Home | History | Annotate | Download | only in src
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/factory.h"
      6 
      7 #include "src/allocation-site-scopes.h"
      8 #include "src/base/bits.h"
      9 #include "src/bootstrapper.h"
     10 #include "src/conversions.h"
     11 #include "src/isolate-inl.h"
     12 #include "src/macro-assembler.h"
     13 
     14 namespace v8 {
     15 namespace internal {
     16 
     17 
     18 // Calls the FUNCTION_CALL function and retries it up to three times
     19 // to guarantee that any allocations performed during the call will
     20 // succeed if there's enough memory.
     21 //
     22 // Warning: Do not use the identifiers __object__, __maybe_object__,
     23 // __allocation__ or __scope__ in a call to this macro.
     24 
     25 #define RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)         \
     26   if (__allocation__.To(&__object__)) {                   \
     27     DCHECK(__object__ != (ISOLATE)->heap()->exception()); \
     28     return Handle<TYPE>(TYPE::cast(__object__), ISOLATE); \
     29   }
     30 
     31 #define CALL_HEAP_FUNCTION(ISOLATE, FUNCTION_CALL, TYPE)                      \
     32   do {                                                                        \
     33     AllocationResult __allocation__ = FUNCTION_CALL;                          \
     34     Object* __object__ = NULL;                                                \
     35     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                                 \
     36     /* Two GCs before panicking.  In newspace will almost always succeed. */  \
     37     for (int __i__ = 0; __i__ < 2; __i__++) {                                 \
     38       (ISOLATE)->heap()->CollectGarbage(__allocation__.RetrySpace(),          \
     39                                         "allocation failure");                \
     40       __allocation__ = FUNCTION_CALL;                                         \
     41       RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                               \
     42     }                                                                         \
     43     (ISOLATE)->counters()->gc_last_resort_from_handles()->Increment();        \
     44     (ISOLATE)->heap()->CollectAllAvailableGarbage("last resort gc");          \
     45     {                                                                         \
     46       AlwaysAllocateScope __scope__(ISOLATE);                                 \
     47       __allocation__ = FUNCTION_CALL;                                         \
     48     }                                                                         \
     49     RETURN_OBJECT_UNLESS_RETRY(ISOLATE, TYPE)                                 \
     50     /* TODO(1181417): Fix this. */                                            \
     51     v8::internal::Heap::FatalProcessOutOfMemory("CALL_AND_RETRY_LAST", true); \
     52     return Handle<TYPE>();                                                    \
     53   } while (false)
     54 
     55 
     56 template<typename T>
     57 Handle<T> Factory::New(Handle<Map> map, AllocationSpace space) {
     58   CALL_HEAP_FUNCTION(
     59       isolate(),
     60       isolate()->heap()->Allocate(*map, space),
     61       T);
     62 }
     63 
     64 
     65 template<typename T>
     66 Handle<T> Factory::New(Handle<Map> map,
     67                        AllocationSpace space,
     68                        Handle<AllocationSite> allocation_site) {
     69   CALL_HEAP_FUNCTION(
     70       isolate(),
     71       isolate()->heap()->Allocate(*map, space, *allocation_site),
     72       T);
     73 }
     74 
     75 
     76 Handle<HeapObject> Factory::NewFillerObject(int size,
     77                                             bool double_align,
     78                                             AllocationSpace space) {
     79   CALL_HEAP_FUNCTION(
     80       isolate(),
     81       isolate()->heap()->AllocateFillerObject(size, double_align, space),
     82       HeapObject);
     83 }
     84 
     85 
     86 Handle<Box> Factory::NewBox(Handle<Object> value) {
     87   Handle<Box> result = Handle<Box>::cast(NewStruct(BOX_TYPE));
     88   result->set_value(*value);
     89   return result;
     90 }
     91 
     92 
     93 Handle<PrototypeInfo> Factory::NewPrototypeInfo() {
     94   Handle<PrototypeInfo> result =
     95       Handle<PrototypeInfo>::cast(NewStruct(PROTOTYPE_INFO_TYPE));
     96   result->set_prototype_users(WeakFixedArray::Empty());
     97   result->set_registry_slot(PrototypeInfo::UNREGISTERED);
     98   result->set_validity_cell(Smi::FromInt(0));
     99   return result;
    100 }
    101 
    102 
    103 Handle<SloppyBlockWithEvalContextExtension>
    104 Factory::NewSloppyBlockWithEvalContextExtension(
    105     Handle<ScopeInfo> scope_info, Handle<JSObject> extension) {
    106   DCHECK(scope_info->is_declaration_scope());
    107   Handle<SloppyBlockWithEvalContextExtension> result =
    108       Handle<SloppyBlockWithEvalContextExtension>::cast(
    109           NewStruct(SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE));
    110   result->set_scope_info(*scope_info);
    111   result->set_extension(*extension);
    112   return result;
    113 }
    114 
    115 
    116 Handle<Oddball> Factory::NewOddball(Handle<Map> map, const char* to_string,
    117                                     Handle<Object> to_number,
    118                                     const char* type_of, byte kind) {
    119   Handle<Oddball> oddball = New<Oddball>(map, OLD_SPACE);
    120   Oddball::Initialize(isolate(), oddball, to_string, to_number, type_of, kind);
    121   return oddball;
    122 }
    123 
    124 
    125 Handle<FixedArray> Factory::NewFixedArray(int size, PretenureFlag pretenure) {
    126   DCHECK(0 <= size);
    127   CALL_HEAP_FUNCTION(
    128       isolate(),
    129       isolate()->heap()->AllocateFixedArray(size, pretenure),
    130       FixedArray);
    131 }
    132 
    133 
    134 Handle<FixedArray> Factory::NewFixedArrayWithHoles(int size,
    135                                                    PretenureFlag pretenure) {
    136   DCHECK(0 <= size);
    137   CALL_HEAP_FUNCTION(
    138       isolate(),
    139       isolate()->heap()->AllocateFixedArrayWithFiller(size,
    140                                                       pretenure,
    141                                                       *the_hole_value()),
    142       FixedArray);
    143 }
    144 
    145 
    146 Handle<FixedArray> Factory::NewUninitializedFixedArray(int size) {
    147   CALL_HEAP_FUNCTION(
    148       isolate(),
    149       isolate()->heap()->AllocateUninitializedFixedArray(size),
    150       FixedArray);
    151 }
    152 
    153 
    154 Handle<FixedArrayBase> Factory::NewFixedDoubleArray(int size,
    155                                                     PretenureFlag pretenure) {
    156   DCHECK(0 <= size);
    157   CALL_HEAP_FUNCTION(
    158       isolate(),
    159       isolate()->heap()->AllocateUninitializedFixedDoubleArray(size, pretenure),
    160       FixedArrayBase);
    161 }
    162 
    163 
    164 Handle<FixedArrayBase> Factory::NewFixedDoubleArrayWithHoles(
    165     int size,
    166     PretenureFlag pretenure) {
    167   DCHECK(0 <= size);
    168   Handle<FixedArrayBase> array = NewFixedDoubleArray(size, pretenure);
    169   if (size > 0) {
    170     Handle<FixedDoubleArray> double_array =
    171         Handle<FixedDoubleArray>::cast(array);
    172     for (int i = 0; i < size; ++i) {
    173       double_array->set_the_hole(i);
    174     }
    175   }
    176   return array;
    177 }
    178 
    179 
    180 Handle<OrderedHashSet> Factory::NewOrderedHashSet() {
    181   return OrderedHashSet::Allocate(isolate(), OrderedHashSet::kMinCapacity);
    182 }
    183 
    184 
    185 Handle<OrderedHashMap> Factory::NewOrderedHashMap() {
    186   return OrderedHashMap::Allocate(isolate(), OrderedHashMap::kMinCapacity);
    187 }
    188 
    189 
    190 Handle<AccessorPair> Factory::NewAccessorPair() {
    191   Handle<AccessorPair> accessors =
    192       Handle<AccessorPair>::cast(NewStruct(ACCESSOR_PAIR_TYPE));
    193   accessors->set_getter(*the_hole_value(), SKIP_WRITE_BARRIER);
    194   accessors->set_setter(*the_hole_value(), SKIP_WRITE_BARRIER);
    195   return accessors;
    196 }
    197 
    198 
    199 Handle<TypeFeedbackInfo> Factory::NewTypeFeedbackInfo() {
    200   Handle<TypeFeedbackInfo> info =
    201       Handle<TypeFeedbackInfo>::cast(NewStruct(TYPE_FEEDBACK_INFO_TYPE));
    202   info->initialize_storage();
    203   return info;
    204 }
    205 
    206 
    207 // Internalized strings are created in the old generation (data space).
    208 Handle<String> Factory::InternalizeUtf8String(Vector<const char> string) {
    209   Utf8StringKey key(string, isolate()->heap()->HashSeed());
    210   return InternalizeStringWithKey(&key);
    211 }
    212 
    213 
    214 // Internalized strings are created in the old generation (data space).
    215 Handle<String> Factory::InternalizeString(Handle<String> string) {
    216   if (string->IsInternalizedString()) return string;
    217   return StringTable::LookupString(isolate(), string);
    218 }
    219 
    220 
    221 Handle<String> Factory::InternalizeOneByteString(Vector<const uint8_t> string) {
    222   OneByteStringKey key(string, isolate()->heap()->HashSeed());
    223   return InternalizeStringWithKey(&key);
    224 }
    225 
    226 
    227 Handle<String> Factory::InternalizeOneByteString(
    228     Handle<SeqOneByteString> string, int from, int length) {
    229   SeqOneByteSubStringKey key(string, from, length);
    230   return InternalizeStringWithKey(&key);
    231 }
    232 
    233 
    234 Handle<String> Factory::InternalizeTwoByteString(Vector<const uc16> string) {
    235   TwoByteStringKey key(string, isolate()->heap()->HashSeed());
    236   return InternalizeStringWithKey(&key);
    237 }
    238 
    239 
    240 template<class StringTableKey>
    241 Handle<String> Factory::InternalizeStringWithKey(StringTableKey* key) {
    242   return StringTable::LookupKey(isolate(), key);
    243 }
    244 
    245 
    246 Handle<Name> Factory::InternalizeName(Handle<Name> name) {
    247   if (name->IsUniqueName()) return name;
    248   return InternalizeString(Handle<String>::cast(name));
    249 }
    250 
    251 
    252 MaybeHandle<String> Factory::NewStringFromOneByte(Vector<const uint8_t> string,
    253                                                   PretenureFlag pretenure) {
    254   int length = string.length();
    255   if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
    256   Handle<SeqOneByteString> result;
    257   ASSIGN_RETURN_ON_EXCEPTION(
    258       isolate(),
    259       result,
    260       NewRawOneByteString(string.length(), pretenure),
    261       String);
    262 
    263   DisallowHeapAllocation no_gc;
    264   // Copy the characters into the new object.
    265   CopyChars(SeqOneByteString::cast(*result)->GetChars(),
    266             string.start(),
    267             length);
    268   return result;
    269 }
    270 
    271 MaybeHandle<String> Factory::NewStringFromUtf8(Vector<const char> string,
    272                                                PretenureFlag pretenure) {
    273   // Check for ASCII first since this is the common case.
    274   const char* start = string.start();
    275   int length = string.length();
    276   int non_ascii_start = String::NonAsciiStart(start, length);
    277   if (non_ascii_start >= length) {
    278     // If the string is ASCII, we do not need to convert the characters
    279     // since UTF8 is backwards compatible with ASCII.
    280     return NewStringFromOneByte(Vector<const uint8_t>::cast(string), pretenure);
    281   }
    282 
    283   // Non-ASCII and we need to decode.
    284   Access<UnicodeCache::Utf8Decoder>
    285       decoder(isolate()->unicode_cache()->utf8_decoder());
    286   decoder->Reset(string.start() + non_ascii_start,
    287                  length - non_ascii_start);
    288   int utf16_length = static_cast<int>(decoder->Utf16Length());
    289   DCHECK(utf16_length > 0);
    290   // Allocate string.
    291   Handle<SeqTwoByteString> result;
    292   ASSIGN_RETURN_ON_EXCEPTION(
    293       isolate(), result,
    294       NewRawTwoByteString(non_ascii_start + utf16_length, pretenure),
    295       String);
    296   // Copy ASCII portion.
    297   uint16_t* data = result->GetChars();
    298   const char* ascii_data = string.start();
    299   for (int i = 0; i < non_ascii_start; i++) {
    300     *data++ = *ascii_data++;
    301   }
    302   // Now write the remainder.
    303   decoder->WriteUtf16(data, utf16_length);
    304   return result;
    305 }
    306 
    307 
    308 MaybeHandle<String> Factory::NewStringFromTwoByte(Vector<const uc16> string,
    309                                                   PretenureFlag pretenure) {
    310   int length = string.length();
    311   const uc16* start = string.start();
    312   if (String::IsOneByte(start, length)) {
    313     if (length == 1) return LookupSingleCharacterStringFromCode(string[0]);
    314     Handle<SeqOneByteString> result;
    315     ASSIGN_RETURN_ON_EXCEPTION(
    316         isolate(),
    317         result,
    318         NewRawOneByteString(length, pretenure),
    319         String);
    320     CopyChars(result->GetChars(), start, length);
    321     return result;
    322   } else {
    323     Handle<SeqTwoByteString> result;
    324     ASSIGN_RETURN_ON_EXCEPTION(
    325         isolate(),
    326         result,
    327         NewRawTwoByteString(length, pretenure),
    328         String);
    329     CopyChars(result->GetChars(), start, length);
    330     return result;
    331   }
    332 }
    333 
    334 
    335 Handle<String> Factory::NewInternalizedStringFromUtf8(Vector<const char> str,
    336                                                       int chars,
    337                                                       uint32_t hash_field) {
    338   CALL_HEAP_FUNCTION(
    339       isolate(),
    340       isolate()->heap()->AllocateInternalizedStringFromUtf8(
    341           str, chars, hash_field),
    342       String);
    343 }
    344 
    345 
    346 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedString(
    347       Vector<const uint8_t> str,
    348       uint32_t hash_field) {
    349   CALL_HEAP_FUNCTION(
    350       isolate(),
    351       isolate()->heap()->AllocateOneByteInternalizedString(str, hash_field),
    352       String);
    353 }
    354 
    355 
    356 MUST_USE_RESULT Handle<String> Factory::NewOneByteInternalizedSubString(
    357     Handle<SeqOneByteString> string, int offset, int length,
    358     uint32_t hash_field) {
    359   CALL_HEAP_FUNCTION(
    360       isolate(), isolate()->heap()->AllocateOneByteInternalizedString(
    361                      Vector<const uint8_t>(string->GetChars() + offset, length),
    362                      hash_field),
    363       String);
    364 }
    365 
    366 
    367 MUST_USE_RESULT Handle<String> Factory::NewTwoByteInternalizedString(
    368       Vector<const uc16> str,
    369       uint32_t hash_field) {
    370   CALL_HEAP_FUNCTION(
    371       isolate(),
    372       isolate()->heap()->AllocateTwoByteInternalizedString(str, hash_field),
    373       String);
    374 }
    375 
    376 
    377 Handle<String> Factory::NewInternalizedStringImpl(
    378     Handle<String> string, int chars, uint32_t hash_field) {
    379   CALL_HEAP_FUNCTION(
    380       isolate(),
    381       isolate()->heap()->AllocateInternalizedStringImpl(
    382           *string, chars, hash_field),
    383       String);
    384 }
    385 
    386 
    387 MaybeHandle<Map> Factory::InternalizedStringMapForString(
    388     Handle<String> string) {
    389   // If the string is in new space it cannot be used as internalized.
    390   if (isolate()->heap()->InNewSpace(*string)) return MaybeHandle<Map>();
    391 
    392   // Find the corresponding internalized string map for strings.
    393   switch (string->map()->instance_type()) {
    394     case STRING_TYPE: return internalized_string_map();
    395     case ONE_BYTE_STRING_TYPE:
    396       return one_byte_internalized_string_map();
    397     case EXTERNAL_STRING_TYPE: return external_internalized_string_map();
    398     case EXTERNAL_ONE_BYTE_STRING_TYPE:
    399       return external_one_byte_internalized_string_map();
    400     case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
    401       return external_internalized_string_with_one_byte_data_map();
    402     case SHORT_EXTERNAL_STRING_TYPE:
    403       return short_external_internalized_string_map();
    404     case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE:
    405       return short_external_one_byte_internalized_string_map();
    406     case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE:
    407       return short_external_internalized_string_with_one_byte_data_map();
    408     default: return MaybeHandle<Map>();  // No match found.
    409   }
    410 }
    411 
    412 
    413 MaybeHandle<SeqOneByteString> Factory::NewRawOneByteString(
    414     int length, PretenureFlag pretenure) {
    415   if (length > String::kMaxLength || length < 0) {
    416     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqOneByteString);
    417   }
    418   CALL_HEAP_FUNCTION(
    419       isolate(),
    420       isolate()->heap()->AllocateRawOneByteString(length, pretenure),
    421       SeqOneByteString);
    422 }
    423 
    424 
    425 MaybeHandle<SeqTwoByteString> Factory::NewRawTwoByteString(
    426     int length, PretenureFlag pretenure) {
    427   if (length > String::kMaxLength || length < 0) {
    428     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), SeqTwoByteString);
    429   }
    430   CALL_HEAP_FUNCTION(
    431       isolate(),
    432       isolate()->heap()->AllocateRawTwoByteString(length, pretenure),
    433       SeqTwoByteString);
    434 }
    435 
    436 
    437 Handle<String> Factory::LookupSingleCharacterStringFromCode(uint32_t code) {
    438   if (code <= String::kMaxOneByteCharCodeU) {
    439     {
    440       DisallowHeapAllocation no_allocation;
    441       Object* value = single_character_string_cache()->get(code);
    442       if (value != *undefined_value()) {
    443         return handle(String::cast(value), isolate());
    444       }
    445     }
    446     uint8_t buffer[1];
    447     buffer[0] = static_cast<uint8_t>(code);
    448     Handle<String> result =
    449         InternalizeOneByteString(Vector<const uint8_t>(buffer, 1));
    450     single_character_string_cache()->set(code, *result);
    451     return result;
    452   }
    453   DCHECK(code <= String::kMaxUtf16CodeUnitU);
    454 
    455   Handle<SeqTwoByteString> result = NewRawTwoByteString(1).ToHandleChecked();
    456   result->SeqTwoByteStringSet(0, static_cast<uint16_t>(code));
    457   return result;
    458 }
    459 
    460 
    461 // Returns true for a character in a range.  Both limits are inclusive.
    462 static inline bool Between(uint32_t character, uint32_t from, uint32_t to) {
    463   // This makes uses of the the unsigned wraparound.
    464   return character - from <= to - from;
    465 }
    466 
    467 
    468 static inline Handle<String> MakeOrFindTwoCharacterString(Isolate* isolate,
    469                                                           uint16_t c1,
    470                                                           uint16_t c2) {
    471   // Numeric strings have a different hash algorithm not known by
    472   // LookupTwoCharsStringIfExists, so we skip this step for such strings.
    473   if (!Between(c1, '0', '9') || !Between(c2, '0', '9')) {
    474     Handle<String> result;
    475     if (StringTable::LookupTwoCharsStringIfExists(isolate, c1, c2).
    476         ToHandle(&result)) {
    477       return result;
    478     }
    479   }
    480 
    481   // Now we know the length is 2, we might as well make use of that fact
    482   // when building the new string.
    483   if (static_cast<unsigned>(c1 | c2) <= String::kMaxOneByteCharCodeU) {
    484     // We can do this.
    485     DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCodeU +
    486                                       1));  // because of this.
    487     Handle<SeqOneByteString> str =
    488         isolate->factory()->NewRawOneByteString(2).ToHandleChecked();
    489     uint8_t* dest = str->GetChars();
    490     dest[0] = static_cast<uint8_t>(c1);
    491     dest[1] = static_cast<uint8_t>(c2);
    492     return str;
    493   } else {
    494     Handle<SeqTwoByteString> str =
    495         isolate->factory()->NewRawTwoByteString(2).ToHandleChecked();
    496     uc16* dest = str->GetChars();
    497     dest[0] = c1;
    498     dest[1] = c2;
    499     return str;
    500   }
    501 }
    502 
    503 
    504 template<typename SinkChar, typename StringType>
    505 Handle<String> ConcatStringContent(Handle<StringType> result,
    506                                    Handle<String> first,
    507                                    Handle<String> second) {
    508   DisallowHeapAllocation pointer_stays_valid;
    509   SinkChar* sink = result->GetChars();
    510   String::WriteToFlat(*first, sink, 0, first->length());
    511   String::WriteToFlat(*second, sink + first->length(), 0, second->length());
    512   return result;
    513 }
    514 
    515 
    516 MaybeHandle<String> Factory::NewConsString(Handle<String> left,
    517                                            Handle<String> right) {
    518   int left_length = left->length();
    519   if (left_length == 0) return right;
    520   int right_length = right->length();
    521   if (right_length == 0) return left;
    522 
    523   int length = left_length + right_length;
    524 
    525   if (length == 2) {
    526     uint16_t c1 = left->Get(0);
    527     uint16_t c2 = right->Get(0);
    528     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
    529   }
    530 
    531   // Make sure that an out of memory exception is thrown if the length
    532   // of the new cons string is too large.
    533   if (length > String::kMaxLength || length < 0) {
    534     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
    535   }
    536 
    537   bool left_is_one_byte = left->IsOneByteRepresentation();
    538   bool right_is_one_byte = right->IsOneByteRepresentation();
    539   bool is_one_byte = left_is_one_byte && right_is_one_byte;
    540   bool is_one_byte_data_in_two_byte_string = false;
    541   if (!is_one_byte) {
    542     // At least one of the strings uses two-byte representation so we
    543     // can't use the fast case code for short one-byte strings below, but
    544     // we can try to save memory if all chars actually fit in one-byte.
    545     is_one_byte_data_in_two_byte_string =
    546         left->HasOnlyOneByteChars() && right->HasOnlyOneByteChars();
    547     if (is_one_byte_data_in_two_byte_string) {
    548       isolate()->counters()->string_add_runtime_ext_to_one_byte()->Increment();
    549     }
    550   }
    551 
    552   // If the resulting string is small make a flat string.
    553   if (length < ConsString::kMinLength) {
    554     // Note that neither of the two inputs can be a slice because:
    555     STATIC_ASSERT(ConsString::kMinLength <= SlicedString::kMinLength);
    556     DCHECK(left->IsFlat());
    557     DCHECK(right->IsFlat());
    558 
    559     STATIC_ASSERT(ConsString::kMinLength <= String::kMaxLength);
    560     if (is_one_byte) {
    561       Handle<SeqOneByteString> result =
    562           NewRawOneByteString(length).ToHandleChecked();
    563       DisallowHeapAllocation no_gc;
    564       uint8_t* dest = result->GetChars();
    565       // Copy left part.
    566       const uint8_t* src =
    567           left->IsExternalString()
    568               ? Handle<ExternalOneByteString>::cast(left)->GetChars()
    569               : Handle<SeqOneByteString>::cast(left)->GetChars();
    570       for (int i = 0; i < left_length; i++) *dest++ = src[i];
    571       // Copy right part.
    572       src = right->IsExternalString()
    573                 ? Handle<ExternalOneByteString>::cast(right)->GetChars()
    574                 : Handle<SeqOneByteString>::cast(right)->GetChars();
    575       for (int i = 0; i < right_length; i++) *dest++ = src[i];
    576       return result;
    577     }
    578 
    579     return (is_one_byte_data_in_two_byte_string)
    580         ? ConcatStringContent<uint8_t>(
    581             NewRawOneByteString(length).ToHandleChecked(), left, right)
    582         : ConcatStringContent<uc16>(
    583             NewRawTwoByteString(length).ToHandleChecked(), left, right);
    584   }
    585 
    586   Handle<ConsString> result =
    587       (is_one_byte || is_one_byte_data_in_two_byte_string)
    588           ? New<ConsString>(cons_one_byte_string_map(), NEW_SPACE)
    589           : New<ConsString>(cons_string_map(), NEW_SPACE);
    590 
    591   DisallowHeapAllocation no_gc;
    592   WriteBarrierMode mode = result->GetWriteBarrierMode(no_gc);
    593 
    594   result->set_hash_field(String::kEmptyHashField);
    595   result->set_length(length);
    596   result->set_first(*left, mode);
    597   result->set_second(*right, mode);
    598   return result;
    599 }
    600 
    601 
    602 Handle<String> Factory::NewProperSubString(Handle<String> str,
    603                                            int begin,
    604                                            int end) {
    605 #if VERIFY_HEAP
    606   if (FLAG_verify_heap) str->StringVerify();
    607 #endif
    608   DCHECK(begin > 0 || end < str->length());
    609 
    610   str = String::Flatten(str);
    611 
    612   int length = end - begin;
    613   if (length <= 0) return empty_string();
    614   if (length == 1) {
    615     return LookupSingleCharacterStringFromCode(str->Get(begin));
    616   }
    617   if (length == 2) {
    618     // Optimization for 2-byte strings often used as keys in a decompression
    619     // dictionary.  Check whether we already have the string in the string
    620     // table to prevent creation of many unnecessary strings.
    621     uint16_t c1 = str->Get(begin);
    622     uint16_t c2 = str->Get(begin + 1);
    623     return MakeOrFindTwoCharacterString(isolate(), c1, c2);
    624   }
    625 
    626   if (!FLAG_string_slices || length < SlicedString::kMinLength) {
    627     if (str->IsOneByteRepresentation()) {
    628       Handle<SeqOneByteString> result =
    629           NewRawOneByteString(length).ToHandleChecked();
    630       uint8_t* dest = result->GetChars();
    631       DisallowHeapAllocation no_gc;
    632       String::WriteToFlat(*str, dest, begin, end);
    633       return result;
    634     } else {
    635       Handle<SeqTwoByteString> result =
    636           NewRawTwoByteString(length).ToHandleChecked();
    637       uc16* dest = result->GetChars();
    638       DisallowHeapAllocation no_gc;
    639       String::WriteToFlat(*str, dest, begin, end);
    640       return result;
    641     }
    642   }
    643 
    644   int offset = begin;
    645 
    646   if (str->IsSlicedString()) {
    647     Handle<SlicedString> slice = Handle<SlicedString>::cast(str);
    648     str = Handle<String>(slice->parent(), isolate());
    649     offset += slice->offset();
    650   }
    651 
    652   DCHECK(str->IsSeqString() || str->IsExternalString());
    653   Handle<Map> map = str->IsOneByteRepresentation()
    654                         ? sliced_one_byte_string_map()
    655                         : sliced_string_map();
    656   Handle<SlicedString> slice = New<SlicedString>(map, NEW_SPACE);
    657 
    658   slice->set_hash_field(String::kEmptyHashField);
    659   slice->set_length(length);
    660   slice->set_parent(*str);
    661   slice->set_offset(offset);
    662   return slice;
    663 }
    664 
    665 
    666 MaybeHandle<String> Factory::NewExternalStringFromOneByte(
    667     const ExternalOneByteString::Resource* resource) {
    668   size_t length = resource->length();
    669   if (length > static_cast<size_t>(String::kMaxLength)) {
    670     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
    671   }
    672 
    673   Handle<Map> map;
    674   if (resource->IsCompressible()) {
    675     // TODO(hajimehoshi): Rename this to 'uncached_external_one_byte_string_map'
    676     map = short_external_one_byte_string_map();
    677   } else {
    678     map = external_one_byte_string_map();
    679   }
    680   Handle<ExternalOneByteString> external_string =
    681       New<ExternalOneByteString>(map, NEW_SPACE);
    682   external_string->set_length(static_cast<int>(length));
    683   external_string->set_hash_field(String::kEmptyHashField);
    684   external_string->set_resource(resource);
    685 
    686   return external_string;
    687 }
    688 
    689 
    690 MaybeHandle<String> Factory::NewExternalStringFromTwoByte(
    691     const ExternalTwoByteString::Resource* resource) {
    692   size_t length = resource->length();
    693   if (length > static_cast<size_t>(String::kMaxLength)) {
    694     THROW_NEW_ERROR(isolate(), NewInvalidStringLengthError(), String);
    695   }
    696 
    697   // For small strings we check whether the resource contains only
    698   // one byte characters.  If yes, we use a different string map.
    699   static const size_t kOneByteCheckLengthLimit = 32;
    700   bool is_one_byte = length <= kOneByteCheckLengthLimit &&
    701       String::IsOneByte(resource->data(), static_cast<int>(length));
    702   Handle<Map> map;
    703   if (resource->IsCompressible()) {
    704     // TODO(hajimehoshi): Rename these to 'uncached_external_string_...'.
    705     map = is_one_byte ? short_external_string_with_one_byte_data_map()
    706                       : short_external_string_map();
    707   } else {
    708     map = is_one_byte ? external_string_with_one_byte_data_map()
    709                       : external_string_map();
    710   }
    711   Handle<ExternalTwoByteString> external_string =
    712       New<ExternalTwoByteString>(map, NEW_SPACE);
    713   external_string->set_length(static_cast<int>(length));
    714   external_string->set_hash_field(String::kEmptyHashField);
    715   external_string->set_resource(resource);
    716 
    717   return external_string;
    718 }
    719 
    720 
    721 Handle<Symbol> Factory::NewSymbol() {
    722   CALL_HEAP_FUNCTION(
    723       isolate(),
    724       isolate()->heap()->AllocateSymbol(),
    725       Symbol);
    726 }
    727 
    728 
    729 Handle<Symbol> Factory::NewPrivateSymbol() {
    730   Handle<Symbol> symbol = NewSymbol();
    731   symbol->set_is_private(true);
    732   return symbol;
    733 }
    734 
    735 
    736 Handle<Context> Factory::NewNativeContext() {
    737   Handle<FixedArray> array =
    738       NewFixedArray(Context::NATIVE_CONTEXT_SLOTS, TENURED);
    739   array->set_map_no_write_barrier(*native_context_map());
    740   Handle<Context> context = Handle<Context>::cast(array);
    741   context->set_native_context(*context);
    742   context->set_errors_thrown(Smi::FromInt(0));
    743   Handle<WeakCell> weak_cell = NewWeakCell(context);
    744   context->set_self_weak_cell(*weak_cell);
    745   DCHECK(context->IsNativeContext());
    746   return context;
    747 }
    748 
    749 
    750 Handle<Context> Factory::NewScriptContext(Handle<JSFunction> function,
    751                                           Handle<ScopeInfo> scope_info) {
    752   Handle<FixedArray> array =
    753       NewFixedArray(scope_info->ContextLength(), TENURED);
    754   array->set_map_no_write_barrier(*script_context_map());
    755   Handle<Context> context = Handle<Context>::cast(array);
    756   context->set_closure(*function);
    757   context->set_previous(function->context());
    758   context->set_extension(*scope_info);
    759   context->set_native_context(function->native_context());
    760   DCHECK(context->IsScriptContext());
    761   return context;
    762 }
    763 
    764 
    765 Handle<ScriptContextTable> Factory::NewScriptContextTable() {
    766   Handle<FixedArray> array = NewFixedArray(1);
    767   array->set_map_no_write_barrier(*script_context_table_map());
    768   Handle<ScriptContextTable> context_table =
    769       Handle<ScriptContextTable>::cast(array);
    770   context_table->set_used(0);
    771   return context_table;
    772 }
    773 
    774 
    775 Handle<Context> Factory::NewModuleContext(Handle<ScopeInfo> scope_info) {
    776   Handle<FixedArray> array =
    777       NewFixedArray(scope_info->ContextLength(), TENURED);
    778   array->set_map_no_write_barrier(*module_context_map());
    779   // Instance link will be set later.
    780   Handle<Context> context = Handle<Context>::cast(array);
    781   context->set_extension(*the_hole_value());
    782   return context;
    783 }
    784 
    785 
    786 Handle<Context> Factory::NewFunctionContext(int length,
    787                                             Handle<JSFunction> function) {
    788   DCHECK(length >= Context::MIN_CONTEXT_SLOTS);
    789   Handle<FixedArray> array = NewFixedArray(length);
    790   array->set_map_no_write_barrier(*function_context_map());
    791   Handle<Context> context = Handle<Context>::cast(array);
    792   context->set_closure(*function);
    793   context->set_previous(function->context());
    794   context->set_extension(*the_hole_value());
    795   context->set_native_context(function->native_context());
    796   return context;
    797 }
    798 
    799 
    800 Handle<Context> Factory::NewCatchContext(Handle<JSFunction> function,
    801                                          Handle<Context> previous,
    802                                          Handle<String> name,
    803                                          Handle<Object> thrown_object) {
    804   STATIC_ASSERT(Context::MIN_CONTEXT_SLOTS == Context::THROWN_OBJECT_INDEX);
    805   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS + 1);
    806   array->set_map_no_write_barrier(*catch_context_map());
    807   Handle<Context> context = Handle<Context>::cast(array);
    808   context->set_closure(*function);
    809   context->set_previous(*previous);
    810   context->set_extension(*name);
    811   context->set_native_context(previous->native_context());
    812   context->set(Context::THROWN_OBJECT_INDEX, *thrown_object);
    813   return context;
    814 }
    815 
    816 
    817 Handle<Context> Factory::NewWithContext(Handle<JSFunction> function,
    818                                         Handle<Context> previous,
    819                                         Handle<JSReceiver> extension) {
    820   Handle<FixedArray> array = NewFixedArray(Context::MIN_CONTEXT_SLOTS);
    821   array->set_map_no_write_barrier(*with_context_map());
    822   Handle<Context> context = Handle<Context>::cast(array);
    823   context->set_closure(*function);
    824   context->set_previous(*previous);
    825   context->set_extension(*extension);
    826   context->set_native_context(previous->native_context());
    827   return context;
    828 }
    829 
    830 
    831 Handle<Context> Factory::NewBlockContext(Handle<JSFunction> function,
    832                                          Handle<Context> previous,
    833                                          Handle<ScopeInfo> scope_info) {
    834   Handle<FixedArray> array = NewFixedArray(scope_info->ContextLength());
    835   array->set_map_no_write_barrier(*block_context_map());
    836   Handle<Context> context = Handle<Context>::cast(array);
    837   context->set_closure(*function);
    838   context->set_previous(*previous);
    839   context->set_extension(*scope_info);
    840   context->set_native_context(previous->native_context());
    841   return context;
    842 }
    843 
    844 
    845 Handle<Struct> Factory::NewStruct(InstanceType type) {
    846   CALL_HEAP_FUNCTION(
    847       isolate(),
    848       isolate()->heap()->AllocateStruct(type),
    849       Struct);
    850 }
    851 
    852 
    853 Handle<CodeCache> Factory::NewCodeCache() {
    854   Handle<CodeCache> code_cache =
    855       Handle<CodeCache>::cast(NewStruct(CODE_CACHE_TYPE));
    856   code_cache->set_default_cache(*empty_fixed_array(), SKIP_WRITE_BARRIER);
    857   code_cache->set_normal_type_cache(*undefined_value(), SKIP_WRITE_BARRIER);
    858   return code_cache;
    859 }
    860 
    861 
    862 Handle<AliasedArgumentsEntry> Factory::NewAliasedArgumentsEntry(
    863     int aliased_context_slot) {
    864   Handle<AliasedArgumentsEntry> entry = Handle<AliasedArgumentsEntry>::cast(
    865       NewStruct(ALIASED_ARGUMENTS_ENTRY_TYPE));
    866   entry->set_aliased_context_slot(aliased_context_slot);
    867   return entry;
    868 }
    869 
    870 
    871 Handle<ExecutableAccessorInfo> Factory::NewExecutableAccessorInfo() {
    872   Handle<ExecutableAccessorInfo> info =
    873       Handle<ExecutableAccessorInfo>::cast(
    874           NewStruct(EXECUTABLE_ACCESSOR_INFO_TYPE));
    875   info->set_flag(0);  // Must clear the flag, it was initialized as undefined.
    876   return info;
    877 }
    878 
    879 
    880 Handle<Script> Factory::NewScript(Handle<String> source) {
    881   // Create and initialize script object.
    882   Heap* heap = isolate()->heap();
    883   Handle<Script> script = Handle<Script>::cast(NewStruct(SCRIPT_TYPE));
    884   script->set_source(*source);
    885   script->set_name(heap->undefined_value());
    886   script->set_id(isolate()->heap()->NextScriptId());
    887   script->set_line_offset(0);
    888   script->set_column_offset(0);
    889   script->set_context_data(heap->undefined_value());
    890   script->set_type(Script::TYPE_NORMAL);
    891   script->set_wrapper(heap->undefined_value());
    892   script->set_line_ends(heap->undefined_value());
    893   script->set_eval_from_shared(heap->undefined_value());
    894   script->set_eval_from_instructions_offset(0);
    895   script->set_shared_function_infos(Smi::FromInt(0));
    896   script->set_flags(0);
    897 
    898   heap->set_script_list(*WeakFixedArray::Add(script_list(), script));
    899   return script;
    900 }
    901 
    902 
    903 Handle<Foreign> Factory::NewForeign(Address addr, PretenureFlag pretenure) {
    904   CALL_HEAP_FUNCTION(isolate(),
    905                      isolate()->heap()->AllocateForeign(addr, pretenure),
    906                      Foreign);
    907 }
    908 
    909 
    910 Handle<Foreign> Factory::NewForeign(const AccessorDescriptor* desc) {
    911   return NewForeign((Address) desc, TENURED);
    912 }
    913 
    914 
    915 Handle<ByteArray> Factory::NewByteArray(int length, PretenureFlag pretenure) {
    916   DCHECK(0 <= length);
    917   CALL_HEAP_FUNCTION(
    918       isolate(),
    919       isolate()->heap()->AllocateByteArray(length, pretenure),
    920       ByteArray);
    921 }
    922 
    923 
    924 Handle<BytecodeArray> Factory::NewBytecodeArray(
    925     int length, const byte* raw_bytecodes, int frame_size, int parameter_count,
    926     Handle<FixedArray> constant_pool) {
    927   DCHECK(0 <= length);
    928   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateBytecodeArray(
    929                                     length, raw_bytecodes, frame_size,
    930                                     parameter_count, *constant_pool),
    931                      BytecodeArray);
    932 }
    933 
    934 
    935 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArrayWithExternalPointer(
    936     int length, ExternalArrayType array_type, void* external_pointer,
    937     PretenureFlag pretenure) {
    938   DCHECK(0 <= length && length <= Smi::kMaxValue);
    939   CALL_HEAP_FUNCTION(
    940       isolate(), isolate()->heap()->AllocateFixedTypedArrayWithExternalPointer(
    941                      length, array_type, external_pointer, pretenure),
    942       FixedTypedArrayBase);
    943 }
    944 
    945 
    946 Handle<FixedTypedArrayBase> Factory::NewFixedTypedArray(
    947     int length, ExternalArrayType array_type, bool initialize,
    948     PretenureFlag pretenure) {
    949   DCHECK(0 <= length && length <= Smi::kMaxValue);
    950   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateFixedTypedArray(
    951                                     length, array_type, initialize, pretenure),
    952                      FixedTypedArrayBase);
    953 }
    954 
    955 
    956 Handle<Cell> Factory::NewCell(Handle<Object> value) {
    957   AllowDeferredHandleDereference convert_to_cell;
    958   CALL_HEAP_FUNCTION(
    959       isolate(),
    960       isolate()->heap()->AllocateCell(*value),
    961       Cell);
    962 }
    963 
    964 
    965 Handle<PropertyCell> Factory::NewPropertyCell() {
    966   CALL_HEAP_FUNCTION(
    967       isolate(),
    968       isolate()->heap()->AllocatePropertyCell(),
    969       PropertyCell);
    970 }
    971 
    972 
    973 Handle<WeakCell> Factory::NewWeakCell(Handle<HeapObject> value) {
    974   // It is safe to dereference the value because we are embedding it
    975   // in cell and not inspecting its fields.
    976   AllowDeferredHandleDereference convert_to_cell;
    977   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateWeakCell(*value),
    978                      WeakCell);
    979 }
    980 
    981 
    982 Handle<TransitionArray> Factory::NewTransitionArray(int capacity) {
    983   CALL_HEAP_FUNCTION(isolate(),
    984                      isolate()->heap()->AllocateTransitionArray(capacity),
    985                      TransitionArray);
    986 }
    987 
    988 
    989 Handle<AllocationSite> Factory::NewAllocationSite() {
    990   Handle<Map> map = allocation_site_map();
    991   Handle<AllocationSite> site = New<AllocationSite>(map, OLD_SPACE);
    992   site->Initialize();
    993 
    994   // Link the site
    995   site->set_weak_next(isolate()->heap()->allocation_sites_list());
    996   isolate()->heap()->set_allocation_sites_list(*site);
    997   return site;
    998 }
    999 
   1000 
   1001 Handle<Map> Factory::NewMap(InstanceType type,
   1002                             int instance_size,
   1003                             ElementsKind elements_kind) {
   1004   CALL_HEAP_FUNCTION(
   1005       isolate(),
   1006       isolate()->heap()->AllocateMap(type, instance_size, elements_kind),
   1007       Map);
   1008 }
   1009 
   1010 
   1011 Handle<JSObject> Factory::CopyJSObject(Handle<JSObject> object) {
   1012   CALL_HEAP_FUNCTION(isolate(),
   1013                      isolate()->heap()->CopyJSObject(*object, NULL),
   1014                      JSObject);
   1015 }
   1016 
   1017 
   1018 Handle<JSObject> Factory::CopyJSObjectWithAllocationSite(
   1019     Handle<JSObject> object,
   1020     Handle<AllocationSite> site) {
   1021   CALL_HEAP_FUNCTION(isolate(),
   1022                      isolate()->heap()->CopyJSObject(
   1023                          *object,
   1024                          site.is_null() ? NULL : *site),
   1025                      JSObject);
   1026 }
   1027 
   1028 
   1029 Handle<FixedArray> Factory::CopyFixedArrayWithMap(Handle<FixedArray> array,
   1030                                                   Handle<Map> map) {
   1031   CALL_HEAP_FUNCTION(isolate(),
   1032                      isolate()->heap()->CopyFixedArrayWithMap(*array, *map),
   1033                      FixedArray);
   1034 }
   1035 
   1036 
   1037 Handle<FixedArray> Factory::CopyFixedArrayAndGrow(Handle<FixedArray> array,
   1038                                                   int grow_by,
   1039                                                   PretenureFlag pretenure) {
   1040   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->CopyFixedArrayAndGrow(
   1041                                     *array, grow_by, pretenure),
   1042                      FixedArray);
   1043 }
   1044 
   1045 
   1046 Handle<FixedArray> Factory::CopyFixedArray(Handle<FixedArray> array) {
   1047   CALL_HEAP_FUNCTION(isolate(),
   1048                      isolate()->heap()->CopyFixedArray(*array),
   1049                      FixedArray);
   1050 }
   1051 
   1052 
   1053 Handle<FixedArray> Factory::CopyAndTenureFixedCOWArray(
   1054     Handle<FixedArray> array) {
   1055   DCHECK(isolate()->heap()->InNewSpace(*array));
   1056   CALL_HEAP_FUNCTION(isolate(),
   1057                      isolate()->heap()->CopyAndTenureFixedCOWArray(*array),
   1058                      FixedArray);
   1059 }
   1060 
   1061 
   1062 Handle<FixedDoubleArray> Factory::CopyFixedDoubleArray(
   1063     Handle<FixedDoubleArray> array) {
   1064   CALL_HEAP_FUNCTION(isolate(),
   1065                      isolate()->heap()->CopyFixedDoubleArray(*array),
   1066                      FixedDoubleArray);
   1067 }
   1068 
   1069 
   1070 Handle<Object> Factory::NewNumber(double value,
   1071                                   PretenureFlag pretenure) {
   1072   // We need to distinguish the minus zero value and this cannot be
   1073   // done after conversion to int. Doing this by comparing bit
   1074   // patterns is faster than using fpclassify() et al.
   1075   if (IsMinusZero(value)) return NewHeapNumber(-0.0, IMMUTABLE, pretenure);
   1076 
   1077   int int_value = FastD2IChecked(value);
   1078   if (value == int_value && Smi::IsValid(int_value)) {
   1079     return handle(Smi::FromInt(int_value), isolate());
   1080   }
   1081 
   1082   // Materialize the value in the heap.
   1083   return NewHeapNumber(value, IMMUTABLE, pretenure);
   1084 }
   1085 
   1086 
   1087 Handle<Object> Factory::NewNumberFromInt(int32_t value,
   1088                                          PretenureFlag pretenure) {
   1089   if (Smi::IsValid(value)) return handle(Smi::FromInt(value), isolate());
   1090   // Bypass NewNumber to avoid various redundant checks.
   1091   return NewHeapNumber(FastI2D(value), IMMUTABLE, pretenure);
   1092 }
   1093 
   1094 
   1095 Handle<Object> Factory::NewNumberFromUint(uint32_t value,
   1096                                           PretenureFlag pretenure) {
   1097   int32_t int32v = static_cast<int32_t>(value);
   1098   if (int32v >= 0 && Smi::IsValid(int32v)) {
   1099     return handle(Smi::FromInt(int32v), isolate());
   1100   }
   1101   return NewHeapNumber(FastUI2D(value), IMMUTABLE, pretenure);
   1102 }
   1103 
   1104 
   1105 Handle<HeapNumber> Factory::NewHeapNumber(double value,
   1106                                           MutableMode mode,
   1107                                           PretenureFlag pretenure) {
   1108   CALL_HEAP_FUNCTION(
   1109       isolate(),
   1110       isolate()->heap()->AllocateHeapNumber(value, mode, pretenure),
   1111       HeapNumber);
   1112 }
   1113 
   1114 
   1115 #define SIMD128_NEW_DEF(TYPE, Type, type, lane_count, lane_type)               \
   1116   Handle<Type> Factory::New##Type(lane_type lanes[lane_count],                 \
   1117                                   PretenureFlag pretenure) {                   \
   1118     CALL_HEAP_FUNCTION(                                                        \
   1119         isolate(), isolate()->heap()->Allocate##Type(lanes, pretenure), Type); \
   1120   }
   1121 SIMD128_TYPES(SIMD128_NEW_DEF)
   1122 #undef SIMD128_NEW_DEF
   1123 
   1124 
   1125 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
   1126                                  MessageTemplate::Template template_index,
   1127                                  Handle<Object> arg0, Handle<Object> arg1,
   1128                                  Handle<Object> arg2) {
   1129   HandleScope scope(isolate());
   1130   if (isolate()->bootstrapper()->IsActive()) {
   1131     // During bootstrapping we cannot construct error objects.
   1132     return scope.CloseAndEscape(NewStringFromAsciiChecked(
   1133         MessageTemplate::TemplateString(template_index)));
   1134   }
   1135 
   1136   Handle<JSFunction> fun = isolate()->make_error_function();
   1137   Handle<Object> message_type(Smi::FromInt(template_index), isolate());
   1138   if (arg0.is_null()) arg0 = undefined_value();
   1139   if (arg1.is_null()) arg1 = undefined_value();
   1140   if (arg2.is_null()) arg2 = undefined_value();
   1141   Handle<Object> argv[] = {constructor, message_type, arg0, arg1, arg2};
   1142 
   1143   // Invoke the JavaScript factory method. If an exception is thrown while
   1144   // running the factory method, use the exception as the result.
   1145   Handle<Object> result;
   1146   MaybeHandle<Object> exception;
   1147   if (!Execution::TryCall(isolate(), fun, undefined_value(), arraysize(argv),
   1148                           argv, &exception)
   1149            .ToHandle(&result)) {
   1150     Handle<Object> exception_obj;
   1151     if (exception.ToHandle(&exception_obj)) {
   1152       result = exception_obj;
   1153     } else {
   1154       result = undefined_value();
   1155     }
   1156   }
   1157   return scope.CloseAndEscape(result);
   1158 }
   1159 
   1160 
   1161 Handle<Object> Factory::NewError(Handle<JSFunction> constructor,
   1162                                  Handle<String> message) {
   1163   Handle<Object> argv[] = { message };
   1164 
   1165   // Invoke the JavaScript factory method. If an exception is thrown while
   1166   // running the factory method, use the exception as the result.
   1167   Handle<Object> result;
   1168   MaybeHandle<Object> exception;
   1169   if (!Execution::TryCall(isolate(), constructor, undefined_value(),
   1170                           arraysize(argv), argv, &exception)
   1171            .ToHandle(&result)) {
   1172     Handle<Object> exception_obj;
   1173     if (exception.ToHandle(&exception_obj)) return exception_obj;
   1174     return undefined_value();
   1175   }
   1176   return result;
   1177 }
   1178 
   1179 
   1180 #define DEFINE_ERROR(NAME, name)                                              \
   1181   Handle<Object> Factory::New##NAME(MessageTemplate::Template template_index, \
   1182                                     Handle<Object> arg0, Handle<Object> arg1, \
   1183                                     Handle<Object> arg2) {                    \
   1184     return NewError(isolate()->name##_function(), template_index, arg0, arg1, \
   1185                     arg2);                                                    \
   1186   }
   1187 DEFINE_ERROR(Error, error)
   1188 DEFINE_ERROR(EvalError, eval_error)
   1189 DEFINE_ERROR(RangeError, range_error)
   1190 DEFINE_ERROR(ReferenceError, reference_error)
   1191 DEFINE_ERROR(SyntaxError, syntax_error)
   1192 DEFINE_ERROR(TypeError, type_error)
   1193 #undef DEFINE_ERROR
   1194 
   1195 
   1196 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
   1197                                         Handle<SharedFunctionInfo> info,
   1198                                         Handle<Context> context,
   1199                                         PretenureFlag pretenure) {
   1200   AllocationSpace space = pretenure == TENURED ? OLD_SPACE : NEW_SPACE;
   1201   Handle<JSFunction> function = New<JSFunction>(map, space);
   1202 
   1203   function->initialize_properties();
   1204   function->initialize_elements();
   1205   function->set_shared(*info);
   1206   function->set_code(info->code());
   1207   function->set_context(*context);
   1208   function->set_prototype_or_initial_map(*the_hole_value());
   1209   function->set_literals(LiteralsArray::cast(*empty_fixed_array()));
   1210   function->set_next_function_link(*undefined_value(), SKIP_WRITE_BARRIER);
   1211   isolate()->heap()->InitializeJSObjectBody(*function, *map, JSFunction::kSize);
   1212   return function;
   1213 }
   1214 
   1215 
   1216 Handle<JSFunction> Factory::NewFunction(Handle<Map> map,
   1217                                         Handle<String> name,
   1218                                         MaybeHandle<Code> code) {
   1219   Handle<Context> context(isolate()->native_context());
   1220   Handle<SharedFunctionInfo> info =
   1221       NewSharedFunctionInfo(name, code, map->is_constructor());
   1222   DCHECK(is_sloppy(info->language_mode()));
   1223   DCHECK(!map->IsUndefined());
   1224   DCHECK(
   1225       map.is_identical_to(isolate()->sloppy_function_map()) ||
   1226       map.is_identical_to(isolate()->sloppy_function_without_prototype_map()) ||
   1227       map.is_identical_to(
   1228           isolate()->sloppy_function_with_readonly_prototype_map()) ||
   1229       map.is_identical_to(isolate()->strict_function_map()) ||
   1230       // TODO(titzer): wasm_function_map() could be undefined here. ugly.
   1231       (*map == context->get(Context::WASM_FUNCTION_MAP_INDEX)) ||
   1232       map.is_identical_to(isolate()->proxy_function_map()));
   1233   return NewFunction(map, info, context);
   1234 }
   1235 
   1236 
   1237 Handle<JSFunction> Factory::NewFunction(Handle<String> name) {
   1238   return NewFunction(
   1239       isolate()->sloppy_function_map(), name, MaybeHandle<Code>());
   1240 }
   1241 
   1242 
   1243 Handle<JSFunction> Factory::NewFunctionWithoutPrototype(Handle<String> name,
   1244                                                         Handle<Code> code,
   1245                                                         bool is_strict) {
   1246   Handle<Map> map = is_strict
   1247                         ? isolate()->strict_function_without_prototype_map()
   1248                         : isolate()->sloppy_function_without_prototype_map();
   1249   return NewFunction(map, name, code);
   1250 }
   1251 
   1252 
   1253 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
   1254                                         Handle<Object> prototype,
   1255                                         bool read_only_prototype,
   1256                                         bool is_strict) {
   1257   // In strict mode, readonly strict map is only available during bootstrap
   1258   DCHECK(!is_strict || !read_only_prototype ||
   1259          isolate()->bootstrapper()->IsActive());
   1260   Handle<Map> map =
   1261       is_strict ? isolate()->strict_function_map()
   1262                 : read_only_prototype
   1263                       ? isolate()->sloppy_function_with_readonly_prototype_map()
   1264                       : isolate()->sloppy_function_map();
   1265   Handle<JSFunction> result = NewFunction(map, name, code);
   1266   result->set_prototype_or_initial_map(*prototype);
   1267   return result;
   1268 }
   1269 
   1270 
   1271 Handle<JSFunction> Factory::NewFunction(Handle<String> name, Handle<Code> code,
   1272                                         Handle<Object> prototype,
   1273                                         InstanceType type, int instance_size,
   1274                                         bool read_only_prototype,
   1275                                         bool install_constructor,
   1276                                         bool is_strict) {
   1277   // Allocate the function
   1278   Handle<JSFunction> function =
   1279       NewFunction(name, code, prototype, read_only_prototype, is_strict);
   1280 
   1281   ElementsKind elements_kind =
   1282       type == JS_ARRAY_TYPE ? FAST_SMI_ELEMENTS : FAST_HOLEY_SMI_ELEMENTS;
   1283   Handle<Map> initial_map = NewMap(type, instance_size, elements_kind);
   1284   if (!function->shared()->is_generator()) {
   1285     if (prototype->IsTheHole()) {
   1286       prototype = NewFunctionPrototype(function);
   1287     } else if (install_constructor) {
   1288       JSObject::AddProperty(Handle<JSObject>::cast(prototype),
   1289                             constructor_string(), function, DONT_ENUM);
   1290     }
   1291   }
   1292 
   1293   JSFunction::SetInitialMap(function, initial_map,
   1294                             Handle<JSReceiver>::cast(prototype));
   1295 
   1296   return function;
   1297 }
   1298 
   1299 
   1300 Handle<JSFunction> Factory::NewFunction(Handle<String> name,
   1301                                         Handle<Code> code,
   1302                                         InstanceType type,
   1303                                         int instance_size) {
   1304   return NewFunction(name, code, the_hole_value(), type, instance_size);
   1305 }
   1306 
   1307 
   1308 Handle<JSObject> Factory::NewFunctionPrototype(Handle<JSFunction> function) {
   1309   // Make sure to use globals from the function's context, since the function
   1310   // can be from a different context.
   1311   Handle<Context> native_context(function->context()->native_context());
   1312   Handle<Map> new_map;
   1313   if (function->shared()->is_generator()) {
   1314     // Generator prototypes can share maps since they don't have "constructor"
   1315     // properties.
   1316     new_map = handle(native_context->generator_object_prototype_map());
   1317   } else {
   1318     // Each function prototype gets a fresh map to avoid unwanted sharing of
   1319     // maps between prototypes of different constructors.
   1320     Handle<JSFunction> object_function(native_context->object_function());
   1321     DCHECK(object_function->has_initial_map());
   1322     new_map = handle(object_function->initial_map());
   1323   }
   1324 
   1325   DCHECK(!new_map->is_prototype_map());
   1326   Handle<JSObject> prototype = NewJSObjectFromMap(new_map);
   1327 
   1328   if (!function->shared()->is_generator()) {
   1329     JSObject::AddProperty(prototype, constructor_string(), function, DONT_ENUM);
   1330   }
   1331 
   1332   return prototype;
   1333 }
   1334 
   1335 
   1336 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   1337     Handle<SharedFunctionInfo> info,
   1338     Handle<Context> context,
   1339     PretenureFlag pretenure) {
   1340   int map_index =
   1341       Context::FunctionMapIndex(info->language_mode(), info->kind());
   1342   Handle<Map> initial_map(Map::cast(context->native_context()->get(map_index)));
   1343 
   1344   return NewFunctionFromSharedFunctionInfo(initial_map, info, context,
   1345                                            pretenure);
   1346 }
   1347 
   1348 
   1349 Handle<JSFunction> Factory::NewFunctionFromSharedFunctionInfo(
   1350     Handle<Map> initial_map, Handle<SharedFunctionInfo> info,
   1351     Handle<Context> context, PretenureFlag pretenure) {
   1352   DCHECK_EQ(JS_FUNCTION_TYPE, initial_map->instance_type());
   1353   Handle<JSFunction> result =
   1354       NewFunction(initial_map, info, context, pretenure);
   1355 
   1356   if (info->ic_age() != isolate()->heap()->global_ic_age()) {
   1357     info->ResetForNewContext(isolate()->heap()->global_ic_age());
   1358   }
   1359 
   1360   if (FLAG_always_opt && info->allows_lazy_compilation()) {
   1361     result->MarkForOptimization();
   1362   }
   1363 
   1364   CodeAndLiterals cached = info->SearchOptimizedCodeMap(
   1365       context->native_context(), BailoutId::None());
   1366   if (cached.code != nullptr) {
   1367     // Caching of optimized code enabled and optimized code found.
   1368     DCHECK(!cached.code->marked_for_deoptimization());
   1369     DCHECK(result->shared()->is_compiled());
   1370     result->ReplaceCode(cached.code);
   1371   }
   1372 
   1373   if (cached.literals != nullptr) {
   1374     result->set_literals(cached.literals);
   1375   } else {
   1376     int number_of_literals = info->num_literals();
   1377     Handle<LiteralsArray> literals =
   1378         LiteralsArray::New(isolate(), handle(info->feedback_vector()),
   1379                            number_of_literals, pretenure);
   1380     result->set_literals(*literals);
   1381 
   1382     // Cache context-specific literals.
   1383     Handle<Context> native_context(context->native_context());
   1384     SharedFunctionInfo::AddLiteralsToOptimizedCodeMap(info, native_context,
   1385                                                       literals);
   1386   }
   1387 
   1388   return result;
   1389 }
   1390 
   1391 
   1392 Handle<ScopeInfo> Factory::NewScopeInfo(int length) {
   1393   Handle<FixedArray> array = NewFixedArray(length, TENURED);
   1394   array->set_map_no_write_barrier(*scope_info_map());
   1395   Handle<ScopeInfo> scope_info = Handle<ScopeInfo>::cast(array);
   1396   return scope_info;
   1397 }
   1398 
   1399 
   1400 Handle<JSObject> Factory::NewExternal(void* value) {
   1401   Handle<Foreign> foreign = NewForeign(static_cast<Address>(value));
   1402   Handle<JSObject> external = NewJSObjectFromMap(external_map());
   1403   external->SetInternalField(0, *foreign);
   1404   return external;
   1405 }
   1406 
   1407 
   1408 Handle<Code> Factory::NewCodeRaw(int object_size, bool immovable) {
   1409   CALL_HEAP_FUNCTION(isolate(),
   1410                      isolate()->heap()->AllocateCode(object_size, immovable),
   1411                      Code);
   1412 }
   1413 
   1414 
   1415 Handle<Code> Factory::NewCode(const CodeDesc& desc,
   1416                               Code::Flags flags,
   1417                               Handle<Object> self_ref,
   1418                               bool immovable,
   1419                               bool crankshafted,
   1420                               int prologue_offset,
   1421                               bool is_debug) {
   1422   Handle<ByteArray> reloc_info = NewByteArray(desc.reloc_size, TENURED);
   1423 
   1424   // Compute size.
   1425   int body_size = RoundUp(desc.instr_size, kObjectAlignment);
   1426   int obj_size = Code::SizeFor(body_size);
   1427 
   1428   Handle<Code> code = NewCodeRaw(obj_size, immovable);
   1429   DCHECK(isolate()->code_range() == NULL || !isolate()->code_range()->valid() ||
   1430          isolate()->code_range()->contains(code->address()) ||
   1431          obj_size <= isolate()->heap()->code_space()->AreaSize());
   1432 
   1433   // The code object has not been fully initialized yet.  We rely on the
   1434   // fact that no allocation will happen from this point on.
   1435   DisallowHeapAllocation no_gc;
   1436   code->set_gc_metadata(Smi::FromInt(0));
   1437   code->set_ic_age(isolate()->heap()->global_ic_age());
   1438   code->set_instruction_size(desc.instr_size);
   1439   code->set_relocation_info(*reloc_info);
   1440   code->set_flags(flags);
   1441   code->set_raw_kind_specific_flags1(0);
   1442   code->set_raw_kind_specific_flags2(0);
   1443   code->set_is_crankshafted(crankshafted);
   1444   code->set_deoptimization_data(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   1445   code->set_raw_type_feedback_info(Smi::FromInt(0));
   1446   code->set_next_code_link(*undefined_value());
   1447   code->set_handler_table(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   1448   code->set_prologue_offset(prologue_offset);
   1449   code->set_constant_pool_offset(desc.instr_size - desc.constant_pool_size);
   1450 
   1451   if (code->kind() == Code::OPTIMIZED_FUNCTION) {
   1452     code->set_marked_for_deoptimization(false);
   1453   }
   1454 
   1455   if (is_debug) {
   1456     DCHECK(code->kind() == Code::FUNCTION);
   1457     code->set_has_debug_break_slots(true);
   1458   }
   1459 
   1460   // Allow self references to created code object by patching the handle to
   1461   // point to the newly allocated Code object.
   1462   if (!self_ref.is_null()) *(self_ref.location()) = *code;
   1463 
   1464   // Migrate generated code.
   1465   // The generated code can contain Object** values (typically from handles)
   1466   // that are dereferenced during the copy to point directly to the actual heap
   1467   // objects. These pointers can include references to the code object itself,
   1468   // through the self_reference parameter.
   1469   code->CopyFrom(desc);
   1470 
   1471 #ifdef VERIFY_HEAP
   1472   if (FLAG_verify_heap) code->ObjectVerify();
   1473 #endif
   1474   return code;
   1475 }
   1476 
   1477 
   1478 Handle<Code> Factory::CopyCode(Handle<Code> code) {
   1479   CALL_HEAP_FUNCTION(isolate(),
   1480                      isolate()->heap()->CopyCode(*code),
   1481                      Code);
   1482 }
   1483 
   1484 
   1485 Handle<Code> Factory::CopyCode(Handle<Code> code, Vector<byte> reloc_info) {
   1486   CALL_HEAP_FUNCTION(isolate(),
   1487                      isolate()->heap()->CopyCode(*code, reloc_info),
   1488                      Code);
   1489 }
   1490 
   1491 
   1492 Handle<JSObject> Factory::NewJSObject(Handle<JSFunction> constructor,
   1493                                       PretenureFlag pretenure) {
   1494   JSFunction::EnsureHasInitialMap(constructor);
   1495   CALL_HEAP_FUNCTION(
   1496       isolate(),
   1497       isolate()->heap()->AllocateJSObject(*constructor, pretenure), JSObject);
   1498 }
   1499 
   1500 
   1501 Handle<JSObject> Factory::NewJSObjectWithMemento(
   1502     Handle<JSFunction> constructor,
   1503     Handle<AllocationSite> site) {
   1504   JSFunction::EnsureHasInitialMap(constructor);
   1505   CALL_HEAP_FUNCTION(
   1506       isolate(),
   1507       isolate()->heap()->AllocateJSObject(*constructor, NOT_TENURED, *site),
   1508       JSObject);
   1509 }
   1510 
   1511 
   1512 Handle<JSModule> Factory::NewJSModule(Handle<Context> context,
   1513                                       Handle<ScopeInfo> scope_info) {
   1514   // Allocate a fresh map. Modules do not have a prototype.
   1515   Handle<Map> map = NewMap(JS_MODULE_TYPE, JSModule::kSize);
   1516   // Allocate the object based on the map.
   1517   Handle<JSModule> module =
   1518       Handle<JSModule>::cast(NewJSObjectFromMap(map, TENURED));
   1519   module->set_context(*context);
   1520   module->set_scope_info(*scope_info);
   1521   return module;
   1522 }
   1523 
   1524 
   1525 Handle<JSGlobalObject> Factory::NewJSGlobalObject(
   1526     Handle<JSFunction> constructor) {
   1527   DCHECK(constructor->has_initial_map());
   1528   Handle<Map> map(constructor->initial_map());
   1529   DCHECK(map->is_dictionary_map());
   1530 
   1531   // Make sure no field properties are described in the initial map.
   1532   // This guarantees us that normalizing the properties does not
   1533   // require us to change property values to PropertyCells.
   1534   DCHECK(map->NextFreePropertyIndex() == 0);
   1535 
   1536   // Make sure we don't have a ton of pre-allocated slots in the
   1537   // global objects. They will be unused once we normalize the object.
   1538   DCHECK(map->unused_property_fields() == 0);
   1539   DCHECK(map->GetInObjectProperties() == 0);
   1540 
   1541   // Initial size of the backing store to avoid resize of the storage during
   1542   // bootstrapping. The size differs between the JS global object ad the
   1543   // builtins object.
   1544   int initial_size = 64;
   1545 
   1546   // Allocate a dictionary object for backing storage.
   1547   int at_least_space_for = map->NumberOfOwnDescriptors() * 2 + initial_size;
   1548   Handle<GlobalDictionary> dictionary =
   1549       GlobalDictionary::New(isolate(), at_least_space_for);
   1550 
   1551   // The global object might be created from an object template with accessors.
   1552   // Fill these accessors into the dictionary.
   1553   Handle<DescriptorArray> descs(map->instance_descriptors());
   1554   for (int i = 0; i < map->NumberOfOwnDescriptors(); i++) {
   1555     PropertyDetails details = descs->GetDetails(i);
   1556     // Only accessors are expected.
   1557     DCHECK_EQ(ACCESSOR_CONSTANT, details.type());
   1558     PropertyDetails d(details.attributes(), ACCESSOR_CONSTANT, i + 1,
   1559                       PropertyCellType::kMutable);
   1560     Handle<Name> name(descs->GetKey(i));
   1561     Handle<PropertyCell> cell = NewPropertyCell();
   1562     cell->set_value(descs->GetCallbacksObject(i));
   1563     // |dictionary| already contains enough space for all properties.
   1564     USE(GlobalDictionary::Add(dictionary, name, cell, d));
   1565   }
   1566 
   1567   // Allocate the global object and initialize it with the backing store.
   1568   Handle<JSGlobalObject> global = New<JSGlobalObject>(map, OLD_SPACE);
   1569   isolate()->heap()->InitializeJSObjectFromMap(*global, *dictionary, *map);
   1570 
   1571   // Create a new map for the global object.
   1572   Handle<Map> new_map = Map::CopyDropDescriptors(map);
   1573   new_map->set_dictionary_map(true);
   1574 
   1575   // Set up the global object as a normalized object.
   1576   global->set_map(*new_map);
   1577   global->set_properties(*dictionary);
   1578 
   1579   // Make sure result is a global object with properties in dictionary.
   1580   DCHECK(global->IsJSGlobalObject() && !global->HasFastProperties());
   1581   return global;
   1582 }
   1583 
   1584 
   1585 Handle<JSObject> Factory::NewJSObjectFromMap(
   1586     Handle<Map> map,
   1587     PretenureFlag pretenure,
   1588     Handle<AllocationSite> allocation_site) {
   1589   CALL_HEAP_FUNCTION(
   1590       isolate(),
   1591       isolate()->heap()->AllocateJSObjectFromMap(
   1592           *map,
   1593           pretenure,
   1594           allocation_site.is_null() ? NULL : *allocation_site),
   1595       JSObject);
   1596 }
   1597 
   1598 
   1599 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind,
   1600                                     Strength strength,
   1601                                     PretenureFlag pretenure) {
   1602   Map* map = isolate()->get_initial_js_array_map(elements_kind, strength);
   1603   if (map == nullptr) {
   1604     DCHECK(strength == Strength::WEAK);
   1605     Context* native_context = isolate()->context()->native_context();
   1606     JSFunction* array_function = native_context->array_function();
   1607     map = array_function->initial_map();
   1608   }
   1609   return Handle<JSArray>::cast(NewJSObjectFromMap(handle(map), pretenure));
   1610 }
   1611 
   1612 
   1613 Handle<JSArray> Factory::NewJSArray(ElementsKind elements_kind, int length,
   1614                                     int capacity, Strength strength,
   1615                                     ArrayStorageAllocationMode mode,
   1616                                     PretenureFlag pretenure) {
   1617   Handle<JSArray> array = NewJSArray(elements_kind, strength, pretenure);
   1618   NewJSArrayStorage(array, length, capacity, mode);
   1619   return array;
   1620 }
   1621 
   1622 
   1623 Handle<JSArray> Factory::NewJSArrayWithElements(Handle<FixedArrayBase> elements,
   1624                                                 ElementsKind elements_kind,
   1625                                                 int length, Strength strength,
   1626                                                 PretenureFlag pretenure) {
   1627   DCHECK(length <= elements->length());
   1628   Handle<JSArray> array = NewJSArray(elements_kind, strength, pretenure);
   1629 
   1630   array->set_elements(*elements);
   1631   array->set_length(Smi::FromInt(length));
   1632   JSObject::ValidateElements(array);
   1633   return array;
   1634 }
   1635 
   1636 
   1637 void Factory::NewJSArrayStorage(Handle<JSArray> array,
   1638                                 int length,
   1639                                 int capacity,
   1640                                 ArrayStorageAllocationMode mode) {
   1641   DCHECK(capacity >= length);
   1642 
   1643   if (capacity == 0) {
   1644     array->set_length(Smi::FromInt(0));
   1645     array->set_elements(*empty_fixed_array());
   1646     return;
   1647   }
   1648 
   1649   HandleScope inner_scope(isolate());
   1650   Handle<FixedArrayBase> elms;
   1651   ElementsKind elements_kind = array->GetElementsKind();
   1652   if (IsFastDoubleElementsKind(elements_kind)) {
   1653     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
   1654       elms = NewFixedDoubleArray(capacity);
   1655     } else {
   1656       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   1657       elms = NewFixedDoubleArrayWithHoles(capacity);
   1658     }
   1659   } else {
   1660     DCHECK(IsFastSmiOrObjectElementsKind(elements_kind));
   1661     if (mode == DONT_INITIALIZE_ARRAY_ELEMENTS) {
   1662       elms = NewUninitializedFixedArray(capacity);
   1663     } else {
   1664       DCHECK(mode == INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
   1665       elms = NewFixedArrayWithHoles(capacity);
   1666     }
   1667   }
   1668 
   1669   array->set_elements(*elms);
   1670   array->set_length(Smi::FromInt(length));
   1671 }
   1672 
   1673 
   1674 Handle<JSGeneratorObject> Factory::NewJSGeneratorObject(
   1675     Handle<JSFunction> function) {
   1676   DCHECK(function->shared()->is_generator());
   1677   JSFunction::EnsureHasInitialMap(function);
   1678   Handle<Map> map(function->initial_map());
   1679   DCHECK_EQ(JS_GENERATOR_OBJECT_TYPE, map->instance_type());
   1680   CALL_HEAP_FUNCTION(
   1681       isolate(),
   1682       isolate()->heap()->AllocateJSObjectFromMap(*map),
   1683       JSGeneratorObject);
   1684 }
   1685 
   1686 
   1687 Handle<JSArrayBuffer> Factory::NewJSArrayBuffer(SharedFlag shared,
   1688                                                 PretenureFlag pretenure) {
   1689   Handle<JSFunction> array_buffer_fun(
   1690       shared == SharedFlag::kShared
   1691           ? isolate()->native_context()->shared_array_buffer_fun()
   1692           : isolate()->native_context()->array_buffer_fun());
   1693   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
   1694                                     *array_buffer_fun, pretenure),
   1695                      JSArrayBuffer);
   1696 }
   1697 
   1698 
   1699 Handle<JSDataView> Factory::NewJSDataView() {
   1700   Handle<JSFunction> data_view_fun(
   1701       isolate()->native_context()->data_view_fun());
   1702   CALL_HEAP_FUNCTION(
   1703       isolate(),
   1704       isolate()->heap()->AllocateJSObject(*data_view_fun),
   1705       JSDataView);
   1706 }
   1707 
   1708 
   1709 Handle<JSMap> Factory::NewJSMap() {
   1710   Handle<Map> map(isolate()->native_context()->js_map_map());
   1711   Handle<JSMap> js_map = Handle<JSMap>::cast(NewJSObjectFromMap(map));
   1712   JSMap::Initialize(js_map, isolate());
   1713   return js_map;
   1714 }
   1715 
   1716 
   1717 Handle<JSSet> Factory::NewJSSet() {
   1718   Handle<Map> map(isolate()->native_context()->js_set_map());
   1719   Handle<JSSet> js_set = Handle<JSSet>::cast(NewJSObjectFromMap(map));
   1720   JSSet::Initialize(js_set, isolate());
   1721   return js_set;
   1722 }
   1723 
   1724 
   1725 Handle<JSMapIterator> Factory::NewJSMapIterator() {
   1726   Handle<Map> map(isolate()->native_context()->map_iterator_map());
   1727   CALL_HEAP_FUNCTION(isolate(),
   1728                      isolate()->heap()->AllocateJSObjectFromMap(*map),
   1729                      JSMapIterator);
   1730 }
   1731 
   1732 
   1733 Handle<JSSetIterator> Factory::NewJSSetIterator() {
   1734   Handle<Map> map(isolate()->native_context()->set_iterator_map());
   1735   CALL_HEAP_FUNCTION(isolate(),
   1736                      isolate()->heap()->AllocateJSObjectFromMap(*map),
   1737                      JSSetIterator);
   1738 }
   1739 
   1740 
   1741 Handle<JSIteratorResult> Factory::NewJSIteratorResult(Handle<Object> value,
   1742                                                       Handle<Object> done) {
   1743   Handle<JSIteratorResult> result = Handle<JSIteratorResult>::cast(
   1744       NewJSObjectFromMap(isolate()->iterator_result_map()));
   1745   result->set_value(*value);
   1746   result->set_done(*done);
   1747   return result;
   1748 }
   1749 
   1750 
   1751 namespace {
   1752 
   1753 ElementsKind GetExternalArrayElementsKind(ExternalArrayType type) {
   1754   switch (type) {
   1755 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1756   case kExternal##Type##Array:                          \
   1757     return TYPE##_ELEMENTS;
   1758     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1759   }
   1760   UNREACHABLE();
   1761   return FIRST_FIXED_TYPED_ARRAY_ELEMENTS_KIND;
   1762 #undef TYPED_ARRAY_CASE
   1763 }
   1764 
   1765 
   1766 size_t GetExternalArrayElementSize(ExternalArrayType type) {
   1767   switch (type) {
   1768 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1769   case kExternal##Type##Array:                          \
   1770     return size;
   1771     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1772     default:
   1773       UNREACHABLE();
   1774       return 0;
   1775   }
   1776 #undef TYPED_ARRAY_CASE
   1777 }
   1778 
   1779 
   1780 size_t GetFixedTypedArraysElementSize(ElementsKind kind) {
   1781   switch (kind) {
   1782 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1783   case TYPE##_ELEMENTS:                                 \
   1784     return size;
   1785     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1786     default:
   1787       UNREACHABLE();
   1788       return 0;
   1789   }
   1790 #undef TYPED_ARRAY_CASE
   1791 }
   1792 
   1793 
   1794 ExternalArrayType GetArrayTypeFromElementsKind(ElementsKind kind) {
   1795   switch (kind) {
   1796 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
   1797   case TYPE##_ELEMENTS:                                 \
   1798     return kExternal##Type##Array;
   1799     TYPED_ARRAYS(TYPED_ARRAY_CASE)
   1800     default:
   1801       UNREACHABLE();
   1802       return kExternalInt8Array;
   1803   }
   1804 #undef TYPED_ARRAY_CASE
   1805 }
   1806 
   1807 
   1808 JSFunction* GetTypedArrayFun(ExternalArrayType type, Isolate* isolate) {
   1809   Context* native_context = isolate->context()->native_context();
   1810   switch (type) {
   1811 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size)                        \
   1812     case kExternal##Type##Array:                                              \
   1813       return native_context->type##_array_fun();
   1814 
   1815     TYPED_ARRAYS(TYPED_ARRAY_FUN)
   1816 #undef TYPED_ARRAY_FUN
   1817 
   1818     default:
   1819       UNREACHABLE();
   1820       return NULL;
   1821   }
   1822 }
   1823 
   1824 
   1825 JSFunction* GetTypedArrayFun(ElementsKind elements_kind, Isolate* isolate) {
   1826   Context* native_context = isolate->context()->native_context();
   1827   switch (elements_kind) {
   1828 #define TYPED_ARRAY_FUN(Type, type, TYPE, ctype, size) \
   1829   case TYPE##_ELEMENTS:                                \
   1830     return native_context->type##_array_fun();
   1831 
   1832     TYPED_ARRAYS(TYPED_ARRAY_FUN)
   1833 #undef TYPED_ARRAY_FUN
   1834 
   1835     default:
   1836       UNREACHABLE();
   1837       return NULL;
   1838   }
   1839 }
   1840 
   1841 
   1842 void SetupArrayBufferView(i::Isolate* isolate,
   1843                           i::Handle<i::JSArrayBufferView> obj,
   1844                           i::Handle<i::JSArrayBuffer> buffer,
   1845                           size_t byte_offset, size_t byte_length,
   1846                           PretenureFlag pretenure = NOT_TENURED) {
   1847   DCHECK(byte_offset + byte_length <=
   1848          static_cast<size_t>(buffer->byte_length()->Number()));
   1849 
   1850   obj->set_buffer(*buffer);
   1851 
   1852   i::Handle<i::Object> byte_offset_object =
   1853       isolate->factory()->NewNumberFromSize(byte_offset, pretenure);
   1854   obj->set_byte_offset(*byte_offset_object);
   1855 
   1856   i::Handle<i::Object> byte_length_object =
   1857       isolate->factory()->NewNumberFromSize(byte_length, pretenure);
   1858   obj->set_byte_length(*byte_length_object);
   1859 }
   1860 
   1861 
   1862 }  // namespace
   1863 
   1864 
   1865 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
   1866                                               PretenureFlag pretenure) {
   1867   Handle<JSFunction> typed_array_fun_handle(GetTypedArrayFun(type, isolate()));
   1868 
   1869   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
   1870                                     *typed_array_fun_handle, pretenure),
   1871                      JSTypedArray);
   1872 }
   1873 
   1874 
   1875 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
   1876                                               PretenureFlag pretenure) {
   1877   Handle<JSFunction> typed_array_fun_handle(
   1878       GetTypedArrayFun(elements_kind, isolate()));
   1879 
   1880   CALL_HEAP_FUNCTION(isolate(), isolate()->heap()->AllocateJSObject(
   1881                                     *typed_array_fun_handle, pretenure),
   1882                      JSTypedArray);
   1883 }
   1884 
   1885 
   1886 Handle<JSTypedArray> Factory::NewJSTypedArray(ExternalArrayType type,
   1887                                               Handle<JSArrayBuffer> buffer,
   1888                                               size_t byte_offset, size_t length,
   1889                                               PretenureFlag pretenure) {
   1890   Handle<JSTypedArray> obj = NewJSTypedArray(type, pretenure);
   1891 
   1892   size_t element_size = GetExternalArrayElementSize(type);
   1893   ElementsKind elements_kind = GetExternalArrayElementsKind(type);
   1894 
   1895   CHECK(byte_offset % element_size == 0);
   1896 
   1897   CHECK(length <= (std::numeric_limits<size_t>::max() / element_size));
   1898   CHECK(length <= static_cast<size_t>(Smi::kMaxValue));
   1899   size_t byte_length = length * element_size;
   1900   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length,
   1901                        pretenure);
   1902 
   1903   Handle<Object> length_object = NewNumberFromSize(length, pretenure);
   1904   obj->set_length(*length_object);
   1905 
   1906   Handle<FixedTypedArrayBase> elements = NewFixedTypedArrayWithExternalPointer(
   1907       static_cast<int>(length), type,
   1908       static_cast<uint8_t*>(buffer->backing_store()) + byte_offset, pretenure);
   1909   Handle<Map> map = JSObject::GetElementsTransitionMap(obj, elements_kind);
   1910   JSObject::SetMapAndElements(obj, map, elements);
   1911   return obj;
   1912 }
   1913 
   1914 
   1915 Handle<JSTypedArray> Factory::NewJSTypedArray(ElementsKind elements_kind,
   1916                                               size_t number_of_elements,
   1917                                               PretenureFlag pretenure) {
   1918   Handle<JSTypedArray> obj = NewJSTypedArray(elements_kind, pretenure);
   1919 
   1920   size_t element_size = GetFixedTypedArraysElementSize(elements_kind);
   1921   ExternalArrayType array_type = GetArrayTypeFromElementsKind(elements_kind);
   1922 
   1923   CHECK(number_of_elements <=
   1924         (std::numeric_limits<size_t>::max() / element_size));
   1925   CHECK(number_of_elements <= static_cast<size_t>(Smi::kMaxValue));
   1926   size_t byte_length = number_of_elements * element_size;
   1927 
   1928   obj->set_byte_offset(Smi::FromInt(0));
   1929   i::Handle<i::Object> byte_length_object =
   1930       NewNumberFromSize(byte_length, pretenure);
   1931   obj->set_byte_length(*byte_length_object);
   1932   Handle<Object> length_object =
   1933       NewNumberFromSize(number_of_elements, pretenure);
   1934   obj->set_length(*length_object);
   1935 
   1936   Handle<JSArrayBuffer> buffer =
   1937       NewJSArrayBuffer(SharedFlag::kNotShared, pretenure);
   1938   JSArrayBuffer::Setup(buffer, isolate(), true, NULL, byte_length,
   1939                        SharedFlag::kNotShared);
   1940   obj->set_buffer(*buffer);
   1941   Handle<FixedTypedArrayBase> elements = NewFixedTypedArray(
   1942       static_cast<int>(number_of_elements), array_type, true, pretenure);
   1943   obj->set_elements(*elements);
   1944   return obj;
   1945 }
   1946 
   1947 
   1948 Handle<JSDataView> Factory::NewJSDataView(Handle<JSArrayBuffer> buffer,
   1949                                           size_t byte_offset,
   1950                                           size_t byte_length) {
   1951   Handle<JSDataView> obj = NewJSDataView();
   1952   SetupArrayBufferView(isolate(), obj, buffer, byte_offset, byte_length);
   1953   return obj;
   1954 }
   1955 
   1956 
   1957 MaybeHandle<JSBoundFunction> Factory::NewJSBoundFunction(
   1958     Handle<JSReceiver> target_function, Handle<Object> bound_this,
   1959     Vector<Handle<Object>> bound_args) {
   1960   DCHECK(target_function->IsCallable());
   1961   STATIC_ASSERT(Code::kMaxArguments <= FixedArray::kMaxLength);
   1962   if (bound_args.length() >= Code::kMaxArguments) {
   1963     THROW_NEW_ERROR(isolate(),
   1964                     NewRangeError(MessageTemplate::kTooManyArguments),
   1965                     JSBoundFunction);
   1966   }
   1967 
   1968   // Determine the prototype of the {target_function}.
   1969   Handle<Object> prototype;
   1970   ASSIGN_RETURN_ON_EXCEPTION(isolate(), prototype,
   1971                              Object::GetPrototype(isolate(), target_function),
   1972                              JSBoundFunction);
   1973 
   1974   // Create the [[BoundArguments]] for the result.
   1975   Handle<FixedArray> bound_arguments;
   1976   if (bound_args.length() == 0) {
   1977     bound_arguments = empty_fixed_array();
   1978   } else {
   1979     bound_arguments = NewFixedArray(bound_args.length());
   1980     for (int i = 0; i < bound_args.length(); ++i) {
   1981       bound_arguments->set(i, *bound_args[i]);
   1982     }
   1983   }
   1984 
   1985   // Setup the map for the JSBoundFunction instance.
   1986   Handle<Map> map = handle(
   1987       target_function->IsConstructor()
   1988           ? isolate()->native_context()->bound_function_with_constructor_map()
   1989           : isolate()
   1990                 ->native_context()
   1991                 ->bound_function_without_constructor_map(),
   1992       isolate());
   1993   if (map->prototype() != *prototype) {
   1994     map = Map::TransitionToPrototype(map, prototype, REGULAR_PROTOTYPE);
   1995   }
   1996   DCHECK_EQ(target_function->IsConstructor(), map->is_constructor());
   1997 
   1998   // Setup the JSBoundFunction instance.
   1999   Handle<JSBoundFunction> result =
   2000       Handle<JSBoundFunction>::cast(NewJSObjectFromMap(map));
   2001   result->set_bound_target_function(*target_function);
   2002   result->set_bound_this(*bound_this);
   2003   result->set_bound_arguments(*bound_arguments);
   2004   result->set_creation_context(*isolate()->native_context());
   2005   result->set_length(Smi::FromInt(0));
   2006   result->set_name(*undefined_value(), SKIP_WRITE_BARRIER);
   2007   return result;
   2008 }
   2009 
   2010 
   2011 // ES6 section 9.5.15 ProxyCreate (target, handler)
   2012 Handle<JSProxy> Factory::NewJSProxy(Handle<JSReceiver> target,
   2013                                     Handle<JSReceiver> handler) {
   2014   // Allocate the proxy object.
   2015   Handle<Map> map;
   2016   if (target->IsCallable()) {
   2017     if (target->IsConstructor()) {
   2018       map = Handle<Map>(isolate()->proxy_constructor_map());
   2019     } else {
   2020       map = Handle<Map>(isolate()->proxy_callable_map());
   2021     }
   2022   } else {
   2023     map = Handle<Map>(isolate()->proxy_map());
   2024   }
   2025   DCHECK(map->prototype()->IsNull());
   2026   Handle<JSProxy> result = New<JSProxy>(map, NEW_SPACE);
   2027   result->initialize_properties();
   2028   result->set_target(*target);
   2029   result->set_handler(*handler);
   2030   result->set_hash(*undefined_value(), SKIP_WRITE_BARRIER);
   2031   return result;
   2032 }
   2033 
   2034 
   2035 Handle<JSGlobalProxy> Factory::NewUninitializedJSGlobalProxy() {
   2036   // Create an empty shell of a JSGlobalProxy that needs to be reinitialized
   2037   // via ReinitializeJSGlobalProxy later.
   2038   Handle<Map> map = NewMap(JS_GLOBAL_PROXY_TYPE, JSGlobalProxy::kSize);
   2039   // Maintain invariant expected from any JSGlobalProxy.
   2040   map->set_is_access_check_needed(true);
   2041   CALL_HEAP_FUNCTION(
   2042       isolate(), isolate()->heap()->AllocateJSObjectFromMap(*map, NOT_TENURED),
   2043       JSGlobalProxy);
   2044 }
   2045 
   2046 
   2047 void Factory::ReinitializeJSGlobalProxy(Handle<JSGlobalProxy> object,
   2048                                         Handle<JSFunction> constructor) {
   2049   DCHECK(constructor->has_initial_map());
   2050   Handle<Map> map(constructor->initial_map(), isolate());
   2051   Handle<Map> old_map(object->map(), isolate());
   2052 
   2053   // The proxy's hash should be retained across reinitialization.
   2054   Handle<Object> hash(object->hash(), isolate());
   2055 
   2056   JSObject::InvalidatePrototypeChains(*old_map);
   2057   if (old_map->is_prototype_map()) {
   2058     map = Map::Copy(map, "CopyAsPrototypeForJSGlobalProxy");
   2059     map->set_is_prototype_map(true);
   2060   }
   2061   JSObject::UpdatePrototypeUserRegistration(old_map, map, isolate());
   2062 
   2063   // Check that the already allocated object has the same size and type as
   2064   // objects allocated using the constructor.
   2065   DCHECK(map->instance_size() == old_map->instance_size());
   2066   DCHECK(map->instance_type() == old_map->instance_type());
   2067 
   2068   // Allocate the backing storage for the properties.
   2069   Handle<FixedArray> properties = empty_fixed_array();
   2070 
   2071   // In order to keep heap in consistent state there must be no allocations
   2072   // before object re-initialization is finished.
   2073   DisallowHeapAllocation no_allocation;
   2074 
   2075   // Reset the map for the object.
   2076   object->synchronized_set_map(*map);
   2077 
   2078   Heap* heap = isolate()->heap();
   2079   // Reinitialize the object from the constructor map.
   2080   heap->InitializeJSObjectFromMap(*object, *properties, *map);
   2081 
   2082   // Restore the saved hash.
   2083   object->set_hash(*hash);
   2084 }
   2085 
   2086 
   2087 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
   2088     Handle<String> name, int number_of_literals, FunctionKind kind,
   2089     Handle<Code> code, Handle<ScopeInfo> scope_info,
   2090     Handle<TypeFeedbackVector> feedback_vector) {
   2091   DCHECK(IsValidFunctionKind(kind));
   2092   Handle<SharedFunctionInfo> shared = NewSharedFunctionInfo(
   2093       name, code, IsConstructable(kind, scope_info->language_mode()));
   2094   shared->set_scope_info(*scope_info);
   2095   shared->set_feedback_vector(*feedback_vector);
   2096   shared->set_kind(kind);
   2097   shared->set_num_literals(number_of_literals);
   2098   if (IsGeneratorFunction(kind)) {
   2099     shared->set_instance_class_name(isolate()->heap()->Generator_string());
   2100     shared->DisableOptimization(kGenerator);
   2101   }
   2102   return shared;
   2103 }
   2104 
   2105 
   2106 Handle<JSMessageObject> Factory::NewJSMessageObject(
   2107     MessageTemplate::Template message, Handle<Object> argument,
   2108     int start_position, int end_position, Handle<Object> script,
   2109     Handle<Object> stack_frames) {
   2110   Handle<Map> map = message_object_map();
   2111   Handle<JSMessageObject> message_obj = New<JSMessageObject>(map, NEW_SPACE);
   2112   message_obj->set_properties(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   2113   message_obj->initialize_elements();
   2114   message_obj->set_elements(*empty_fixed_array(), SKIP_WRITE_BARRIER);
   2115   message_obj->set_type(message);
   2116   message_obj->set_argument(*argument);
   2117   message_obj->set_start_position(start_position);
   2118   message_obj->set_end_position(end_position);
   2119   message_obj->set_script(*script);
   2120   message_obj->set_stack_frames(*stack_frames);
   2121   return message_obj;
   2122 }
   2123 
   2124 
   2125 Handle<SharedFunctionInfo> Factory::NewSharedFunctionInfo(
   2126     Handle<String> name, MaybeHandle<Code> maybe_code, bool is_constructor) {
   2127   Handle<Map> map = shared_function_info_map();
   2128   Handle<SharedFunctionInfo> share = New<SharedFunctionInfo>(map, OLD_SPACE);
   2129 
   2130   // Set pointer fields.
   2131   share->set_name(*name);
   2132   Handle<Code> code;
   2133   if (!maybe_code.ToHandle(&code)) {
   2134     code = isolate()->builtins()->Illegal();
   2135   }
   2136   share->set_code(*code);
   2137   share->set_optimized_code_map(*cleared_optimized_code_map());
   2138   share->set_scope_info(ScopeInfo::Empty(isolate()));
   2139   Handle<Code> construct_stub =
   2140       is_constructor ? isolate()->builtins()->JSConstructStubGeneric()
   2141                      : isolate()->builtins()->ConstructedNonConstructable();
   2142   share->set_construct_stub(*construct_stub);
   2143   share->set_instance_class_name(*Object_string());
   2144   share->set_function_data(*undefined_value(), SKIP_WRITE_BARRIER);
   2145   share->set_script(*undefined_value(), SKIP_WRITE_BARRIER);
   2146   share->set_debug_info(*undefined_value(), SKIP_WRITE_BARRIER);
   2147   share->set_inferred_name(*empty_string(), SKIP_WRITE_BARRIER);
   2148   StaticFeedbackVectorSpec empty_spec;
   2149   Handle<TypeFeedbackMetadata> feedback_metadata =
   2150       TypeFeedbackMetadata::New(isolate(), &empty_spec);
   2151   Handle<TypeFeedbackVector> feedback_vector =
   2152       TypeFeedbackVector::New(isolate(), feedback_metadata);
   2153   share->set_feedback_vector(*feedback_vector, SKIP_WRITE_BARRIER);
   2154 #if TRACE_MAPS
   2155   share->set_unique_id(isolate()->GetNextUniqueSharedFunctionInfoId());
   2156 #endif
   2157   share->set_profiler_ticks(0);
   2158   share->set_ast_node_count(0);
   2159   share->set_counters(0);
   2160 
   2161   // Set integer fields (smi or int, depending on the architecture).
   2162   share->set_length(0);
   2163   share->set_internal_formal_parameter_count(0);
   2164   share->set_expected_nof_properties(0);
   2165   share->set_num_literals(0);
   2166   share->set_start_position_and_type(0);
   2167   share->set_end_position(0);
   2168   share->set_function_token_position(0);
   2169   // All compiler hints default to false or 0.
   2170   share->set_compiler_hints(0);
   2171   share->set_opt_count_and_bailout_reason(0);
   2172 
   2173   // Link into the list.
   2174   Handle<Object> new_noscript_list =
   2175       WeakFixedArray::Add(noscript_shared_function_infos(), share);
   2176   isolate()->heap()->set_noscript_shared_function_infos(*new_noscript_list);
   2177 
   2178   return share;
   2179 }
   2180 
   2181 
   2182 static inline int NumberCacheHash(Handle<FixedArray> cache,
   2183                                   Handle<Object> number) {
   2184   int mask = (cache->length() >> 1) - 1;
   2185   if (number->IsSmi()) {
   2186     return Handle<Smi>::cast(number)->value() & mask;
   2187   } else {
   2188     DoubleRepresentation rep(number->Number());
   2189     return
   2190         (static_cast<int>(rep.bits) ^ static_cast<int>(rep.bits >> 32)) & mask;
   2191   }
   2192 }
   2193 
   2194 
   2195 Handle<Object> Factory::GetNumberStringCache(Handle<Object> number) {
   2196   DisallowHeapAllocation no_gc;
   2197   int hash = NumberCacheHash(number_string_cache(), number);
   2198   Object* key = number_string_cache()->get(hash * 2);
   2199   if (key == *number || (key->IsHeapNumber() && number->IsHeapNumber() &&
   2200                          key->Number() == number->Number())) {
   2201     return Handle<String>(
   2202         String::cast(number_string_cache()->get(hash * 2 + 1)), isolate());
   2203   }
   2204   return undefined_value();
   2205 }
   2206 
   2207 
   2208 void Factory::SetNumberStringCache(Handle<Object> number,
   2209                                    Handle<String> string) {
   2210   int hash = NumberCacheHash(number_string_cache(), number);
   2211   if (number_string_cache()->get(hash * 2) != *undefined_value()) {
   2212     int full_size = isolate()->heap()->FullSizeNumberStringCacheLength();
   2213     if (number_string_cache()->length() != full_size) {
   2214       Handle<FixedArray> new_cache = NewFixedArray(full_size, TENURED);
   2215       isolate()->heap()->set_number_string_cache(*new_cache);
   2216       return;
   2217     }
   2218   }
   2219   number_string_cache()->set(hash * 2, *number);
   2220   number_string_cache()->set(hash * 2 + 1, *string);
   2221 }
   2222 
   2223 
   2224 Handle<String> Factory::NumberToString(Handle<Object> number,
   2225                                        bool check_number_string_cache) {
   2226   isolate()->counters()->number_to_string_runtime()->Increment();
   2227   if (check_number_string_cache) {
   2228     Handle<Object> cached = GetNumberStringCache(number);
   2229     if (!cached->IsUndefined()) return Handle<String>::cast(cached);
   2230   }
   2231 
   2232   char arr[100];
   2233   Vector<char> buffer(arr, arraysize(arr));
   2234   const char* str;
   2235   if (number->IsSmi()) {
   2236     int num = Handle<Smi>::cast(number)->value();
   2237     str = IntToCString(num, buffer);
   2238   } else {
   2239     double num = Handle<HeapNumber>::cast(number)->value();
   2240     str = DoubleToCString(num, buffer);
   2241   }
   2242 
   2243   // We tenure the allocated string since it is referenced from the
   2244   // number-string cache which lives in the old space.
   2245   Handle<String> js_string = NewStringFromAsciiChecked(str, TENURED);
   2246   SetNumberStringCache(number, js_string);
   2247   return js_string;
   2248 }
   2249 
   2250 
   2251 Handle<DebugInfo> Factory::NewDebugInfo(Handle<SharedFunctionInfo> shared) {
   2252   // Allocate initial fixed array for active break points before allocating the
   2253   // debug info object to avoid allocation while setting up the debug info
   2254   // object.
   2255   Handle<FixedArray> break_points(
   2256       NewFixedArray(DebugInfo::kEstimatedNofBreakPointsInFunction));
   2257 
   2258   // Create and set up the debug info object. Debug info contains function, a
   2259   // copy of the original code, the executing code and initial fixed array for
   2260   // active break points.
   2261   Handle<DebugInfo> debug_info =
   2262       Handle<DebugInfo>::cast(NewStruct(DEBUG_INFO_TYPE));
   2263   debug_info->set_shared(*shared);
   2264   debug_info->set_code(shared->code());
   2265   debug_info->set_break_points(*break_points);
   2266 
   2267   // Link debug info to function.
   2268   shared->set_debug_info(*debug_info);
   2269 
   2270   return debug_info;
   2271 }
   2272 
   2273 
   2274 Handle<JSObject> Factory::NewArgumentsObject(Handle<JSFunction> callee,
   2275                                              int length) {
   2276   bool strict_mode_callee = is_strict(callee->shared()->language_mode()) ||
   2277                             !callee->shared()->has_simple_parameters();
   2278   Handle<Map> map = strict_mode_callee ? isolate()->strict_arguments_map()
   2279                                        : isolate()->sloppy_arguments_map();
   2280   AllocationSiteUsageContext context(isolate(), Handle<AllocationSite>(),
   2281                                      false);
   2282   DCHECK(!isolate()->has_pending_exception());
   2283   Handle<JSObject> result = NewJSObjectFromMap(map);
   2284   Handle<Smi> value(Smi::FromInt(length), isolate());
   2285   Object::SetProperty(result, length_string(), value, STRICT).Assert();
   2286   if (!strict_mode_callee) {
   2287     Object::SetProperty(result, callee_string(), callee, STRICT).Assert();
   2288   }
   2289   return result;
   2290 }
   2291 
   2292 
   2293 Handle<JSWeakMap> Factory::NewJSWeakMap() {
   2294   // TODO(adamk): Currently the map is only created three times per
   2295   // isolate. If it's created more often, the map should be moved into the
   2296   // strong root list.
   2297   Handle<Map> map = NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
   2298   return Handle<JSWeakMap>::cast(NewJSObjectFromMap(map));
   2299 }
   2300 
   2301 
   2302 Handle<Map> Factory::ObjectLiteralMapFromCache(Handle<Context> context,
   2303                                                int number_of_properties,
   2304                                                bool is_strong,
   2305                                                bool* is_result_from_cache) {
   2306   const int kMapCacheSize = 128;
   2307 
   2308   // We do not cache maps for too many properties or when running builtin code.
   2309   if (number_of_properties > kMapCacheSize ||
   2310       isolate()->bootstrapper()->IsActive()) {
   2311     *is_result_from_cache = false;
   2312     Handle<Map> map = Map::Create(isolate(), number_of_properties);
   2313     if (is_strong) map->set_is_strong();
   2314     return map;
   2315   }
   2316   *is_result_from_cache = true;
   2317   if (number_of_properties == 0) {
   2318     // Reuse the initial map of the Object function if the literal has no
   2319     // predeclared properties, or the strong map if strong.
   2320     return handle(is_strong
   2321                       ? context->js_object_strong_map()
   2322                       : context->object_function()->initial_map(), isolate());
   2323   }
   2324 
   2325   int cache_index = number_of_properties - 1;
   2326   Handle<Object> maybe_cache(is_strong ? context->strong_map_cache()
   2327                                        : context->map_cache(), isolate());
   2328   if (maybe_cache->IsUndefined()) {
   2329     // Allocate the new map cache for the native context.
   2330     maybe_cache = NewFixedArray(kMapCacheSize, TENURED);
   2331     if (is_strong) {
   2332       context->set_strong_map_cache(*maybe_cache);
   2333     } else {
   2334       context->set_map_cache(*maybe_cache);
   2335     }
   2336   } else {
   2337     // Check to see whether there is a matching element in the cache.
   2338     Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
   2339     Object* result = cache->get(cache_index);
   2340     if (result->IsWeakCell()) {
   2341       WeakCell* cell = WeakCell::cast(result);
   2342       if (!cell->cleared()) {
   2343         return handle(Map::cast(cell->value()), isolate());
   2344       }
   2345     }
   2346   }
   2347   // Create a new map and add it to the cache.
   2348   Handle<FixedArray> cache = Handle<FixedArray>::cast(maybe_cache);
   2349   Handle<Map> map = Map::Create(isolate(), number_of_properties);
   2350   if (is_strong) map->set_is_strong();
   2351   Handle<WeakCell> cell = NewWeakCell(map);
   2352   cache->set(cache_index, *cell);
   2353   return map;
   2354 }
   2355 
   2356 
   2357 void Factory::SetRegExpAtomData(Handle<JSRegExp> regexp,
   2358                                 JSRegExp::Type type,
   2359                                 Handle<String> source,
   2360                                 JSRegExp::Flags flags,
   2361                                 Handle<Object> data) {
   2362   Handle<FixedArray> store = NewFixedArray(JSRegExp::kAtomDataSize);
   2363 
   2364   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
   2365   store->set(JSRegExp::kSourceIndex, *source);
   2366   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
   2367   store->set(JSRegExp::kAtomPatternIndex, *data);
   2368   regexp->set_data(*store);
   2369 }
   2370 
   2371 
   2372 void Factory::SetRegExpIrregexpData(Handle<JSRegExp> regexp,
   2373                                     JSRegExp::Type type,
   2374                                     Handle<String> source,
   2375                                     JSRegExp::Flags flags,
   2376                                     int capture_count) {
   2377   Handle<FixedArray> store = NewFixedArray(JSRegExp::kIrregexpDataSize);
   2378   Smi* uninitialized = Smi::FromInt(JSRegExp::kUninitializedValue);
   2379   store->set(JSRegExp::kTagIndex, Smi::FromInt(type));
   2380   store->set(JSRegExp::kSourceIndex, *source);
   2381   store->set(JSRegExp::kFlagsIndex, Smi::FromInt(flags));
   2382   store->set(JSRegExp::kIrregexpLatin1CodeIndex, uninitialized);
   2383   store->set(JSRegExp::kIrregexpUC16CodeIndex, uninitialized);
   2384   store->set(JSRegExp::kIrregexpLatin1CodeSavedIndex, uninitialized);
   2385   store->set(JSRegExp::kIrregexpUC16CodeSavedIndex, uninitialized);
   2386   store->set(JSRegExp::kIrregexpMaxRegisterCountIndex, Smi::FromInt(0));
   2387   store->set(JSRegExp::kIrregexpCaptureCountIndex,
   2388              Smi::FromInt(capture_count));
   2389   regexp->set_data(*store);
   2390 }
   2391 
   2392 
   2393 Handle<Object> Factory::GlobalConstantFor(Handle<Name> name) {
   2394   if (Name::Equals(name, undefined_string())) return undefined_value();
   2395   if (Name::Equals(name, nan_string())) return nan_value();
   2396   if (Name::Equals(name, infinity_string())) return infinity_value();
   2397   return Handle<Object>::null();
   2398 }
   2399 
   2400 
   2401 Handle<Object> Factory::ToBoolean(bool value) {
   2402   return value ? true_value() : false_value();
   2403 }
   2404 
   2405 
   2406 }  // namespace internal
   2407 }  // namespace v8
   2408