: return kFormat8H;
    461     case kFormat2S: return kFormat4S;
    462     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    463   }
    464 }
    465 
    466 
    467 VectorFormat VectorFormatHalfLanes(const VectorFormat vform) {
    468   VIXL_ASSERT(vform == kFormat16B || vform == kFormat8H || vform == kFormat4S);
    469   switch (vform) {
    470     case kFormat16B: return kFormat8B;
    471     case kFormat8H: return kFormat4H;
    472     case kFormat4S: return kFormat2S;
    473     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    474   }
    475 }
    476 
    477 
    478 VectorFormat ScalarFormatFromLaneSize(int laneSize) {
    479   switch (laneSize) {
    480     case 8:  return kFormatB;
    481     case 16: return kFormatH;
    482     case 32: return kFormatS;
    483     case 64: return kFormatD;
    484     default: VIXL_UNREACHABLE(); return kFormatUndefined;
    485   }
    486 }
    487 
    488 
    489 unsigned RegisterSizeInBitsFromFormat(VectorFormat vform) {
    490   VIXL_ASSERT(vform != kFormatUndefined);
    491   switch (vform) {
    492     case kFormatB: return kBRegSize;
    493     case kFormatH: return kHRegSize;
    494     case kFormatS: return kSRegSize;
    495     case kFormatD: return kDRegSize;
    496     case kFormat8B:
    497     case kFormat4H:
    498     case kFormat2S:
    499     case kFormat1D: return kDRegSize;
    500     default: return kQRegSize;
    501   }
    502 }
    503 
    504 
    505 unsigned RegisterSizeInBytesFromFormat(VectorFormat vform) {
    506   return RegisterSizeInBitsFromFormat(vform) / 8;
    507 }
    508 
    509 
    510 unsigned LaneSizeInBitsFromFormat(VectorFormat vform) {
    511   VIXL_ASSERT(vform != kFormatUndefined);
    512   switch (vform) {
    513     case kFormatB:
    514     case kFormat8B:
    515     case kFormat16B: return 8;
    516     case kFormatH:
    517     case kFormat4H:
    518     case kFormat8H: return 16;
    519     case kFormatS:
    520     case kFormat2S:
    521     case kFormat4S: return 32;
    522     case kFormatD:
    523     case kFormat1D:
    524     case kFormat2D: return 64;
    525     default: VIXL_UNREACHABLE(); return 0;
    526   }
    527 }
    528 
    529 
    530 int LaneSizeInBytesFromFormat(VectorFormat vform) {
    531   return LaneSizeInBitsFromFormat(vform) / 8;
    532 }
    533 
    534 
    535 int LaneSizeInBytesLog2FromFormat(VectorFormat vform) {
    536   VIXL_ASSERT(vform != kFormatUndefined);
    537   switch (vform) {
    538     case kFormatB:
    539     case kFormat8B:
    540     case kFormat16B: return 0;
    541     case kFormatH:
    542     case kFormat4H:
    543     case kFormat8H: return 1;
    544     case kFormatS:
    545     case kFormat2S:
    546     case kFormat4S: return 2;
    547     case kFormatD:
    548     case kFormat1D:
    549     case kFormat2D: return 3;
    550     default: VIXL_UNREACHABLE(); return 0;
    551   }
    552 }
    553 
    554 
    555 int LaneCountFromFormat(VectorFormat vform) {
    556   VIXL_ASSERT(vform != kFormatUndefined);
    557   switch (vform) {
    558     case kFormat16B: return 16;
    559     case kFormat8B:
    560     case kFormat8H: return 8;
    561     case kFormat4H:
    562     case kFormat4S: return 4;
    563     case kFormat2S:
    564     case kFormat2D: return 2;
    565     case kFormat1D:
    566     case kFormatB:
    567     case kFormatH:
    568     case kFormatS:
    569     case kFormatD: return 1;
    570     default: VIXL_UNREACHABLE(); return 0;
    571   }
    572 }
    573 
    574 
    575 int MaxLaneCountFromFormat(VectorFormat vform) {
    576   VIXL_ASSERT(vform != kFormatUndefined);
    577   switch (vform) {
    578     case kFormatB:
    579     case kFormat8B:
    580     case kFormat16B: return 16;
    581     case kFormatH:
    582     case kFormat4H:
    583     case kFormat8H: return 8;
    584     case kFormatS:
    585     case kFormat2S:
    586     case kFormat4S: return 4;
    587     case kFormatD:
    588     case kFormat1D:
    589     case kFormat2D: return 2;
    590     default: VIXL_UNREACHABLE(); return 0;
    591   }
    592 }
    593 
    594 
    595 // Does 'vform' indicate a vector format or a scalar format?
    596 bool IsVectorFormat(VectorFormat vform) {
    597   VIXL_ASSERT(vform != kFormatUndefined);
    598   switch (vform) {
    599     case kFormatB:
    600     case kFormatH:
    601     case kFormatS:
    602     case kFormatD: return false;
    603     default: return true;
    604   }
    605 }
    606 
    607 
    608 int64_t MaxIntFromFormat(VectorFormat vform) {
    609   return INT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
    610 }
    611 
    612 
    613 int64_t MinIntFromFormat(VectorFormat vform) {
    614   return INT64_MIN >> (64 - LaneSizeInBitsFromFormat(vform));
    615 }
    616 
    617 
    618 uint64_t MaxUintFromFormat(VectorFormat vform) {
    619   return UINT64_MAX >> (64 - LaneSizeInBitsFromFormat(vform));
    620 }
    621 }  // namespace vixl
    622 
    623