Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrPathUtils_DEFINED
      9 #define GrPathUtils_DEFINED
     10 
     11 #include "SkRect.h"
     12 #include "SkPathPriv.h"
     13 #include "SkTArray.h"
     14 
     15 class SkMatrix;
     16 
     17 /**
     18  *  Utilities for evaluating paths.
     19  */
     20 namespace GrPathUtils {
     21     SkScalar scaleToleranceToSrc(SkScalar devTol,
     22                                  const SkMatrix& viewM,
     23                                  const SkRect& pathBounds);
     24 
     25     /// Since we divide by tol if we're computing exact worst-case bounds,
     26     /// very small tolerances will be increased to gMinCurveTol.
     27     int worstCasePointCount(const SkPath&,
     28                             int* subpaths,
     29                             SkScalar tol);
     30 
     31     /// Since we divide by tol if we're computing exact worst-case bounds,
     32     /// very small tolerances will be increased to gMinCurveTol.
     33     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
     34 
     35     uint32_t generateQuadraticPoints(const SkPoint& p0,
     36                                      const SkPoint& p1,
     37                                      const SkPoint& p2,
     38                                      SkScalar tolSqd,
     39                                      SkPoint** points,
     40                                      uint32_t pointsLeft);
     41 
     42     /// Since we divide by tol if we're computing exact worst-case bounds,
     43     /// very small tolerances will be increased to gMinCurveTol.
     44     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
     45 
     46     uint32_t generateCubicPoints(const SkPoint& p0,
     47                                  const SkPoint& p1,
     48                                  const SkPoint& p2,
     49                                  const SkPoint& p3,
     50                                  SkScalar tolSqd,
     51                                  SkPoint** points,
     52                                  uint32_t pointsLeft);
     53 
     54     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
     55     // u^2-v = 0 specifies the quad. The matrix is determined by the control
     56     // points of the quadratic.
     57     class QuadUVMatrix {
     58     public:
     59         QuadUVMatrix() {};
     60         // Initialize the matrix from the control pts
     61         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
     62         void set(const SkPoint controlPts[3]);
     63 
     64         /**
     65          * Applies the matrix to vertex positions to compute UV coords. This
     66          * has been templated so that the compiler can easliy unroll the loop
     67          * and reorder to avoid stalling for loads. The assumption is that a
     68          * path renderer will have a small fixed number of vertices that it
     69          * uploads for each quad.
     70          *
     71          * N is the number of vertices.
     72          * STRIDE is the size of each vertex.
     73          * UV_OFFSET is the offset of the UV values within each vertex.
     74          * vertices is a pointer to the first vertex.
     75          */
     76         template <int N, size_t STRIDE, size_t UV_OFFSET>
     77         void apply(const void* vertices) const {
     78             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
     79             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
     80             float sx = fM[0];
     81             float kx = fM[1];
     82             float tx = fM[2];
     83             float ky = fM[3];
     84             float sy = fM[4];
     85             float ty = fM[5];
     86             for (int i = 0; i < N; ++i) {
     87                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
     88                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
     89                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
     90                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
     91                 xyPtr += STRIDE;
     92                 uvPtr += STRIDE;
     93             }
     94         }
     95     private:
     96         float fM[6];
     97     };
     98 
     99     // Input is 3 control points and a weight for a bezier conic. Calculates the
    100     // three linear functionals (K,L,M) that represent the implicit equation of the
    101     // conic, K^2 - LM.
    102     //
    103     // Output:
    104     //  K = (klm[0], klm[1], klm[2])
    105     //  L = (klm[3], klm[4], klm[5])
    106     //  M = (klm[6], klm[7], klm[8])
    107     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]);
    108 
    109     // Converts a cubic into a sequence of quads. If working in device space
    110     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
    111     // result is sets of 3 points in quads.
    112     void convertCubicToQuads(const SkPoint p[4],
    113                              SkScalar tolScale,
    114                              SkTArray<SkPoint, true>* quads);
    115 
    116     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
    117     // ensure that the new control point lies between the lines ab and cd. The
    118     // convex path renderer requires this. It starts with a path where all the
    119     // control points taken together form a convex polygon. It relies on this
    120     // property and the quadratic approximation of cubics step cannot alter it.
    121     // This variation enforces this constraint. The cubic must be simple and dir
    122     // must specify the orientation of the contour containing the cubic.
    123     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
    124                                                 SkScalar tolScale,
    125                                                 SkPathPriv::FirstDirection dir,
    126                                                 SkTArray<SkPoint, true>* quads);
    127 
    128     // Chops the cubic bezier passed in by src, at the double point (intersection point)
    129     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
    130     // the double point: ls and ms. We chop the cubic at these values if they are between 0 and 1.
    131     // Return value:
    132     // Value of 3: ls and ms are both between (0,1), and dst will contain the three cubics,
    133     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
    134     // Value of 2: Only one of ls and ms are between (0,1), and dst will contain the two cubics,
    135     //             dst[0..3] and dst[3..6] if dst is not nullptr
    136     // Value of 1: Neither ls or ms are between (0,1), and dst will contain the one original cubic,
    137     //             dst[0..3] if dst is not nullptr
    138     //
    139     // Optional KLM Calculation:
    140     // The function can also return the KLM linear functionals for the chopped cubic implicit form
    141     // of K^3 - LM.
    142     // It will calculate a single set of KLM values that can be shared by all sub cubics, except
    143     // for the subsection that is "the loop" the K and L values need to be negated.
    144     // Output:
    145     // klm:     Holds the values for the linear functionals as:
    146     //          K = (klm[0], klm[1], klm[2])
    147     //          L = (klm[3], klm[4], klm[5])
    148     //          M = (klm[6], klm[7], klm[8])
    149     // klm_rev: These values are flags for the corresponding sub cubic saying whether or not
    150     //          the K and L values need to be flipped. A value of -1.f means flip K and L and
    151     //          a value of 1.f means do nothing.
    152     //          *****DO NOT FLIP M, JUST K AND L*****
    153     //
    154     // Notice that the klm lines are calculated in the same space as the input control points.
    155     // If you transform the points the lines will also need to be transformed. This can be done
    156     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
    157     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10] = nullptr,
    158                                     SkScalar klm[9] = nullptr, SkScalar klm_rev[3] = nullptr);
    159 
    160     // Input is p which holds the 4 control points of a non-rational cubic Bezier curve.
    161     // Output is the coefficients of the three linear functionals K, L, & M which
    162     // represent the implicit form of the cubic as f(x,y,w) = K^3 - LM. The w term
    163     // will always be 1. The output is stored in the array klm, where the values are:
    164     // K = (klm[0], klm[1], klm[2])
    165     // L = (klm[3], klm[4], klm[5])
    166     // M = (klm[6], klm[7], klm[8])
    167     //
    168     // Notice that the klm lines are calculated in the same space as the input control points.
    169     // If you transform the points the lines will also need to be transformed. This can be done
    170     // by mapping the lines with the inverse-transpose of the matrix used to map the points.
    171     void getCubicKLM(const SkPoint p[4], SkScalar klm[9]);
    172 
    173     // When tessellating curved paths into linear segments, this defines the maximum distance
    174     // in screen space which a segment may deviate from the mathmatically correct value.
    175     // Above this value, the segment will be subdivided.
    176     // This value was chosen to approximate the supersampling accuracy of the raster path (16
    177     // samples, or one quarter pixel).
    178     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
    179 };
    180 #endif
    181