Home | History | Annotate | Download | only in regexp
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_REGEXP_JSREGEXP_H_
      6 #define V8_REGEXP_JSREGEXP_H_
      7 
      8 #include "src/allocation.h"
      9 #include "src/assembler.h"
     10 #include "src/regexp/regexp-ast.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 class NodeVisitor;
     16 class RegExpCompiler;
     17 class RegExpMacroAssembler;
     18 class RegExpNode;
     19 class RegExpTree;
     20 class BoyerMooreLookahead;
     21 
     22 class RegExpImpl {
     23  public:
     24   // Whether V8 is compiled with native regexp support or not.
     25   static bool UsesNativeRegExp() {
     26 #ifdef V8_INTERPRETED_REGEXP
     27     return false;
     28 #else
     29     return true;
     30 #endif
     31   }
     32 
     33   // Returns a string representation of a regular expression.
     34   // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
     35   // This function calls the garbage collector if necessary.
     36   static Handle<String> ToString(Handle<Object> value);
     37 
     38   // Parses the RegExp pattern and prepares the JSRegExp object with
     39   // generic data and choice of implementation - as well as what
     40   // the implementation wants to store in the data field.
     41   // Returns false if compilation fails.
     42   MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re,
     43                                                      Handle<String> pattern,
     44                                                      JSRegExp::Flags flags);
     45 
     46   // See ECMA-262 section 15.10.6.2.
     47   // This function calls the garbage collector if necessary.
     48   MUST_USE_RESULT static MaybeHandle<Object> Exec(
     49       Handle<JSRegExp> regexp,
     50       Handle<String> subject,
     51       int index,
     52       Handle<JSArray> lastMatchInfo);
     53 
     54   // Prepares a JSRegExp object with Irregexp-specific data.
     55   static void IrregexpInitialize(Handle<JSRegExp> re,
     56                                  Handle<String> pattern,
     57                                  JSRegExp::Flags flags,
     58                                  int capture_register_count);
     59 
     60 
     61   static void AtomCompile(Handle<JSRegExp> re,
     62                           Handle<String> pattern,
     63                           JSRegExp::Flags flags,
     64                           Handle<String> match_pattern);
     65 
     66 
     67   static int AtomExecRaw(Handle<JSRegExp> regexp,
     68                          Handle<String> subject,
     69                          int index,
     70                          int32_t* output,
     71                          int output_size);
     72 
     73 
     74   static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
     75                                  Handle<String> subject,
     76                                  int index,
     77                                  Handle<JSArray> lastMatchInfo);
     78 
     79   enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
     80 
     81   // Prepare a RegExp for being executed one or more times (using
     82   // IrregexpExecOnce) on the subject.
     83   // This ensures that the regexp is compiled for the subject, and that
     84   // the subject is flat.
     85   // Returns the number of integer spaces required by IrregexpExecOnce
     86   // as its "registers" argument.  If the regexp cannot be compiled,
     87   // an exception is set as pending, and this function returns negative.
     88   static int IrregexpPrepare(Handle<JSRegExp> regexp,
     89                              Handle<String> subject);
     90 
     91   // Execute a regular expression on the subject, starting from index.
     92   // If matching succeeds, return the number of matches.  This can be larger
     93   // than one in the case of global regular expressions.
     94   // The captures and subcaptures are stored into the registers vector.
     95   // If matching fails, returns RE_FAILURE.
     96   // If execution fails, sets a pending exception and returns RE_EXCEPTION.
     97   static int IrregexpExecRaw(Handle<JSRegExp> regexp,
     98                              Handle<String> subject,
     99                              int index,
    100                              int32_t* output,
    101                              int output_size);
    102 
    103   // Execute an Irregexp bytecode pattern.
    104   // On a successful match, the result is a JSArray containing
    105   // captured positions.  On a failure, the result is the null value.
    106   // Returns an empty handle in case of an exception.
    107   MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
    108       Handle<JSRegExp> regexp,
    109       Handle<String> subject,
    110       int index,
    111       Handle<JSArray> lastMatchInfo);
    112 
    113   // Set last match info.  If match is NULL, then setting captures is omitted.
    114   static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
    115                                           Handle<String> subject,
    116                                           int capture_count,
    117                                           int32_t* match);
    118 
    119 
    120   class GlobalCache {
    121    public:
    122     GlobalCache(Handle<JSRegExp> regexp,
    123                 Handle<String> subject,
    124                 bool is_global,
    125                 Isolate* isolate);
    126 
    127     INLINE(~GlobalCache());
    128 
    129     // Fetch the next entry in the cache for global regexp match results.
    130     // This does not set the last match info.  Upon failure, NULL is returned.
    131     // The cause can be checked with Result().  The previous
    132     // result is still in available in memory when a failure happens.
    133     INLINE(int32_t* FetchNext());
    134 
    135     INLINE(int32_t* LastSuccessfulMatch());
    136 
    137     INLINE(bool HasException()) { return num_matches_ < 0; }
    138 
    139    private:
    140     int num_matches_;
    141     int max_matches_;
    142     int current_match_index_;
    143     int registers_per_match_;
    144     // Pointer to the last set of captures.
    145     int32_t* register_array_;
    146     int register_array_size_;
    147     Handle<JSRegExp> regexp_;
    148     Handle<String> subject_;
    149   };
    150 
    151 
    152   // Array index in the lastMatchInfo array.
    153   static const int kLastCaptureCount = 0;
    154   static const int kLastSubject = 1;
    155   static const int kLastInput = 2;
    156   static const int kFirstCapture = 3;
    157   static const int kLastMatchOverhead = 3;
    158 
    159   // Direct offset into the lastMatchInfo array.
    160   static const int kLastCaptureCountOffset =
    161       FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
    162   static const int kLastSubjectOffset =
    163       FixedArray::kHeaderSize + kLastSubject * kPointerSize;
    164   static const int kLastInputOffset =
    165       FixedArray::kHeaderSize + kLastInput * kPointerSize;
    166   static const int kFirstCaptureOffset =
    167       FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
    168 
    169   // Used to access the lastMatchInfo array.
    170   static int GetCapture(FixedArray* array, int index) {
    171     return Smi::cast(array->get(index + kFirstCapture))->value();
    172   }
    173 
    174   static void SetLastCaptureCount(FixedArray* array, int to) {
    175     array->set(kLastCaptureCount, Smi::FromInt(to));
    176   }
    177 
    178   static void SetLastSubject(FixedArray* array, String* to) {
    179     array->set(kLastSubject, to);
    180   }
    181 
    182   static void SetLastInput(FixedArray* array, String* to) {
    183     array->set(kLastInput, to);
    184   }
    185 
    186   static void SetCapture(FixedArray* array, int index, int to) {
    187     array->set(index + kFirstCapture, Smi::FromInt(to));
    188   }
    189 
    190   static int GetLastCaptureCount(FixedArray* array) {
    191     return Smi::cast(array->get(kLastCaptureCount))->value();
    192   }
    193 
    194   // For acting on the JSRegExp data FixedArray.
    195   static int IrregexpMaxRegisterCount(FixedArray* re);
    196   static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
    197   static int IrregexpNumberOfCaptures(FixedArray* re);
    198   static int IrregexpNumberOfRegisters(FixedArray* re);
    199   static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte);
    200   static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte);
    201 
    202   // Limit the space regexps take up on the heap.  In order to limit this we
    203   // would like to keep track of the amount of regexp code on the heap.  This
    204   // is not tracked, however.  As a conservative approximation we track the
    205   // total regexp code compiled including code that has subsequently been freed
    206   // and the total executable memory at any point.
    207   static const int kRegExpExecutableMemoryLimit = 16 * MB;
    208   static const int kRegExpCompiledLimit = 1 * MB;
    209   static const int kRegExpTooLargeToOptimize = 20 * KB;
    210 
    211  private:
    212   static bool CompileIrregexp(Handle<JSRegExp> re,
    213                               Handle<String> sample_subject, bool is_one_byte);
    214   static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re,
    215                                             Handle<String> sample_subject,
    216                                             bool is_one_byte);
    217 };
    218 
    219 
    220 // Represents the location of one element relative to the intersection of
    221 // two sets. Corresponds to the four areas of a Venn diagram.
    222 enum ElementInSetsRelation {
    223   kInsideNone = 0,
    224   kInsideFirst = 1,
    225   kInsideSecond = 2,
    226   kInsideBoth = 3
    227 };
    228 
    229 
    230 // A set of unsigned integers that behaves especially well on small
    231 // integers (< 32).  May do zone-allocation.
    232 class OutSet: public ZoneObject {
    233  public:
    234   OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
    235   OutSet* Extend(unsigned value, Zone* zone);
    236   bool Get(unsigned value) const;
    237   static const unsigned kFirstLimit = 32;
    238 
    239  private:
    240   // Destructively set a value in this set.  In most cases you want
    241   // to use Extend instead to ensure that only one instance exists
    242   // that contains the same values.
    243   void Set(unsigned value, Zone* zone);
    244 
    245   // The successors are a list of sets that contain the same values
    246   // as this set and the one more value that is not present in this
    247   // set.
    248   ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
    249 
    250   OutSet(uint32_t first, ZoneList<unsigned>* remaining)
    251       : first_(first), remaining_(remaining), successors_(NULL) { }
    252   uint32_t first_;
    253   ZoneList<unsigned>* remaining_;
    254   ZoneList<OutSet*>* successors_;
    255   friend class Trace;
    256 };
    257 
    258 
    259 // A mapping from integers, specified as ranges, to a set of integers.
    260 // Used for mapping character ranges to choices.
    261 class DispatchTable : public ZoneObject {
    262  public:
    263   explicit DispatchTable(Zone* zone) : tree_(zone) { }
    264 
    265   class Entry {
    266    public:
    267     Entry() : from_(0), to_(0), out_set_(NULL) { }
    268     Entry(uc16 from, uc16 to, OutSet* out_set)
    269         : from_(from), to_(to), out_set_(out_set) { }
    270     uc16 from() { return from_; }
    271     uc16 to() { return to_; }
    272     void set_to(uc16 value) { to_ = value; }
    273     void AddValue(int value, Zone* zone) {
    274       out_set_ = out_set_->Extend(value, zone);
    275     }
    276     OutSet* out_set() { return out_set_; }
    277    private:
    278     uc16 from_;
    279     uc16 to_;
    280     OutSet* out_set_;
    281   };
    282 
    283   class Config {
    284    public:
    285     typedef uc16 Key;
    286     typedef Entry Value;
    287     static const uc16 kNoKey;
    288     static const Entry NoValue() { return Value(); }
    289     static inline int Compare(uc16 a, uc16 b) {
    290       if (a == b)
    291         return 0;
    292       else if (a < b)
    293         return -1;
    294       else
    295         return 1;
    296     }
    297   };
    298 
    299   void AddRange(CharacterRange range, int value, Zone* zone);
    300   OutSet* Get(uc16 value);
    301   void Dump();
    302 
    303   template <typename Callback>
    304   void ForEach(Callback* callback) {
    305     return tree()->ForEach(callback);
    306   }
    307 
    308  private:
    309   // There can't be a static empty set since it allocates its
    310   // successors in a zone and caches them.
    311   OutSet* empty() { return &empty_; }
    312   OutSet empty_;
    313   ZoneSplayTree<Config>* tree() { return &tree_; }
    314   ZoneSplayTree<Config> tree_;
    315 };
    316 
    317 
    318 #define FOR_EACH_NODE_TYPE(VISIT)                                    \
    319   VISIT(End)                                                         \
    320   VISIT(Action)                                                      \
    321   VISIT(Choice)                                                      \
    322   VISIT(BackReference)                                               \
    323   VISIT(Assertion)                                                   \
    324   VISIT(Text)
    325 
    326 
    327 class Trace;
    328 struct PreloadState;
    329 class GreedyLoopState;
    330 class AlternativeGenerationList;
    331 
    332 struct NodeInfo {
    333   NodeInfo()
    334       : being_analyzed(false),
    335         been_analyzed(false),
    336         follows_word_interest(false),
    337         follows_newline_interest(false),
    338         follows_start_interest(false),
    339         at_end(false),
    340         visited(false),
    341         replacement_calculated(false) { }
    342 
    343   // Returns true if the interests and assumptions of this node
    344   // matches the given one.
    345   bool Matches(NodeInfo* that) {
    346     return (at_end == that->at_end) &&
    347            (follows_word_interest == that->follows_word_interest) &&
    348            (follows_newline_interest == that->follows_newline_interest) &&
    349            (follows_start_interest == that->follows_start_interest);
    350   }
    351 
    352   // Updates the interests of this node given the interests of the
    353   // node preceding it.
    354   void AddFromPreceding(NodeInfo* that) {
    355     at_end |= that->at_end;
    356     follows_word_interest |= that->follows_word_interest;
    357     follows_newline_interest |= that->follows_newline_interest;
    358     follows_start_interest |= that->follows_start_interest;
    359   }
    360 
    361   bool HasLookbehind() {
    362     return follows_word_interest ||
    363            follows_newline_interest ||
    364            follows_start_interest;
    365   }
    366 
    367   // Sets the interests of this node to include the interests of the
    368   // following node.
    369   void AddFromFollowing(NodeInfo* that) {
    370     follows_word_interest |= that->follows_word_interest;
    371     follows_newline_interest |= that->follows_newline_interest;
    372     follows_start_interest |= that->follows_start_interest;
    373   }
    374 
    375   void ResetCompilationState() {
    376     being_analyzed = false;
    377     been_analyzed = false;
    378   }
    379 
    380   bool being_analyzed: 1;
    381   bool been_analyzed: 1;
    382 
    383   // These bits are set of this node has to know what the preceding
    384   // character was.
    385   bool follows_word_interest: 1;
    386   bool follows_newline_interest: 1;
    387   bool follows_start_interest: 1;
    388 
    389   bool at_end: 1;
    390   bool visited: 1;
    391   bool replacement_calculated: 1;
    392 };
    393 
    394 
    395 // Details of a quick mask-compare check that can look ahead in the
    396 // input stream.
    397 class QuickCheckDetails {
    398  public:
    399   QuickCheckDetails()
    400       : characters_(0),
    401         mask_(0),
    402         value_(0),
    403         cannot_match_(false) { }
    404   explicit QuickCheckDetails(int characters)
    405       : characters_(characters),
    406         mask_(0),
    407         value_(0),
    408         cannot_match_(false) { }
    409   bool Rationalize(bool one_byte);
    410   // Merge in the information from another branch of an alternation.
    411   void Merge(QuickCheckDetails* other, int from_index);
    412   // Advance the current position by some amount.
    413   void Advance(int by, bool one_byte);
    414   void Clear();
    415   bool cannot_match() { return cannot_match_; }
    416   void set_cannot_match() { cannot_match_ = true; }
    417   struct Position {
    418     Position() : mask(0), value(0), determines_perfectly(false) { }
    419     uc16 mask;
    420     uc16 value;
    421     bool determines_perfectly;
    422   };
    423   int characters() { return characters_; }
    424   void set_characters(int characters) { characters_ = characters; }
    425   Position* positions(int index) {
    426     DCHECK(index >= 0);
    427     DCHECK(index < characters_);
    428     return positions_ + index;
    429   }
    430   uint32_t mask() { return mask_; }
    431   uint32_t value() { return value_; }
    432 
    433  private:
    434   // How many characters do we have quick check information from.  This is
    435   // the same for all branches of a choice node.
    436   int characters_;
    437   Position positions_[4];
    438   // These values are the condensate of the above array after Rationalize().
    439   uint32_t mask_;
    440   uint32_t value_;
    441   // If set to true, there is no way this quick check can match at all.
    442   // E.g., if it requires to be at the start of the input, and isn't.
    443   bool cannot_match_;
    444 };
    445 
    446 
    447 extern int kUninitializedRegExpNodePlaceHolder;
    448 
    449 
    450 class RegExpNode: public ZoneObject {
    451  public:
    452   explicit RegExpNode(Zone* zone)
    453       : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) {
    454     bm_info_[0] = bm_info_[1] = NULL;
    455   }
    456   virtual ~RegExpNode();
    457   virtual void Accept(NodeVisitor* visitor) = 0;
    458   // Generates a goto to this node or actually generates the code at this point.
    459   virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
    460   // How many characters must this node consume at a minimum in order to
    461   // succeed.  If we have found at least 'still_to_find' characters that
    462   // must be consumed there is no need to ask any following nodes whether
    463   // they are sure to eat any more characters.  The not_at_start argument is
    464   // used to indicate that we know we are not at the start of the input.  In
    465   // this case anchored branches will always fail and can be ignored when
    466   // determining how many characters are consumed on success.
    467   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
    468   // Emits some quick code that checks whether the preloaded characters match.
    469   // Falls through on certain failure, jumps to the label on possible success.
    470   // If the node cannot make a quick check it does nothing and returns false.
    471   bool EmitQuickCheck(RegExpCompiler* compiler,
    472                       Trace* bounds_check_trace,
    473                       Trace* trace,
    474                       bool preload_has_checked_bounds,
    475                       Label* on_possible_success,
    476                       QuickCheckDetails* details_return,
    477                       bool fall_through_on_failure);
    478   // For a given number of characters this returns a mask and a value.  The
    479   // next n characters are anded with the mask and compared with the value.
    480   // A comparison failure indicates the node cannot match the next n characters.
    481   // A comparison success indicates the node may match.
    482   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    483                                     RegExpCompiler* compiler,
    484                                     int characters_filled_in,
    485                                     bool not_at_start) = 0;
    486   static const int kNodeIsTooComplexForGreedyLoops = kMinInt;
    487   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    488   // Only returns the successor for a text node of length 1 that matches any
    489   // character and that has no guards on it.
    490   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    491       RegExpCompiler* compiler) {
    492     return NULL;
    493   }
    494 
    495   // Collects information on the possible code units (mod 128) that can match if
    496   // we look forward.  This is used for a Boyer-Moore-like string searching
    497   // implementation.  TODO(erikcorry):  This should share more code with
    498   // EatsAtLeast, GetQuickCheckDetails.  The budget argument is used to limit
    499   // the number of nodes we are willing to look at in order to create this data.
    500   static const int kRecursionBudget = 200;
    501   bool KeepRecursing(RegExpCompiler* compiler);
    502   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    503                             BoyerMooreLookahead* bm, bool not_at_start) {
    504     UNREACHABLE();
    505   }
    506 
    507   // If we know that the input is one-byte then there are some nodes that can
    508   // never match.  This method returns a node that can be substituted for
    509   // itself, or NULL if the node can never match.
    510   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) {
    511     return this;
    512   }
    513   // Helper for FilterOneByte.
    514   RegExpNode* replacement() {
    515     DCHECK(info()->replacement_calculated);
    516     return replacement_;
    517   }
    518   RegExpNode* set_replacement(RegExpNode* replacement) {
    519     info()->replacement_calculated = true;
    520     replacement_ =  replacement;
    521     return replacement;  // For convenience.
    522   }
    523 
    524   // We want to avoid recalculating the lookahead info, so we store it on the
    525   // node.  Only info that is for this node is stored.  We can tell that the
    526   // info is for this node when offset == 0, so the information is calculated
    527   // relative to this node.
    528   void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
    529     if (offset == 0) set_bm_info(not_at_start, bm);
    530   }
    531 
    532   Label* label() { return &label_; }
    533   // If non-generic code is generated for a node (i.e. the node is not at the
    534   // start of the trace) then it cannot be reused.  This variable sets a limit
    535   // on how often we allow that to happen before we insist on starting a new
    536   // trace and generating generic code for a node that can be reused by flushing
    537   // the deferred actions in the current trace and generating a goto.
    538   static const int kMaxCopiesCodeGenerated = 10;
    539 
    540   bool on_work_list() { return on_work_list_; }
    541   void set_on_work_list(bool value) { on_work_list_ = value; }
    542 
    543   NodeInfo* info() { return &info_; }
    544 
    545   BoyerMooreLookahead* bm_info(bool not_at_start) {
    546     return bm_info_[not_at_start ? 1 : 0];
    547   }
    548 
    549   Zone* zone() const { return zone_; }
    550 
    551  protected:
    552   enum LimitResult { DONE, CONTINUE };
    553   RegExpNode* replacement_;
    554 
    555   LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
    556 
    557   void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
    558     bm_info_[not_at_start ? 1 : 0] = bm;
    559   }
    560 
    561  private:
    562   static const int kFirstCharBudget = 10;
    563   Label label_;
    564   bool on_work_list_;
    565   NodeInfo info_;
    566   // This variable keeps track of how many times code has been generated for
    567   // this node (in different traces).  We don't keep track of where the
    568   // generated code is located unless the code is generated at the start of
    569   // a trace, in which case it is generic and can be reused by flushing the
    570   // deferred operations in the current trace and generating a goto.
    571   int trace_count_;
    572   BoyerMooreLookahead* bm_info_[2];
    573 
    574   Zone* zone_;
    575 };
    576 
    577 
    578 class SeqRegExpNode: public RegExpNode {
    579  public:
    580   explicit SeqRegExpNode(RegExpNode* on_success)
    581       : RegExpNode(on_success->zone()), on_success_(on_success) { }
    582   RegExpNode* on_success() { return on_success_; }
    583   void set_on_success(RegExpNode* node) { on_success_ = node; }
    584   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    585   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    586                             BoyerMooreLookahead* bm, bool not_at_start) {
    587     on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start);
    588     if (offset == 0) set_bm_info(not_at_start, bm);
    589   }
    590 
    591  protected:
    592   RegExpNode* FilterSuccessor(int depth, bool ignore_case);
    593 
    594  private:
    595   RegExpNode* on_success_;
    596 };
    597 
    598 
    599 class ActionNode: public SeqRegExpNode {
    600  public:
    601   enum ActionType {
    602     SET_REGISTER,
    603     INCREMENT_REGISTER,
    604     STORE_POSITION,
    605     BEGIN_SUBMATCH,
    606     POSITIVE_SUBMATCH_SUCCESS,
    607     EMPTY_MATCH_CHECK,
    608     CLEAR_CAPTURES
    609   };
    610   static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
    611   static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
    612   static ActionNode* StorePosition(int reg,
    613                                    bool is_capture,
    614                                    RegExpNode* on_success);
    615   static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
    616   static ActionNode* BeginSubmatch(int stack_pointer_reg,
    617                                    int position_reg,
    618                                    RegExpNode* on_success);
    619   static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
    620                                              int restore_reg,
    621                                              int clear_capture_count,
    622                                              int clear_capture_from,
    623                                              RegExpNode* on_success);
    624   static ActionNode* EmptyMatchCheck(int start_register,
    625                                      int repetition_register,
    626                                      int repetition_limit,
    627                                      RegExpNode* on_success);
    628   virtual void Accept(NodeVisitor* visitor);
    629   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    630   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    631   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    632                                     RegExpCompiler* compiler,
    633                                     int filled_in,
    634                                     bool not_at_start) {
    635     return on_success()->GetQuickCheckDetails(
    636         details, compiler, filled_in, not_at_start);
    637   }
    638   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    639                             BoyerMooreLookahead* bm, bool not_at_start);
    640   ActionType action_type() { return action_type_; }
    641   // TODO(erikcorry): We should allow some action nodes in greedy loops.
    642   virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
    643 
    644  private:
    645   union {
    646     struct {
    647       int reg;
    648       int value;
    649     } u_store_register;
    650     struct {
    651       int reg;
    652     } u_increment_register;
    653     struct {
    654       int reg;
    655       bool is_capture;
    656     } u_position_register;
    657     struct {
    658       int stack_pointer_register;
    659       int current_position_register;
    660       int clear_register_count;
    661       int clear_register_from;
    662     } u_submatch;
    663     struct {
    664       int start_register;
    665       int repetition_register;
    666       int repetition_limit;
    667     } u_empty_match_check;
    668     struct {
    669       int range_from;
    670       int range_to;
    671     } u_clear_captures;
    672   } data_;
    673   ActionNode(ActionType action_type, RegExpNode* on_success)
    674       : SeqRegExpNode(on_success),
    675         action_type_(action_type) { }
    676   ActionType action_type_;
    677   friend class DotPrinter;
    678 };
    679 
    680 
    681 class TextNode: public SeqRegExpNode {
    682  public:
    683   TextNode(ZoneList<TextElement>* elms, bool read_backward,
    684            RegExpNode* on_success)
    685       : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {}
    686   TextNode(RegExpCharacterClass* that, bool read_backward,
    687            RegExpNode* on_success)
    688       : SeqRegExpNode(on_success),
    689         elms_(new (zone()) ZoneList<TextElement>(1, zone())),
    690         read_backward_(read_backward) {
    691     elms_->Add(TextElement::CharClass(that), zone());
    692   }
    693   virtual void Accept(NodeVisitor* visitor);
    694   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    695   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    696   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    697                                     RegExpCompiler* compiler,
    698                                     int characters_filled_in,
    699                                     bool not_at_start);
    700   ZoneList<TextElement>* elements() { return elms_; }
    701   bool read_backward() { return read_backward_; }
    702   void MakeCaseIndependent(Isolate* isolate, bool is_one_byte);
    703   virtual int GreedyLoopTextLength();
    704   virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
    705       RegExpCompiler* compiler);
    706   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    707                             BoyerMooreLookahead* bm, bool not_at_start);
    708   void CalculateOffsets();
    709   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    710 
    711  private:
    712   enum TextEmitPassType {
    713     NON_LATIN1_MATCH,            // Check for characters that can't match.
    714     SIMPLE_CHARACTER_MATCH,      // Case-dependent single character check.
    715     NON_LETTER_CHARACTER_MATCH,  // Check characters that have no case equivs.
    716     CASE_CHARACTER_MATCH,        // Case-independent single character check.
    717     CHARACTER_CLASS_MATCH        // Character class.
    718   };
    719   static bool SkipPass(int pass, bool ignore_case);
    720   static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
    721   static const int kLastPass = CHARACTER_CLASS_MATCH;
    722   void TextEmitPass(RegExpCompiler* compiler,
    723                     TextEmitPassType pass,
    724                     bool preloaded,
    725                     Trace* trace,
    726                     bool first_element_checked,
    727                     int* checked_up_to);
    728   int Length();
    729   ZoneList<TextElement>* elms_;
    730   bool read_backward_;
    731 };
    732 
    733 
    734 class AssertionNode: public SeqRegExpNode {
    735  public:
    736   enum AssertionType {
    737     AT_END,
    738     AT_START,
    739     AT_BOUNDARY,
    740     AT_NON_BOUNDARY,
    741     AFTER_NEWLINE
    742   };
    743   static AssertionNode* AtEnd(RegExpNode* on_success) {
    744     return new(on_success->zone()) AssertionNode(AT_END, on_success);
    745   }
    746   static AssertionNode* AtStart(RegExpNode* on_success) {
    747     return new(on_success->zone()) AssertionNode(AT_START, on_success);
    748   }
    749   static AssertionNode* AtBoundary(RegExpNode* on_success) {
    750     return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
    751   }
    752   static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
    753     return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
    754   }
    755   static AssertionNode* AfterNewline(RegExpNode* on_success) {
    756     return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
    757   }
    758   virtual void Accept(NodeVisitor* visitor);
    759   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    760   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    761   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    762                                     RegExpCompiler* compiler,
    763                                     int filled_in,
    764                                     bool not_at_start);
    765   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    766                             BoyerMooreLookahead* bm, bool not_at_start);
    767   AssertionType assertion_type() { return assertion_type_; }
    768 
    769  private:
    770   void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
    771   enum IfPrevious { kIsNonWord, kIsWord };
    772   void BacktrackIfPrevious(RegExpCompiler* compiler,
    773                            Trace* trace,
    774                            IfPrevious backtrack_if_previous);
    775   AssertionNode(AssertionType t, RegExpNode* on_success)
    776       : SeqRegExpNode(on_success), assertion_type_(t) { }
    777   AssertionType assertion_type_;
    778 };
    779 
    780 
    781 class BackReferenceNode: public SeqRegExpNode {
    782  public:
    783   BackReferenceNode(int start_reg, int end_reg, bool read_backward,
    784                     RegExpNode* on_success)
    785       : SeqRegExpNode(on_success),
    786         start_reg_(start_reg),
    787         end_reg_(end_reg),
    788         read_backward_(read_backward) {}
    789   virtual void Accept(NodeVisitor* visitor);
    790   int start_register() { return start_reg_; }
    791   int end_register() { return end_reg_; }
    792   bool read_backward() { return read_backward_; }
    793   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    794   virtual int EatsAtLeast(int still_to_find,
    795                           int recursion_depth,
    796                           bool not_at_start);
    797   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    798                                     RegExpCompiler* compiler,
    799                                     int characters_filled_in,
    800                                     bool not_at_start) {
    801     return;
    802   }
    803   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    804                             BoyerMooreLookahead* bm, bool not_at_start);
    805 
    806  private:
    807   int start_reg_;
    808   int end_reg_;
    809   bool read_backward_;
    810 };
    811 
    812 
    813 class EndNode: public RegExpNode {
    814  public:
    815   enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
    816   explicit EndNode(Action action, Zone* zone)
    817       : RegExpNode(zone), action_(action) { }
    818   virtual void Accept(NodeVisitor* visitor);
    819   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    820   virtual int EatsAtLeast(int still_to_find,
    821                           int recursion_depth,
    822                           bool not_at_start) { return 0; }
    823   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    824                                     RegExpCompiler* compiler,
    825                                     int characters_filled_in,
    826                                     bool not_at_start) {
    827     // Returning 0 from EatsAtLeast should ensure we never get here.
    828     UNREACHABLE();
    829   }
    830   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    831                             BoyerMooreLookahead* bm, bool not_at_start) {
    832     // Returning 0 from EatsAtLeast should ensure we never get here.
    833     UNREACHABLE();
    834   }
    835 
    836  private:
    837   Action action_;
    838 };
    839 
    840 
    841 class NegativeSubmatchSuccess: public EndNode {
    842  public:
    843   NegativeSubmatchSuccess(int stack_pointer_reg,
    844                           int position_reg,
    845                           int clear_capture_count,
    846                           int clear_capture_start,
    847                           Zone* zone)
    848       : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
    849         stack_pointer_register_(stack_pointer_reg),
    850         current_position_register_(position_reg),
    851         clear_capture_count_(clear_capture_count),
    852         clear_capture_start_(clear_capture_start) { }
    853   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    854 
    855  private:
    856   int stack_pointer_register_;
    857   int current_position_register_;
    858   int clear_capture_count_;
    859   int clear_capture_start_;
    860 };
    861 
    862 
    863 class Guard: public ZoneObject {
    864  public:
    865   enum Relation { LT, GEQ };
    866   Guard(int reg, Relation op, int value)
    867       : reg_(reg),
    868         op_(op),
    869         value_(value) { }
    870   int reg() { return reg_; }
    871   Relation op() { return op_; }
    872   int value() { return value_; }
    873 
    874  private:
    875   int reg_;
    876   Relation op_;
    877   int value_;
    878 };
    879 
    880 
    881 class GuardedAlternative {
    882  public:
    883   explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
    884   void AddGuard(Guard* guard, Zone* zone);
    885   RegExpNode* node() { return node_; }
    886   void set_node(RegExpNode* node) { node_ = node; }
    887   ZoneList<Guard*>* guards() { return guards_; }
    888 
    889  private:
    890   RegExpNode* node_;
    891   ZoneList<Guard*>* guards_;
    892 };
    893 
    894 
    895 class AlternativeGeneration;
    896 
    897 
    898 class ChoiceNode: public RegExpNode {
    899  public:
    900   explicit ChoiceNode(int expected_size, Zone* zone)
    901       : RegExpNode(zone),
    902         alternatives_(new(zone)
    903                       ZoneList<GuardedAlternative>(expected_size, zone)),
    904         table_(NULL),
    905         not_at_start_(false),
    906         being_calculated_(false) { }
    907   virtual void Accept(NodeVisitor* visitor);
    908   void AddAlternative(GuardedAlternative node) {
    909     alternatives()->Add(node, zone());
    910   }
    911   ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
    912   DispatchTable* GetTable(bool ignore_case);
    913   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
    914   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    915   int EatsAtLeastHelper(int still_to_find,
    916                         int budget,
    917                         RegExpNode* ignore_this_node,
    918                         bool not_at_start);
    919   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    920                                     RegExpCompiler* compiler,
    921                                     int characters_filled_in,
    922                                     bool not_at_start);
    923   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    924                             BoyerMooreLookahead* bm, bool not_at_start);
    925 
    926   bool being_calculated() { return being_calculated_; }
    927   bool not_at_start() { return not_at_start_; }
    928   void set_not_at_start() { not_at_start_ = true; }
    929   void set_being_calculated(bool b) { being_calculated_ = b; }
    930   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
    931     return true;
    932   }
    933   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
    934   virtual bool read_backward() { return false; }
    935 
    936  protected:
    937   int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
    938   ZoneList<GuardedAlternative>* alternatives_;
    939 
    940  private:
    941   friend class DispatchTableConstructor;
    942   friend class Analysis;
    943   void GenerateGuard(RegExpMacroAssembler* macro_assembler,
    944                      Guard* guard,
    945                      Trace* trace);
    946   int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
    947   void EmitOutOfLineContinuation(RegExpCompiler* compiler,
    948                                  Trace* trace,
    949                                  GuardedAlternative alternative,
    950                                  AlternativeGeneration* alt_gen,
    951                                  int preload_characters,
    952                                  bool next_expects_preload);
    953   void SetUpPreLoad(RegExpCompiler* compiler,
    954                     Trace* current_trace,
    955                     PreloadState* preloads);
    956   void AssertGuardsMentionRegisters(Trace* trace);
    957   int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace);
    958   Trace* EmitGreedyLoop(RegExpCompiler* compiler,
    959                         Trace* trace,
    960                         AlternativeGenerationList* alt_gens,
    961                         PreloadState* preloads,
    962                         GreedyLoopState* greedy_loop_state,
    963                         int text_length);
    964   void EmitChoices(RegExpCompiler* compiler,
    965                    AlternativeGenerationList* alt_gens,
    966                    int first_choice,
    967                    Trace* trace,
    968                    PreloadState* preloads);
    969   DispatchTable* table_;
    970   // If true, this node is never checked at the start of the input.
    971   // Allows a new trace to start with at_start() set to false.
    972   bool not_at_start_;
    973   bool being_calculated_;
    974 };
    975 
    976 
    977 class NegativeLookaroundChoiceNode : public ChoiceNode {
    978  public:
    979   explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail,
    980                                         GuardedAlternative then_do_this,
    981                                         Zone* zone)
    982       : ChoiceNode(2, zone) {
    983     AddAlternative(this_must_fail);
    984     AddAlternative(then_do_this);
    985   }
    986   virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
    987   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
    988                                     RegExpCompiler* compiler,
    989                                     int characters_filled_in,
    990                                     bool not_at_start);
    991   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
    992                             BoyerMooreLookahead* bm, bool not_at_start) {
    993     alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm,
    994                                               not_at_start);
    995     if (offset == 0) set_bm_info(not_at_start, bm);
    996   }
    997   // For a negative lookahead we don't emit the quick check for the
    998   // alternative that is expected to fail.  This is because quick check code
    999   // starts by loading enough characters for the alternative that takes fewest
   1000   // characters, but on a negative lookahead the negative branch did not take
   1001   // part in that calculation (EatsAtLeast) so the assumptions don't hold.
   1002   virtual bool try_to_emit_quick_check_for_alternative(bool is_first) {
   1003     return !is_first;
   1004   }
   1005   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1006 };
   1007 
   1008 
   1009 class LoopChoiceNode: public ChoiceNode {
   1010  public:
   1011   LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone)
   1012       : ChoiceNode(2, zone),
   1013         loop_node_(NULL),
   1014         continue_node_(NULL),
   1015         body_can_be_zero_length_(body_can_be_zero_length),
   1016         read_backward_(read_backward) {}
   1017   void AddLoopAlternative(GuardedAlternative alt);
   1018   void AddContinueAlternative(GuardedAlternative alt);
   1019   virtual void Emit(RegExpCompiler* compiler, Trace* trace);
   1020   virtual int EatsAtLeast(int still_to_find,  int budget, bool not_at_start);
   1021   virtual void GetQuickCheckDetails(QuickCheckDetails* details,
   1022                                     RegExpCompiler* compiler,
   1023                                     int characters_filled_in,
   1024                                     bool not_at_start);
   1025   virtual void FillInBMInfo(Isolate* isolate, int offset, int budget,
   1026                             BoyerMooreLookahead* bm, bool not_at_start);
   1027   RegExpNode* loop_node() { return loop_node_; }
   1028   RegExpNode* continue_node() { return continue_node_; }
   1029   bool body_can_be_zero_length() { return body_can_be_zero_length_; }
   1030   virtual bool read_backward() { return read_backward_; }
   1031   virtual void Accept(NodeVisitor* visitor);
   1032   virtual RegExpNode* FilterOneByte(int depth, bool ignore_case);
   1033 
   1034  private:
   1035   // AddAlternative is made private for loop nodes because alternatives
   1036   // should not be added freely, we need to keep track of which node
   1037   // goes back to the node itself.
   1038   void AddAlternative(GuardedAlternative node) {
   1039     ChoiceNode::AddAlternative(node);
   1040   }
   1041 
   1042   RegExpNode* loop_node_;
   1043   RegExpNode* continue_node_;
   1044   bool body_can_be_zero_length_;
   1045   bool read_backward_;
   1046 };
   1047 
   1048 
   1049 // Improve the speed that we scan for an initial point where a non-anchored
   1050 // regexp can match by using a Boyer-Moore-like table. This is done by
   1051 // identifying non-greedy non-capturing loops in the nodes that eat any
   1052 // character one at a time.  For example in the middle of the regexp
   1053 // /foo[\s\S]*?bar/ we find such a loop.  There is also such a loop implicitly
   1054 // inserted at the start of any non-anchored regexp.
   1055 //
   1056 // When we have found such a loop we look ahead in the nodes to find the set of
   1057 // characters that can come at given distances. For example for the regexp
   1058 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
   1059 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
   1060 // the lookahead info where the set of characters is reasonably constrained. In
   1061 // our example this is from index 1 to 2 (0 is not constrained). We can now
   1062 // look 3 characters ahead and if we don't find one of [f, o] (the union of
   1063 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
   1064 //
   1065 // For Unicode input strings we do the same, but modulo 128.
   1066 //
   1067 // We also look at the first string fed to the regexp and use that to get a hint
   1068 // of the character frequencies in the inputs. This affects the assessment of
   1069 // whether the set of characters is 'reasonably constrained'.
   1070 //
   1071 // We also have another lookahead mechanism (called quick check in the code),
   1072 // which uses a wide load of multiple characters followed by a mask and compare
   1073 // to determine whether a match is possible at this point.
   1074 enum ContainedInLattice {
   1075   kNotYet = 0,
   1076   kLatticeIn = 1,
   1077   kLatticeOut = 2,
   1078   kLatticeUnknown = 3  // Can also mean both in and out.
   1079 };
   1080 
   1081 
   1082 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
   1083   return static_cast<ContainedInLattice>(a | b);
   1084 }
   1085 
   1086 
   1087 ContainedInLattice AddRange(ContainedInLattice a,
   1088                             const int* ranges,
   1089                             int ranges_size,
   1090                             Interval new_range);
   1091 
   1092 
   1093 class BoyerMoorePositionInfo : public ZoneObject {
   1094  public:
   1095   explicit BoyerMoorePositionInfo(Zone* zone)
   1096       : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
   1097         map_count_(0),
   1098         w_(kNotYet),
   1099         s_(kNotYet),
   1100         d_(kNotYet),
   1101         surrogate_(kNotYet) {
   1102      for (int i = 0; i < kMapSize; i++) {
   1103        map_->Add(false, zone);
   1104      }
   1105   }
   1106 
   1107   bool& at(int i) { return map_->at(i); }
   1108 
   1109   static const int kMapSize = 128;
   1110   static const int kMask = kMapSize - 1;
   1111 
   1112   int map_count() const { return map_count_; }
   1113 
   1114   void Set(int character);
   1115   void SetInterval(const Interval& interval);
   1116   void SetAll();
   1117   bool is_non_word() { return w_ == kLatticeOut; }
   1118   bool is_word() { return w_ == kLatticeIn; }
   1119 
   1120  private:
   1121   ZoneList<bool>* map_;
   1122   int map_count_;  // Number of set bits in the map.
   1123   ContainedInLattice w_;  // The \w character class.
   1124   ContainedInLattice s_;  // The \s character class.
   1125   ContainedInLattice d_;  // The \d character class.
   1126   ContainedInLattice surrogate_;  // Surrogate UTF-16 code units.
   1127 };
   1128 
   1129 
   1130 class BoyerMooreLookahead : public ZoneObject {
   1131  public:
   1132   BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
   1133 
   1134   int length() { return length_; }
   1135   int max_char() { return max_char_; }
   1136   RegExpCompiler* compiler() { return compiler_; }
   1137 
   1138   int Count(int map_number) {
   1139     return bitmaps_->at(map_number)->map_count();
   1140   }
   1141 
   1142   BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
   1143 
   1144   void Set(int map_number, int character) {
   1145     if (character > max_char_) return;
   1146     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1147     info->Set(character);
   1148   }
   1149 
   1150   void SetInterval(int map_number, const Interval& interval) {
   1151     if (interval.from() > max_char_) return;
   1152     BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
   1153     if (interval.to() > max_char_) {
   1154       info->SetInterval(Interval(interval.from(), max_char_));
   1155     } else {
   1156       info->SetInterval(interval);
   1157     }
   1158   }
   1159 
   1160   void SetAll(int map_number) {
   1161     bitmaps_->at(map_number)->SetAll();
   1162   }
   1163 
   1164   void SetRest(int from_map) {
   1165     for (int i = from_map; i < length_; i++) SetAll(i);
   1166   }
   1167   void EmitSkipInstructions(RegExpMacroAssembler* masm);
   1168 
   1169  private:
   1170   // This is the value obtained by EatsAtLeast.  If we do not have at least this
   1171   // many characters left in the sample string then the match is bound to fail.
   1172   // Therefore it is OK to read a character this far ahead of the current match
   1173   // point.
   1174   int length_;
   1175   RegExpCompiler* compiler_;
   1176   // 0xff for Latin1, 0xffff for UTF-16.
   1177   int max_char_;
   1178   ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
   1179 
   1180   int GetSkipTable(int min_lookahead,
   1181                    int max_lookahead,
   1182                    Handle<ByteArray> boolean_skip_table);
   1183   bool FindWorthwhileInterval(int* from, int* to);
   1184   int FindBestInterval(
   1185     int max_number_of_chars, int old_biggest_points, int* from, int* to);
   1186 };
   1187 
   1188 
   1189 // There are many ways to generate code for a node.  This class encapsulates
   1190 // the current way we should be generating.  In other words it encapsulates
   1191 // the current state of the code generator.  The effect of this is that we
   1192 // generate code for paths that the matcher can take through the regular
   1193 // expression.  A given node in the regexp can be code-generated several times
   1194 // as it can be part of several traces.  For example for the regexp:
   1195 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
   1196 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace.  The code
   1197 // to match foo is generated only once (the traces have a common prefix).  The
   1198 // code to store the capture is deferred and generated (twice) after the places
   1199 // where baz has been matched.
   1200 class Trace {
   1201  public:
   1202   // A value for a property that is either known to be true, know to be false,
   1203   // or not known.
   1204   enum TriBool {
   1205     UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
   1206   };
   1207 
   1208   class DeferredAction {
   1209    public:
   1210     DeferredAction(ActionNode::ActionType action_type, int reg)
   1211         : action_type_(action_type), reg_(reg), next_(NULL) { }
   1212     DeferredAction* next() { return next_; }
   1213     bool Mentions(int reg);
   1214     int reg() { return reg_; }
   1215     ActionNode::ActionType action_type() { return action_type_; }
   1216    private:
   1217     ActionNode::ActionType action_type_;
   1218     int reg_;
   1219     DeferredAction* next_;
   1220     friend class Trace;
   1221   };
   1222 
   1223   class DeferredCapture : public DeferredAction {
   1224    public:
   1225     DeferredCapture(int reg, bool is_capture, Trace* trace)
   1226         : DeferredAction(ActionNode::STORE_POSITION, reg),
   1227           cp_offset_(trace->cp_offset()),
   1228           is_capture_(is_capture) { }
   1229     int cp_offset() { return cp_offset_; }
   1230     bool is_capture() { return is_capture_; }
   1231    private:
   1232     int cp_offset_;
   1233     bool is_capture_;
   1234     void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
   1235   };
   1236 
   1237   class DeferredSetRegister : public DeferredAction {
   1238    public:
   1239     DeferredSetRegister(int reg, int value)
   1240         : DeferredAction(ActionNode::SET_REGISTER, reg),
   1241           value_(value) { }
   1242     int value() { return value_; }
   1243    private:
   1244     int value_;
   1245   };
   1246 
   1247   class DeferredClearCaptures : public DeferredAction {
   1248    public:
   1249     explicit DeferredClearCaptures(Interval range)
   1250         : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
   1251           range_(range) { }
   1252     Interval range() { return range_; }
   1253    private:
   1254     Interval range_;
   1255   };
   1256 
   1257   class DeferredIncrementRegister : public DeferredAction {
   1258    public:
   1259     explicit DeferredIncrementRegister(int reg)
   1260         : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
   1261   };
   1262 
   1263   Trace()
   1264       : cp_offset_(0),
   1265         actions_(NULL),
   1266         backtrack_(NULL),
   1267         stop_node_(NULL),
   1268         loop_label_(NULL),
   1269         characters_preloaded_(0),
   1270         bound_checked_up_to_(0),
   1271         flush_budget_(100),
   1272         at_start_(UNKNOWN) { }
   1273 
   1274   // End the trace.  This involves flushing the deferred actions in the trace
   1275   // and pushing a backtrack location onto the backtrack stack.  Once this is
   1276   // done we can start a new trace or go to one that has already been
   1277   // generated.
   1278   void Flush(RegExpCompiler* compiler, RegExpNode* successor);
   1279   int cp_offset() { return cp_offset_; }
   1280   DeferredAction* actions() { return actions_; }
   1281   // A trivial trace is one that has no deferred actions or other state that
   1282   // affects the assumptions used when generating code.  There is no recorded
   1283   // backtrack location in a trivial trace, so with a trivial trace we will
   1284   // generate code that, on a failure to match, gets the backtrack location
   1285   // from the backtrack stack rather than using a direct jump instruction.  We
   1286   // always start code generation with a trivial trace and non-trivial traces
   1287   // are created as we emit code for nodes or add to the list of deferred
   1288   // actions in the trace.  The location of the code generated for a node using
   1289   // a trivial trace is recorded in a label in the node so that gotos can be
   1290   // generated to that code.
   1291   bool is_trivial() {
   1292     return backtrack_ == NULL &&
   1293            actions_ == NULL &&
   1294            cp_offset_ == 0 &&
   1295            characters_preloaded_ == 0 &&
   1296            bound_checked_up_to_ == 0 &&
   1297            quick_check_performed_.characters() == 0 &&
   1298            at_start_ == UNKNOWN;
   1299   }
   1300   TriBool at_start() { return at_start_; }
   1301   void set_at_start(TriBool at_start) { at_start_ = at_start; }
   1302   Label* backtrack() { return backtrack_; }
   1303   Label* loop_label() { return loop_label_; }
   1304   RegExpNode* stop_node() { return stop_node_; }
   1305   int characters_preloaded() { return characters_preloaded_; }
   1306   int bound_checked_up_to() { return bound_checked_up_to_; }
   1307   int flush_budget() { return flush_budget_; }
   1308   QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
   1309   bool mentions_reg(int reg);
   1310   // Returns true if a deferred position store exists to the specified
   1311   // register and stores the offset in the out-parameter.  Otherwise
   1312   // returns false.
   1313   bool GetStoredPosition(int reg, int* cp_offset);
   1314   // These set methods and AdvanceCurrentPositionInTrace should be used only on
   1315   // new traces - the intention is that traces are immutable after creation.
   1316   void add_action(DeferredAction* new_action) {
   1317     DCHECK(new_action->next_ == NULL);
   1318     new_action->next_ = actions_;
   1319     actions_ = new_action;
   1320   }
   1321   void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
   1322   void set_stop_node(RegExpNode* node) { stop_node_ = node; }
   1323   void set_loop_label(Label* label) { loop_label_ = label; }
   1324   void set_characters_preloaded(int count) { characters_preloaded_ = count; }
   1325   void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
   1326   void set_flush_budget(int to) { flush_budget_ = to; }
   1327   void set_quick_check_performed(QuickCheckDetails* d) {
   1328     quick_check_performed_ = *d;
   1329   }
   1330   void InvalidateCurrentCharacter();
   1331   void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
   1332 
   1333  private:
   1334   int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
   1335   void PerformDeferredActions(RegExpMacroAssembler* macro,
   1336                               int max_register,
   1337                               const OutSet& affected_registers,
   1338                               OutSet* registers_to_pop,
   1339                               OutSet* registers_to_clear,
   1340                               Zone* zone);
   1341   void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
   1342                                 int max_register,
   1343                                 const OutSet& registers_to_pop,
   1344                                 const OutSet& registers_to_clear);
   1345   int cp_offset_;
   1346   DeferredAction* actions_;
   1347   Label* backtrack_;
   1348   RegExpNode* stop_node_;
   1349   Label* loop_label_;
   1350   int characters_preloaded_;
   1351   int bound_checked_up_to_;
   1352   QuickCheckDetails quick_check_performed_;
   1353   int flush_budget_;
   1354   TriBool at_start_;
   1355 };
   1356 
   1357 
   1358 class GreedyLoopState {
   1359  public:
   1360   explicit GreedyLoopState(bool not_at_start);
   1361 
   1362   Label* label() { return &label_; }
   1363   Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; }
   1364 
   1365  private:
   1366   Label label_;
   1367   Trace counter_backtrack_trace_;
   1368 };
   1369 
   1370 
   1371 struct PreloadState {
   1372   static const int kEatsAtLeastNotYetInitialized = -1;
   1373   bool preload_is_current_;
   1374   bool preload_has_checked_bounds_;
   1375   int preload_characters_;
   1376   int eats_at_least_;
   1377   void init() {
   1378     eats_at_least_ = kEatsAtLeastNotYetInitialized;
   1379   }
   1380 };
   1381 
   1382 
   1383 class NodeVisitor {
   1384  public:
   1385   virtual ~NodeVisitor() { }
   1386 #define DECLARE_VISIT(Type)                                          \
   1387   virtual void Visit##Type(Type##Node* that) = 0;
   1388 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1389 #undef DECLARE_VISIT
   1390   virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
   1391 };
   1392 
   1393 
   1394 // Node visitor used to add the start set of the alternatives to the
   1395 // dispatch table of a choice node.
   1396 class DispatchTableConstructor: public NodeVisitor {
   1397  public:
   1398   DispatchTableConstructor(DispatchTable* table, bool ignore_case,
   1399                            Zone* zone)
   1400       : table_(table),
   1401         choice_index_(-1),
   1402         ignore_case_(ignore_case),
   1403         zone_(zone) { }
   1404 
   1405   void BuildTable(ChoiceNode* node);
   1406 
   1407   void AddRange(CharacterRange range) {
   1408     table()->AddRange(range, choice_index_, zone_);
   1409   }
   1410 
   1411   void AddInverse(ZoneList<CharacterRange>* ranges);
   1412 
   1413 #define DECLARE_VISIT(Type)                                          \
   1414   virtual void Visit##Type(Type##Node* that);
   1415 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1416 #undef DECLARE_VISIT
   1417 
   1418   DispatchTable* table() { return table_; }
   1419   void set_choice_index(int value) { choice_index_ = value; }
   1420 
   1421  protected:
   1422   DispatchTable* table_;
   1423   int choice_index_;
   1424   bool ignore_case_;
   1425   Zone* zone_;
   1426 };
   1427 
   1428 
   1429 // Assertion propagation moves information about assertions such as
   1430 // \b to the affected nodes.  For instance, in /.\b./ information must
   1431 // be propagated to the first '.' that whatever follows needs to know
   1432 // if it matched a word or a non-word, and to the second '.' that it
   1433 // has to check if it succeeds a word or non-word.  In this case the
   1434 // result will be something like:
   1435 //
   1436 //   +-------+        +------------+
   1437 //   |   .   |        |      .     |
   1438 //   +-------+  --->  +------------+
   1439 //   | word? |        | check word |
   1440 //   +-------+        +------------+
   1441 class Analysis: public NodeVisitor {
   1442  public:
   1443   Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte)
   1444       : isolate_(isolate),
   1445         ignore_case_(ignore_case),
   1446         is_one_byte_(is_one_byte),
   1447         error_message_(NULL) {}
   1448   void EnsureAnalyzed(RegExpNode* node);
   1449 
   1450 #define DECLARE_VISIT(Type)                                          \
   1451   virtual void Visit##Type(Type##Node* that);
   1452 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
   1453 #undef DECLARE_VISIT
   1454   virtual void VisitLoopChoice(LoopChoiceNode* that);
   1455 
   1456   bool has_failed() { return error_message_ != NULL; }
   1457   const char* error_message() {
   1458     DCHECK(error_message_ != NULL);
   1459     return error_message_;
   1460   }
   1461   void fail(const char* error_message) {
   1462     error_message_ = error_message;
   1463   }
   1464 
   1465   Isolate* isolate() const { return isolate_; }
   1466 
   1467  private:
   1468   Isolate* isolate_;
   1469   bool ignore_case_;
   1470   bool is_one_byte_;
   1471   const char* error_message_;
   1472 
   1473   DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
   1474 };
   1475 
   1476 
   1477 struct RegExpCompileData {
   1478   RegExpCompileData()
   1479     : tree(NULL),
   1480       node(NULL),
   1481       simple(true),
   1482       contains_anchor(false),
   1483       capture_count(0) { }
   1484   RegExpTree* tree;
   1485   RegExpNode* node;
   1486   bool simple;
   1487   bool contains_anchor;
   1488   Handle<String> error;
   1489   int capture_count;
   1490 };
   1491 
   1492 
   1493 class RegExpEngine: public AllStatic {
   1494  public:
   1495   struct CompilationResult {
   1496     CompilationResult(Isolate* isolate, const char* error_message)
   1497         : error_message(error_message),
   1498           code(isolate->heap()->the_hole_value()),
   1499           num_registers(0) {}
   1500     CompilationResult(Object* code, int registers)
   1501         : error_message(NULL), code(code), num_registers(registers) {}
   1502     const char* error_message;
   1503     Object* code;
   1504     int num_registers;
   1505   };
   1506 
   1507   static CompilationResult Compile(Isolate* isolate, Zone* zone,
   1508                                    RegExpCompileData* input, bool ignore_case,
   1509                                    bool global, bool multiline, bool sticky,
   1510                                    Handle<String> pattern,
   1511                                    Handle<String> sample_subject,
   1512                                    bool is_one_byte);
   1513 
   1514   static bool TooMuchRegExpCode(Handle<String> pattern);
   1515 
   1516   static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
   1517 };
   1518 
   1519 
   1520 class RegExpResultsCache : public AllStatic {
   1521  public:
   1522   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
   1523 
   1524   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
   1525   // On success, the returned result is guaranteed to be a COW-array.
   1526   static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern,
   1527                         FixedArray** last_match_out, ResultsCacheType type);
   1528   // Attempt to add value_array to the cache specified by type.  On success,
   1529   // value_array is turned into a COW-array.
   1530   static void Enter(Isolate* isolate, Handle<String> key_string,
   1531                     Handle<Object> key_pattern, Handle<FixedArray> value_array,
   1532                     Handle<FixedArray> last_match_cache, ResultsCacheType type);
   1533   static void Clear(FixedArray* cache);
   1534   static const int kRegExpResultsCacheSize = 0x100;
   1535 
   1536  private:
   1537   static const int kArrayEntriesPerCacheEntry = 4;
   1538   static const int kStringOffset = 0;
   1539   static const int kPatternOffset = 1;
   1540   static const int kArrayOffset = 2;
   1541   static const int kLastMatchOffset = 3;
   1542 };
   1543 
   1544 }  // namespace internal
   1545 }  // namespace v8
   1546 
   1547 #endif  // V8_REGEXP_JSREGEXP_H_
   1548