Home | History | Annotate | Download | only in ast
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/ast/ast.h"
      6 
      7 #include <cmath>  // For isfinite.
      8 #include "src/ast/scopes.h"
      9 #include "src/builtins.h"
     10 #include "src/code-stubs.h"
     11 #include "src/contexts.h"
     12 #include "src/conversions.h"
     13 #include "src/hashmap.h"
     14 #include "src/parsing/parser.h"
     15 #include "src/property.h"
     16 #include "src/property-details.h"
     17 #include "src/string-stream.h"
     18 #include "src/type-info.h"
     19 
     20 namespace v8 {
     21 namespace internal {
     22 
     23 // ----------------------------------------------------------------------------
     24 // All the Accept member functions for each syntax tree node type.
     25 
     26 #define DECL_ACCEPT(type)                                       \
     27   void type::Accept(AstVisitor* v) { v->Visit##type(this); }
     28 AST_NODE_LIST(DECL_ACCEPT)
     29 #undef DECL_ACCEPT
     30 
     31 
     32 // ----------------------------------------------------------------------------
     33 // Implementation of other node functionality.
     34 
     35 
     36 bool Expression::IsSmiLiteral() const {
     37   return IsLiteral() && AsLiteral()->value()->IsSmi();
     38 }
     39 
     40 
     41 bool Expression::IsStringLiteral() const {
     42   return IsLiteral() && AsLiteral()->value()->IsString();
     43 }
     44 
     45 
     46 bool Expression::IsNullLiteral() const {
     47   return IsLiteral() && AsLiteral()->value()->IsNull();
     48 }
     49 
     50 
     51 bool Expression::IsUndefinedLiteral(Isolate* isolate) const {
     52   const VariableProxy* var_proxy = AsVariableProxy();
     53   if (var_proxy == NULL) return false;
     54   Variable* var = var_proxy->var();
     55   // The global identifier "undefined" is immutable. Everything
     56   // else could be reassigned.
     57   return var != NULL && var->IsUnallocatedOrGlobalSlot() &&
     58          var_proxy->raw_name()->IsOneByteEqualTo("undefined");
     59 }
     60 
     61 
     62 bool Expression::IsValidReferenceExpressionOrThis() const {
     63   return IsValidReferenceExpression() ||
     64          (IsVariableProxy() && AsVariableProxy()->is_this());
     65 }
     66 
     67 
     68 VariableProxy::VariableProxy(Zone* zone, Variable* var, int start_position,
     69                              int end_position)
     70     : Expression(zone, start_position),
     71       bit_field_(IsThisField::encode(var->is_this()) |
     72                  IsAssignedField::encode(false) |
     73                  IsResolvedField::encode(false)),
     74       raw_name_(var->raw_name()),
     75       end_position_(end_position) {
     76   BindTo(var);
     77 }
     78 
     79 
     80 VariableProxy::VariableProxy(Zone* zone, const AstRawString* name,
     81                              Variable::Kind variable_kind, int start_position,
     82                              int end_position)
     83     : Expression(zone, start_position),
     84       bit_field_(IsThisField::encode(variable_kind == Variable::THIS) |
     85                  IsAssignedField::encode(false) |
     86                  IsResolvedField::encode(false)),
     87       raw_name_(name),
     88       end_position_(end_position) {}
     89 
     90 
     91 void VariableProxy::BindTo(Variable* var) {
     92   DCHECK((is_this() && var->is_this()) || raw_name() == var->raw_name());
     93   set_var(var);
     94   set_is_resolved();
     95   var->set_is_used();
     96 }
     97 
     98 
     99 void VariableProxy::AssignFeedbackVectorSlots(Isolate* isolate,
    100                                               FeedbackVectorSpec* spec,
    101                                               FeedbackVectorSlotCache* cache) {
    102   if (UsesVariableFeedbackSlot()) {
    103     // VariableProxies that point to the same Variable within a function can
    104     // make their loads from the same IC slot.
    105     if (var()->IsUnallocated()) {
    106       ZoneHashMap::Entry* entry = cache->Get(var());
    107       if (entry != NULL) {
    108         variable_feedback_slot_ = FeedbackVectorSlot(
    109             static_cast<int>(reinterpret_cast<intptr_t>(entry->value)));
    110         return;
    111       }
    112     }
    113     variable_feedback_slot_ = spec->AddLoadICSlot();
    114     if (var()->IsUnallocated()) {
    115       cache->Put(var(), variable_feedback_slot_);
    116     }
    117   }
    118 }
    119 
    120 
    121 static void AssignVectorSlots(Expression* expr, FeedbackVectorSpec* spec,
    122                               FeedbackVectorSlot* out_slot) {
    123   Property* property = expr->AsProperty();
    124   LhsKind assign_type = Property::GetAssignType(property);
    125   if ((assign_type == VARIABLE &&
    126        expr->AsVariableProxy()->var()->IsUnallocated()) ||
    127       assign_type == NAMED_PROPERTY || assign_type == KEYED_PROPERTY) {
    128     // TODO(ishell): consider using ICSlotCache for variables here.
    129     FeedbackVectorSlotKind kind = assign_type == KEYED_PROPERTY
    130                                       ? FeedbackVectorSlotKind::KEYED_STORE_IC
    131                                       : FeedbackVectorSlotKind::STORE_IC;
    132     *out_slot = spec->AddSlot(kind);
    133   }
    134 }
    135 
    136 
    137 void ForEachStatement::AssignFeedbackVectorSlots(
    138     Isolate* isolate, FeedbackVectorSpec* spec,
    139     FeedbackVectorSlotCache* cache) {
    140   // TODO(adamk): for-of statements do not make use of this feedback slot.
    141   // The each_slot_ should be specific to ForInStatement, and this work moved
    142   // there.
    143   if (IsForOfStatement()) return;
    144   AssignVectorSlots(each(), spec, &each_slot_);
    145 }
    146 
    147 
    148 Assignment::Assignment(Zone* zone, Token::Value op, Expression* target,
    149                        Expression* value, int pos)
    150     : Expression(zone, pos),
    151       bit_field_(
    152           IsUninitializedField::encode(false) | KeyTypeField::encode(ELEMENT) |
    153           StoreModeField::encode(STANDARD_STORE) | TokenField::encode(op)),
    154       target_(target),
    155       value_(value),
    156       binary_operation_(NULL) {}
    157 
    158 
    159 void Assignment::AssignFeedbackVectorSlots(Isolate* isolate,
    160                                            FeedbackVectorSpec* spec,
    161                                            FeedbackVectorSlotCache* cache) {
    162   AssignVectorSlots(target(), spec, &slot_);
    163 }
    164 
    165 
    166 void CountOperation::AssignFeedbackVectorSlots(Isolate* isolate,
    167                                                FeedbackVectorSpec* spec,
    168                                                FeedbackVectorSlotCache* cache) {
    169   AssignVectorSlots(expression(), spec, &slot_);
    170 }
    171 
    172 
    173 Token::Value Assignment::binary_op() const {
    174   switch (op()) {
    175     case Token::ASSIGN_BIT_OR: return Token::BIT_OR;
    176     case Token::ASSIGN_BIT_XOR: return Token::BIT_XOR;
    177     case Token::ASSIGN_BIT_AND: return Token::BIT_AND;
    178     case Token::ASSIGN_SHL: return Token::SHL;
    179     case Token::ASSIGN_SAR: return Token::SAR;
    180     case Token::ASSIGN_SHR: return Token::SHR;
    181     case Token::ASSIGN_ADD: return Token::ADD;
    182     case Token::ASSIGN_SUB: return Token::SUB;
    183     case Token::ASSIGN_MUL: return Token::MUL;
    184     case Token::ASSIGN_DIV: return Token::DIV;
    185     case Token::ASSIGN_MOD: return Token::MOD;
    186     default: UNREACHABLE();
    187   }
    188   return Token::ILLEGAL;
    189 }
    190 
    191 
    192 bool FunctionLiteral::AllowsLazyCompilation() {
    193   return scope()->AllowsLazyCompilation();
    194 }
    195 
    196 
    197 bool FunctionLiteral::AllowsLazyCompilationWithoutContext() {
    198   return scope()->AllowsLazyCompilationWithoutContext();
    199 }
    200 
    201 
    202 int FunctionLiteral::start_position() const {
    203   return scope()->start_position();
    204 }
    205 
    206 
    207 int FunctionLiteral::end_position() const {
    208   return scope()->end_position();
    209 }
    210 
    211 
    212 LanguageMode FunctionLiteral::language_mode() const {
    213   return scope()->language_mode();
    214 }
    215 
    216 
    217 bool FunctionLiteral::NeedsHomeObject(Expression* expr) {
    218   if (expr == nullptr || !expr->IsFunctionLiteral()) return false;
    219   DCHECK_NOT_NULL(expr->AsFunctionLiteral()->scope());
    220   return expr->AsFunctionLiteral()->scope()->NeedsHomeObject();
    221 }
    222 
    223 
    224 ObjectLiteralProperty::ObjectLiteralProperty(Expression* key, Expression* value,
    225                                              Kind kind, bool is_static,
    226                                              bool is_computed_name)
    227     : key_(key),
    228       value_(value),
    229       kind_(kind),
    230       emit_store_(true),
    231       is_static_(is_static),
    232       is_computed_name_(is_computed_name) {}
    233 
    234 
    235 ObjectLiteralProperty::ObjectLiteralProperty(AstValueFactory* ast_value_factory,
    236                                              Expression* key, Expression* value,
    237                                              bool is_static,
    238                                              bool is_computed_name)
    239     : key_(key),
    240       value_(value),
    241       emit_store_(true),
    242       is_static_(is_static),
    243       is_computed_name_(is_computed_name) {
    244   if (!is_computed_name &&
    245       key->AsLiteral()->raw_value()->EqualsString(
    246           ast_value_factory->proto_string())) {
    247     kind_ = PROTOTYPE;
    248   } else if (value_->AsMaterializedLiteral() != NULL) {
    249     kind_ = MATERIALIZED_LITERAL;
    250   } else if (value_->IsLiteral()) {
    251     kind_ = CONSTANT;
    252   } else {
    253     kind_ = COMPUTED;
    254   }
    255 }
    256 
    257 
    258 void ClassLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
    259                                              FeedbackVectorSpec* spec,
    260                                              FeedbackVectorSlotCache* cache) {
    261   // This logic that computes the number of slots needed for vector store
    262   // ICs must mirror FullCodeGenerator::VisitClassLiteral.
    263   if (NeedsProxySlot()) {
    264     slot_ = spec->AddStoreICSlot();
    265   }
    266 
    267   for (int i = 0; i < properties()->length(); i++) {
    268     ObjectLiteral::Property* property = properties()->at(i);
    269     Expression* value = property->value();
    270     if (FunctionLiteral::NeedsHomeObject(value)) {
    271       property->SetSlot(spec->AddStoreICSlot());
    272     }
    273   }
    274 }
    275 
    276 
    277 bool ObjectLiteral::Property::IsCompileTimeValue() {
    278   return kind_ == CONSTANT ||
    279       (kind_ == MATERIALIZED_LITERAL &&
    280        CompileTimeValue::IsCompileTimeValue(value_));
    281 }
    282 
    283 
    284 void ObjectLiteral::Property::set_emit_store(bool emit_store) {
    285   emit_store_ = emit_store;
    286 }
    287 
    288 
    289 bool ObjectLiteral::Property::emit_store() {
    290   return emit_store_;
    291 }
    292 
    293 
    294 void ObjectLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
    295                                               FeedbackVectorSpec* spec,
    296                                               FeedbackVectorSlotCache* cache) {
    297   // This logic that computes the number of slots needed for vector store
    298   // ics must mirror FullCodeGenerator::VisitObjectLiteral.
    299   int property_index = 0;
    300   for (; property_index < properties()->length(); property_index++) {
    301     ObjectLiteral::Property* property = properties()->at(property_index);
    302     if (property->is_computed_name()) break;
    303     if (property->IsCompileTimeValue()) continue;
    304 
    305     Literal* key = property->key()->AsLiteral();
    306     Expression* value = property->value();
    307     switch (property->kind()) {
    308       case ObjectLiteral::Property::CONSTANT:
    309         UNREACHABLE();
    310       case ObjectLiteral::Property::MATERIALIZED_LITERAL:
    311       // Fall through.
    312       case ObjectLiteral::Property::COMPUTED:
    313         // It is safe to use [[Put]] here because the boilerplate already
    314         // contains computed properties with an uninitialized value.
    315         if (key->value()->IsInternalizedString()) {
    316           if (property->emit_store()) {
    317             property->SetSlot(spec->AddStoreICSlot());
    318             if (FunctionLiteral::NeedsHomeObject(value)) {
    319               property->SetSlot(spec->AddStoreICSlot(), 1);
    320             }
    321           }
    322           break;
    323         }
    324         if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
    325           property->SetSlot(spec->AddStoreICSlot());
    326         }
    327         break;
    328       case ObjectLiteral::Property::PROTOTYPE:
    329         break;
    330       case ObjectLiteral::Property::GETTER:
    331         if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
    332           property->SetSlot(spec->AddStoreICSlot());
    333         }
    334         break;
    335       case ObjectLiteral::Property::SETTER:
    336         if (property->emit_store() && FunctionLiteral::NeedsHomeObject(value)) {
    337           property->SetSlot(spec->AddStoreICSlot());
    338         }
    339         break;
    340     }
    341   }
    342 
    343   for (; property_index < properties()->length(); property_index++) {
    344     ObjectLiteral::Property* property = properties()->at(property_index);
    345 
    346     Expression* value = property->value();
    347     if (property->kind() != ObjectLiteral::Property::PROTOTYPE) {
    348       if (FunctionLiteral::NeedsHomeObject(value)) {
    349         property->SetSlot(spec->AddStoreICSlot());
    350       }
    351     }
    352   }
    353 }
    354 
    355 
    356 void ObjectLiteral::CalculateEmitStore(Zone* zone) {
    357   const auto GETTER = ObjectLiteral::Property::GETTER;
    358   const auto SETTER = ObjectLiteral::Property::SETTER;
    359 
    360   ZoneAllocationPolicy allocator(zone);
    361 
    362   ZoneHashMap table(Literal::Match, ZoneHashMap::kDefaultHashMapCapacity,
    363                     allocator);
    364   for (int i = properties()->length() - 1; i >= 0; i--) {
    365     ObjectLiteral::Property* property = properties()->at(i);
    366     if (property->is_computed_name()) continue;
    367     if (property->kind() == ObjectLiteral::Property::PROTOTYPE) continue;
    368     Literal* literal = property->key()->AsLiteral();
    369     DCHECK(!literal->value()->IsNull());
    370 
    371     // If there is an existing entry do not emit a store unless the previous
    372     // entry was also an accessor.
    373     uint32_t hash = literal->Hash();
    374     ZoneHashMap::Entry* entry = table.LookupOrInsert(literal, hash, allocator);
    375     if (entry->value != NULL) {
    376       auto previous_kind =
    377           static_cast<ObjectLiteral::Property*>(entry->value)->kind();
    378       if (!((property->kind() == GETTER && previous_kind == SETTER) ||
    379             (property->kind() == SETTER && previous_kind == GETTER))) {
    380         property->set_emit_store(false);
    381       }
    382     }
    383     entry->value = property;
    384   }
    385 }
    386 
    387 
    388 bool ObjectLiteral::IsBoilerplateProperty(ObjectLiteral::Property* property) {
    389   return property != NULL &&
    390          property->kind() != ObjectLiteral::Property::PROTOTYPE;
    391 }
    392 
    393 
    394 void ObjectLiteral::BuildConstantProperties(Isolate* isolate) {
    395   if (!constant_properties_.is_null()) return;
    396 
    397   // Allocate a fixed array to hold all the constant properties.
    398   Handle<FixedArray> constant_properties = isolate->factory()->NewFixedArray(
    399       boilerplate_properties_ * 2, TENURED);
    400 
    401   int position = 0;
    402   // Accumulate the value in local variables and store it at the end.
    403   bool is_simple = true;
    404   int depth_acc = 1;
    405   uint32_t max_element_index = 0;
    406   uint32_t elements = 0;
    407   for (int i = 0; i < properties()->length(); i++) {
    408     ObjectLiteral::Property* property = properties()->at(i);
    409     if (!IsBoilerplateProperty(property)) {
    410       is_simple = false;
    411       continue;
    412     }
    413 
    414     if (position == boilerplate_properties_ * 2) {
    415       DCHECK(property->is_computed_name());
    416       is_simple = false;
    417       break;
    418     }
    419     DCHECK(!property->is_computed_name());
    420 
    421     MaterializedLiteral* m_literal = property->value()->AsMaterializedLiteral();
    422     if (m_literal != NULL) {
    423       m_literal->BuildConstants(isolate);
    424       if (m_literal->depth() >= depth_acc) depth_acc = m_literal->depth() + 1;
    425     }
    426 
    427     // Add CONSTANT and COMPUTED properties to boilerplate. Use undefined
    428     // value for COMPUTED properties, the real value is filled in at
    429     // runtime. The enumeration order is maintained.
    430     Handle<Object> key = property->key()->AsLiteral()->value();
    431     Handle<Object> value = GetBoilerplateValue(property->value(), isolate);
    432 
    433     // Ensure objects that may, at any point in time, contain fields with double
    434     // representation are always treated as nested objects. This is true for
    435     // computed fields (value is undefined), and smi and double literals
    436     // (value->IsNumber()).
    437     // TODO(verwaest): Remove once we can store them inline.
    438     if (FLAG_track_double_fields &&
    439         (value->IsNumber() || value->IsUninitialized())) {
    440       may_store_doubles_ = true;
    441     }
    442 
    443     is_simple = is_simple && !value->IsUninitialized();
    444 
    445     // Keep track of the number of elements in the object literal and
    446     // the largest element index.  If the largest element index is
    447     // much larger than the number of elements, creating an object
    448     // literal with fast elements will be a waste of space.
    449     uint32_t element_index = 0;
    450     if (key->IsString()
    451         && Handle<String>::cast(key)->AsArrayIndex(&element_index)
    452         && element_index > max_element_index) {
    453       max_element_index = element_index;
    454       elements++;
    455     } else if (key->IsSmi()) {
    456       int key_value = Smi::cast(*key)->value();
    457       if (key_value > 0
    458           && static_cast<uint32_t>(key_value) > max_element_index) {
    459         max_element_index = key_value;
    460       }
    461       elements++;
    462     }
    463 
    464     // Add name, value pair to the fixed array.
    465     constant_properties->set(position++, *key);
    466     constant_properties->set(position++, *value);
    467   }
    468 
    469   constant_properties_ = constant_properties;
    470   fast_elements_ =
    471       (max_element_index <= 32) || ((2 * elements) >= max_element_index);
    472   has_elements_ = elements > 0;
    473   set_is_simple(is_simple);
    474   set_depth(depth_acc);
    475 }
    476 
    477 
    478 void ArrayLiteral::BuildConstantElements(Isolate* isolate) {
    479   if (!constant_elements_.is_null()) return;
    480 
    481   int constants_length =
    482       first_spread_index_ >= 0 ? first_spread_index_ : values()->length();
    483 
    484   // Allocate a fixed array to hold all the object literals.
    485   Handle<JSArray> array = isolate->factory()->NewJSArray(
    486       FAST_HOLEY_SMI_ELEMENTS, constants_length, constants_length,
    487       Strength::WEAK, INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE);
    488 
    489   // Fill in the literals.
    490   bool is_simple = (first_spread_index_ < 0);
    491   int depth_acc = 1;
    492   bool is_holey = false;
    493   int array_index = 0;
    494   for (; array_index < constants_length; array_index++) {
    495     Expression* element = values()->at(array_index);
    496     DCHECK(!element->IsSpread());
    497     MaterializedLiteral* m_literal = element->AsMaterializedLiteral();
    498     if (m_literal != NULL) {
    499       m_literal->BuildConstants(isolate);
    500       if (m_literal->depth() + 1 > depth_acc) {
    501         depth_acc = m_literal->depth() + 1;
    502       }
    503     }
    504 
    505     // New handle scope here, needs to be after BuildContants().
    506     HandleScope scope(isolate);
    507     Handle<Object> boilerplate_value = GetBoilerplateValue(element, isolate);
    508     if (boilerplate_value->IsTheHole()) {
    509       is_holey = true;
    510       continue;
    511     }
    512 
    513     if (boilerplate_value->IsUninitialized()) {
    514       boilerplate_value = handle(Smi::FromInt(0), isolate);
    515       is_simple = false;
    516     }
    517 
    518     JSObject::AddDataElement(array, array_index, boilerplate_value, NONE)
    519         .Assert();
    520   }
    521 
    522   JSObject::ValidateElements(array);
    523   Handle<FixedArrayBase> element_values(array->elements());
    524 
    525   // Simple and shallow arrays can be lazily copied, we transform the
    526   // elements array to a copy-on-write array.
    527   if (is_simple && depth_acc == 1 && array_index > 0 &&
    528       array->HasFastSmiOrObjectElements()) {
    529     element_values->set_map(isolate->heap()->fixed_cow_array_map());
    530   }
    531 
    532   // Remember both the literal's constant values as well as the ElementsKind
    533   // in a 2-element FixedArray.
    534   Handle<FixedArray> literals = isolate->factory()->NewFixedArray(2, TENURED);
    535 
    536   ElementsKind kind = array->GetElementsKind();
    537   kind = is_holey ? GetHoleyElementsKind(kind) : GetPackedElementsKind(kind);
    538 
    539   literals->set(0, Smi::FromInt(kind));
    540   literals->set(1, *element_values);
    541 
    542   constant_elements_ = literals;
    543   set_is_simple(is_simple);
    544   set_depth(depth_acc);
    545 }
    546 
    547 
    548 void ArrayLiteral::AssignFeedbackVectorSlots(Isolate* isolate,
    549                                              FeedbackVectorSpec* spec,
    550                                              FeedbackVectorSlotCache* cache) {
    551   // This logic that computes the number of slots needed for vector store
    552   // ics must mirror FullCodeGenerator::VisitArrayLiteral.
    553   int array_index = 0;
    554   for (; array_index < values()->length(); array_index++) {
    555     Expression* subexpr = values()->at(array_index);
    556     if (subexpr->IsSpread()) break;
    557     if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
    558 
    559     // We'll reuse the same literal slot for all of the non-constant
    560     // subexpressions that use a keyed store IC.
    561     literal_slot_ = spec->AddKeyedStoreICSlot();
    562     return;
    563   }
    564 }
    565 
    566 
    567 Handle<Object> MaterializedLiteral::GetBoilerplateValue(Expression* expression,
    568                                                         Isolate* isolate) {
    569   if (expression->IsLiteral()) {
    570     return expression->AsLiteral()->value();
    571   }
    572   if (CompileTimeValue::IsCompileTimeValue(expression)) {
    573     return CompileTimeValue::GetValue(isolate, expression);
    574   }
    575   return isolate->factory()->uninitialized_value();
    576 }
    577 
    578 
    579 void MaterializedLiteral::BuildConstants(Isolate* isolate) {
    580   if (IsArrayLiteral()) {
    581     return AsArrayLiteral()->BuildConstantElements(isolate);
    582   }
    583   if (IsObjectLiteral()) {
    584     return AsObjectLiteral()->BuildConstantProperties(isolate);
    585   }
    586   DCHECK(IsRegExpLiteral());
    587   DCHECK(depth() >= 1);  // Depth should be initialized.
    588 }
    589 
    590 
    591 void UnaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
    592   // TODO(olivf) If this Operation is used in a test context, then the
    593   // expression has a ToBoolean stub and we want to collect the type
    594   // information. However the GraphBuilder expects it to be on the instruction
    595   // corresponding to the TestContext, therefore we have to store it here and
    596   // not on the operand.
    597   set_to_boolean_types(oracle->ToBooleanTypes(expression()->test_id()));
    598 }
    599 
    600 
    601 void BinaryOperation::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
    602   // TODO(olivf) If this Operation is used in a test context, then the right
    603   // hand side has a ToBoolean stub and we want to collect the type information.
    604   // However the GraphBuilder expects it to be on the instruction corresponding
    605   // to the TestContext, therefore we have to store it here and not on the
    606   // right hand operand.
    607   set_to_boolean_types(oracle->ToBooleanTypes(right()->test_id()));
    608 }
    609 
    610 
    611 static bool IsTypeof(Expression* expr) {
    612   UnaryOperation* maybe_unary = expr->AsUnaryOperation();
    613   return maybe_unary != NULL && maybe_unary->op() == Token::TYPEOF;
    614 }
    615 
    616 
    617 // Check for the pattern: typeof <expression> equals <string literal>.
    618 static bool MatchLiteralCompareTypeof(Expression* left,
    619                                       Token::Value op,
    620                                       Expression* right,
    621                                       Expression** expr,
    622                                       Handle<String>* check) {
    623   if (IsTypeof(left) && right->IsStringLiteral() && Token::IsEqualityOp(op)) {
    624     *expr = left->AsUnaryOperation()->expression();
    625     *check = Handle<String>::cast(right->AsLiteral()->value());
    626     return true;
    627   }
    628   return false;
    629 }
    630 
    631 
    632 bool CompareOperation::IsLiteralCompareTypeof(Expression** expr,
    633                                               Handle<String>* check) {
    634   return MatchLiteralCompareTypeof(left_, op_, right_, expr, check) ||
    635       MatchLiteralCompareTypeof(right_, op_, left_, expr, check);
    636 }
    637 
    638 
    639 static bool IsVoidOfLiteral(Expression* expr) {
    640   UnaryOperation* maybe_unary = expr->AsUnaryOperation();
    641   return maybe_unary != NULL &&
    642       maybe_unary->op() == Token::VOID &&
    643       maybe_unary->expression()->IsLiteral();
    644 }
    645 
    646 
    647 // Check for the pattern: void <literal> equals <expression> or
    648 // undefined equals <expression>
    649 static bool MatchLiteralCompareUndefined(Expression* left,
    650                                          Token::Value op,
    651                                          Expression* right,
    652                                          Expression** expr,
    653                                          Isolate* isolate) {
    654   if (IsVoidOfLiteral(left) && Token::IsEqualityOp(op)) {
    655     *expr = right;
    656     return true;
    657   }
    658   if (left->IsUndefinedLiteral(isolate) && Token::IsEqualityOp(op)) {
    659     *expr = right;
    660     return true;
    661   }
    662   return false;
    663 }
    664 
    665 
    666 bool CompareOperation::IsLiteralCompareUndefined(
    667     Expression** expr, Isolate* isolate) {
    668   return MatchLiteralCompareUndefined(left_, op_, right_, expr, isolate) ||
    669       MatchLiteralCompareUndefined(right_, op_, left_, expr, isolate);
    670 }
    671 
    672 
    673 // Check for the pattern: null equals <expression>
    674 static bool MatchLiteralCompareNull(Expression* left,
    675                                     Token::Value op,
    676                                     Expression* right,
    677                                     Expression** expr) {
    678   if (left->IsNullLiteral() && Token::IsEqualityOp(op)) {
    679     *expr = right;
    680     return true;
    681   }
    682   return false;
    683 }
    684 
    685 
    686 bool CompareOperation::IsLiteralCompareNull(Expression** expr) {
    687   return MatchLiteralCompareNull(left_, op_, right_, expr) ||
    688       MatchLiteralCompareNull(right_, op_, left_, expr);
    689 }
    690 
    691 
    692 // ----------------------------------------------------------------------------
    693 // Inlining support
    694 
    695 bool Declaration::IsInlineable() const {
    696   return proxy()->var()->IsStackAllocated();
    697 }
    698 
    699 bool FunctionDeclaration::IsInlineable() const {
    700   return false;
    701 }
    702 
    703 
    704 // ----------------------------------------------------------------------------
    705 // Recording of type feedback
    706 
    707 // TODO(rossberg): all RecordTypeFeedback functions should disappear
    708 // once we use the common type field in the AST consistently.
    709 
    710 void Expression::RecordToBooleanTypeFeedback(TypeFeedbackOracle* oracle) {
    711   set_to_boolean_types(oracle->ToBooleanTypes(test_id()));
    712 }
    713 
    714 
    715 bool Call::IsUsingCallFeedbackICSlot(Isolate* isolate) const {
    716   CallType call_type = GetCallType(isolate);
    717   if (call_type == POSSIBLY_EVAL_CALL) {
    718     return false;
    719   }
    720   return true;
    721 }
    722 
    723 
    724 bool Call::IsUsingCallFeedbackSlot(Isolate* isolate) const {
    725   // SuperConstructorCall uses a CallConstructStub, which wants
    726   // a Slot, in addition to any IC slots requested elsewhere.
    727   return GetCallType(isolate) == SUPER_CALL;
    728 }
    729 
    730 
    731 void Call::AssignFeedbackVectorSlots(Isolate* isolate, FeedbackVectorSpec* spec,
    732                                      FeedbackVectorSlotCache* cache) {
    733   if (IsUsingCallFeedbackICSlot(isolate)) {
    734     ic_slot_ = spec->AddCallICSlot();
    735   }
    736   if (IsUsingCallFeedbackSlot(isolate)) {
    737     stub_slot_ = spec->AddGeneralSlot();
    738   }
    739 }
    740 
    741 
    742 Call::CallType Call::GetCallType(Isolate* isolate) const {
    743   VariableProxy* proxy = expression()->AsVariableProxy();
    744   if (proxy != NULL) {
    745     if (proxy->var()->is_possibly_eval(isolate)) {
    746       return POSSIBLY_EVAL_CALL;
    747     } else if (proxy->var()->IsUnallocatedOrGlobalSlot()) {
    748       return GLOBAL_CALL;
    749     } else if (proxy->var()->IsLookupSlot()) {
    750       return LOOKUP_SLOT_CALL;
    751     }
    752   }
    753 
    754   if (expression()->IsSuperCallReference()) return SUPER_CALL;
    755 
    756   Property* property = expression()->AsProperty();
    757   if (property != nullptr) {
    758     bool is_super = property->IsSuperAccess();
    759     if (property->key()->IsPropertyName()) {
    760       return is_super ? NAMED_SUPER_PROPERTY_CALL : NAMED_PROPERTY_CALL;
    761     } else {
    762       return is_super ? KEYED_SUPER_PROPERTY_CALL : KEYED_PROPERTY_CALL;
    763     }
    764   }
    765 
    766   return OTHER_CALL;
    767 }
    768 
    769 
    770 // ----------------------------------------------------------------------------
    771 // Implementation of AstVisitor
    772 
    773 void AstVisitor::VisitDeclarations(ZoneList<Declaration*>* declarations) {
    774   for (int i = 0; i < declarations->length(); i++) {
    775     Visit(declarations->at(i));
    776   }
    777 }
    778 
    779 
    780 void AstVisitor::VisitStatements(ZoneList<Statement*>* statements) {
    781   for (int i = 0; i < statements->length(); i++) {
    782     Statement* stmt = statements->at(i);
    783     Visit(stmt);
    784     if (stmt->IsJump()) break;
    785   }
    786 }
    787 
    788 
    789 void AstVisitor::VisitExpressions(ZoneList<Expression*>* expressions) {
    790   for (int i = 0; i < expressions->length(); i++) {
    791     // The variable statement visiting code may pass NULL expressions
    792     // to this code. Maybe this should be handled by introducing an
    793     // undefined expression or literal?  Revisit this code if this
    794     // changes
    795     Expression* expression = expressions->at(i);
    796     if (expression != NULL) Visit(expression);
    797   }
    798 }
    799 
    800 
    801 CaseClause::CaseClause(Zone* zone, Expression* label,
    802                        ZoneList<Statement*>* statements, int pos)
    803     : Expression(zone, pos),
    804       label_(label),
    805       statements_(statements),
    806       compare_type_(Type::None(zone)) {}
    807 
    808 
    809 uint32_t Literal::Hash() {
    810   return raw_value()->IsString()
    811              ? raw_value()->AsString()->hash()
    812              : ComputeLongHash(double_to_uint64(raw_value()->AsNumber()));
    813 }
    814 
    815 
    816 // static
    817 bool Literal::Match(void* literal1, void* literal2) {
    818   const AstValue* x = static_cast<Literal*>(literal1)->raw_value();
    819   const AstValue* y = static_cast<Literal*>(literal2)->raw_value();
    820   return (x->IsString() && y->IsString() && x->AsString() == y->AsString()) ||
    821          (x->IsNumber() && y->IsNumber() && x->AsNumber() == y->AsNumber());
    822 }
    823 
    824 
    825 }  // namespace internal
    826 }  // namespace v8
    827