Home | History | Annotate | Download | only in Scalar
      1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs a simple dominator tree walk that eliminates trivially
     11 // redundant instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Scalar/EarlyCSE.h"
     16 #include "llvm/ADT/Hashing.h"
     17 #include "llvm/ADT/ScopedHashTable.h"
     18 #include "llvm/ADT/Statistic.h"
     19 #include "llvm/Analysis/GlobalsModRef.h"
     20 #include "llvm/Analysis/AssumptionCache.h"
     21 #include "llvm/Analysis/InstructionSimplify.h"
     22 #include "llvm/Analysis/TargetLibraryInfo.h"
     23 #include "llvm/Analysis/TargetTransformInfo.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/Dominators.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/IntrinsicInst.h"
     28 #include "llvm/IR/PatternMatch.h"
     29 #include "llvm/Pass.h"
     30 #include "llvm/Support/Debug.h"
     31 #include "llvm/Support/RecyclingAllocator.h"
     32 #include "llvm/Support/raw_ostream.h"
     33 #include "llvm/Transforms/Scalar.h"
     34 #include "llvm/Transforms/Utils/Local.h"
     35 #include <deque>
     36 using namespace llvm;
     37 using namespace llvm::PatternMatch;
     38 
     39 #define DEBUG_TYPE "early-cse"
     40 
     41 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd");
     42 STATISTIC(NumCSE,      "Number of instructions CSE'd");
     43 STATISTIC(NumCSELoad,  "Number of load instructions CSE'd");
     44 STATISTIC(NumCSECall,  "Number of call instructions CSE'd");
     45 STATISTIC(NumDSE,      "Number of trivial dead stores removed");
     46 
     47 //===----------------------------------------------------------------------===//
     48 // SimpleValue
     49 //===----------------------------------------------------------------------===//
     50 
     51 namespace {
     52 /// \brief Struct representing the available values in the scoped hash table.
     53 struct SimpleValue {
     54   Instruction *Inst;
     55 
     56   SimpleValue(Instruction *I) : Inst(I) {
     57     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
     58   }
     59 
     60   bool isSentinel() const {
     61     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
     62            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
     63   }
     64 
     65   static bool canHandle(Instruction *Inst) {
     66     // This can only handle non-void readnone functions.
     67     if (CallInst *CI = dyn_cast<CallInst>(Inst))
     68       return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy();
     69     return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) ||
     70            isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) ||
     71            isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) ||
     72            isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) ||
     73            isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst);
     74   }
     75 };
     76 }
     77 
     78 namespace llvm {
     79 template <> struct DenseMapInfo<SimpleValue> {
     80   static inline SimpleValue getEmptyKey() {
     81     return DenseMapInfo<Instruction *>::getEmptyKey();
     82   }
     83   static inline SimpleValue getTombstoneKey() {
     84     return DenseMapInfo<Instruction *>::getTombstoneKey();
     85   }
     86   static unsigned getHashValue(SimpleValue Val);
     87   static bool isEqual(SimpleValue LHS, SimpleValue RHS);
     88 };
     89 }
     90 
     91 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) {
     92   Instruction *Inst = Val.Inst;
     93   // Hash in all of the operands as pointers.
     94   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) {
     95     Value *LHS = BinOp->getOperand(0);
     96     Value *RHS = BinOp->getOperand(1);
     97     if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1))
     98       std::swap(LHS, RHS);
     99 
    100     if (isa<OverflowingBinaryOperator>(BinOp)) {
    101       // Hash the overflow behavior
    102       unsigned Overflow =
    103           BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap |
    104           BinOp->hasNoUnsignedWrap() *
    105               OverflowingBinaryOperator::NoUnsignedWrap;
    106       return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS);
    107     }
    108 
    109     return hash_combine(BinOp->getOpcode(), LHS, RHS);
    110   }
    111 
    112   if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) {
    113     Value *LHS = CI->getOperand(0);
    114     Value *RHS = CI->getOperand(1);
    115     CmpInst::Predicate Pred = CI->getPredicate();
    116     if (Inst->getOperand(0) > Inst->getOperand(1)) {
    117       std::swap(LHS, RHS);
    118       Pred = CI->getSwappedPredicate();
    119     }
    120     return hash_combine(Inst->getOpcode(), Pred, LHS, RHS);
    121   }
    122 
    123   if (CastInst *CI = dyn_cast<CastInst>(Inst))
    124     return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0));
    125 
    126   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst))
    127     return hash_combine(EVI->getOpcode(), EVI->getOperand(0),
    128                         hash_combine_range(EVI->idx_begin(), EVI->idx_end()));
    129 
    130   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst))
    131     return hash_combine(IVI->getOpcode(), IVI->getOperand(0),
    132                         IVI->getOperand(1),
    133                         hash_combine_range(IVI->idx_begin(), IVI->idx_end()));
    134 
    135   assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) ||
    136           isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) ||
    137           isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) ||
    138           isa<ShuffleVectorInst>(Inst)) &&
    139          "Invalid/unknown instruction");
    140 
    141   // Mix in the opcode.
    142   return hash_combine(
    143       Inst->getOpcode(),
    144       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
    145 }
    146 
    147 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) {
    148   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
    149 
    150   if (LHS.isSentinel() || RHS.isSentinel())
    151     return LHSI == RHSI;
    152 
    153   if (LHSI->getOpcode() != RHSI->getOpcode())
    154     return false;
    155   if (LHSI->isIdenticalTo(RHSI))
    156     return true;
    157 
    158   // If we're not strictly identical, we still might be a commutable instruction
    159   if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) {
    160     if (!LHSBinOp->isCommutative())
    161       return false;
    162 
    163     assert(isa<BinaryOperator>(RHSI) &&
    164            "same opcode, but different instruction type?");
    165     BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI);
    166 
    167     // Check overflow attributes
    168     if (isa<OverflowingBinaryOperator>(LHSBinOp)) {
    169       assert(isa<OverflowingBinaryOperator>(RHSBinOp) &&
    170              "same opcode, but different operator type?");
    171       if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() ||
    172           LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap())
    173         return false;
    174     }
    175 
    176     // Commuted equality
    177     return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) &&
    178            LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0);
    179   }
    180   if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) {
    181     assert(isa<CmpInst>(RHSI) &&
    182            "same opcode, but different instruction type?");
    183     CmpInst *RHSCmp = cast<CmpInst>(RHSI);
    184     // Commuted equality
    185     return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) &&
    186            LHSCmp->getOperand(1) == RHSCmp->getOperand(0) &&
    187            LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate();
    188   }
    189 
    190   return false;
    191 }
    192 
    193 //===----------------------------------------------------------------------===//
    194 // CallValue
    195 //===----------------------------------------------------------------------===//
    196 
    197 namespace {
    198 /// \brief Struct representing the available call values in the scoped hash
    199 /// table.
    200 struct CallValue {
    201   Instruction *Inst;
    202 
    203   CallValue(Instruction *I) : Inst(I) {
    204     assert((isSentinel() || canHandle(I)) && "Inst can't be handled!");
    205   }
    206 
    207   bool isSentinel() const {
    208     return Inst == DenseMapInfo<Instruction *>::getEmptyKey() ||
    209            Inst == DenseMapInfo<Instruction *>::getTombstoneKey();
    210   }
    211 
    212   static bool canHandle(Instruction *Inst) {
    213     // Don't value number anything that returns void.
    214     if (Inst->getType()->isVoidTy())
    215       return false;
    216 
    217     CallInst *CI = dyn_cast<CallInst>(Inst);
    218     if (!CI || !CI->onlyReadsMemory())
    219       return false;
    220     return true;
    221   }
    222 };
    223 }
    224 
    225 namespace llvm {
    226 template <> struct DenseMapInfo<CallValue> {
    227   static inline CallValue getEmptyKey() {
    228     return DenseMapInfo<Instruction *>::getEmptyKey();
    229   }
    230   static inline CallValue getTombstoneKey() {
    231     return DenseMapInfo<Instruction *>::getTombstoneKey();
    232   }
    233   static unsigned getHashValue(CallValue Val);
    234   static bool isEqual(CallValue LHS, CallValue RHS);
    235 };
    236 }
    237 
    238 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) {
    239   Instruction *Inst = Val.Inst;
    240   // Hash all of the operands as pointers and mix in the opcode.
    241   return hash_combine(
    242       Inst->getOpcode(),
    243       hash_combine_range(Inst->value_op_begin(), Inst->value_op_end()));
    244 }
    245 
    246 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) {
    247   Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst;
    248   if (LHS.isSentinel() || RHS.isSentinel())
    249     return LHSI == RHSI;
    250   return LHSI->isIdenticalTo(RHSI);
    251 }
    252 
    253 //===----------------------------------------------------------------------===//
    254 // EarlyCSE implementation
    255 //===----------------------------------------------------------------------===//
    256 
    257 namespace {
    258 /// \brief A simple and fast domtree-based CSE pass.
    259 ///
    260 /// This pass does a simple depth-first walk over the dominator tree,
    261 /// eliminating trivially redundant instructions and using instsimplify to
    262 /// canonicalize things as it goes. It is intended to be fast and catch obvious
    263 /// cases so that instcombine and other passes are more effective. It is
    264 /// expected that a later pass of GVN will catch the interesting/hard cases.
    265 class EarlyCSE {
    266 public:
    267   const TargetLibraryInfo &TLI;
    268   const TargetTransformInfo &TTI;
    269   DominatorTree &DT;
    270   AssumptionCache &AC;
    271   typedef RecyclingAllocator<
    272       BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy;
    273   typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>,
    274                           AllocatorTy> ScopedHTType;
    275 
    276   /// \brief A scoped hash table of the current values of all of our simple
    277   /// scalar expressions.
    278   ///
    279   /// As we walk down the domtree, we look to see if instructions are in this:
    280   /// if so, we replace them with what we find, otherwise we insert them so
    281   /// that dominated values can succeed in their lookup.
    282   ScopedHTType AvailableValues;
    283 
    284   /// A scoped hash table of the current values of previously encounted memory
    285   /// locations.
    286   ///
    287   /// This allows us to get efficient access to dominating loads or stores when
    288   /// we have a fully redundant load.  In addition to the most recent load, we
    289   /// keep track of a generation count of the read, which is compared against
    290   /// the current generation count.  The current generation count is incremented
    291   /// after every possibly writing memory operation, which ensures that we only
    292   /// CSE loads with other loads that have no intervening store.  Ordering
    293   /// events (such as fences or atomic instructions) increment the generation
    294   /// count as well; essentially, we model these as writes to all possible
    295   /// locations.  Note that atomic and/or volatile loads and stores can be
    296   /// present the table; it is the responsibility of the consumer to inspect
    297   /// the atomicity/volatility if needed.
    298   struct LoadValue {
    299     Value *Data;
    300     unsigned Generation;
    301     int MatchingId;
    302     bool IsAtomic;
    303     LoadValue()
    304       : Data(nullptr), Generation(0), MatchingId(-1), IsAtomic(false) {}
    305     LoadValue(Value *Data, unsigned Generation, unsigned MatchingId,
    306               bool IsAtomic)
    307       : Data(Data), Generation(Generation), MatchingId(MatchingId),
    308         IsAtomic(IsAtomic) {}
    309   };
    310   typedef RecyclingAllocator<BumpPtrAllocator,
    311                              ScopedHashTableVal<Value *, LoadValue>>
    312       LoadMapAllocator;
    313   typedef ScopedHashTable<Value *, LoadValue, DenseMapInfo<Value *>,
    314                           LoadMapAllocator> LoadHTType;
    315   LoadHTType AvailableLoads;
    316 
    317   /// \brief A scoped hash table of the current values of read-only call
    318   /// values.
    319   ///
    320   /// It uses the same generation count as loads.
    321   typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType;
    322   CallHTType AvailableCalls;
    323 
    324   /// \brief This is the current generation of the memory value.
    325   unsigned CurrentGeneration;
    326 
    327   /// \brief Set up the EarlyCSE runner for a particular function.
    328   EarlyCSE(const TargetLibraryInfo &TLI, const TargetTransformInfo &TTI,
    329            DominatorTree &DT, AssumptionCache &AC)
    330       : TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) {}
    331 
    332   bool run();
    333 
    334 private:
    335   // Almost a POD, but needs to call the constructors for the scoped hash
    336   // tables so that a new scope gets pushed on. These are RAII so that the
    337   // scope gets popped when the NodeScope is destroyed.
    338   class NodeScope {
    339   public:
    340     NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
    341               CallHTType &AvailableCalls)
    342         : Scope(AvailableValues), LoadScope(AvailableLoads),
    343           CallScope(AvailableCalls) {}
    344 
    345   private:
    346     NodeScope(const NodeScope &) = delete;
    347     void operator=(const NodeScope &) = delete;
    348 
    349     ScopedHTType::ScopeTy Scope;
    350     LoadHTType::ScopeTy LoadScope;
    351     CallHTType::ScopeTy CallScope;
    352   };
    353 
    354   // Contains all the needed information to create a stack for doing a depth
    355   // first tranversal of the tree. This includes scopes for values, loads, and
    356   // calls as well as the generation. There is a child iterator so that the
    357   // children do not need to be store spearately.
    358   class StackNode {
    359   public:
    360     StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads,
    361               CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n,
    362               DomTreeNode::iterator child, DomTreeNode::iterator end)
    363         : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child),
    364           EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls),
    365           Processed(false) {}
    366 
    367     // Accessors.
    368     unsigned currentGeneration() { return CurrentGeneration; }
    369     unsigned childGeneration() { return ChildGeneration; }
    370     void childGeneration(unsigned generation) { ChildGeneration = generation; }
    371     DomTreeNode *node() { return Node; }
    372     DomTreeNode::iterator childIter() { return ChildIter; }
    373     DomTreeNode *nextChild() {
    374       DomTreeNode *child = *ChildIter;
    375       ++ChildIter;
    376       return child;
    377     }
    378     DomTreeNode::iterator end() { return EndIter; }
    379     bool isProcessed() { return Processed; }
    380     void process() { Processed = true; }
    381 
    382   private:
    383     StackNode(const StackNode &) = delete;
    384     void operator=(const StackNode &) = delete;
    385 
    386     // Members.
    387     unsigned CurrentGeneration;
    388     unsigned ChildGeneration;
    389     DomTreeNode *Node;
    390     DomTreeNode::iterator ChildIter;
    391     DomTreeNode::iterator EndIter;
    392     NodeScope Scopes;
    393     bool Processed;
    394   };
    395 
    396   /// \brief Wrapper class to handle memory instructions, including loads,
    397   /// stores and intrinsic loads and stores defined by the target.
    398   class ParseMemoryInst {
    399   public:
    400     ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI)
    401       : IsTargetMemInst(false), Inst(Inst) {
    402       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
    403         if (TTI.getTgtMemIntrinsic(II, Info) && Info.NumMemRefs == 1)
    404           IsTargetMemInst = true;
    405     }
    406     bool isLoad() const {
    407       if (IsTargetMemInst) return Info.ReadMem;
    408       return isa<LoadInst>(Inst);
    409     }
    410     bool isStore() const {
    411       if (IsTargetMemInst) return Info.WriteMem;
    412       return isa<StoreInst>(Inst);
    413     }
    414     bool isAtomic() const {
    415       if (IsTargetMemInst) {
    416         assert(Info.IsSimple && "need to refine IsSimple in TTI");
    417         return false;
    418       }
    419       return Inst->isAtomic();
    420     }
    421     bool isUnordered() const {
    422       if (IsTargetMemInst) {
    423         assert(Info.IsSimple && "need to refine IsSimple in TTI");
    424         return true;
    425       }
    426       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    427         return LI->isUnordered();
    428       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    429         return SI->isUnordered();
    430       }
    431       // Conservative answer
    432       return !Inst->isAtomic();
    433     }
    434 
    435     bool isVolatile() const {
    436       if (IsTargetMemInst) {
    437         assert(Info.IsSimple && "need to refine IsSimple in TTI");
    438         return false;
    439       }
    440       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    441         return LI->isVolatile();
    442       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    443         return SI->isVolatile();
    444       }
    445       // Conservative answer
    446       return true;
    447     }
    448 
    449 
    450     bool isMatchingMemLoc(const ParseMemoryInst &Inst) const {
    451       return (getPointerOperand() == Inst.getPointerOperand() &&
    452               getMatchingId() == Inst.getMatchingId());
    453     }
    454     bool isValid() const { return getPointerOperand() != nullptr; }
    455 
    456     // For regular (non-intrinsic) loads/stores, this is set to -1. For
    457     // intrinsic loads/stores, the id is retrieved from the corresponding
    458     // field in the MemIntrinsicInfo structure.  That field contains
    459     // non-negative values only.
    460     int getMatchingId() const {
    461       if (IsTargetMemInst) return Info.MatchingId;
    462       return -1;
    463     }
    464     Value *getPointerOperand() const {
    465       if (IsTargetMemInst) return Info.PtrVal;
    466       if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    467         return LI->getPointerOperand();
    468       } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    469         return SI->getPointerOperand();
    470       }
    471       return nullptr;
    472     }
    473     bool mayReadFromMemory() const {
    474       if (IsTargetMemInst) return Info.ReadMem;
    475       return Inst->mayReadFromMemory();
    476     }
    477     bool mayWriteToMemory() const {
    478       if (IsTargetMemInst) return Info.WriteMem;
    479       return Inst->mayWriteToMemory();
    480     }
    481 
    482   private:
    483     bool IsTargetMemInst;
    484     MemIntrinsicInfo Info;
    485     Instruction *Inst;
    486   };
    487 
    488   bool processNode(DomTreeNode *Node);
    489 
    490   Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const {
    491     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
    492       return LI;
    493     else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    494       return SI->getValueOperand();
    495     assert(isa<IntrinsicInst>(Inst) && "Instruction not supported");
    496     return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst),
    497                                                  ExpectedType);
    498   }
    499 };
    500 }
    501 
    502 bool EarlyCSE::processNode(DomTreeNode *Node) {
    503   BasicBlock *BB = Node->getBlock();
    504 
    505   // If this block has a single predecessor, then the predecessor is the parent
    506   // of the domtree node and all of the live out memory values are still current
    507   // in this block.  If this block has multiple predecessors, then they could
    508   // have invalidated the live-out memory values of our parent value.  For now,
    509   // just be conservative and invalidate memory if this block has multiple
    510   // predecessors.
    511   if (!BB->getSinglePredecessor())
    512     ++CurrentGeneration;
    513 
    514   // If this node has a single predecessor which ends in a conditional branch,
    515   // we can infer the value of the branch condition given that we took this
    516   // path.  We need the single predeccesor to ensure there's not another path
    517   // which reaches this block where the condition might hold a different
    518   // value.  Since we're adding this to the scoped hash table (like any other
    519   // def), it will have been popped if we encounter a future merge block.
    520   if (BasicBlock *Pred = BB->getSinglePredecessor())
    521     if (auto *BI = dyn_cast<BranchInst>(Pred->getTerminator()))
    522       if (BI->isConditional())
    523         if (auto *CondInst = dyn_cast<Instruction>(BI->getCondition()))
    524           if (SimpleValue::canHandle(CondInst)) {
    525             assert(BI->getSuccessor(0) == BB || BI->getSuccessor(1) == BB);
    526             auto *ConditionalConstant = (BI->getSuccessor(0) == BB) ?
    527               ConstantInt::getTrue(BB->getContext()) :
    528               ConstantInt::getFalse(BB->getContext());
    529             AvailableValues.insert(CondInst, ConditionalConstant);
    530             DEBUG(dbgs() << "EarlyCSE CVP: Add conditional value for '"
    531                   << CondInst->getName() << "' as " << *ConditionalConstant
    532                   << " in " << BB->getName() << "\n");
    533             // Replace all dominated uses with the known value
    534             replaceDominatedUsesWith(CondInst, ConditionalConstant, DT,
    535                                      BasicBlockEdge(Pred, BB));
    536           }
    537 
    538   /// LastStore - Keep track of the last non-volatile store that we saw... for
    539   /// as long as there in no instruction that reads memory.  If we see a store
    540   /// to the same location, we delete the dead store.  This zaps trivial dead
    541   /// stores which can occur in bitfield code among other things.
    542   Instruction *LastStore = nullptr;
    543 
    544   bool Changed = false;
    545   const DataLayout &DL = BB->getModule()->getDataLayout();
    546 
    547   // See if any instructions in the block can be eliminated.  If so, do it.  If
    548   // not, add them to AvailableValues.
    549   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    550     Instruction *Inst = &*I++;
    551 
    552     // Dead instructions should just be removed.
    553     if (isInstructionTriviallyDead(Inst, &TLI)) {
    554       DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n');
    555       Inst->eraseFromParent();
    556       Changed = true;
    557       ++NumSimplify;
    558       continue;
    559     }
    560 
    561     // Skip assume intrinsics, they don't really have side effects (although
    562     // they're marked as such to ensure preservation of control dependencies),
    563     // and this pass will not disturb any of the assumption's control
    564     // dependencies.
    565     if (match(Inst, m_Intrinsic<Intrinsic::assume>())) {
    566       DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n');
    567       continue;
    568     }
    569 
    570     // If the instruction can be simplified (e.g. X+0 = X) then replace it with
    571     // its simpler value.
    572     if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) {
    573       DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << "  to: " << *V << '\n');
    574       Inst->replaceAllUsesWith(V);
    575       Inst->eraseFromParent();
    576       Changed = true;
    577       ++NumSimplify;
    578       continue;
    579     }
    580 
    581     // If this is a simple instruction that we can value number, process it.
    582     if (SimpleValue::canHandle(Inst)) {
    583       // See if the instruction has an available value.  If so, use it.
    584       if (Value *V = AvailableValues.lookup(Inst)) {
    585         DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << "  to: " << *V << '\n');
    586         Inst->replaceAllUsesWith(V);
    587         Inst->eraseFromParent();
    588         Changed = true;
    589         ++NumCSE;
    590         continue;
    591       }
    592 
    593       // Otherwise, just remember that this value is available.
    594       AvailableValues.insert(Inst, Inst);
    595       continue;
    596     }
    597 
    598     ParseMemoryInst MemInst(Inst, TTI);
    599     // If this is a non-volatile load, process it.
    600     if (MemInst.isValid() && MemInst.isLoad()) {
    601       // (conservatively) we can't peak past the ordering implied by this
    602       // operation, but we can add this load to our set of available values
    603       if (MemInst.isVolatile() || !MemInst.isUnordered()) {
    604         LastStore = nullptr;
    605         ++CurrentGeneration;
    606       }
    607 
    608       // If we have an available version of this load, and if it is the right
    609       // generation, replace this instruction.
    610       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
    611       if (InVal.Data != nullptr && InVal.Generation == CurrentGeneration &&
    612           InVal.MatchingId == MemInst.getMatchingId() &&
    613           // We don't yet handle removing loads with ordering of any kind.
    614           !MemInst.isVolatile() && MemInst.isUnordered() &&
    615           // We can't replace an atomic load with one which isn't also atomic.
    616           InVal.IsAtomic >= MemInst.isAtomic()) {
    617         Value *Op = getOrCreateResult(InVal.Data, Inst->getType());
    618         if (Op != nullptr) {
    619           DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst
    620                        << "  to: " << *InVal.Data << '\n');
    621           if (!Inst->use_empty())
    622             Inst->replaceAllUsesWith(Op);
    623           Inst->eraseFromParent();
    624           Changed = true;
    625           ++NumCSELoad;
    626           continue;
    627         }
    628       }
    629 
    630       // Otherwise, remember that we have this instruction.
    631       AvailableLoads.insert(
    632           MemInst.getPointerOperand(),
    633           LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
    634                     MemInst.isAtomic()));
    635       LastStore = nullptr;
    636       continue;
    637     }
    638 
    639     // If this instruction may read from memory, forget LastStore.
    640     // Load/store intrinsics will indicate both a read and a write to
    641     // memory.  The target may override this (e.g. so that a store intrinsic
    642     // does not read  from memory, and thus will be treated the same as a
    643     // regular store for commoning purposes).
    644     if (Inst->mayReadFromMemory() &&
    645         !(MemInst.isValid() && !MemInst.mayReadFromMemory()))
    646       LastStore = nullptr;
    647 
    648     // If this is a read-only call, process it.
    649     if (CallValue::canHandle(Inst)) {
    650       // If we have an available version of this call, and if it is the right
    651       // generation, replace this instruction.
    652       std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst);
    653       if (InVal.first != nullptr && InVal.second == CurrentGeneration) {
    654         DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst
    655                      << "  to: " << *InVal.first << '\n');
    656         if (!Inst->use_empty())
    657           Inst->replaceAllUsesWith(InVal.first);
    658         Inst->eraseFromParent();
    659         Changed = true;
    660         ++NumCSECall;
    661         continue;
    662       }
    663 
    664       // Otherwise, remember that we have this instruction.
    665       AvailableCalls.insert(
    666           Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration));
    667       continue;
    668     }
    669 
    670     // A release fence requires that all stores complete before it, but does
    671     // not prevent the reordering of following loads 'before' the fence.  As a
    672     // result, we don't need to consider it as writing to memory and don't need
    673     // to advance the generation.  We do need to prevent DSE across the fence,
    674     // but that's handled above.
    675     if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
    676       if (FI->getOrdering() == Release) {
    677         assert(Inst->mayReadFromMemory() && "relied on to prevent DSE above");
    678         continue;
    679       }
    680 
    681     // write back DSE - If we write back the same value we just loaded from
    682     // the same location and haven't passed any intervening writes or ordering
    683     // operations, we can remove the write.  The primary benefit is in allowing
    684     // the available load table to remain valid and value forward past where
    685     // the store originally was.
    686     if (MemInst.isValid() && MemInst.isStore()) {
    687       LoadValue InVal = AvailableLoads.lookup(MemInst.getPointerOperand());
    688       if (InVal.Data &&
    689           InVal.Data == getOrCreateResult(Inst, InVal.Data->getType()) &&
    690           InVal.Generation == CurrentGeneration &&
    691           InVal.MatchingId == MemInst.getMatchingId() &&
    692           // We don't yet handle removing stores with ordering of any kind.
    693           !MemInst.isVolatile() && MemInst.isUnordered()) {
    694         assert((!LastStore ||
    695                 ParseMemoryInst(LastStore, TTI).getPointerOperand() ==
    696                 MemInst.getPointerOperand()) &&
    697                "can't have an intervening store!");
    698         DEBUG(dbgs() << "EarlyCSE DSE (writeback): " << *Inst << '\n');
    699         Inst->eraseFromParent();
    700         Changed = true;
    701         ++NumDSE;
    702         // We can avoid incrementing the generation count since we were able
    703         // to eliminate this store.
    704         continue;
    705       }
    706     }
    707 
    708     // Okay, this isn't something we can CSE at all.  Check to see if it is
    709     // something that could modify memory.  If so, our available memory values
    710     // cannot be used so bump the generation count.
    711     if (Inst->mayWriteToMemory()) {
    712       ++CurrentGeneration;
    713 
    714       if (MemInst.isValid() && MemInst.isStore()) {
    715         // We do a trivial form of DSE if there are two stores to the same
    716         // location with no intervening loads.  Delete the earlier store.
    717         // At the moment, we don't remove ordered stores, but do remove
    718         // unordered atomic stores.  There's no special requirement (for
    719         // unordered atomics) about removing atomic stores only in favor of
    720         // other atomic stores since we we're going to execute the non-atomic
    721         // one anyway and the atomic one might never have become visible.
    722         if (LastStore) {
    723           ParseMemoryInst LastStoreMemInst(LastStore, TTI);
    724           assert(LastStoreMemInst.isUnordered() &&
    725                  !LastStoreMemInst.isVolatile() &&
    726                  "Violated invariant");
    727           if (LastStoreMemInst.isMatchingMemLoc(MemInst)) {
    728             DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore
    729                          << "  due to: " << *Inst << '\n');
    730             LastStore->eraseFromParent();
    731             Changed = true;
    732             ++NumDSE;
    733             LastStore = nullptr;
    734           }
    735           // fallthrough - we can exploit information about this store
    736         }
    737 
    738         // Okay, we just invalidated anything we knew about loaded values.  Try
    739         // to salvage *something* by remembering that the stored value is a live
    740         // version of the pointer.  It is safe to forward from volatile stores
    741         // to non-volatile loads, so we don't have to check for volatility of
    742         // the store.
    743         AvailableLoads.insert(
    744             MemInst.getPointerOperand(),
    745             LoadValue(Inst, CurrentGeneration, MemInst.getMatchingId(),
    746                       MemInst.isAtomic()));
    747 
    748         // Remember that this was the last unordered store we saw for DSE. We
    749         // don't yet handle DSE on ordered or volatile stores since we don't
    750         // have a good way to model the ordering requirement for following
    751         // passes  once the store is removed.  We could insert a fence, but
    752         // since fences are slightly stronger than stores in their ordering,
    753         // it's not clear this is a profitable transform. Another option would
    754         // be to merge the ordering with that of the post dominating store.
    755         if (MemInst.isUnordered() && !MemInst.isVolatile())
    756           LastStore = Inst;
    757         else
    758           LastStore = nullptr;
    759       }
    760     }
    761   }
    762 
    763   return Changed;
    764 }
    765 
    766 bool EarlyCSE::run() {
    767   // Note, deque is being used here because there is significant performance
    768   // gains over vector when the container becomes very large due to the
    769   // specific access patterns. For more information see the mailing list
    770   // discussion on this:
    771   // http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html
    772   std::deque<StackNode *> nodesToProcess;
    773 
    774   bool Changed = false;
    775 
    776   // Process the root node.
    777   nodesToProcess.push_back(new StackNode(
    778       AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration,
    779       DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end()));
    780 
    781   // Save the current generation.
    782   unsigned LiveOutGeneration = CurrentGeneration;
    783 
    784   // Process the stack.
    785   while (!nodesToProcess.empty()) {
    786     // Grab the first item off the stack. Set the current generation, remove
    787     // the node from the stack, and process it.
    788     StackNode *NodeToProcess = nodesToProcess.back();
    789 
    790     // Initialize class members.
    791     CurrentGeneration = NodeToProcess->currentGeneration();
    792 
    793     // Check if the node needs to be processed.
    794     if (!NodeToProcess->isProcessed()) {
    795       // Process the node.
    796       Changed |= processNode(NodeToProcess->node());
    797       NodeToProcess->childGeneration(CurrentGeneration);
    798       NodeToProcess->process();
    799     } else if (NodeToProcess->childIter() != NodeToProcess->end()) {
    800       // Push the next child onto the stack.
    801       DomTreeNode *child = NodeToProcess->nextChild();
    802       nodesToProcess.push_back(
    803           new StackNode(AvailableValues, AvailableLoads, AvailableCalls,
    804                         NodeToProcess->childGeneration(), child, child->begin(),
    805                         child->end()));
    806     } else {
    807       // It has been processed, and there are no more children to process,
    808       // so delete it and pop it off the stack.
    809       delete NodeToProcess;
    810       nodesToProcess.pop_back();
    811     }
    812   } // while (!nodes...)
    813 
    814   // Reset the current generation.
    815   CurrentGeneration = LiveOutGeneration;
    816 
    817   return Changed;
    818 }
    819 
    820 PreservedAnalyses EarlyCSEPass::run(Function &F,
    821                                     AnalysisManager<Function> *AM) {
    822   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
    823   auto &TTI = AM->getResult<TargetIRAnalysis>(F);
    824   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
    825   auto &AC = AM->getResult<AssumptionAnalysis>(F);
    826 
    827   EarlyCSE CSE(TLI, TTI, DT, AC);
    828 
    829   if (!CSE.run())
    830     return PreservedAnalyses::all();
    831 
    832   // CSE preserves the dominator tree because it doesn't mutate the CFG.
    833   // FIXME: Bundle this with other CFG-preservation.
    834   PreservedAnalyses PA;
    835   PA.preserve<DominatorTreeAnalysis>();
    836   return PA;
    837 }
    838 
    839 namespace {
    840 /// \brief A simple and fast domtree-based CSE pass.
    841 ///
    842 /// This pass does a simple depth-first walk over the dominator tree,
    843 /// eliminating trivially redundant instructions and using instsimplify to
    844 /// canonicalize things as it goes. It is intended to be fast and catch obvious
    845 /// cases so that instcombine and other passes are more effective. It is
    846 /// expected that a later pass of GVN will catch the interesting/hard cases.
    847 class EarlyCSELegacyPass : public FunctionPass {
    848 public:
    849   static char ID;
    850 
    851   EarlyCSELegacyPass() : FunctionPass(ID) {
    852     initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry());
    853   }
    854 
    855   bool runOnFunction(Function &F) override {
    856     if (skipOptnoneFunction(F))
    857       return false;
    858 
    859     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    860     auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
    861     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    862     auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
    863 
    864     EarlyCSE CSE(TLI, TTI, DT, AC);
    865 
    866     return CSE.run();
    867   }
    868 
    869   void getAnalysisUsage(AnalysisUsage &AU) const override {
    870     AU.addRequired<AssumptionCacheTracker>();
    871     AU.addRequired<DominatorTreeWrapperPass>();
    872     AU.addRequired<TargetLibraryInfoWrapperPass>();
    873     AU.addRequired<TargetTransformInfoWrapperPass>();
    874     AU.addPreserved<GlobalsAAWrapperPass>();
    875     AU.setPreservesCFG();
    876   }
    877 };
    878 }
    879 
    880 char EarlyCSELegacyPass::ID = 0;
    881 
    882 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); }
    883 
    884 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false,
    885                       false)
    886 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
    887 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    888 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    889 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    890 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false)
    891