1 //===-- tsan_mman.cc ------------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of ThreadSanitizer (TSan), a race detector. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "sanitizer_common/sanitizer_allocator_interface.h" 14 #include "sanitizer_common/sanitizer_common.h" 15 #include "sanitizer_common/sanitizer_placement_new.h" 16 #include "tsan_mman.h" 17 #include "tsan_rtl.h" 18 #include "tsan_report.h" 19 #include "tsan_flags.h" 20 21 // May be overriden by front-end. 22 SANITIZER_WEAK_DEFAULT_IMPL 23 void __sanitizer_malloc_hook(void *ptr, uptr size) { 24 (void)ptr; 25 (void)size; 26 } 27 28 SANITIZER_WEAK_DEFAULT_IMPL 29 void __sanitizer_free_hook(void *ptr) { 30 (void)ptr; 31 } 32 33 namespace __tsan { 34 35 struct MapUnmapCallback { 36 void OnMap(uptr p, uptr size) const { } 37 void OnUnmap(uptr p, uptr size) const { 38 // We are about to unmap a chunk of user memory. 39 // Mark the corresponding shadow memory as not needed. 40 DontNeedShadowFor(p, size); 41 // Mark the corresponding meta shadow memory as not needed. 42 // Note the block does not contain any meta info at this point 43 // (this happens after free). 44 const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize; 45 const uptr kPageSize = GetPageSizeCached() * kMetaRatio; 46 // Block came from LargeMmapAllocator, so must be large. 47 // We rely on this in the calculations below. 48 CHECK_GE(size, 2 * kPageSize); 49 uptr diff = RoundUp(p, kPageSize) - p; 50 if (diff != 0) { 51 p += diff; 52 size -= diff; 53 } 54 diff = p + size - RoundDown(p + size, kPageSize); 55 if (diff != 0) 56 size -= diff; 57 FlushUnneededShadowMemory((uptr)MemToMeta(p), size / kMetaRatio); 58 } 59 }; 60 61 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64); 62 Allocator *allocator() { 63 return reinterpret_cast<Allocator*>(&allocator_placeholder); 64 } 65 66 void InitializeAllocator() { 67 allocator()->Init(common_flags()->allocator_may_return_null); 68 } 69 70 void AllocatorThreadStart(ThreadState *thr) { 71 allocator()->InitCache(&thr->alloc_cache); 72 internal_allocator()->InitCache(&thr->internal_alloc_cache); 73 } 74 75 void AllocatorThreadFinish(ThreadState *thr) { 76 allocator()->DestroyCache(&thr->alloc_cache); 77 internal_allocator()->DestroyCache(&thr->internal_alloc_cache); 78 } 79 80 void AllocatorPrintStats() { 81 allocator()->PrintStats(); 82 } 83 84 static void SignalUnsafeCall(ThreadState *thr, uptr pc) { 85 if (atomic_load_relaxed(&thr->in_signal_handler) == 0 || 86 !flags()->report_signal_unsafe) 87 return; 88 VarSizeStackTrace stack; 89 ObtainCurrentStack(thr, pc, &stack); 90 if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack)) 91 return; 92 ThreadRegistryLock l(ctx->thread_registry); 93 ScopedReport rep(ReportTypeSignalUnsafe); 94 rep.AddStack(stack, true); 95 OutputReport(thr, rep); 96 } 97 98 void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align, bool signal) { 99 if ((sz >= (1ull << 40)) || (align >= (1ull << 40))) 100 return allocator()->ReturnNullOrDie(); 101 void *p = allocator()->Allocate(&thr->alloc_cache, sz, align); 102 if (p == 0) 103 return 0; 104 if (ctx && ctx->initialized) 105 OnUserAlloc(thr, pc, (uptr)p, sz, true); 106 if (signal) 107 SignalUnsafeCall(thr, pc); 108 return p; 109 } 110 111 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) { 112 if (CallocShouldReturnNullDueToOverflow(size, n)) 113 return allocator()->ReturnNullOrDie(); 114 void *p = user_alloc(thr, pc, n * size); 115 if (p) 116 internal_memset(p, 0, n * size); 117 return p; 118 } 119 120 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) { 121 if (ctx && ctx->initialized) 122 OnUserFree(thr, pc, (uptr)p, true); 123 allocator()->Deallocate(&thr->alloc_cache, p); 124 if (signal) 125 SignalUnsafeCall(thr, pc); 126 } 127 128 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) { 129 DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p); 130 ctx->metamap.AllocBlock(thr, pc, p, sz); 131 if (write && thr->ignore_reads_and_writes == 0) 132 MemoryRangeImitateWrite(thr, pc, (uptr)p, sz); 133 else 134 MemoryResetRange(thr, pc, (uptr)p, sz); 135 } 136 137 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) { 138 CHECK_NE(p, (void*)0); 139 uptr sz = ctx->metamap.FreeBlock(thr, pc, p); 140 DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz); 141 if (write && thr->ignore_reads_and_writes == 0) 142 MemoryRangeFreed(thr, pc, (uptr)p, sz); 143 } 144 145 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) { 146 void *p2 = 0; 147 // FIXME: Handle "shrinking" more efficiently, 148 // it seems that some software actually does this. 149 if (sz) { 150 p2 = user_alloc(thr, pc, sz); 151 if (p2 == 0) 152 return 0; 153 if (p) { 154 uptr oldsz = user_alloc_usable_size(p); 155 internal_memcpy(p2, p, min(oldsz, sz)); 156 } 157 } 158 if (p) 159 user_free(thr, pc, p); 160 return p2; 161 } 162 163 uptr user_alloc_usable_size(const void *p) { 164 if (p == 0) 165 return 0; 166 MBlock *b = ctx->metamap.GetBlock((uptr)p); 167 return b ? b->siz : 0; 168 } 169 170 void invoke_malloc_hook(void *ptr, uptr size) { 171 ThreadState *thr = cur_thread(); 172 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors) 173 return; 174 __sanitizer_malloc_hook(ptr, size); 175 } 176 177 void invoke_free_hook(void *ptr) { 178 ThreadState *thr = cur_thread(); 179 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors) 180 return; 181 __sanitizer_free_hook(ptr); 182 } 183 184 void *internal_alloc(MBlockType typ, uptr sz) { 185 ThreadState *thr = cur_thread(); 186 if (thr->nomalloc) { 187 thr->nomalloc = 0; // CHECK calls internal_malloc(). 188 CHECK(0); 189 } 190 return InternalAlloc(sz, &thr->internal_alloc_cache); 191 } 192 193 void internal_free(void *p) { 194 ThreadState *thr = cur_thread(); 195 if (thr->nomalloc) { 196 thr->nomalloc = 0; // CHECK calls internal_malloc(). 197 CHECK(0); 198 } 199 InternalFree(p, &thr->internal_alloc_cache); 200 } 201 202 } // namespace __tsan 203 204 using namespace __tsan; 205 206 extern "C" { 207 uptr __sanitizer_get_current_allocated_bytes() { 208 uptr stats[AllocatorStatCount]; 209 allocator()->GetStats(stats); 210 return stats[AllocatorStatAllocated]; 211 } 212 213 uptr __sanitizer_get_heap_size() { 214 uptr stats[AllocatorStatCount]; 215 allocator()->GetStats(stats); 216 return stats[AllocatorStatMapped]; 217 } 218 219 uptr __sanitizer_get_free_bytes() { 220 return 1; 221 } 222 223 uptr __sanitizer_get_unmapped_bytes() { 224 return 1; 225 } 226 227 uptr __sanitizer_get_estimated_allocated_size(uptr size) { 228 return size; 229 } 230 231 int __sanitizer_get_ownership(const void *p) { 232 return allocator()->GetBlockBegin(p) != 0; 233 } 234 235 uptr __sanitizer_get_allocated_size(const void *p) { 236 return user_alloc_usable_size(p); 237 } 238 239 void __tsan_on_thread_idle() { 240 ThreadState *thr = cur_thread(); 241 allocator()->SwallowCache(&thr->alloc_cache); 242 internal_allocator()->SwallowCache(&thr->internal_alloc_cache); 243 ctx->metamap.OnThreadIdle(thr); 244 } 245 } // extern "C" 246