Home | History | Annotate | Download | only in Utils
      1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements some loop unrolling utilities. It does not define any
     11 // actual pass or policy, but provides a single function to perform loop
     12 // unrolling.
     13 //
     14 // The process of unrolling can produce extraneous basic blocks linked with
     15 // unconditional branches.  This will be corrected in the future.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #include "llvm/Transforms/Utils/UnrollLoop.h"
     20 #include "llvm/ADT/SmallPtrSet.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AssumptionCache.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/LoopIterator.h"
     25 #include "llvm/Analysis/LoopPass.h"
     26 #include "llvm/Analysis/ScalarEvolution.h"
     27 #include "llvm/IR/BasicBlock.h"
     28 #include "llvm/IR/DataLayout.h"
     29 #include "llvm/IR/DiagnosticInfo.h"
     30 #include "llvm/IR/Dominators.h"
     31 #include "llvm/IR/LLVMContext.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     35 #include "llvm/Transforms/Utils/Cloning.h"
     36 #include "llvm/Transforms/Utils/Local.h"
     37 #include "llvm/Transforms/Utils/LoopUtils.h"
     38 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     39 using namespace llvm;
     40 
     41 #define DEBUG_TYPE "loop-unroll"
     42 
     43 // TODO: Should these be here or in LoopUnroll?
     44 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
     45 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
     46 
     47 /// RemapInstruction - Convert the instruction operands from referencing the
     48 /// current values into those specified by VMap.
     49 static inline void RemapInstruction(Instruction *I,
     50                                     ValueToValueMapTy &VMap) {
     51   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
     52     Value *Op = I->getOperand(op);
     53     ValueToValueMapTy::iterator It = VMap.find(Op);
     54     if (It != VMap.end())
     55       I->setOperand(op, It->second);
     56   }
     57 
     58   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     59     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
     60       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
     61       if (It != VMap.end())
     62         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
     63     }
     64   }
     65 }
     66 
     67 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
     68 /// only has one predecessor, and that predecessor only has one successor.
     69 /// The LoopInfo Analysis that is passed will be kept consistent.  If folding is
     70 /// successful references to the containing loop must be removed from
     71 /// ScalarEvolution by calling ScalarEvolution::forgetLoop because SE may have
     72 /// references to the eliminated BB.  The argument ForgottenLoops contains a set
     73 /// of loops that have already been forgotten to prevent redundant, expensive
     74 /// calls to ScalarEvolution::forgetLoop.  Returns the new combined block.
     75 static BasicBlock *
     76 FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, ScalarEvolution *SE,
     77                          SmallPtrSetImpl<Loop *> &ForgottenLoops) {
     78   // Merge basic blocks into their predecessor if there is only one distinct
     79   // pred, and if there is only one distinct successor of the predecessor, and
     80   // if there are no PHI nodes.
     81   BasicBlock *OnlyPred = BB->getSinglePredecessor();
     82   if (!OnlyPred) return nullptr;
     83 
     84   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
     85     return nullptr;
     86 
     87   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
     88 
     89   // Resolve any PHI nodes at the start of the block.  They are all
     90   // guaranteed to have exactly one entry if they exist, unless there are
     91   // multiple duplicate (but guaranteed to be equal) entries for the
     92   // incoming edges.  This occurs when there are multiple edges from
     93   // OnlyPred to OnlySucc.
     94   FoldSingleEntryPHINodes(BB);
     95 
     96   // Delete the unconditional branch from the predecessor...
     97   OnlyPred->getInstList().pop_back();
     98 
     99   // Make all PHI nodes that referred to BB now refer to Pred as their
    100   // source...
    101   BB->replaceAllUsesWith(OnlyPred);
    102 
    103   // Move all definitions in the successor to the predecessor...
    104   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
    105 
    106   // OldName will be valid until erased.
    107   StringRef OldName = BB->getName();
    108 
    109   // Erase basic block from the function...
    110 
    111   // ScalarEvolution holds references to loop exit blocks.
    112   if (SE) {
    113     if (Loop *L = LI->getLoopFor(BB)) {
    114       if (ForgottenLoops.insert(L).second)
    115         SE->forgetLoop(L);
    116     }
    117   }
    118   LI->removeBlock(BB);
    119 
    120   // Inherit predecessor's name if it exists...
    121   if (!OldName.empty() && !OnlyPred->hasName())
    122     OnlyPred->setName(OldName);
    123 
    124   BB->eraseFromParent();
    125 
    126   return OnlyPred;
    127 }
    128 
    129 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
    130 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
    131 /// can only fail when the loop's latch block is not terminated by a conditional
    132 /// branch instruction. However, if the trip count (and multiple) are not known,
    133 /// loop unrolling will mostly produce more code that is no faster.
    134 ///
    135 /// TripCount is generally defined as the number of times the loop header
    136 /// executes. UnrollLoop relaxes the definition to permit early exits: here
    137 /// TripCount is the iteration on which control exits LatchBlock if no early
    138 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
    139 /// terminates LatchBlock in order to remove unnecesssary instances of the
    140 /// test. In other words, control may exit the loop prior to TripCount
    141 /// iterations via an early branch, but control may not exit the loop from the
    142 /// LatchBlock's terminator prior to TripCount iterations.
    143 ///
    144 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
    145 /// execute without exiting the loop.
    146 ///
    147 /// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
    148 /// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
    149 /// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
    150 /// iterations before branching into the unrolled loop.  UnrollLoop will not
    151 /// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
    152 /// AllowExpensiveTripCount is false.
    153 ///
    154 /// The LoopInfo Analysis that is passed will be kept consistent.
    155 ///
    156 /// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
    157 /// DominatorTree if they are non-null.
    158 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
    159                       bool AllowRuntime, bool AllowExpensiveTripCount,
    160                       unsigned TripMultiple, LoopInfo *LI, ScalarEvolution *SE,
    161                       DominatorTree *DT, AssumptionCache *AC,
    162                       bool PreserveLCSSA) {
    163   BasicBlock *Preheader = L->getLoopPreheader();
    164   if (!Preheader) {
    165     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    166     return false;
    167   }
    168 
    169   BasicBlock *LatchBlock = L->getLoopLatch();
    170   if (!LatchBlock) {
    171     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    172     return false;
    173   }
    174 
    175   // Loops with indirectbr cannot be cloned.
    176   if (!L->isSafeToClone()) {
    177     DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
    178     return false;
    179   }
    180 
    181   BasicBlock *Header = L->getHeader();
    182   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
    183 
    184   if (!BI || BI->isUnconditional()) {
    185     // The loop-rotate pass can be helpful to avoid this in many cases.
    186     DEBUG(dbgs() <<
    187              "  Can't unroll; loop not terminated by a conditional branch.\n");
    188     return false;
    189   }
    190 
    191   if (Header->hasAddressTaken()) {
    192     // The loop-rotate pass can be helpful to avoid this in many cases.
    193     DEBUG(dbgs() <<
    194           "  Won't unroll loop: address of header block is taken.\n");
    195     return false;
    196   }
    197 
    198   if (TripCount != 0)
    199     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
    200   if (TripMultiple != 1)
    201     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
    202 
    203   // Effectively "DCE" unrolled iterations that are beyond the tripcount
    204   // and will never be executed.
    205   if (TripCount != 0 && Count > TripCount)
    206     Count = TripCount;
    207 
    208   // Don't enter the unroll code if there is nothing to do. This way we don't
    209   // need to support "partial unrolling by 1".
    210   if (TripCount == 0 && Count < 2)
    211     return false;
    212 
    213   assert(Count > 0);
    214   assert(TripMultiple > 0);
    215   assert(TripCount == 0 || TripCount % TripMultiple == 0);
    216 
    217   // Are we eliminating the loop control altogether?
    218   bool CompletelyUnroll = Count == TripCount;
    219   SmallVector<BasicBlock *, 4> ExitBlocks;
    220   L->getExitBlocks(ExitBlocks);
    221   Loop *ParentL = L->getParentLoop();
    222   bool AllExitsAreInsideParentLoop = !ParentL ||
    223       std::all_of(ExitBlocks.begin(), ExitBlocks.end(),
    224                   [&](BasicBlock *BB) { return ParentL->contains(BB); });
    225 
    226   // We assume a run-time trip count if the compiler cannot
    227   // figure out the loop trip count and the unroll-runtime
    228   // flag is specified.
    229   bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime);
    230 
    231   if (RuntimeTripCount &&
    232       !UnrollRuntimeLoopProlog(L, Count, AllowExpensiveTripCount, LI, SE, DT,
    233                                PreserveLCSSA))
    234     return false;
    235 
    236   // Notify ScalarEvolution that the loop will be substantially changed,
    237   // if not outright eliminated.
    238   if (SE)
    239     SE->forgetLoop(L);
    240 
    241   // If we know the trip count, we know the multiple...
    242   unsigned BreakoutTrip = 0;
    243   if (TripCount != 0) {
    244     BreakoutTrip = TripCount % Count;
    245     TripMultiple = 0;
    246   } else {
    247     // Figure out what multiple to use.
    248     BreakoutTrip = TripMultiple =
    249       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
    250   }
    251 
    252   // Report the unrolling decision.
    253   DebugLoc LoopLoc = L->getStartLoc();
    254   Function *F = Header->getParent();
    255   LLVMContext &Ctx = F->getContext();
    256 
    257   if (CompletelyUnroll) {
    258     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
    259           << " with trip count " << TripCount << "!\n");
    260     emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
    261                            Twine("completely unrolled loop with ") +
    262                                Twine(TripCount) + " iterations");
    263   } else {
    264     auto EmitDiag = [&](const Twine &T) {
    265       emitOptimizationRemark(Ctx, DEBUG_TYPE, *F, LoopLoc,
    266                              "unrolled loop by a factor of " + Twine(Count) +
    267                                  T);
    268     };
    269 
    270     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
    271           << " by " << Count);
    272     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
    273       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
    274       EmitDiag(" with a breakout at trip " + Twine(BreakoutTrip));
    275     } else if (TripMultiple != 1) {
    276       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
    277       EmitDiag(" with " + Twine(TripMultiple) + " trips per branch");
    278     } else if (RuntimeTripCount) {
    279       DEBUG(dbgs() << " with run-time trip count");
    280       EmitDiag(" with run-time trip count");
    281     }
    282     DEBUG(dbgs() << "!\n");
    283   }
    284 
    285   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
    286   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
    287 
    288   // For the first iteration of the loop, we should use the precloned values for
    289   // PHI nodes.  Insert associations now.
    290   ValueToValueMapTy LastValueMap;
    291   std::vector<PHINode*> OrigPHINode;
    292   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    293     OrigPHINode.push_back(cast<PHINode>(I));
    294   }
    295 
    296   std::vector<BasicBlock*> Headers;
    297   std::vector<BasicBlock*> Latches;
    298   Headers.push_back(Header);
    299   Latches.push_back(LatchBlock);
    300 
    301   // The current on-the-fly SSA update requires blocks to be processed in
    302   // reverse postorder so that LastValueMap contains the correct value at each
    303   // exit.
    304   LoopBlocksDFS DFS(L);
    305   DFS.perform(LI);
    306 
    307   // Stash the DFS iterators before adding blocks to the loop.
    308   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
    309   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
    310 
    311   for (unsigned It = 1; It != Count; ++It) {
    312     std::vector<BasicBlock*> NewBlocks;
    313     SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
    314     NewLoops[L] = L;
    315 
    316     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    317       ValueToValueMapTy VMap;
    318       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
    319       Header->getParent()->getBasicBlockList().push_back(New);
    320 
    321       // Tell LI about New.
    322       if (*BB == Header) {
    323         assert(LI->getLoopFor(*BB) == L && "Header should not be in a sub-loop");
    324         L->addBasicBlockToLoop(New, *LI);
    325       } else {
    326         // Figure out which loop New is in.
    327         const Loop *OldLoop = LI->getLoopFor(*BB);
    328         assert(OldLoop && "Should (at least) be in the loop being unrolled!");
    329 
    330         Loop *&NewLoop = NewLoops[OldLoop];
    331         if (!NewLoop) {
    332           // Found a new sub-loop.
    333           assert(*BB == OldLoop->getHeader() &&
    334                  "Header should be first in RPO");
    335 
    336           Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
    337           assert(NewLoopParent &&
    338                  "Expected parent loop before sub-loop in RPO");
    339           NewLoop = new Loop;
    340           NewLoopParent->addChildLoop(NewLoop);
    341 
    342           // Forget the old loop, since its inputs may have changed.
    343           if (SE)
    344             SE->forgetLoop(OldLoop);
    345         }
    346         NewLoop->addBasicBlockToLoop(New, *LI);
    347       }
    348 
    349       if (*BB == Header)
    350         // Loop over all of the PHI nodes in the block, changing them to use
    351         // the incoming values from the previous block.
    352         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    353           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
    354           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
    355           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
    356             if (It > 1 && L->contains(InValI))
    357               InVal = LastValueMap[InValI];
    358           VMap[OrigPHINode[i]] = InVal;
    359           New->getInstList().erase(NewPHI);
    360         }
    361 
    362       // Update our running map of newest clones
    363       LastValueMap[*BB] = New;
    364       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
    365            VI != VE; ++VI)
    366         LastValueMap[VI->first] = VI->second;
    367 
    368       // Add phi entries for newly created values to all exit blocks.
    369       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
    370            SI != SE; ++SI) {
    371         if (L->contains(*SI))
    372           continue;
    373         for (BasicBlock::iterator BBI = (*SI)->begin();
    374              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
    375           Value *Incoming = phi->getIncomingValueForBlock(*BB);
    376           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
    377           if (It != LastValueMap.end())
    378             Incoming = It->second;
    379           phi->addIncoming(Incoming, New);
    380         }
    381       }
    382       // Keep track of new headers and latches as we create them, so that
    383       // we can insert the proper branches later.
    384       if (*BB == Header)
    385         Headers.push_back(New);
    386       if (*BB == LatchBlock)
    387         Latches.push_back(New);
    388 
    389       NewBlocks.push_back(New);
    390     }
    391 
    392     // Remap all instructions in the most recent iteration
    393     for (unsigned i = 0; i < NewBlocks.size(); ++i)
    394       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    395            E = NewBlocks[i]->end(); I != E; ++I)
    396         ::RemapInstruction(&*I, LastValueMap);
    397   }
    398 
    399   // Loop over the PHI nodes in the original block, setting incoming values.
    400   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    401     PHINode *PN = OrigPHINode[i];
    402     if (CompletelyUnroll) {
    403       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
    404       Header->getInstList().erase(PN);
    405     }
    406     else if (Count > 1) {
    407       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
    408       // If this value was defined in the loop, take the value defined by the
    409       // last iteration of the loop.
    410       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
    411         if (L->contains(InValI))
    412           InVal = LastValueMap[InVal];
    413       }
    414       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
    415       PN->addIncoming(InVal, Latches.back());
    416     }
    417   }
    418 
    419   // Now that all the basic blocks for the unrolled iterations are in place,
    420   // set up the branches to connect them.
    421   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    422     // The original branch was replicated in each unrolled iteration.
    423     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    424 
    425     // The branch destination.
    426     unsigned j = (i + 1) % e;
    427     BasicBlock *Dest = Headers[j];
    428     bool NeedConditional = true;
    429 
    430     if (RuntimeTripCount && j != 0) {
    431       NeedConditional = false;
    432     }
    433 
    434     // For a complete unroll, make the last iteration end with a branch
    435     // to the exit block.
    436     if (CompletelyUnroll) {
    437       if (j == 0)
    438         Dest = LoopExit;
    439       NeedConditional = false;
    440     }
    441 
    442     // If we know the trip count or a multiple of it, we can safely use an
    443     // unconditional branch for some iterations.
    444     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
    445       NeedConditional = false;
    446     }
    447 
    448     if (NeedConditional) {
    449       // Update the conditional branch's successor for the following
    450       // iteration.
    451       Term->setSuccessor(!ContinueOnTrue, Dest);
    452     } else {
    453       // Remove phi operands at this loop exit
    454       if (Dest != LoopExit) {
    455         BasicBlock *BB = Latches[i];
    456         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
    457              SI != SE; ++SI) {
    458           if (*SI == Headers[i])
    459             continue;
    460           for (BasicBlock::iterator BBI = (*SI)->begin();
    461                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
    462             Phi->removeIncomingValue(BB, false);
    463           }
    464         }
    465       }
    466       // Replace the conditional branch with an unconditional one.
    467       BranchInst::Create(Dest, Term);
    468       Term->eraseFromParent();
    469     }
    470   }
    471 
    472   // Merge adjacent basic blocks, if possible.
    473   SmallPtrSet<Loop *, 4> ForgottenLoops;
    474   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    475     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    476     if (Term->isUnconditional()) {
    477       BasicBlock *Dest = Term->getSuccessor(0);
    478       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, SE,
    479                                                       ForgottenLoops))
    480         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
    481     }
    482   }
    483 
    484   // FIXME: We could register any cloned assumptions instead of clearing the
    485   // whole function's cache.
    486   AC->clear();
    487 
    488   // FIXME: Reconstruct dom info, because it is not preserved properly.
    489   // Incrementally updating domtree after loop unrolling would be easy.
    490   if (DT)
    491     DT->recalculate(*L->getHeader()->getParent());
    492 
    493   // Simplify any new induction variables in the partially unrolled loop.
    494   if (SE && !CompletelyUnroll) {
    495     SmallVector<WeakVH, 16> DeadInsts;
    496     simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
    497 
    498     // Aggressively clean up dead instructions that simplifyLoopIVs already
    499     // identified. Any remaining should be cleaned up below.
    500     while (!DeadInsts.empty())
    501       if (Instruction *Inst =
    502               dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
    503         RecursivelyDeleteTriviallyDeadInstructions(Inst);
    504   }
    505 
    506   // At this point, the code is well formed.  We now do a quick sweep over the
    507   // inserted code, doing constant propagation and dead code elimination as we
    508   // go.
    509   const DataLayout &DL = Header->getModule()->getDataLayout();
    510   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
    511   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
    512        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
    513     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
    514       Instruction *Inst = &*I++;
    515 
    516       if (isInstructionTriviallyDead(Inst))
    517         (*BB)->getInstList().erase(Inst);
    518       else if (Value *V = SimplifyInstruction(Inst, DL))
    519         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
    520           Inst->replaceAllUsesWith(V);
    521           (*BB)->getInstList().erase(Inst);
    522         }
    523     }
    524 
    525   NumCompletelyUnrolled += CompletelyUnroll;
    526   ++NumUnrolled;
    527 
    528   Loop *OuterL = L->getParentLoop();
    529   // Update LoopInfo if the loop is completely removed.
    530   if (CompletelyUnroll)
    531     LI->updateUnloop(L);;
    532 
    533   // If we have a pass and a DominatorTree we should re-simplify impacted loops
    534   // to ensure subsequent analyses can rely on this form. We want to simplify
    535   // at least one layer outside of the loop that was unrolled so that any
    536   // changes to the parent loop exposed by the unrolling are considered.
    537   if (DT) {
    538     if (!OuterL && !CompletelyUnroll)
    539       OuterL = L;
    540     if (OuterL) {
    541       bool Simplified = simplifyLoop(OuterL, DT, LI, SE, AC, PreserveLCSSA);
    542 
    543       // LCSSA must be performed on the outermost affected loop. The unrolled
    544       // loop's last loop latch is guaranteed to be in the outermost loop after
    545       // LoopInfo's been updated by updateUnloop.
    546       Loop *LatchLoop = LI->getLoopFor(Latches.back());
    547       if (!OuterL->contains(LatchLoop))
    548         while (OuterL->getParentLoop() != LatchLoop)
    549           OuterL = OuterL->getParentLoop();
    550 
    551       if (CompletelyUnroll && (!AllExitsAreInsideParentLoop || Simplified))
    552         formLCSSARecursively(*OuterL, *DT, LI, SE);
    553       else
    554         assert(OuterL->isLCSSAForm(*DT) &&
    555                "Loops should be in LCSSA form after loop-unroll.");
    556     }
    557   }
    558 
    559   return true;
    560 }
    561 
    562 /// Given an llvm.loop loop id metadata node, returns the loop hint metadata
    563 /// node with the given name (for example, "llvm.loop.unroll.count"). If no
    564 /// such metadata node exists, then nullptr is returned.
    565 MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
    566   // First operand should refer to the loop id itself.
    567   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
    568   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
    569 
    570   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
    571     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
    572     if (!MD)
    573       continue;
    574 
    575     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
    576     if (!S)
    577       continue;
    578 
    579     if (Name.equals(S->getString()))
    580       return MD;
    581   }
    582   return nullptr;
    583 }
    584