Home | History | Annotate | Download | only in Bitcode
      1 //===- BitstreamReader.h - Low-level bitstream reader interface -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitstreamReader class.  This class can be used to
     11 // read an arbitrary bitstream, regardless of its contents.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_BITCODE_BITSTREAMREADER_H
     16 #define LLVM_BITCODE_BITSTREAMREADER_H
     17 
     18 #include "llvm/Bitcode/BitCodes.h"
     19 #include "llvm/Support/Endian.h"
     20 #include "llvm/Support/StreamingMemoryObject.h"
     21 #include <climits>
     22 #include <string>
     23 #include <vector>
     24 
     25 namespace llvm {
     26 
     27 /// This class is used to read from an LLVM bitcode stream, maintaining
     28 /// information that is global to decoding the entire file. While a file is
     29 /// being read, multiple cursors can be independently advanced or skipped around
     30 /// within the file.  These are represented by the BitstreamCursor class.
     31 class BitstreamReader {
     32 public:
     33   /// This contains information emitted to BLOCKINFO_BLOCK blocks. These
     34   /// describe abbreviations that all blocks of the specified ID inherit.
     35   struct BlockInfo {
     36     unsigned BlockID;
     37     std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> Abbrevs;
     38     std::string Name;
     39 
     40     std::vector<std::pair<unsigned, std::string> > RecordNames;
     41   };
     42 private:
     43   std::unique_ptr<MemoryObject> BitcodeBytes;
     44 
     45   std::vector<BlockInfo> BlockInfoRecords;
     46 
     47   /// This is set to true if we don't care about the block/record name
     48   /// information in the BlockInfo block. Only llvm-bcanalyzer uses this.
     49   bool IgnoreBlockInfoNames;
     50 
     51   BitstreamReader(const BitstreamReader&) = delete;
     52   void operator=(const BitstreamReader&) = delete;
     53 public:
     54   BitstreamReader() : IgnoreBlockInfoNames(true) {
     55   }
     56 
     57   BitstreamReader(const unsigned char *Start, const unsigned char *End)
     58       : IgnoreBlockInfoNames(true) {
     59     init(Start, End);
     60   }
     61 
     62   BitstreamReader(std::unique_ptr<MemoryObject> BitcodeBytes)
     63       : BitcodeBytes(std::move(BitcodeBytes)), IgnoreBlockInfoNames(true) {}
     64 
     65   BitstreamReader(BitstreamReader &&Other) {
     66     *this = std::move(Other);
     67   }
     68 
     69   BitstreamReader &operator=(BitstreamReader &&Other) {
     70     BitcodeBytes = std::move(Other.BitcodeBytes);
     71     // Explicitly swap block info, so that nothing gets destroyed twice.
     72     std::swap(BlockInfoRecords, Other.BlockInfoRecords);
     73     IgnoreBlockInfoNames = Other.IgnoreBlockInfoNames;
     74     return *this;
     75   }
     76 
     77   void init(const unsigned char *Start, const unsigned char *End) {
     78     assert(((End-Start) & 3) == 0 &&"Bitcode stream not a multiple of 4 bytes");
     79     BitcodeBytes.reset(getNonStreamedMemoryObject(Start, End));
     80   }
     81 
     82   MemoryObject &getBitcodeBytes() { return *BitcodeBytes; }
     83 
     84   /// This is called by clients that want block/record name information.
     85   void CollectBlockInfoNames() { IgnoreBlockInfoNames = false; }
     86   bool isIgnoringBlockInfoNames() { return IgnoreBlockInfoNames; }
     87 
     88   //===--------------------------------------------------------------------===//
     89   // Block Manipulation
     90   //===--------------------------------------------------------------------===//
     91 
     92   /// Return true if we've already read and processed the block info block for
     93   /// this Bitstream. We only process it for the first cursor that walks over
     94   /// it.
     95   bool hasBlockInfoRecords() const { return !BlockInfoRecords.empty(); }
     96 
     97   /// If there is block info for the specified ID, return it, otherwise return
     98   /// null.
     99   const BlockInfo *getBlockInfo(unsigned BlockID) const {
    100     // Common case, the most recent entry matches BlockID.
    101     if (!BlockInfoRecords.empty() && BlockInfoRecords.back().BlockID == BlockID)
    102       return &BlockInfoRecords.back();
    103 
    104     for (unsigned i = 0, e = static_cast<unsigned>(BlockInfoRecords.size());
    105          i != e; ++i)
    106       if (BlockInfoRecords[i].BlockID == BlockID)
    107         return &BlockInfoRecords[i];
    108     return nullptr;
    109   }
    110 
    111   BlockInfo &getOrCreateBlockInfo(unsigned BlockID) {
    112     if (const BlockInfo *BI = getBlockInfo(BlockID))
    113       return *const_cast<BlockInfo*>(BI);
    114 
    115     // Otherwise, add a new record.
    116     BlockInfoRecords.emplace_back();
    117     BlockInfoRecords.back().BlockID = BlockID;
    118     return BlockInfoRecords.back();
    119   }
    120 
    121   /// Takes block info from the other bitstream reader.
    122   ///
    123   /// This is a "take" operation because BlockInfo records are non-trivial, and
    124   /// indeed rather expensive.
    125   void takeBlockInfo(BitstreamReader &&Other) {
    126     assert(!hasBlockInfoRecords());
    127     BlockInfoRecords = std::move(Other.BlockInfoRecords);
    128   }
    129 };
    130 
    131 /// When advancing through a bitstream cursor, each advance can discover a few
    132 /// different kinds of entries:
    133 struct BitstreamEntry {
    134   enum {
    135     Error,    // Malformed bitcode was found.
    136     EndBlock, // We've reached the end of the current block, (or the end of the
    137               // file, which is treated like a series of EndBlock records.
    138     SubBlock, // This is the start of a new subblock of a specific ID.
    139     Record    // This is a record with a specific AbbrevID.
    140   } Kind;
    141 
    142   unsigned ID;
    143 
    144   static BitstreamEntry getError() {
    145     BitstreamEntry E; E.Kind = Error; return E;
    146   }
    147   static BitstreamEntry getEndBlock() {
    148     BitstreamEntry E; E.Kind = EndBlock; return E;
    149   }
    150   static BitstreamEntry getSubBlock(unsigned ID) {
    151     BitstreamEntry E; E.Kind = SubBlock; E.ID = ID; return E;
    152   }
    153   static BitstreamEntry getRecord(unsigned AbbrevID) {
    154     BitstreamEntry E; E.Kind = Record; E.ID = AbbrevID; return E;
    155   }
    156 };
    157 
    158 /// This represents a position within a bitcode file. There may be multiple
    159 /// independent cursors reading within one bitstream, each maintaining their own
    160 /// local state.
    161 ///
    162 /// Unlike iterators, BitstreamCursors are heavy-weight objects that should not
    163 /// be passed by value.
    164 class BitstreamCursor {
    165   BitstreamReader *BitStream;
    166   size_t NextChar;
    167 
    168   // The size of the bicode. 0 if we don't know it yet.
    169   size_t Size;
    170 
    171   /// This is the current data we have pulled from the stream but have not
    172   /// returned to the client. This is specifically and intentionally defined to
    173   /// follow the word size of the host machine for efficiency. We use word_t in
    174   /// places that are aware of this to make it perfectly explicit what is going
    175   /// on.
    176   typedef size_t word_t;
    177   word_t CurWord;
    178 
    179   /// This is the number of bits in CurWord that are valid. This is always from
    180   /// [0...bits_of(size_t)-1] inclusive.
    181   unsigned BitsInCurWord;
    182 
    183   // This is the declared size of code values used for the current block, in
    184   // bits.
    185   unsigned CurCodeSize;
    186 
    187   /// Abbrevs installed at in this block.
    188   std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> CurAbbrevs;
    189 
    190   struct Block {
    191     unsigned PrevCodeSize;
    192     std::vector<IntrusiveRefCntPtr<BitCodeAbbrev>> PrevAbbrevs;
    193     explicit Block(unsigned PCS) : PrevCodeSize(PCS) {}
    194   };
    195 
    196   /// This tracks the codesize of parent blocks.
    197   SmallVector<Block, 8> BlockScope;
    198 
    199 
    200 public:
    201   static const size_t MaxChunkSize = sizeof(word_t) * 8;
    202 
    203   BitstreamCursor() { init(nullptr); }
    204 
    205   explicit BitstreamCursor(BitstreamReader &R) { init(&R); }
    206 
    207   void init(BitstreamReader *R) {
    208     freeState();
    209 
    210     BitStream = R;
    211     NextChar = 0;
    212     Size = 0;
    213     BitsInCurWord = 0;
    214     CurCodeSize = 2;
    215   }
    216 
    217   void freeState();
    218 
    219   bool canSkipToPos(size_t pos) const {
    220     // pos can be skipped to if it is a valid address or one byte past the end.
    221     return pos == 0 || BitStream->getBitcodeBytes().isValidAddress(
    222         static_cast<uint64_t>(pos - 1));
    223   }
    224 
    225   bool AtEndOfStream() {
    226     if (BitsInCurWord != 0)
    227       return false;
    228     if (Size != 0)
    229       return Size == NextChar;
    230     fillCurWord();
    231     return BitsInCurWord == 0;
    232   }
    233 
    234   /// Return the number of bits used to encode an abbrev #.
    235   unsigned getAbbrevIDWidth() const { return CurCodeSize; }
    236 
    237   /// Return the bit # of the bit we are reading.
    238   uint64_t GetCurrentBitNo() const {
    239     return NextChar*CHAR_BIT - BitsInCurWord;
    240   }
    241 
    242   BitstreamReader *getBitStreamReader() {
    243     return BitStream;
    244   }
    245   const BitstreamReader *getBitStreamReader() const {
    246     return BitStream;
    247   }
    248 
    249   /// Flags that modify the behavior of advance().
    250   enum {
    251     /// If this flag is used, the advance() method does not automatically pop
    252     /// the block scope when the end of a block is reached.
    253     AF_DontPopBlockAtEnd = 1,
    254 
    255     /// If this flag is used, abbrev entries are returned just like normal
    256     /// records.
    257     AF_DontAutoprocessAbbrevs = 2
    258   };
    259 
    260   /// Advance the current bitstream, returning the next entry in the stream.
    261   BitstreamEntry advance(unsigned Flags = 0) {
    262     while (1) {
    263       unsigned Code = ReadCode();
    264       if (Code == bitc::END_BLOCK) {
    265         // Pop the end of the block unless Flags tells us not to.
    266         if (!(Flags & AF_DontPopBlockAtEnd) && ReadBlockEnd())
    267           return BitstreamEntry::getError();
    268         return BitstreamEntry::getEndBlock();
    269       }
    270 
    271       if (Code == bitc::ENTER_SUBBLOCK)
    272         return BitstreamEntry::getSubBlock(ReadSubBlockID());
    273 
    274       if (Code == bitc::DEFINE_ABBREV &&
    275           !(Flags & AF_DontAutoprocessAbbrevs)) {
    276         // We read and accumulate abbrev's, the client can't do anything with
    277         // them anyway.
    278         ReadAbbrevRecord();
    279         continue;
    280       }
    281 
    282       return BitstreamEntry::getRecord(Code);
    283     }
    284   }
    285 
    286   /// This is a convenience function for clients that don't expect any
    287   /// subblocks. This just skips over them automatically.
    288   BitstreamEntry advanceSkippingSubblocks(unsigned Flags = 0) {
    289     while (1) {
    290       // If we found a normal entry, return it.
    291       BitstreamEntry Entry = advance(Flags);
    292       if (Entry.Kind != BitstreamEntry::SubBlock)
    293         return Entry;
    294 
    295       // If we found a sub-block, just skip over it and check the next entry.
    296       if (SkipBlock())
    297         return BitstreamEntry::getError();
    298     }
    299   }
    300 
    301   /// Reset the stream to the specified bit number.
    302   void JumpToBit(uint64_t BitNo) {
    303     size_t ByteNo = size_t(BitNo/8) & ~(sizeof(word_t)-1);
    304     unsigned WordBitNo = unsigned(BitNo & (sizeof(word_t)*8-1));
    305     assert(canSkipToPos(ByteNo) && "Invalid location");
    306 
    307     // Move the cursor to the right word.
    308     NextChar = ByteNo;
    309     BitsInCurWord = 0;
    310 
    311     // Skip over any bits that are already consumed.
    312     if (WordBitNo)
    313       Read(WordBitNo);
    314   }
    315 
    316   void fillCurWord() {
    317     if (Size != 0 && NextChar >= Size)
    318       report_fatal_error("Unexpected end of file");
    319 
    320     // Read the next word from the stream.
    321     uint8_t Array[sizeof(word_t)] = {0};
    322 
    323     uint64_t BytesRead =
    324         BitStream->getBitcodeBytes().readBytes(Array, sizeof(Array), NextChar);
    325 
    326     // If we run out of data, stop at the end of the stream.
    327     if (BytesRead == 0) {
    328       CurWord = 0;
    329       BitsInCurWord = 0;
    330       Size = NextChar;
    331       return;
    332     }
    333 
    334     CurWord =
    335         support::endian::read<word_t, support::little, support::unaligned>(
    336             Array);
    337     NextChar += BytesRead;
    338     BitsInCurWord = BytesRead * 8;
    339   }
    340 
    341   word_t Read(unsigned NumBits) {
    342     static const unsigned BitsInWord = MaxChunkSize;
    343 
    344     assert(NumBits && NumBits <= BitsInWord &&
    345            "Cannot return zero or more than BitsInWord bits!");
    346 
    347     static const unsigned Mask = sizeof(word_t) > 4 ? 0x3f : 0x1f;
    348 
    349     // If the field is fully contained by CurWord, return it quickly.
    350     if (BitsInCurWord >= NumBits) {
    351       word_t R = CurWord & (~word_t(0) >> (BitsInWord - NumBits));
    352 
    353       // Use a mask to avoid undefined behavior.
    354       CurWord >>= (NumBits & Mask);
    355 
    356       BitsInCurWord -= NumBits;
    357       return R;
    358     }
    359 
    360     word_t R = BitsInCurWord ? CurWord : 0;
    361     unsigned BitsLeft = NumBits - BitsInCurWord;
    362 
    363     fillCurWord();
    364 
    365     // If we run out of data, stop at the end of the stream.
    366     if (BitsLeft > BitsInCurWord)
    367       return 0;
    368 
    369     word_t R2 = CurWord & (~word_t(0) >> (BitsInWord - BitsLeft));
    370 
    371     // Use a mask to avoid undefined behavior.
    372     CurWord >>= (BitsLeft & Mask);
    373 
    374     BitsInCurWord -= BitsLeft;
    375 
    376     R |= R2 << (NumBits - BitsLeft);
    377 
    378     return R;
    379   }
    380 
    381   uint32_t ReadVBR(unsigned NumBits) {
    382     uint32_t Piece = Read(NumBits);
    383     if ((Piece & (1U << (NumBits-1))) == 0)
    384       return Piece;
    385 
    386     uint32_t Result = 0;
    387     unsigned NextBit = 0;
    388     while (1) {
    389       Result |= (Piece & ((1U << (NumBits-1))-1)) << NextBit;
    390 
    391       if ((Piece & (1U << (NumBits-1))) == 0)
    392         return Result;
    393 
    394       NextBit += NumBits-1;
    395       Piece = Read(NumBits);
    396     }
    397   }
    398 
    399   // Read a VBR that may have a value up to 64-bits in size. The chunk size of
    400   // the VBR must still be <= 32 bits though.
    401   uint64_t ReadVBR64(unsigned NumBits) {
    402     uint32_t Piece = Read(NumBits);
    403     if ((Piece & (1U << (NumBits-1))) == 0)
    404       return uint64_t(Piece);
    405 
    406     uint64_t Result = 0;
    407     unsigned NextBit = 0;
    408     while (1) {
    409       Result |= uint64_t(Piece & ((1U << (NumBits-1))-1)) << NextBit;
    410 
    411       if ((Piece & (1U << (NumBits-1))) == 0)
    412         return Result;
    413 
    414       NextBit += NumBits-1;
    415       Piece = Read(NumBits);
    416     }
    417   }
    418 
    419 private:
    420   void SkipToFourByteBoundary() {
    421     // If word_t is 64-bits and if we've read less than 32 bits, just dump
    422     // the bits we have up to the next 32-bit boundary.
    423     if (sizeof(word_t) > 4 &&
    424         BitsInCurWord >= 32) {
    425       CurWord >>= BitsInCurWord-32;
    426       BitsInCurWord = 32;
    427       return;
    428     }
    429 
    430     BitsInCurWord = 0;
    431   }
    432 public:
    433 
    434   unsigned ReadCode() {
    435     return Read(CurCodeSize);
    436   }
    437 
    438 
    439   // Block header:
    440   //    [ENTER_SUBBLOCK, blockid, newcodelen, <align4bytes>, blocklen]
    441 
    442   /// Having read the ENTER_SUBBLOCK code, read the BlockID for the block.
    443   unsigned ReadSubBlockID() {
    444     return ReadVBR(bitc::BlockIDWidth);
    445   }
    446 
    447   /// Having read the ENTER_SUBBLOCK abbrevid and a BlockID, skip over the body
    448   /// of this block. If the block record is malformed, return true.
    449   bool SkipBlock() {
    450     // Read and ignore the codelen value.  Since we are skipping this block, we
    451     // don't care what code widths are used inside of it.
    452     ReadVBR(bitc::CodeLenWidth);
    453     SkipToFourByteBoundary();
    454     unsigned NumFourBytes = Read(bitc::BlockSizeWidth);
    455 
    456     // Check that the block wasn't partially defined, and that the offset isn't
    457     // bogus.
    458     size_t SkipTo = GetCurrentBitNo() + NumFourBytes*4*8;
    459     if (AtEndOfStream() || !canSkipToPos(SkipTo/8))
    460       return true;
    461 
    462     JumpToBit(SkipTo);
    463     return false;
    464   }
    465 
    466   /// Having read the ENTER_SUBBLOCK abbrevid, enter the block, and return true
    467   /// if the block has an error.
    468   bool EnterSubBlock(unsigned BlockID, unsigned *NumWordsP = nullptr);
    469 
    470   bool ReadBlockEnd() {
    471     if (BlockScope.empty()) return true;
    472 
    473     // Block tail:
    474     //    [END_BLOCK, <align4bytes>]
    475     SkipToFourByteBoundary();
    476 
    477     popBlockScope();
    478     return false;
    479   }
    480 
    481 private:
    482 
    483   void popBlockScope() {
    484     CurCodeSize = BlockScope.back().PrevCodeSize;
    485 
    486     CurAbbrevs = std::move(BlockScope.back().PrevAbbrevs);
    487     BlockScope.pop_back();
    488   }
    489 
    490   //===--------------------------------------------------------------------===//
    491   // Record Processing
    492   //===--------------------------------------------------------------------===//
    493 
    494 public:
    495   /// Return the abbreviation for the specified AbbrevId.
    496   const BitCodeAbbrev *getAbbrev(unsigned AbbrevID) {
    497     unsigned AbbrevNo = AbbrevID - bitc::FIRST_APPLICATION_ABBREV;
    498     if (AbbrevNo >= CurAbbrevs.size())
    499       report_fatal_error("Invalid abbrev number");
    500     return CurAbbrevs[AbbrevNo].get();
    501   }
    502 
    503   /// Read the current record and discard it.
    504   void skipRecord(unsigned AbbrevID);
    505 
    506   unsigned readRecord(unsigned AbbrevID, SmallVectorImpl<uint64_t> &Vals,
    507                       StringRef *Blob = nullptr);
    508 
    509   //===--------------------------------------------------------------------===//
    510   // Abbrev Processing
    511   //===--------------------------------------------------------------------===//
    512   void ReadAbbrevRecord();
    513 
    514   bool ReadBlockInfoBlock();
    515 };
    516 
    517 } // End llvm namespace
    518 
    519 #endif
    520