1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements some loop unrolling utilities. It does not define any 11 // actual pass or policy, but provides a single function to perform loop 12 // unrolling. 13 // 14 // The process of unrolling can produce extraneous basic blocks linked with 15 // unconditional branches. This will be corrected in the future. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Transforms/Utils/UnrollLoop.h" 20 #include "llvm/ADT/SmallPtrSet.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AssumptionCache.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LoopIterator.h" 25 #include "llvm/Analysis/LoopPass.h" 26 #include "llvm/Analysis/ScalarEvolution.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DiagnosticInfo.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 35 #include "llvm/Transforms/Utils/Cloning.h" 36 #include "llvm/Transforms/Utils/Local.h" 37 #include "llvm/Transforms/Utils/LoopUtils.h" 38 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "loop-unroll" 42 43 // TODO: Should these be here or in LoopUnroll? 44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); 45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); 46 47 /// RemapInstruction - Convert the instruction operands from referencing the 48 /// current values into those specified by VMap. 49 static inline void RemapInstruction(Instruction *I, 50 ValueToValueMapTy &VMap) { 51 for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { 52 Value *Op = I->getOperand(op); 53 ValueToValueMapTy::iterator It = VMap.find(Op); 54 if (It != VMap.end()) 55 I->setOperand(op, It->second); 56 } 57 58 if (PHINode *PN = dyn_cast<PHINode>(I)) { 59 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 60 ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); 61 if (It != VMap.end()) 62 PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); 63 } 64 } 65 } 66 67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it 68 /// only has one predecessor, and that predecessor only has one successor. 69 /// The LoopInfo Analysis that is passed will be kept consistent. If folding is 70 /// successful references to the containing loop must be removed from 71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have 72 /// references to the eliminated BB. The argument ForgottenLoops contains a set 73 /// of loops that have already been forgotten to prevent redundant, expensive 74 /// calls to ScalarEvolution::forgetLoop. Returns the new combined block. 75 static BasicBlock * 76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, ScalarEvolution *SE, 77 SmallPtrSetImpl<Loop *> &ForgottenLoops) { 78 // Merge basic blocks into their predecessor if there is only one distinct 79 // pred, and if there is only one distinct successor of the predecessor, and 80 // if there are no PHI nodes. 81 BasicBlock *OnlyPred = BB->getSinglePredecessor(); 82 if (!OnlyPred) return nullptr; 83 84 if (OnlyPred->getTerminator()->getNumSuccessors() != 1) 85 return nullptr; 86 87 DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); 88 89 // Resolve any PHI nodes at the start of the block. They are all 90 // guaranteed to have exactly one entry if they exist, unless there are 91 // multiple duplicate (but guaranteed to be equal) entries for the 92 // incoming edges. This occurs when there are multiple edges from 93 // OnlyPred to OnlySucc. 94 FoldSingleEntryPHINodes(BB); 95 96 // Delete the unconditional branch from the predecessor... 97 OnlyPred->getInstList().pop_back(); 98 99 // Make all PHI nodes that referred to BB now refer to Pred as their 100 // source... 101 BB->replaceAllUsesWith(OnlyPred); 102 103 // Move all definitions in the successor to the predecessor... 104 OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); 105 106 // OldName will be valid until erased. 107 StringRef OldName = BB->getName(); 108 109 // Erase basic block from the function... 110 111 // ScalarEvolution holds references to loop exit blocks. 112 if (SE) { 113 if (Loop *L = LI->getLoopFor(BB)) { 114 if (ForgottenLoops.insert(L).second) 115 SE->forgetLoop(L); 116 } 117 } 118 LI->removeBlock(BB); 119 120 // Inherit predecessor's name if it exists... 121 if (!OldName.empty() && !OnlyPred->hasName()) 122 OnlyPred->setName(OldName); 123 124 BB->eraseFromParent(); 125 126 return OnlyPred; 127 } 128 129 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true 130 /// if unrolling was successful, or false if the loop was unmodified. Unrolling 131 /// can only fail when the loop's latch block is not terminated by a conditional 132 /// branch instruction. However, if the trip count (and multiple) are not known, 133 /// loop unrolling will mostly produce more code that is no faster. 134 /// 135 /// TripCount is generally defined as the number of times the loop header 136 /// executes. UnrollLoop relaxes the definition to permit early exits: here 137 /// TripCount is the iteration on which control exits LatchBlock if no early 138 /// exits were taken. Note that UnrollLoop assumes that the loop counter test 139 /// terminates LatchBlock in order to remove unnecesssary instances of the 140 /// test. In other words, control may exit the loop prior to TripCount 141 /// iterations via an early branch, but control may not exit the loop from the 142 /// LatchBlock's terminator prior to TripCount iterations. 143 /// 144 /// Similarly, TripMultiple divides the number of times that the LatchBlock may 145 /// execute without exiting the loop. 146 /// 147 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that 148 /// have a runtime (i.e. not compile time constant) trip count. Unrolling these 149 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count" 150 /// iterations before branching into the unrolled loop. UnrollLoop will not 151 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and 152 /// AllowExpensiveTripCount is false. 153 /// 154 /// The LoopInfo Analysis that is passed will be kept consistent. 155 /// 156 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and 157 /// DominatorTree if they are non-null. 158 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, 159 bool AllowRuntime, bool AllowExpensiveTripCount, 160 unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE, 161 DominatorTree *DT, AssumptionCache *AC, 162 bool PreserveLCSSA) { 163 BasicBlock *Preheader = L->getLoopPreheader(); 164 if (!Preheader) { 165 DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); 166 return false; 167 } 168 169 BasicBlock *LatchBlock = L->getLoopLatch(); 170 if (!LatchBlock) { 171 DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); 172 return false; 173 } 174 175 // Loops with indirectbr cannot be cloned. 176 if (!L->isSafeToClone()) { 177 DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); 178 return false; 179 } 180 181 BasicBlock *Header = L->getHeader(); 182 BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); 183 184 if (!BI || BI->isUnconditional()) { 185 // The loop-rotate pass can be helpful to avoid this in many cases. 186 DEBUG(dbgs() << 187 " Can't unroll; loop not terminated by a conditional branch.\n"); 188 return false; 189 } 190 191 if (Header->hasAddressTaken()) { 192 // The loop-rotate pass can be helpful to avoid this in many cases. 193 DEBUG(dbgs() << 194 " Won't unroll loop: address of header block is taken.\n"); 195 return false; 196 } 197 198 if (TripCount != 0) 199 DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); 200 if (TripMultiple != 1) 201 DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); 202 203 // Effectively "DCE" unrolled iterations that are beyond the tripcount 204 // and will never be executed. 205 if (TripCount != 0 && Count > TripCount) 206 Count = TripCount; 207 208 // Don't enter the unroll code if there is nothing to do. This way we don't 209 // need to support "partial unrolling by 1". 210 if (TripCount == 0 && Count < 2) 211 return false; 212 213 assert(Count > 0); 214 assert(TripMultiple > 0); 215 assert(TripCount == 0 || TripCount % TripMultiple == 0); 216 217 // Are we eliminating the loop control altogether? 218 bool CompletelyUnroll = Count == TripCount; 219 SmallVector<BasicBlock *, 4> ExitBlocks; 220 L->getExitBlocks(ExitBlocks); 221 Loop *ParentL = L->getParentLoop(); 222 bool AllExitsAreInsideParentLoop = !ParentL || 223 std::all_of(ExitBlocks.begin(), ExitBlocks.end(), 224 [&](BasicBlock *BB) { return ParentL->contains(BB); }); 225 226 // We assume a run-time trip count if the compiler cannot 227 // figure out the loop trip count and the unroll-runtime 228 // flag is specified. 229 bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); 230 231 if (RuntimeTripCount && 232 !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT, 233 PreserveLCSSA)) 234 return false; 235 236 // Notify ScalarEvolution that the loop will be substantially changed, 237 // if not outright eliminated. 238 if (SE) 239 SE->forgetLoop(L); 240 241 // If we know the trip count, we know the multiple... 242 unsigned BreakoutTrip = 0; 243 if (TripCount != 0) { 244 BreakoutTrip = TripCount % Count; 245 TripMultiple = 0; 246 } else { 247 // Figure out what multiple to use. 248 BreakoutTrip = TripMultiple = 249 (unsigned)GreatestCommonDivisor64(Count, TripMultiple); 250 } 251 252 // Report the unrolling decision. 253 DebugLoc LoopLoc = L->getStartLoc(); 254 Function *F = Header->getParent(); 255 LLVMContext &Ctx = F->getContext(); 256 257 if (CompletelyUnroll) { 258 DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() 259 << " with trip count " << TripCount << "!\n"); 260 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 261 Twine("completely unrolled loop with ") + 262 Twine(TripCount) + " iterations"); 263 } else { 264 auto EmitDiag = [&](const Twine &T) { 265 emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc, 266 "unrolled loop by a factor of " + Twine(Count) + 267 T); 268 }; 269 270 DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() 271 << " by " << Count); 272 if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { 273 DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); 274 EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip)); 275 } else if (TripMultiple != 1) { 276 DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); 277 EmitDiag(" with " + Twine(TripMultiple) + " trips per branch"); 278 } else if (RuntimeTripCount) { 279 DEBUG(dbgs() << " with run-time trip count"); 280 EmitDiag(" with run-time trip count"); 281 } 282 DEBUG(dbgs() << "!\n"); 283 } 284 285 bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); 286 BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); 287 288 // For the first iteration of the loop, we should use the precloned values for 289 // PHI nodes. Insert associations now. 290 ValueToValueMapTy LastValueMap; 291 std::vector<PHINode*> OrigPHINode; 292 for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { 293 OrigPHINode.push_back(cast<PHINode>(I)); 294 } 295 296 std::vector<BasicBlock*> Headers; 297 std::vector<BasicBlock*> Latches; 298 Headers.push_back(Header); 299 Latches.push_back(LatchBlock); 300 301 // The current on-the-fly SSA update requires blocks to be processed in 302 // reverse postorder so that LastValueMap contains the correct value at each 303 // exit. 304 LoopBlocksDFS DFS(L); 305 DFS.perform(LI); 306 307 // Stash the DFS iterators before adding blocks to the loop. 308 LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); 309 LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); 310 311 for (unsigned It = 1; It != Count; ++It) { 312 std::vector<BasicBlock*> NewBlocks; 313 SmallDenseMap<const Loop *, Loop *, 4> NewLoops; 314 NewLoops[L] = L; 315 316 for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { 317 ValueToValueMapTy VMap; 318 BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); 319 Header->getParent()->getBasicBlockList().push_back(New); 320 321 // Tell LI about New. 322 if (*BB == Header) { 323 assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop"); 324 L->addBasicBlockToLoop(New, *LI); 325 } else { 326 // Figure out which loop New is in. 327 const Loop *OldLoop = LI->getLoopFor(*BB); 328 assert(OldLoop && "Should (at least) be in the loop being unrolled!"); 329 330 Loop *&NewLoop = NewLoops[OldLoop]; 331 if (!NewLoop) { 332 // Found a new sub-loop. 333 assert(*BB == OldLoop->getHeader() && 334 "Header should be first in RPO"); 335 336 Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop()); 337 assert(NewLoopParent && 338 "Expected parent loop before sub-loop in RPO"); 339 NewLoop = new Loop; 340 NewLoopParent->addChildLoop(NewLoop); 341 342 // Forget the old loop, since its inputs may have changed. 343 if (SE) 344 SE->forgetLoop(OldLoop); 345 } 346 NewLoop->addBasicBlockToLoop(New, *LI); 347 } 348 349 if (*BB == Header) 350 // Loop over all of the PHI nodes in the block, changing them to use 351 // the incoming values from the previous block. 352 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 353 PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); 354 Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); 355 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) 356 if (It > 1 && L->contains(InValI)) 357 InVal = LastValueMap[InValI]; 358 VMap[OrigPHINode[i]] = InVal; 359 New->getInstList().erase(NewPHI); 360 } 361 362 // Update our running map of newest clones 363 LastValueMap[*BB] = New; 364 for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); 365 VI != VE; ++VI) 366 LastValueMap[VI->first] = VI->second; 367 368 // Add phi entries for newly created values to all exit blocks. 369 for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); 370 SI != SE; ++SI) { 371 if (L->contains(*SI)) 372 continue; 373 for (BasicBlock::iterator BBI = (*SI)->begin(); 374 PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { 375 Value *Incoming = phi->getIncomingValueForBlock(*BB); 376 ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); 377 if (It != LastValueMap.end()) 378 Incoming = It->second; 379 phi->addIncoming(Incoming, New); 380 } 381 } 382 // Keep track of new headers and latches as we create them, so that 383 // we can insert the proper branches later. 384 if (*BB == Header) 385 Headers.push_back(New); 386 if (*BB == LatchBlock) 387 Latches.push_back(New); 388 389 NewBlocks.push_back(New); 390 } 391 392 // Remap all instructions in the most recent iteration 393 for (unsigned i = 0; i < NewBlocks.size(); ++i) 394 for (BasicBlock::iterator I = NewBlocks[i]->begin(), 395 E = NewBlocks[i]->end(); I != E; ++I) 396 ::RemapInstruction(&*I, LastValueMap); 397 } 398 399 // Loop over the PHI nodes in the original block, setting incoming values. 400 for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { 401 PHINode *PN = OrigPHINode[i]; 402 if (CompletelyUnroll) { 403 PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); 404 Header->getInstList().erase(PN); 405 } 406 else if (Count > 1) { 407 Value *InVal = PN->removeIncomingValue(LatchBlock, false); 408 // If this value was defined in the loop, take the value defined by the 409 // last iteration of the loop. 410 if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { 411 if (L->contains(InValI)) 412 InVal = LastValueMap[InVal]; 413 } 414 assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); 415 PN->addIncoming(InVal, Latches.back()); 416 } 417 } 418 419 // Now that all the basic blocks for the unrolled iterations are in place, 420 // set up the branches to connect them. 421 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 422 // The original branch was replicated in each unrolled iteration. 423 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 424 425 // The branch destination. 426 unsigned j = (i + 1) % e; 427 BasicBlock *Dest = Headers[j]; 428 bool NeedConditional = true; 429 430 if (RuntimeTripCount && j != 0) { 431 NeedConditional = false; 432 } 433 434 // For a complete unroll, make the last iteration end with a branch 435 // to the exit block. 436 if (CompletelyUnroll) { 437 if (j == 0) 438 Dest = LoopExit; 439 NeedConditional = false; 440 } 441 442 // If we know the trip count or a multiple of it, we can safely use an 443 // unconditional branch for some iterations. 444 if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { 445 NeedConditional = false; 446 } 447 448 if (NeedConditional) { 449 // Update the conditional branch's successor for the following 450 // iteration. 451 Term->setSuccessor(!ContinueOnTrue, Dest); 452 } else { 453 // Remove phi operands at this loop exit 454 if (Dest != LoopExit) { 455 BasicBlock *BB = Latches[i]; 456 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); 457 SI != SE; ++SI) { 458 if (*SI == Headers[i]) 459 continue; 460 for (BasicBlock::iterator BBI = (*SI)->begin(); 461 PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { 462 Phi->removeIncomingValue(BB, false); 463 } 464 } 465 } 466 // Replace the conditional branch with an unconditional one. 467 BranchInst::Create(Dest, Term); 468 Term->eraseFromParent(); 469 } 470 } 471 472 // Merge adjacent basic blocks, if possible. 473 SmallPtrSet<Loop *, 4> ForgottenLoops; 474 for (unsigned i = 0, e = Latches.size(); i != e; ++i) { 475 BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); 476 if (Term->isUnconditional()) { 477 BasicBlock *Dest = Term->getSuccessor(0); 478 if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, SE, 479 ForgottenLoops)) 480 std::replace(Latches.begin(), Latches.end(), Dest, Fold); 481 } 482 } 483 484 // FIXME: We could register any cloned assumptions instead of clearing the 485 // whole function's cache. 486 AC->clear(); 487 488 // FIXME: Reconstruct dom info, because it is not preserved properly. 489 // Incrementally updating domtree after loop unrolling would be easy. 490 if (DT) 491 DT->recalculate(*L->getHeader()->getParent()); 492 493 // Simplify any new induction variables in the partially unrolled loop. 494 if (SE && !CompletelyUnroll) { 495 SmallVector<WeakVH, 16> DeadInsts; 496 simplifyLoopIVs(L, SE, DT, LI, DeadInsts); 497 498 // Aggressively clean up dead instructions that simplifyLoopIVs already 499 // identified. Any remaining should be cleaned up below. 500 while (!DeadInsts.empty()) 501 if (Instruction *Inst = 502 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 503 RecursivelyDeleteTriviallyDeadInstructions(Inst); 504 } 505 506 // At this point, the code is well formed. We now do a quick sweep over the 507 // inserted code, doing constant propagation and dead code elimination as we 508 // go. 509 const DataLayout &DL = Header->getModule()->getDataLayout(); 510 const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); 511 for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), 512 BBE = NewLoopBlocks.end(); BB != BBE; ++BB) 513 for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { 514 Instruction *Inst = &*I++; 515 516 if (isInstructionTriviallyDead(Inst)) 517 (*BB)->getInstList().erase(Inst); 518 else if (Value *V = SimplifyInstruction(Inst, DL)) 519 if (LI->replacementPreservesLCSSAForm(Inst, V)) { 520 Inst->replaceAllUsesWith(V); 521 (*BB)->getInstList().erase(Inst); 522 } 523 } 524 525 NumCompletelyUnrolled += CompletelyUnroll; 526 ++NumUnrolled; 527 528 Loop *OuterL = L->getParentLoop(); 529 // Update LoopInfo if the loop is completely removed. 530 if (CompletelyUnroll) 531 LI->updateUnloop(L);; 532 533 // If we have a pass and a DominatorTree we should re-simplify impacted loops 534 // to ensure subsequent analyses can rely on this form. We want to simplify 535 // at least one layer outside of the loop that was unrolled so that any 536 // changes to the parent loop exposed by the unrolling are considered. 537 if (DT) { 538 if (!OuterL && !CompletelyUnroll) 539 OuterL = L; 540 if (OuterL) { 541 bool Simplified = simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA); 542 543 // LCSSA must be performed on the outermost affected loop. The unrolled 544 // loop's last loop latch is guaranteed to be in the outermost loop after 545 // LoopInfo's been updated by updateUnloop. 546 Loop *LatchLoop = LI->getLoopFor(Latches.back()); 547 if (!OuterL->contains(LatchLoop)) 548 while (OuterL->getParentLoop() != LatchLoop) 549 OuterL = OuterL->getParentLoop(); 550 551 if (CompletelyUnroll && (!AllExitsAreInsideParentLoop || Simplified)) 552 formLCSSARecursively(*OuterL, *DT, LI, SE); 553 else 554 assert(OuterL->isLCSSAForm(*DT) && 555 "Loops should be in LCSSA form after loop-unroll."); 556 } 557 } 558 559 return true; 560 } 561 562 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata 563 /// node with the given name (for example, "llvm.loop.unroll.count"). If no 564 /// such metadata node exists, then nullptr is returned. 565 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) { 566 // First operand should refer to the loop id itself. 567 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 568 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 569 570 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { 571 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 572 if (!MD) 573 continue; 574 575 MDString *S = dyn_cast<MDString>(MD->getOperand(0)); 576 if (!S) 577 continue; 578 579 if (Name.equals(S->getString())) 580 return MD; 581 } 582 return nullptr; 583 } 584