Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGBuilder.h - Selection-DAG building --------*- C++ -*---===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
     15 #define LLVM_LIB_CODEGEN_SELECTIONDAG_SELECTIONDAGBUILDER_H
     16 
     17 #include "StatepointLowering.h"
     18 #include "llvm/ADT/APInt.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/CodeGen/Analysis.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/CodeGen/SelectionDAGNodes.h"
     24 #include "llvm/IR/CallSite.h"
     25 #include "llvm/IR/Statepoint.h"
     26 #include "llvm/IR/Constants.h"
     27 #include "llvm/Support/ErrorHandling.h"
     28 #include "llvm/Target/TargetLowering.h"
     29 #include <vector>
     30 
     31 namespace llvm {
     32 
     33 class AddrSpaceCastInst;
     34 class AllocaInst;
     35 class BasicBlock;
     36 class BitCastInst;
     37 class BranchInst;
     38 class CallInst;
     39 class DbgValueInst;
     40 class ExtractElementInst;
     41 class ExtractValueInst;
     42 class FCmpInst;
     43 class FPExtInst;
     44 class FPToSIInst;
     45 class FPToUIInst;
     46 class FPTruncInst;
     47 class Function;
     48 class FunctionLoweringInfo;
     49 class GetElementPtrInst;
     50 class GCFunctionInfo;
     51 class ICmpInst;
     52 class IntToPtrInst;
     53 class IndirectBrInst;
     54 class InvokeInst;
     55 class InsertElementInst;
     56 class InsertValueInst;
     57 class Instruction;
     58 class LoadInst;
     59 class MachineBasicBlock;
     60 class MachineInstr;
     61 class MachineRegisterInfo;
     62 class MDNode;
     63 class MVT;
     64 class PHINode;
     65 class PtrToIntInst;
     66 class ReturnInst;
     67 class SDDbgValue;
     68 class SExtInst;
     69 class SelectInst;
     70 class ShuffleVectorInst;
     71 class SIToFPInst;
     72 class StoreInst;
     73 class SwitchInst;
     74 class DataLayout;
     75 class TargetLibraryInfo;
     76 class TargetLowering;
     77 class TruncInst;
     78 class UIToFPInst;
     79 class UnreachableInst;
     80 class VAArgInst;
     81 class ZExtInst;
     82 
     83 //===----------------------------------------------------------------------===//
     84 /// SelectionDAGBuilder - This is the common target-independent lowering
     85 /// implementation that is parameterized by a TargetLowering object.
     86 ///
     87 class SelectionDAGBuilder {
     88   /// CurInst - The current instruction being visited
     89   const Instruction *CurInst;
     90 
     91   DenseMap<const Value*, SDValue> NodeMap;
     92 
     93   /// UnusedArgNodeMap - Maps argument value for unused arguments. This is used
     94   /// to preserve debug information for incoming arguments.
     95   DenseMap<const Value*, SDValue> UnusedArgNodeMap;
     96 
     97   /// DanglingDebugInfo - Helper type for DanglingDebugInfoMap.
     98   class DanglingDebugInfo {
     99     const DbgValueInst* DI;
    100     DebugLoc dl;
    101     unsigned SDNodeOrder;
    102   public:
    103     DanglingDebugInfo() : DI(nullptr), dl(DebugLoc()), SDNodeOrder(0) { }
    104     DanglingDebugInfo(const DbgValueInst *di, DebugLoc DL, unsigned SDNO) :
    105       DI(di), dl(DL), SDNodeOrder(SDNO) { }
    106     const DbgValueInst* getDI() { return DI; }
    107     DebugLoc getdl() { return dl; }
    108     unsigned getSDNodeOrder() { return SDNodeOrder; }
    109   };
    110 
    111   /// DanglingDebugInfoMap - Keeps track of dbg_values for which we have not
    112   /// yet seen the referent.  We defer handling these until we do see it.
    113   DenseMap<const Value*, DanglingDebugInfo> DanglingDebugInfoMap;
    114 
    115 public:
    116   /// PendingLoads - Loads are not emitted to the program immediately.  We bunch
    117   /// them up and then emit token factor nodes when possible.  This allows us to
    118   /// get simple disambiguation between loads without worrying about alias
    119   /// analysis.
    120   SmallVector<SDValue, 8> PendingLoads;
    121 
    122   /// State used while lowering a statepoint sequence (gc_statepoint,
    123   /// gc_relocate, and gc_result).  See StatepointLowering.hpp/cpp for details.
    124   StatepointLoweringState StatepointLowering;
    125 private:
    126 
    127   /// PendingExports - CopyToReg nodes that copy values to virtual registers
    128   /// for export to other blocks need to be emitted before any terminator
    129   /// instruction, but they have no other ordering requirements. We bunch them
    130   /// up and the emit a single tokenfactor for them just before terminator
    131   /// instructions.
    132   SmallVector<SDValue, 8> PendingExports;
    133 
    134   /// SDNodeOrder - A unique monotonically increasing number used to order the
    135   /// SDNodes we create.
    136   unsigned SDNodeOrder;
    137 
    138   enum CaseClusterKind {
    139     /// A cluster of adjacent case labels with the same destination, or just one
    140     /// case.
    141     CC_Range,
    142     /// A cluster of cases suitable for jump table lowering.
    143     CC_JumpTable,
    144     /// A cluster of cases suitable for bit test lowering.
    145     CC_BitTests
    146   };
    147 
    148   /// A cluster of case labels.
    149   struct CaseCluster {
    150     CaseClusterKind Kind;
    151     const ConstantInt *Low, *High;
    152     union {
    153       MachineBasicBlock *MBB;
    154       unsigned JTCasesIndex;
    155       unsigned BTCasesIndex;
    156     };
    157     BranchProbability Prob;
    158 
    159     static CaseCluster range(const ConstantInt *Low, const ConstantInt *High,
    160                              MachineBasicBlock *MBB, BranchProbability Prob) {
    161       CaseCluster C;
    162       C.Kind = CC_Range;
    163       C.Low = Low;
    164       C.High = High;
    165       C.MBB = MBB;
    166       C.Prob = Prob;
    167       return C;
    168     }
    169 
    170     static CaseCluster jumpTable(const ConstantInt *Low,
    171                                  const ConstantInt *High, unsigned JTCasesIndex,
    172                                  BranchProbability Prob) {
    173       CaseCluster C;
    174       C.Kind = CC_JumpTable;
    175       C.Low = Low;
    176       C.High = High;
    177       C.JTCasesIndex = JTCasesIndex;
    178       C.Prob = Prob;
    179       return C;
    180     }
    181 
    182     static CaseCluster bitTests(const ConstantInt *Low, const ConstantInt *High,
    183                                 unsigned BTCasesIndex, BranchProbability Prob) {
    184       CaseCluster C;
    185       C.Kind = CC_BitTests;
    186       C.Low = Low;
    187       C.High = High;
    188       C.BTCasesIndex = BTCasesIndex;
    189       C.Prob = Prob;
    190       return C;
    191     }
    192   };
    193 
    194   typedef std::vector<CaseCluster> CaseClusterVector;
    195   typedef CaseClusterVector::iterator CaseClusterIt;
    196 
    197   struct CaseBits {
    198     uint64_t Mask;
    199     MachineBasicBlock* BB;
    200     unsigned Bits;
    201     BranchProbability ExtraProb;
    202 
    203     CaseBits(uint64_t mask, MachineBasicBlock* bb, unsigned bits,
    204              BranchProbability Prob):
    205       Mask(mask), BB(bb), Bits(bits), ExtraProb(Prob) { }
    206 
    207     CaseBits() : Mask(0), BB(nullptr), Bits(0) {}
    208   };
    209 
    210   typedef std::vector<CaseBits> CaseBitsVector;
    211 
    212   /// Sort Clusters and merge adjacent cases.
    213   void sortAndRangeify(CaseClusterVector &Clusters);
    214 
    215   /// CaseBlock - This structure is used to communicate between
    216   /// SelectionDAGBuilder and SDISel for the code generation of additional basic
    217   /// blocks needed by multi-case switch statements.
    218   struct CaseBlock {
    219     CaseBlock(ISD::CondCode cc, const Value *cmplhs, const Value *cmprhs,
    220               const Value *cmpmiddle, MachineBasicBlock *truebb,
    221               MachineBasicBlock *falsebb, MachineBasicBlock *me,
    222               BranchProbability trueprob = BranchProbability::getUnknown(),
    223               BranchProbability falseprob = BranchProbability::getUnknown())
    224         : CC(cc), CmpLHS(cmplhs), CmpMHS(cmpmiddle), CmpRHS(cmprhs),
    225           TrueBB(truebb), FalseBB(falsebb), ThisBB(me), TrueProb(trueprob),
    226           FalseProb(falseprob) {}
    227 
    228     // CC - the condition code to use for the case block's setcc node
    229     ISD::CondCode CC;
    230 
    231     // CmpLHS/CmpRHS/CmpMHS - The LHS/MHS/RHS of the comparison to emit.
    232     // Emit by default LHS op RHS. MHS is used for range comparisons:
    233     // If MHS is not null: (LHS <= MHS) and (MHS <= RHS).
    234     const Value *CmpLHS, *CmpMHS, *CmpRHS;
    235 
    236     // TrueBB/FalseBB - the block to branch to if the setcc is true/false.
    237     MachineBasicBlock *TrueBB, *FalseBB;
    238 
    239     // ThisBB - the block into which to emit the code for the setcc and branches
    240     MachineBasicBlock *ThisBB;
    241 
    242     // TrueProb/FalseProb - branch weights.
    243     BranchProbability TrueProb, FalseProb;
    244   };
    245 
    246   struct JumpTable {
    247     JumpTable(unsigned R, unsigned J, MachineBasicBlock *M,
    248               MachineBasicBlock *D): Reg(R), JTI(J), MBB(M), Default(D) {}
    249 
    250     /// Reg - the virtual register containing the index of the jump table entry
    251     //. to jump to.
    252     unsigned Reg;
    253     /// JTI - the JumpTableIndex for this jump table in the function.
    254     unsigned JTI;
    255     /// MBB - the MBB into which to emit the code for the indirect jump.
    256     MachineBasicBlock *MBB;
    257     /// Default - the MBB of the default bb, which is a successor of the range
    258     /// check MBB.  This is when updating PHI nodes in successors.
    259     MachineBasicBlock *Default;
    260   };
    261   struct JumpTableHeader {
    262     JumpTableHeader(APInt F, APInt L, const Value *SV, MachineBasicBlock *H,
    263                     bool E = false):
    264       First(F), Last(L), SValue(SV), HeaderBB(H), Emitted(E) {}
    265     APInt First;
    266     APInt Last;
    267     const Value *SValue;
    268     MachineBasicBlock *HeaderBB;
    269     bool Emitted;
    270   };
    271   typedef std::pair<JumpTableHeader, JumpTable> JumpTableBlock;
    272 
    273   struct BitTestCase {
    274     BitTestCase(uint64_t M, MachineBasicBlock* T, MachineBasicBlock* Tr,
    275                 BranchProbability Prob):
    276       Mask(M), ThisBB(T), TargetBB(Tr), ExtraProb(Prob) { }
    277     uint64_t Mask;
    278     MachineBasicBlock *ThisBB;
    279     MachineBasicBlock *TargetBB;
    280     BranchProbability ExtraProb;
    281   };
    282 
    283   typedef SmallVector<BitTestCase, 3> BitTestInfo;
    284 
    285   struct BitTestBlock {
    286     BitTestBlock(APInt F, APInt R, const Value *SV, unsigned Rg, MVT RgVT,
    287                  bool E, bool CR, MachineBasicBlock *P, MachineBasicBlock *D,
    288                  BitTestInfo C, BranchProbability Pr)
    289         : First(F), Range(R), SValue(SV), Reg(Rg), RegVT(RgVT), Emitted(E),
    290           ContiguousRange(CR), Parent(P), Default(D), Cases(std::move(C)),
    291           Prob(Pr) {}
    292     APInt First;
    293     APInt Range;
    294     const Value *SValue;
    295     unsigned Reg;
    296     MVT RegVT;
    297     bool Emitted;
    298     bool ContiguousRange;
    299     MachineBasicBlock *Parent;
    300     MachineBasicBlock *Default;
    301     BitTestInfo Cases;
    302     BranchProbability Prob;
    303     BranchProbability DefaultProb;
    304   };
    305 
    306   /// Minimum jump table density, in percent.
    307   enum { MinJumpTableDensity = 40 };
    308 
    309   /// Check whether a range of clusters is dense enough for a jump table.
    310   bool isDense(const CaseClusterVector &Clusters, unsigned *TotalCases,
    311                unsigned First, unsigned Last);
    312 
    313   /// Build a jump table cluster from Clusters[First..Last]. Returns false if it
    314   /// decides it's not a good idea.
    315   bool buildJumpTable(CaseClusterVector &Clusters, unsigned First,
    316                       unsigned Last, const SwitchInst *SI,
    317                       MachineBasicBlock *DefaultMBB, CaseCluster &JTCluster);
    318 
    319   /// Find clusters of cases suitable for jump table lowering.
    320   void findJumpTables(CaseClusterVector &Clusters, const SwitchInst *SI,
    321                       MachineBasicBlock *DefaultMBB);
    322 
    323   /// Check whether the range [Low,High] fits in a machine word.
    324   bool rangeFitsInWord(const APInt &Low, const APInt &High);
    325 
    326   /// Check whether these clusters are suitable for lowering with bit tests based
    327   /// on the number of destinations, comparison metric, and range.
    328   bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
    329                              const APInt &Low, const APInt &High);
    330 
    331   /// Build a bit test cluster from Clusters[First..Last]. Returns false if it
    332   /// decides it's not a good idea.
    333   bool buildBitTests(CaseClusterVector &Clusters, unsigned First, unsigned Last,
    334                      const SwitchInst *SI, CaseCluster &BTCluster);
    335 
    336   /// Find clusters of cases suitable for bit test lowering.
    337   void findBitTestClusters(CaseClusterVector &Clusters, const SwitchInst *SI);
    338 
    339   struct SwitchWorkListItem {
    340     MachineBasicBlock *MBB;
    341     CaseClusterIt FirstCluster;
    342     CaseClusterIt LastCluster;
    343     const ConstantInt *GE;
    344     const ConstantInt *LT;
    345     BranchProbability DefaultProb;
    346   };
    347   typedef SmallVector<SwitchWorkListItem, 4> SwitchWorkList;
    348 
    349   /// Determine the rank by weight of CC in [First,Last]. If CC has more weight
    350   /// than each cluster in the range, its rank is 0.
    351   static unsigned caseClusterRank(const CaseCluster &CC, CaseClusterIt First,
    352                                   CaseClusterIt Last);
    353 
    354   /// Emit comparison and split W into two subtrees.
    355   void splitWorkItem(SwitchWorkList &WorkList, const SwitchWorkListItem &W,
    356                      Value *Cond, MachineBasicBlock *SwitchMBB);
    357 
    358   /// Lower W.
    359   void lowerWorkItem(SwitchWorkListItem W, Value *Cond,
    360                      MachineBasicBlock *SwitchMBB,
    361                      MachineBasicBlock *DefaultMBB);
    362 
    363 
    364   /// A class which encapsulates all of the information needed to generate a
    365   /// stack protector check and signals to isel via its state being initialized
    366   /// that a stack protector needs to be generated.
    367   ///
    368   /// *NOTE* The following is a high level documentation of SelectionDAG Stack
    369   /// Protector Generation. The reason that it is placed here is for a lack of
    370   /// other good places to stick it.
    371   ///
    372   /// High Level Overview of SelectionDAG Stack Protector Generation:
    373   ///
    374   /// Previously, generation of stack protectors was done exclusively in the
    375   /// pre-SelectionDAG Codegen LLVM IR Pass "Stack Protector". This necessitated
    376   /// splitting basic blocks at the IR level to create the success/failure basic
    377   /// blocks in the tail of the basic block in question. As a result of this,
    378   /// calls that would have qualified for the sibling call optimization were no
    379   /// longer eligible for optimization since said calls were no longer right in
    380   /// the "tail position" (i.e. the immediate predecessor of a ReturnInst
    381   /// instruction).
    382   ///
    383   /// Then it was noticed that since the sibling call optimization causes the
    384   /// callee to reuse the caller's stack, if we could delay the generation of
    385   /// the stack protector check until later in CodeGen after the sibling call
    386   /// decision was made, we get both the tail call optimization and the stack
    387   /// protector check!
    388   ///
    389   /// A few goals in solving this problem were:
    390   ///
    391   ///   1. Preserve the architecture independence of stack protector generation.
    392   ///
    393   ///   2. Preserve the normal IR level stack protector check for platforms like
    394   ///      OpenBSD for which we support platform-specific stack protector
    395   ///      generation.
    396   ///
    397   /// The main problem that guided the present solution is that one can not
    398   /// solve this problem in an architecture independent manner at the IR level
    399   /// only. This is because:
    400   ///
    401   ///   1. The decision on whether or not to perform a sibling call on certain
    402   ///      platforms (for instance i386) requires lower level information
    403   ///      related to available registers that can not be known at the IR level.
    404   ///
    405   ///   2. Even if the previous point were not true, the decision on whether to
    406   ///      perform a tail call is done in LowerCallTo in SelectionDAG which
    407   ///      occurs after the Stack Protector Pass. As a result, one would need to
    408   ///      put the relevant callinst into the stack protector check success
    409   ///      basic block (where the return inst is placed) and then move it back
    410   ///      later at SelectionDAG/MI time before the stack protector check if the
    411   ///      tail call optimization failed. The MI level option was nixed
    412   ///      immediately since it would require platform-specific pattern
    413   ///      matching. The SelectionDAG level option was nixed because
    414   ///      SelectionDAG only processes one IR level basic block at a time
    415   ///      implying one could not create a DAG Combine to move the callinst.
    416   ///
    417   /// To get around this problem a few things were realized:
    418   ///
    419   ///   1. While one can not handle multiple IR level basic blocks at the
    420   ///      SelectionDAG Level, one can generate multiple machine basic blocks
    421   ///      for one IR level basic block. This is how we handle bit tests and
    422   ///      switches.
    423   ///
    424   ///   2. At the MI level, tail calls are represented via a special return
    425   ///      MIInst called "tcreturn". Thus if we know the basic block in which we
    426   ///      wish to insert the stack protector check, we get the correct behavior
    427   ///      by always inserting the stack protector check right before the return
    428   ///      statement. This is a "magical transformation" since no matter where
    429   ///      the stack protector check intrinsic is, we always insert the stack
    430   ///      protector check code at the end of the BB.
    431   ///
    432   /// Given the aforementioned constraints, the following solution was devised:
    433   ///
    434   ///   1. On platforms that do not support SelectionDAG stack protector check
    435   ///      generation, allow for the normal IR level stack protector check
    436   ///      generation to continue.
    437   ///
    438   ///   2. On platforms that do support SelectionDAG stack protector check
    439   ///      generation:
    440   ///
    441   ///     a. Use the IR level stack protector pass to decide if a stack
    442   ///        protector is required/which BB we insert the stack protector check
    443   ///        in by reusing the logic already therein. If we wish to generate a
    444   ///        stack protector check in a basic block, we place a special IR
    445   ///        intrinsic called llvm.stackprotectorcheck right before the BB's
    446   ///        returninst or if there is a callinst that could potentially be
    447   ///        sibling call optimized, before the call inst.
    448   ///
    449   ///     b. Then when a BB with said intrinsic is processed, we codegen the BB
    450   ///        normally via SelectBasicBlock. In said process, when we visit the
    451   ///        stack protector check, we do not actually emit anything into the
    452   ///        BB. Instead, we just initialize the stack protector descriptor
    453   ///        class (which involves stashing information/creating the success
    454   ///        mbbb and the failure mbb if we have not created one for this
    455   ///        function yet) and export the guard variable that we are going to
    456   ///        compare.
    457   ///
    458   ///     c. After we finish selecting the basic block, in FinishBasicBlock if
    459   ///        the StackProtectorDescriptor attached to the SelectionDAGBuilder is
    460   ///        initialized, we first find a splice point in the parent basic block
    461   ///        before the terminator and then splice the terminator of said basic
    462   ///        block into the success basic block. Then we code-gen a new tail for
    463   ///        the parent basic block consisting of the two loads, the comparison,
    464   ///        and finally two branches to the success/failure basic blocks. We
    465   ///        conclude by code-gening the failure basic block if we have not
    466   ///        code-gened it already (all stack protector checks we generate in
    467   ///        the same function, use the same failure basic block).
    468   class StackProtectorDescriptor {
    469   public:
    470     StackProtectorDescriptor() : ParentMBB(nullptr), SuccessMBB(nullptr),
    471                                  FailureMBB(nullptr), Guard(nullptr),
    472                                  GuardReg(0) { }
    473 
    474     /// Returns true if all fields of the stack protector descriptor are
    475     /// initialized implying that we should/are ready to emit a stack protector.
    476     bool shouldEmitStackProtector() const {
    477       return ParentMBB && SuccessMBB && FailureMBB && Guard;
    478     }
    479 
    480     /// Initialize the stack protector descriptor structure for a new basic
    481     /// block.
    482     void initialize(const BasicBlock *BB,
    483                     MachineBasicBlock *MBB,
    484                     const CallInst &StackProtCheckCall) {
    485       // Make sure we are not initialized yet.
    486       assert(!shouldEmitStackProtector() && "Stack Protector Descriptor is "
    487              "already initialized!");
    488       ParentMBB = MBB;
    489       SuccessMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ true);
    490       FailureMBB = AddSuccessorMBB(BB, MBB, /* IsLikely */ false, FailureMBB);
    491       if (!Guard)
    492         Guard = StackProtCheckCall.getArgOperand(0);
    493     }
    494 
    495     /// Reset state that changes when we handle different basic blocks.
    496     ///
    497     /// This currently includes:
    498     ///
    499     /// 1. The specific basic block we are generating a
    500     /// stack protector for (ParentMBB).
    501     ///
    502     /// 2. The successor machine basic block that will contain the tail of
    503     /// parent mbb after we create the stack protector check (SuccessMBB). This
    504     /// BB is visited only on stack protector check success.
    505     void resetPerBBState() {
    506       ParentMBB = nullptr;
    507       SuccessMBB = nullptr;
    508     }
    509 
    510     /// Reset state that only changes when we switch functions.
    511     ///
    512     /// This currently includes:
    513     ///
    514     /// 1. FailureMBB since we reuse the failure code path for all stack
    515     /// protector checks created in an individual function.
    516     ///
    517     /// 2.The guard variable since the guard variable we are checking against is
    518     /// always the same.
    519     void resetPerFunctionState() {
    520       FailureMBB = nullptr;
    521       Guard = nullptr;
    522       GuardReg = 0;
    523     }
    524 
    525     MachineBasicBlock *getParentMBB() { return ParentMBB; }
    526     MachineBasicBlock *getSuccessMBB() { return SuccessMBB; }
    527     MachineBasicBlock *getFailureMBB() { return FailureMBB; }
    528     const Value *getGuard() { return Guard; }
    529 
    530     unsigned getGuardReg() const { return GuardReg; }
    531     void setGuardReg(unsigned R) { GuardReg = R; }
    532 
    533   private:
    534     /// The basic block for which we are generating the stack protector.
    535     ///
    536     /// As a result of stack protector generation, we will splice the
    537     /// terminators of this basic block into the successor mbb SuccessMBB and
    538     /// replace it with a compare/branch to the successor mbbs
    539     /// SuccessMBB/FailureMBB depending on whether or not the stack protector
    540     /// was violated.
    541     MachineBasicBlock *ParentMBB;
    542 
    543     /// A basic block visited on stack protector check success that contains the
    544     /// terminators of ParentMBB.
    545     MachineBasicBlock *SuccessMBB;
    546 
    547     /// This basic block visited on stack protector check failure that will
    548     /// contain a call to __stack_chk_fail().
    549     MachineBasicBlock *FailureMBB;
    550 
    551     /// The guard variable which we will compare against the stored value in the
    552     /// stack protector stack slot.
    553     const Value *Guard;
    554 
    555     /// The virtual register holding the stack guard value.
    556     unsigned GuardReg;
    557 
    558     /// Add a successor machine basic block to ParentMBB. If the successor mbb
    559     /// has not been created yet (i.e. if SuccMBB = 0), then the machine basic
    560     /// block will be created. Assign a large weight if IsLikely is true.
    561     MachineBasicBlock *AddSuccessorMBB(const BasicBlock *BB,
    562                                        MachineBasicBlock *ParentMBB,
    563                                        bool IsLikely,
    564                                        MachineBasicBlock *SuccMBB = nullptr);
    565   };
    566 
    567 private:
    568   const TargetMachine &TM;
    569 public:
    570   /// Lowest valid SDNodeOrder. The special case 0 is reserved for scheduling
    571   /// nodes without a corresponding SDNode.
    572   static const unsigned LowestSDNodeOrder = 1;
    573 
    574   SelectionDAG &DAG;
    575   const DataLayout *DL;
    576   AliasAnalysis *AA;
    577   const TargetLibraryInfo *LibInfo;
    578 
    579   /// SwitchCases - Vector of CaseBlock structures used to communicate
    580   /// SwitchInst code generation information.
    581   std::vector<CaseBlock> SwitchCases;
    582   /// JTCases - Vector of JumpTable structures used to communicate
    583   /// SwitchInst code generation information.
    584   std::vector<JumpTableBlock> JTCases;
    585   /// BitTestCases - Vector of BitTestBlock structures used to communicate
    586   /// SwitchInst code generation information.
    587   std::vector<BitTestBlock> BitTestCases;
    588   /// A StackProtectorDescriptor structure used to communicate stack protector
    589   /// information in between SelectBasicBlock and FinishBasicBlock.
    590   StackProtectorDescriptor SPDescriptor;
    591 
    592   // Emit PHI-node-operand constants only once even if used by multiple
    593   // PHI nodes.
    594   DenseMap<const Constant *, unsigned> ConstantsOut;
    595 
    596   /// FuncInfo - Information about the function as a whole.
    597   ///
    598   FunctionLoweringInfo &FuncInfo;
    599 
    600   /// GFI - Garbage collection metadata for the function.
    601   GCFunctionInfo *GFI;
    602 
    603   /// LPadToCallSiteMap - Map a landing pad to the call site indexes.
    604   DenseMap<MachineBasicBlock*, SmallVector<unsigned, 4> > LPadToCallSiteMap;
    605 
    606   /// HasTailCall - This is set to true if a call in the current
    607   /// block has been translated as a tail call. In this case,
    608   /// no subsequent DAG nodes should be created.
    609   ///
    610   bool HasTailCall;
    611 
    612   LLVMContext *Context;
    613 
    614   SelectionDAGBuilder(SelectionDAG &dag, FunctionLoweringInfo &funcinfo,
    615                       CodeGenOpt::Level ol)
    616     : CurInst(nullptr), SDNodeOrder(LowestSDNodeOrder), TM(dag.getTarget()),
    617       DAG(dag), FuncInfo(funcinfo),
    618       HasTailCall(false) {
    619   }
    620 
    621   void init(GCFunctionInfo *gfi, AliasAnalysis &aa,
    622             const TargetLibraryInfo *li);
    623 
    624   /// clear - Clear out the current SelectionDAG and the associated
    625   /// state and prepare this SelectionDAGBuilder object to be used
    626   /// for a new block. This doesn't clear out information about
    627   /// additional blocks that are needed to complete switch lowering
    628   /// or PHI node updating; that information is cleared out as it is
    629   /// consumed.
    630   void clear();
    631 
    632   /// clearDanglingDebugInfo - Clear the dangling debug information
    633   /// map. This function is separated from the clear so that debug
    634   /// information that is dangling in a basic block can be properly
    635   /// resolved in a different basic block. This allows the
    636   /// SelectionDAG to resolve dangling debug information attached
    637   /// to PHI nodes.
    638   void clearDanglingDebugInfo();
    639 
    640   /// getRoot - Return the current virtual root of the Selection DAG,
    641   /// flushing any PendingLoad items. This must be done before emitting
    642   /// a store or any other node that may need to be ordered after any
    643   /// prior load instructions.
    644   ///
    645   SDValue getRoot();
    646 
    647   /// getControlRoot - Similar to getRoot, but instead of flushing all the
    648   /// PendingLoad items, flush all the PendingExports items. It is necessary
    649   /// to do this before emitting a terminator instruction.
    650   ///
    651   SDValue getControlRoot();
    652 
    653   SDLoc getCurSDLoc() const {
    654     return SDLoc(CurInst, SDNodeOrder);
    655   }
    656 
    657   DebugLoc getCurDebugLoc() const {
    658     return CurInst ? CurInst->getDebugLoc() : DebugLoc();
    659   }
    660 
    661   unsigned getSDNodeOrder() const { return SDNodeOrder; }
    662 
    663   void CopyValueToVirtualRegister(const Value *V, unsigned Reg);
    664 
    665   void visit(const Instruction &I);
    666 
    667   void visit(unsigned Opcode, const User &I);
    668 
    669   /// getCopyFromRegs - If there was virtual register allocated for the value V
    670   /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
    671   SDValue getCopyFromRegs(const Value *V, Type *Ty);
    672 
    673   // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
    674   // generate the debug data structures now that we've seen its definition.
    675   void resolveDanglingDebugInfo(const Value *V, SDValue Val);
    676   SDValue getValue(const Value *V);
    677   bool findValue(const Value *V) const;
    678 
    679   SDValue getNonRegisterValue(const Value *V);
    680   SDValue getValueImpl(const Value *V);
    681 
    682   void setValue(const Value *V, SDValue NewN) {
    683     SDValue &N = NodeMap[V];
    684     assert(!N.getNode() && "Already set a value for this node!");
    685     N = NewN;
    686   }
    687 
    688   void setUnusedArgValue(const Value *V, SDValue NewN) {
    689     SDValue &N = UnusedArgNodeMap[V];
    690     assert(!N.getNode() && "Already set a value for this node!");
    691     N = NewN;
    692   }
    693 
    694   void FindMergedConditions(const Value *Cond, MachineBasicBlock *TBB,
    695                             MachineBasicBlock *FBB, MachineBasicBlock *CurBB,
    696                             MachineBasicBlock *SwitchBB,
    697                             Instruction::BinaryOps Opc, BranchProbability TW,
    698                             BranchProbability FW);
    699   void EmitBranchForMergedCondition(const Value *Cond, MachineBasicBlock *TBB,
    700                                     MachineBasicBlock *FBB,
    701                                     MachineBasicBlock *CurBB,
    702                                     MachineBasicBlock *SwitchBB,
    703                                     BranchProbability TW, BranchProbability FW);
    704   bool ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases);
    705   bool isExportableFromCurrentBlock(const Value *V, const BasicBlock *FromBB);
    706   void CopyToExportRegsIfNeeded(const Value *V);
    707   void ExportFromCurrentBlock(const Value *V);
    708   void LowerCallTo(ImmutableCallSite CS, SDValue Callee, bool IsTailCall,
    709                    const BasicBlock *EHPadBB = nullptr);
    710 
    711   std::pair<SDValue, SDValue> lowerCallOperands(
    712           ImmutableCallSite CS,
    713           unsigned ArgIdx,
    714           unsigned NumArgs,
    715           SDValue Callee,
    716           Type *ReturnTy,
    717           const BasicBlock *EHPadBB = nullptr,
    718           bool IsPatchPoint = false);
    719 
    720   /// UpdateSplitBlock - When an MBB was split during scheduling, update the
    721   /// references that need to refer to the last resulting block.
    722   void UpdateSplitBlock(MachineBasicBlock *First, MachineBasicBlock *Last);
    723 
    724   // This function is responsible for the whole statepoint lowering process.
    725   // It uniformly handles invoke and call statepoints.
    726   void LowerStatepoint(ImmutableStatepoint Statepoint,
    727                        const BasicBlock *EHPadBB = nullptr);
    728 private:
    729   std::pair<SDValue, SDValue>
    730   lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
    731                  const BasicBlock *EHPadBB = nullptr);
    732 
    733   // Terminator instructions.
    734   void visitRet(const ReturnInst &I);
    735   void visitBr(const BranchInst &I);
    736   void visitSwitch(const SwitchInst &I);
    737   void visitIndirectBr(const IndirectBrInst &I);
    738   void visitUnreachable(const UnreachableInst &I);
    739   void visitCleanupRet(const CleanupReturnInst &I);
    740   void visitCatchSwitch(const CatchSwitchInst &I);
    741   void visitCatchRet(const CatchReturnInst &I);
    742   void visitCatchPad(const CatchPadInst &I);
    743   void visitCleanupPad(const CleanupPadInst &CPI);
    744 
    745   BranchProbability getEdgeProbability(const MachineBasicBlock *Src,
    746                                        const MachineBasicBlock *Dst) const;
    747   void addSuccessorWithProb(
    748       MachineBasicBlock *Src, MachineBasicBlock *Dst,
    749       BranchProbability Prob = BranchProbability::getUnknown());
    750 
    751 public:
    752   void visitSwitchCase(CaseBlock &CB,
    753                        MachineBasicBlock *SwitchBB);
    754   void visitSPDescriptorParent(StackProtectorDescriptor &SPD,
    755                                MachineBasicBlock *ParentBB);
    756   void visitSPDescriptorFailure(StackProtectorDescriptor &SPD);
    757   void visitBitTestHeader(BitTestBlock &B, MachineBasicBlock *SwitchBB);
    758   void visitBitTestCase(BitTestBlock &BB,
    759                         MachineBasicBlock* NextMBB,
    760                         BranchProbability BranchProbToNext,
    761                         unsigned Reg,
    762                         BitTestCase &B,
    763                         MachineBasicBlock *SwitchBB);
    764   void visitJumpTable(JumpTable &JT);
    765   void visitJumpTableHeader(JumpTable &JT, JumpTableHeader &JTH,
    766                             MachineBasicBlock *SwitchBB);
    767 
    768 private:
    769   // These all get lowered before this pass.
    770   void visitInvoke(const InvokeInst &I);
    771   void visitResume(const ResumeInst &I);
    772 
    773   void visitBinary(const User &I, unsigned OpCode);
    774   void visitShift(const User &I, unsigned Opcode);
    775   void visitAdd(const User &I)  { visitBinary(I, ISD::ADD); }
    776   void visitFAdd(const User &I) { visitBinary(I, ISD::FADD); }
    777   void visitSub(const User &I)  { visitBinary(I, ISD::SUB); }
    778   void visitFSub(const User &I);
    779   void visitMul(const User &I)  { visitBinary(I, ISD::MUL); }
    780   void visitFMul(const User &I) { visitBinary(I, ISD::FMUL); }
    781   void visitURem(const User &I) { visitBinary(I, ISD::UREM); }
    782   void visitSRem(const User &I) { visitBinary(I, ISD::SREM); }
    783   void visitFRem(const User &I) { visitBinary(I, ISD::FREM); }
    784   void visitUDiv(const User &I) { visitBinary(I, ISD::UDIV); }
    785   void visitSDiv(const User &I);
    786   void visitFDiv(const User &I) { visitBinary(I, ISD::FDIV); }
    787   void visitAnd (const User &I) { visitBinary(I, ISD::AND); }
    788   void visitOr  (const User &I) { visitBinary(I, ISD::OR); }
    789   void visitXor (const User &I) { visitBinary(I, ISD::XOR); }
    790   void visitShl (const User &I) { visitShift(I, ISD::SHL); }
    791   void visitLShr(const User &I) { visitShift(I, ISD::SRL); }
    792   void visitAShr(const User &I) { visitShift(I, ISD::SRA); }
    793   void visitICmp(const User &I);
    794   void visitFCmp(const User &I);
    795   // Visit the conversion instructions
    796   void visitTrunc(const User &I);
    797   void visitZExt(const User &I);
    798   void visitSExt(const User &I);
    799   void visitFPTrunc(const User &I);
    800   void visitFPExt(const User &I);
    801   void visitFPToUI(const User &I);
    802   void visitFPToSI(const User &I);
    803   void visitUIToFP(const User &I);
    804   void visitSIToFP(const User &I);
    805   void visitPtrToInt(const User &I);
    806   void visitIntToPtr(const User &I);
    807   void visitBitCast(const User &I);
    808   void visitAddrSpaceCast(const User &I);
    809 
    810   void visitExtractElement(const User &I);
    811   void visitInsertElement(const User &I);
    812   void visitShuffleVector(const User &I);
    813 
    814   void visitExtractValue(const ExtractValueInst &I);
    815   void visitInsertValue(const InsertValueInst &I);
    816   void visitLandingPad(const LandingPadInst &I);
    817 
    818   void visitGetElementPtr(const User &I);
    819   void visitSelect(const User &I);
    820 
    821   void visitAlloca(const AllocaInst &I);
    822   void visitLoad(const LoadInst &I);
    823   void visitStore(const StoreInst &I);
    824   void visitMaskedLoad(const CallInst &I);
    825   void visitMaskedStore(const CallInst &I);
    826   void visitMaskedGather(const CallInst &I);
    827   void visitMaskedScatter(const CallInst &I);
    828   void visitAtomicCmpXchg(const AtomicCmpXchgInst &I);
    829   void visitAtomicRMW(const AtomicRMWInst &I);
    830   void visitFence(const FenceInst &I);
    831   void visitPHI(const PHINode &I);
    832   void visitCall(const CallInst &I);
    833   bool visitMemCmpCall(const CallInst &I);
    834   bool visitMemChrCall(const CallInst &I);
    835   bool visitStrCpyCall(const CallInst &I, bool isStpcpy);
    836   bool visitStrCmpCall(const CallInst &I);
    837   bool visitStrLenCall(const CallInst &I);
    838   bool visitStrNLenCall(const CallInst &I);
    839   bool visitUnaryFloatCall(const CallInst &I, unsigned Opcode);
    840   bool visitBinaryFloatCall(const CallInst &I, unsigned Opcode);
    841   void visitAtomicLoad(const LoadInst &I);
    842   void visitAtomicStore(const StoreInst &I);
    843 
    844   void visitInlineAsm(ImmutableCallSite CS);
    845   const char *visitIntrinsicCall(const CallInst &I, unsigned Intrinsic);
    846   void visitTargetIntrinsic(const CallInst &I, unsigned Intrinsic);
    847 
    848   void visitVAStart(const CallInst &I);
    849   void visitVAArg(const VAArgInst &I);
    850   void visitVAEnd(const CallInst &I);
    851   void visitVACopy(const CallInst &I);
    852   void visitStackmap(const CallInst &I);
    853   void visitPatchpoint(ImmutableCallSite CS,
    854                        const BasicBlock *EHPadBB = nullptr);
    855 
    856   // These three are implemented in StatepointLowering.cpp
    857   void visitStatepoint(const CallInst &I);
    858   void visitGCRelocate(const CallInst &I);
    859   void visitGCResult(const CallInst &I);
    860 
    861   void visitUserOp1(const Instruction &I) {
    862     llvm_unreachable("UserOp1 should not exist at instruction selection time!");
    863   }
    864   void visitUserOp2(const Instruction &I) {
    865     llvm_unreachable("UserOp2 should not exist at instruction selection time!");
    866   }
    867 
    868   void processIntegerCallValue(const Instruction &I,
    869                                SDValue Value, bool IsSigned);
    870 
    871   void HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB);
    872 
    873   /// EmitFuncArgumentDbgValue - If V is an function argument then create
    874   /// corresponding DBG_VALUE machine instruction for it now. At the end of
    875   /// instruction selection, they will be inserted to the entry BB.
    876   bool EmitFuncArgumentDbgValue(const Value *V, DILocalVariable *Variable,
    877                                 DIExpression *Expr, DILocation *DL,
    878                                 int64_t Offset, bool IsIndirect,
    879                                 const SDValue &N);
    880 
    881   /// Return the next block after MBB, or nullptr if there is none.
    882   MachineBasicBlock *NextBlock(MachineBasicBlock *MBB);
    883 
    884   /// Update the DAG and DAG builder with the relevant information after
    885   /// a new root node has been created which could be a tail call.
    886   void updateDAGForMaybeTailCall(SDValue MaybeTC);
    887 };
    888 
    889 /// RegsForValue - This struct represents the registers (physical or virtual)
    890 /// that a particular set of values is assigned, and the type information about
    891 /// the value. The most common situation is to represent one value at a time,
    892 /// but struct or array values are handled element-wise as multiple values.  The
    893 /// splitting of aggregates is performed recursively, so that we never have
    894 /// aggregate-typed registers. The values at this point do not necessarily have
    895 /// legal types, so each value may require one or more registers of some legal
    896 /// type.
    897 ///
    898 struct RegsForValue {
    899   /// ValueVTs - The value types of the values, which may not be legal, and
    900   /// may need be promoted or synthesized from one or more registers.
    901   ///
    902   SmallVector<EVT, 4> ValueVTs;
    903 
    904   /// RegVTs - The value types of the registers. This is the same size as
    905   /// ValueVTs and it records, for each value, what the type of the assigned
    906   /// register or registers are. (Individual values are never synthesized
    907   /// from more than one type of register.)
    908   ///
    909   /// With virtual registers, the contents of RegVTs is redundant with TLI's
    910   /// getRegisterType member function, however when with physical registers
    911   /// it is necessary to have a separate record of the types.
    912   ///
    913   SmallVector<MVT, 4> RegVTs;
    914 
    915   /// Regs - This list holds the registers assigned to the values.
    916   /// Each legal or promoted value requires one register, and each
    917   /// expanded value requires multiple registers.
    918   ///
    919   SmallVector<unsigned, 4> Regs;
    920 
    921   RegsForValue();
    922 
    923   RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt, EVT valuevt);
    924 
    925   RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
    926                const DataLayout &DL, unsigned Reg, Type *Ty);
    927 
    928   /// append - Add the specified values to this one.
    929   void append(const RegsForValue &RHS) {
    930     ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
    931     RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
    932     Regs.append(RHS.Regs.begin(), RHS.Regs.end());
    933   }
    934 
    935   /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
    936   /// this value and returns the result as a ValueVTs value.  This uses
    937   /// Chain/Flag as the input and updates them for the output Chain/Flag.
    938   /// If the Flag pointer is NULL, no flag is used.
    939   SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
    940                           SDLoc dl,
    941                           SDValue &Chain, SDValue *Flag,
    942                           const Value *V = nullptr) const;
    943 
    944   /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the specified
    945   /// value into the registers specified by this object.  This uses Chain/Flag
    946   /// as the input and updates them for the output Chain/Flag.  If the Flag
    947   /// pointer is nullptr, no flag is used.  If V is not nullptr, then it is used
    948   /// in printing better diagnostic messages on error.
    949   void
    950   getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
    951                 SDValue *Flag, const Value *V = nullptr,
    952                 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
    953 
    954   /// AddInlineAsmOperands - Add this value to the specified inlineasm node
    955   /// operand list.  This adds the code marker, matching input operand index
    956   /// (if applicable), and includes the number of values added into it.
    957   void AddInlineAsmOperands(unsigned Kind,
    958                             bool HasMatching, unsigned MatchingIdx, SDLoc dl,
    959                             SelectionDAG &DAG,
    960                             std::vector<SDValue> &Ops) const;
    961 };
    962 
    963 } // end namespace llvm
    964 
    965 #endif
    966