Home | History | Annotate | Download | only in Utils
      1 //===-- SSAUpdaterImpl.h - SSA Updater Implementation -----------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file provides a template that implements the core algorithm for the
     11 // SSAUpdater and MachineSSAUpdater.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
     16 #define LLVM_TRANSFORMS_UTILS_SSAUPDATERIMPL_H
     17 
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/IR/ValueHandle.h"
     21 #include "llvm/Support/Allocator.h"
     22 #include "llvm/Support/Debug.h"
     23 
     24 namespace llvm {
     25 
     26 #define DEBUG_TYPE "ssaupdater"
     27 
     28 class CastInst;
     29 class PHINode;
     30 template<typename T> class SSAUpdaterTraits;
     31 
     32 template<typename UpdaterT>
     33 class SSAUpdaterImpl {
     34 private:
     35   UpdaterT *Updater;
     36 
     37   typedef SSAUpdaterTraits<UpdaterT> Traits;
     38   typedef typename Traits::BlkT BlkT;
     39   typedef typename Traits::ValT ValT;
     40   typedef typename Traits::PhiT PhiT;
     41 
     42   /// BBInfo - Per-basic block information used internally by SSAUpdaterImpl.
     43   /// The predecessors of each block are cached here since pred_iterator is
     44   /// slow and we need to iterate over the blocks at least a few times.
     45   class BBInfo {
     46   public:
     47     BlkT *BB;          // Back-pointer to the corresponding block.
     48     ValT AvailableVal; // Value to use in this block.
     49     BBInfo *DefBB;     // Block that defines the available value.
     50     int BlkNum;        // Postorder number.
     51     BBInfo *IDom;      // Immediate dominator.
     52     unsigned NumPreds; // Number of predecessor blocks.
     53     BBInfo **Preds;    // Array[NumPreds] of predecessor blocks.
     54     PhiT *PHITag;      // Marker for existing PHIs that match.
     55 
     56     BBInfo(BlkT *ThisBB, ValT V)
     57       : BB(ThisBB), AvailableVal(V), DefBB(V ? this : nullptr), BlkNum(0),
     58         IDom(nullptr), NumPreds(0), Preds(nullptr), PHITag(nullptr) {}
     59   };
     60 
     61   typedef DenseMap<BlkT*, ValT> AvailableValsTy;
     62   AvailableValsTy *AvailableVals;
     63 
     64   SmallVectorImpl<PhiT*> *InsertedPHIs;
     65 
     66   typedef SmallVectorImpl<BBInfo*> BlockListTy;
     67   typedef DenseMap<BlkT*, BBInfo*> BBMapTy;
     68   BBMapTy BBMap;
     69   BumpPtrAllocator Allocator;
     70 
     71 public:
     72   explicit SSAUpdaterImpl(UpdaterT *U, AvailableValsTy *A,
     73                           SmallVectorImpl<PhiT*> *Ins) :
     74     Updater(U), AvailableVals(A), InsertedPHIs(Ins) { }
     75 
     76   /// GetValue - Check to see if AvailableVals has an entry for the specified
     77   /// BB and if so, return it.  If not, construct SSA form by first
     78   /// calculating the required placement of PHIs and then inserting new PHIs
     79   /// where needed.
     80   ValT GetValue(BlkT *BB) {
     81     SmallVector<BBInfo*, 100> BlockList;
     82     BBInfo *PseudoEntry = BuildBlockList(BB, &BlockList);
     83 
     84     // Special case: bail out if BB is unreachable.
     85     if (BlockList.size() == 0) {
     86       ValT V = Traits::GetUndefVal(BB, Updater);
     87       (*AvailableVals)[BB] = V;
     88       return V;
     89     }
     90 
     91     FindDominators(&BlockList, PseudoEntry);
     92     FindPHIPlacement(&BlockList);
     93     FindAvailableVals(&BlockList);
     94 
     95     return BBMap[BB]->DefBB->AvailableVal;
     96   }
     97 
     98   /// BuildBlockList - Starting from the specified basic block, traverse back
     99   /// through its predecessors until reaching blocks with known values.
    100   /// Create BBInfo structures for the blocks and append them to the block
    101   /// list.
    102   BBInfo *BuildBlockList(BlkT *BB, BlockListTy *BlockList) {
    103     SmallVector<BBInfo*, 10> RootList;
    104     SmallVector<BBInfo*, 64> WorkList;
    105 
    106     BBInfo *Info = new (Allocator) BBInfo(BB, 0);
    107     BBMap[BB] = Info;
    108     WorkList.push_back(Info);
    109 
    110     // Search backward from BB, creating BBInfos along the way and stopping
    111     // when reaching blocks that define the value.  Record those defining
    112     // blocks on the RootList.
    113     SmallVector<BlkT*, 10> Preds;
    114     while (!WorkList.empty()) {
    115       Info = WorkList.pop_back_val();
    116       Preds.clear();
    117       Traits::FindPredecessorBlocks(Info->BB, &Preds);
    118       Info->NumPreds = Preds.size();
    119       if (Info->NumPreds == 0)
    120         Info->Preds = nullptr;
    121       else
    122         Info->Preds = static_cast<BBInfo**>
    123           (Allocator.Allocate(Info->NumPreds * sizeof(BBInfo*),
    124                               AlignOf<BBInfo*>::Alignment));
    125 
    126       for (unsigned p = 0; p != Info->NumPreds; ++p) {
    127         BlkT *Pred = Preds[p];
    128         // Check if BBMap already has a BBInfo for the predecessor block.
    129         typename BBMapTy::value_type &BBMapBucket =
    130           BBMap.FindAndConstruct(Pred);
    131         if (BBMapBucket.second) {
    132           Info->Preds[p] = BBMapBucket.second;
    133           continue;
    134         }
    135 
    136         // Create a new BBInfo for the predecessor.
    137         ValT PredVal = AvailableVals->lookup(Pred);
    138         BBInfo *PredInfo = new (Allocator) BBInfo(Pred, PredVal);
    139         BBMapBucket.second = PredInfo;
    140         Info->Preds[p] = PredInfo;
    141 
    142         if (PredInfo->AvailableVal) {
    143           RootList.push_back(PredInfo);
    144           continue;
    145         }
    146         WorkList.push_back(PredInfo);
    147       }
    148     }
    149 
    150     // Now that we know what blocks are backwards-reachable from the starting
    151     // block, do a forward depth-first traversal to assign postorder numbers
    152     // to those blocks.
    153     BBInfo *PseudoEntry = new (Allocator) BBInfo(nullptr, 0);
    154     unsigned BlkNum = 1;
    155 
    156     // Initialize the worklist with the roots from the backward traversal.
    157     while (!RootList.empty()) {
    158       Info = RootList.pop_back_val();
    159       Info->IDom = PseudoEntry;
    160       Info->BlkNum = -1;
    161       WorkList.push_back(Info);
    162     }
    163 
    164     while (!WorkList.empty()) {
    165       Info = WorkList.back();
    166 
    167       if (Info->BlkNum == -2) {
    168         // All the successors have been handled; assign the postorder number.
    169         Info->BlkNum = BlkNum++;
    170         // If not a root, put it on the BlockList.
    171         if (!Info->AvailableVal)
    172           BlockList->push_back(Info);
    173         WorkList.pop_back();
    174         continue;
    175       }
    176 
    177       // Leave this entry on the worklist, but set its BlkNum to mark that its
    178       // successors have been put on the worklist.  When it returns to the top
    179       // the list, after handling its successors, it will be assigned a
    180       // number.
    181       Info->BlkNum = -2;
    182 
    183       // Add unvisited successors to the work list.
    184       for (typename Traits::BlkSucc_iterator SI =
    185              Traits::BlkSucc_begin(Info->BB),
    186              E = Traits::BlkSucc_end(Info->BB); SI != E; ++SI) {
    187         BBInfo *SuccInfo = BBMap[*SI];
    188         if (!SuccInfo || SuccInfo->BlkNum)
    189           continue;
    190         SuccInfo->BlkNum = -1;
    191         WorkList.push_back(SuccInfo);
    192       }
    193     }
    194     PseudoEntry->BlkNum = BlkNum;
    195     return PseudoEntry;
    196   }
    197 
    198   /// IntersectDominators - This is the dataflow lattice "meet" operation for
    199   /// finding dominators.  Given two basic blocks, it walks up the dominator
    200   /// tree until it finds a common dominator of both.  It uses the postorder
    201   /// number of the blocks to determine how to do that.
    202   BBInfo *IntersectDominators(BBInfo *Blk1, BBInfo *Blk2) {
    203     while (Blk1 != Blk2) {
    204       while (Blk1->BlkNum < Blk2->BlkNum) {
    205         Blk1 = Blk1->IDom;
    206         if (!Blk1)
    207           return Blk2;
    208       }
    209       while (Blk2->BlkNum < Blk1->BlkNum) {
    210         Blk2 = Blk2->IDom;
    211         if (!Blk2)
    212           return Blk1;
    213       }
    214     }
    215     return Blk1;
    216   }
    217 
    218   /// FindDominators - Calculate the dominator tree for the subset of the CFG
    219   /// corresponding to the basic blocks on the BlockList.  This uses the
    220   /// algorithm from: "A Simple, Fast Dominance Algorithm" by Cooper, Harvey
    221   /// and Kennedy, published in Software--Practice and Experience, 2001,
    222   /// 4:1-10.  Because the CFG subset does not include any edges leading into
    223   /// blocks that define the value, the results are not the usual dominator
    224   /// tree.  The CFG subset has a single pseudo-entry node with edges to a set
    225   /// of root nodes for blocks that define the value.  The dominators for this
    226   /// subset CFG are not the standard dominators but they are adequate for
    227   /// placing PHIs within the subset CFG.
    228   void FindDominators(BlockListTy *BlockList, BBInfo *PseudoEntry) {
    229     bool Changed;
    230     do {
    231       Changed = false;
    232       // Iterate over the list in reverse order, i.e., forward on CFG edges.
    233       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    234              E = BlockList->rend(); I != E; ++I) {
    235         BBInfo *Info = *I;
    236         BBInfo *NewIDom = nullptr;
    237 
    238         // Iterate through the block's predecessors.
    239         for (unsigned p = 0; p != Info->NumPreds; ++p) {
    240           BBInfo *Pred = Info->Preds[p];
    241 
    242           // Treat an unreachable predecessor as a definition with 'undef'.
    243           if (Pred->BlkNum == 0) {
    244             Pred->AvailableVal = Traits::GetUndefVal(Pred->BB, Updater);
    245             (*AvailableVals)[Pred->BB] = Pred->AvailableVal;
    246             Pred->DefBB = Pred;
    247             Pred->BlkNum = PseudoEntry->BlkNum;
    248             PseudoEntry->BlkNum++;
    249           }
    250 
    251           if (!NewIDom)
    252             NewIDom = Pred;
    253           else
    254             NewIDom = IntersectDominators(NewIDom, Pred);
    255         }
    256 
    257         // Check if the IDom value has changed.
    258         if (NewIDom && NewIDom != Info->IDom) {
    259           Info->IDom = NewIDom;
    260           Changed = true;
    261         }
    262       }
    263     } while (Changed);
    264   }
    265 
    266   /// IsDefInDomFrontier - Search up the dominator tree from Pred to IDom for
    267   /// any blocks containing definitions of the value.  If one is found, then
    268   /// the successor of Pred is in the dominance frontier for the definition,
    269   /// and this function returns true.
    270   bool IsDefInDomFrontier(const BBInfo *Pred, const BBInfo *IDom) {
    271     for (; Pred != IDom; Pred = Pred->IDom) {
    272       if (Pred->DefBB == Pred)
    273         return true;
    274     }
    275     return false;
    276   }
    277 
    278   /// FindPHIPlacement - PHIs are needed in the iterated dominance frontiers
    279   /// of the known definitions.  Iteratively add PHIs in the dom frontiers
    280   /// until nothing changes.  Along the way, keep track of the nearest
    281   /// dominating definitions for non-PHI blocks.
    282   void FindPHIPlacement(BlockListTy *BlockList) {
    283     bool Changed;
    284     do {
    285       Changed = false;
    286       // Iterate over the list in reverse order, i.e., forward on CFG edges.
    287       for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    288              E = BlockList->rend(); I != E; ++I) {
    289         BBInfo *Info = *I;
    290 
    291         // If this block already needs a PHI, there is nothing to do here.
    292         if (Info->DefBB == Info)
    293           continue;
    294 
    295         // Default to use the same def as the immediate dominator.
    296         BBInfo *NewDefBB = Info->IDom->DefBB;
    297         for (unsigned p = 0; p != Info->NumPreds; ++p) {
    298           if (IsDefInDomFrontier(Info->Preds[p], Info->IDom)) {
    299             // Need a PHI here.
    300             NewDefBB = Info;
    301             break;
    302           }
    303         }
    304 
    305         // Check if anything changed.
    306         if (NewDefBB != Info->DefBB) {
    307           Info->DefBB = NewDefBB;
    308           Changed = true;
    309         }
    310       }
    311     } while (Changed);
    312   }
    313 
    314   /// FindAvailableVal - If this block requires a PHI, first check if an
    315   /// existing PHI matches the PHI placement and reaching definitions computed
    316   /// earlier, and if not, create a new PHI.  Visit all the block's
    317   /// predecessors to calculate the available value for each one and fill in
    318   /// the incoming values for a new PHI.
    319   void FindAvailableVals(BlockListTy *BlockList) {
    320     // Go through the worklist in forward order (i.e., backward through the CFG)
    321     // and check if existing PHIs can be used.  If not, create empty PHIs where
    322     // they are needed.
    323     for (typename BlockListTy::iterator I = BlockList->begin(),
    324            E = BlockList->end(); I != E; ++I) {
    325       BBInfo *Info = *I;
    326       // Check if there needs to be a PHI in BB.
    327       if (Info->DefBB != Info)
    328         continue;
    329 
    330       // Look for an existing PHI.
    331       FindExistingPHI(Info->BB, BlockList);
    332       if (Info->AvailableVal)
    333         continue;
    334 
    335       ValT PHI = Traits::CreateEmptyPHI(Info->BB, Info->NumPreds, Updater);
    336       Info->AvailableVal = PHI;
    337       (*AvailableVals)[Info->BB] = PHI;
    338     }
    339 
    340     // Now go back through the worklist in reverse order to fill in the
    341     // arguments for any new PHIs added in the forward traversal.
    342     for (typename BlockListTy::reverse_iterator I = BlockList->rbegin(),
    343            E = BlockList->rend(); I != E; ++I) {
    344       BBInfo *Info = *I;
    345 
    346       if (Info->DefBB != Info) {
    347         // Record the available value at join nodes to speed up subsequent
    348         // uses of this SSAUpdater for the same value.
    349         if (Info->NumPreds > 1)
    350           (*AvailableVals)[Info->BB] = Info->DefBB->AvailableVal;
    351         continue;
    352       }
    353 
    354       // Check if this block contains a newly added PHI.
    355       PhiT *PHI = Traits::ValueIsNewPHI(Info->AvailableVal, Updater);
    356       if (!PHI)
    357         continue;
    358 
    359       // Iterate through the block's predecessors.
    360       for (unsigned p = 0; p != Info->NumPreds; ++p) {
    361         BBInfo *PredInfo = Info->Preds[p];
    362         BlkT *Pred = PredInfo->BB;
    363         // Skip to the nearest preceding definition.
    364         if (PredInfo->DefBB != PredInfo)
    365           PredInfo = PredInfo->DefBB;
    366         Traits::AddPHIOperand(PHI, PredInfo->AvailableVal, Pred);
    367       }
    368 
    369       DEBUG(dbgs() << "  Inserted PHI: " << *PHI << "\n");
    370 
    371       // If the client wants to know about all new instructions, tell it.
    372       if (InsertedPHIs) InsertedPHIs->push_back(PHI);
    373     }
    374   }
    375 
    376   /// FindExistingPHI - Look through the PHI nodes in a block to see if any of
    377   /// them match what is needed.
    378   void FindExistingPHI(BlkT *BB, BlockListTy *BlockList) {
    379     for (typename BlkT::iterator BBI = BB->begin(), BBE = BB->end();
    380          BBI != BBE; ++BBI) {
    381       PhiT *SomePHI = Traits::InstrIsPHI(&*BBI);
    382       if (!SomePHI)
    383         break;
    384       if (CheckIfPHIMatches(SomePHI)) {
    385         RecordMatchingPHIs(BlockList);
    386         break;
    387       }
    388       // Match failed: clear all the PHITag values.
    389       for (typename BlockListTy::iterator I = BlockList->begin(),
    390              E = BlockList->end(); I != E; ++I)
    391         (*I)->PHITag = nullptr;
    392     }
    393   }
    394 
    395   /// CheckIfPHIMatches - Check if a PHI node matches the placement and values
    396   /// in the BBMap.
    397   bool CheckIfPHIMatches(PhiT *PHI) {
    398     SmallVector<PhiT*, 20> WorkList;
    399     WorkList.push_back(PHI);
    400 
    401     // Mark that the block containing this PHI has been visited.
    402     BBMap[PHI->getParent()]->PHITag = PHI;
    403 
    404     while (!WorkList.empty()) {
    405       PHI = WorkList.pop_back_val();
    406 
    407       // Iterate through the PHI's incoming values.
    408       for (typename Traits::PHI_iterator I = Traits::PHI_begin(PHI),
    409              E = Traits::PHI_end(PHI); I != E; ++I) {
    410         ValT IncomingVal = I.getIncomingValue();
    411         BBInfo *PredInfo = BBMap[I.getIncomingBlock()];
    412         // Skip to the nearest preceding definition.
    413         if (PredInfo->DefBB != PredInfo)
    414           PredInfo = PredInfo->DefBB;
    415 
    416         // Check if it matches the expected value.
    417         if (PredInfo->AvailableVal) {
    418           if (IncomingVal == PredInfo->AvailableVal)
    419             continue;
    420           return false;
    421         }
    422 
    423         // Check if the value is a PHI in the correct block.
    424         PhiT *IncomingPHIVal = Traits::ValueIsPHI(IncomingVal, Updater);
    425         if (!IncomingPHIVal || IncomingPHIVal->getParent() != PredInfo->BB)
    426           return false;
    427 
    428         // If this block has already been visited, check if this PHI matches.
    429         if (PredInfo->PHITag) {
    430           if (IncomingPHIVal == PredInfo->PHITag)
    431             continue;
    432           return false;
    433         }
    434         PredInfo->PHITag = IncomingPHIVal;
    435 
    436         WorkList.push_back(IncomingPHIVal);
    437       }
    438     }
    439     return true;
    440   }
    441 
    442   /// RecordMatchingPHIs - For each PHI node that matches, record it in both
    443   /// the BBMap and the AvailableVals mapping.
    444   void RecordMatchingPHIs(BlockListTy *BlockList) {
    445     for (typename BlockListTy::iterator I = BlockList->begin(),
    446            E = BlockList->end(); I != E; ++I)
    447       if (PhiT *PHI = (*I)->PHITag) {
    448         BlkT *BB = PHI->getParent();
    449         ValT PHIVal = Traits::GetPHIValue(PHI);
    450         (*AvailableVals)[BB] = PHIVal;
    451         BBMap[BB]->AvailableVal = PHIVal;
    452       }
    453   }
    454 };
    455 
    456 #undef DEBUG_TYPE // "ssaupdater"
    457 
    458 } // End llvm namespace
    459 
    460 #endif
    461