1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_REGEXP_JSREGEXP_H_ 6 #define V8_REGEXP_JSREGEXP_H_ 7 8 #include "src/allocation.h" 9 #include "src/assembler.h" 10 #include "src/regexp/regexp-ast.h" 11 12 namespace v8 { 13 namespace internal { 14 15 class NodeVisitor; 16 class RegExpCompiler; 17 class RegExpMacroAssembler; 18 class RegExpNode; 19 class RegExpTree; 20 class BoyerMooreLookahead; 21 22 class RegExpImpl { 23 public: 24 // Whether V8 is compiled with native regexp support or not. 25 static bool UsesNativeRegExp() { 26 #ifdef V8_INTERPRETED_REGEXP 27 return false; 28 #else 29 return true; 30 #endif 31 } 32 33 // Returns a string representation of a regular expression. 34 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4. 35 // This function calls the garbage collector if necessary. 36 static Handle<String> ToString(Handle<Object> value); 37 38 // Parses the RegExp pattern and prepares the JSRegExp object with 39 // generic data and choice of implementation - as well as what 40 // the implementation wants to store in the data field. 41 // Returns false if compilation fails. 42 MUST_USE_RESULT static MaybeHandle<Object> Compile(Handle<JSRegExp> re, 43 Handle<String> pattern, 44 JSRegExp::Flags flags); 45 46 // See ECMA-262 section 15.10.6.2. 47 // This function calls the garbage collector if necessary. 48 MUST_USE_RESULT static MaybeHandle<Object> Exec( 49 Handle<JSRegExp> regexp, 50 Handle<String> subject, 51 int index, 52 Handle<JSArray> lastMatchInfo); 53 54 // Prepares a JSRegExp object with Irregexp-specific data. 55 static void IrregexpInitialize(Handle<JSRegExp> re, 56 Handle<String> pattern, 57 JSRegExp::Flags flags, 58 int capture_register_count); 59 60 61 static void AtomCompile(Handle<JSRegExp> re, 62 Handle<String> pattern, 63 JSRegExp::Flags flags, 64 Handle<String> match_pattern); 65 66 67 static int AtomExecRaw(Handle<JSRegExp> regexp, 68 Handle<String> subject, 69 int index, 70 int32_t* output, 71 int output_size); 72 73 74 static Handle<Object> AtomExec(Handle<JSRegExp> regexp, 75 Handle<String> subject, 76 int index, 77 Handle<JSArray> lastMatchInfo); 78 79 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 }; 80 81 // Prepare a RegExp for being executed one or more times (using 82 // IrregexpExecOnce) on the subject. 83 // This ensures that the regexp is compiled for the subject, and that 84 // the subject is flat. 85 // Returns the number of integer spaces required by IrregexpExecOnce 86 // as its "registers" argument. If the regexp cannot be compiled, 87 // an exception is set as pending, and this function returns negative. 88 static int IrregexpPrepare(Handle<JSRegExp> regexp, 89 Handle<String> subject); 90 91 // Execute a regular expression on the subject, starting from index. 92 // If matching succeeds, return the number of matches. This can be larger 93 // than one in the case of global regular expressions. 94 // The captures and subcaptures are stored into the registers vector. 95 // If matching fails, returns RE_FAILURE. 96 // If execution fails, sets a pending exception and returns RE_EXCEPTION. 97 static int IrregexpExecRaw(Handle<JSRegExp> regexp, 98 Handle<String> subject, 99 int index, 100 int32_t* output, 101 int output_size); 102 103 // Execute an Irregexp bytecode pattern. 104 // On a successful match, the result is a JSArray containing 105 // captured positions. On a failure, the result is the null value. 106 // Returns an empty handle in case of an exception. 107 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec( 108 Handle<JSRegExp> regexp, 109 Handle<String> subject, 110 int index, 111 Handle<JSArray> lastMatchInfo); 112 113 // Set last match info. If match is NULL, then setting captures is omitted. 114 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info, 115 Handle<String> subject, 116 int capture_count, 117 int32_t* match); 118 119 120 class GlobalCache { 121 public: 122 GlobalCache(Handle<JSRegExp> regexp, 123 Handle<String> subject, 124 bool is_global, 125 Isolate* isolate); 126 127 INLINE(~GlobalCache()); 128 129 // Fetch the next entry in the cache for global regexp match results. 130 // This does not set the last match info. Upon failure, NULL is returned. 131 // The cause can be checked with Result(). The previous 132 // result is still in available in memory when a failure happens. 133 INLINE(int32_t* FetchNext()); 134 135 INLINE(int32_t* LastSuccessfulMatch()); 136 137 INLINE(bool HasException()) { return num_matches_ < 0; } 138 139 private: 140 int num_matches_; 141 int max_matches_; 142 int current_match_index_; 143 int registers_per_match_; 144 // Pointer to the last set of captures. 145 int32_t* register_array_; 146 int register_array_size_; 147 Handle<JSRegExp> regexp_; 148 Handle<String> subject_; 149 }; 150 151 152 // Array index in the lastMatchInfo array. 153 static const int kLastCaptureCount = 0; 154 static const int kLastSubject = 1; 155 static const int kLastInput = 2; 156 static const int kFirstCapture = 3; 157 static const int kLastMatchOverhead = 3; 158 159 // Direct offset into the lastMatchInfo array. 160 static const int kLastCaptureCountOffset = 161 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize; 162 static const int kLastSubjectOffset = 163 FixedArray::kHeaderSize + kLastSubject * kPointerSize; 164 static const int kLastInputOffset = 165 FixedArray::kHeaderSize + kLastInput * kPointerSize; 166 static const int kFirstCaptureOffset = 167 FixedArray::kHeaderSize + kFirstCapture * kPointerSize; 168 169 // Used to access the lastMatchInfo array. 170 static int GetCapture(FixedArray* array, int index) { 171 return Smi::cast(array->get(index + kFirstCapture))->value(); 172 } 173 174 static void SetLastCaptureCount(FixedArray* array, int to) { 175 array->set(kLastCaptureCount, Smi::FromInt(to)); 176 } 177 178 static void SetLastSubject(FixedArray* array, String* to) { 179 array->set(kLastSubject, to); 180 } 181 182 static void SetLastInput(FixedArray* array, String* to) { 183 array->set(kLastInput, to); 184 } 185 186 static void SetCapture(FixedArray* array, int index, int to) { 187 array->set(index + kFirstCapture, Smi::FromInt(to)); 188 } 189 190 static int GetLastCaptureCount(FixedArray* array) { 191 return Smi::cast(array->get(kLastCaptureCount))->value(); 192 } 193 194 // For acting on the JSRegExp data FixedArray. 195 static int IrregexpMaxRegisterCount(FixedArray* re); 196 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value); 197 static int IrregexpNumberOfCaptures(FixedArray* re); 198 static int IrregexpNumberOfRegisters(FixedArray* re); 199 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_one_byte); 200 static Code* IrregexpNativeCode(FixedArray* re, bool is_one_byte); 201 202 // Limit the space regexps take up on the heap. In order to limit this we 203 // would like to keep track of the amount of regexp code on the heap. This 204 // is not tracked, however. As a conservative approximation we track the 205 // total regexp code compiled including code that has subsequently been freed 206 // and the total executable memory at any point. 207 static const int kRegExpExecutableMemoryLimit = 16 * MB; 208 static const int kRegExpCompiledLimit = 1 * MB; 209 static const int kRegExpTooLargeToOptimize = 20 * KB; 210 211 private: 212 static bool CompileIrregexp(Handle<JSRegExp> re, 213 Handle<String> sample_subject, bool is_one_byte); 214 static inline bool EnsureCompiledIrregexp(Handle<JSRegExp> re, 215 Handle<String> sample_subject, 216 bool is_one_byte); 217 }; 218 219 220 // Represents the location of one element relative to the intersection of 221 // two sets. Corresponds to the four areas of a Venn diagram. 222 enum ElementInSetsRelation { 223 kInsideNone = 0, 224 kInsideFirst = 1, 225 kInsideSecond = 2, 226 kInsideBoth = 3 227 }; 228 229 230 // A set of unsigned integers that behaves especially well on small 231 // integers (< 32). May do zone-allocation. 232 class OutSet: public ZoneObject { 233 public: 234 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { } 235 OutSet* Extend(unsigned value, Zone* zone); 236 bool Get(unsigned value) const; 237 static const unsigned kFirstLimit = 32; 238 239 private: 240 // Destructively set a value in this set. In most cases you want 241 // to use Extend instead to ensure that only one instance exists 242 // that contains the same values. 243 void Set(unsigned value, Zone* zone); 244 245 // The successors are a list of sets that contain the same values 246 // as this set and the one more value that is not present in this 247 // set. 248 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; } 249 250 OutSet(uint32_t first, ZoneList<unsigned>* remaining) 251 : first_(first), remaining_(remaining), successors_(NULL) { } 252 uint32_t first_; 253 ZoneList<unsigned>* remaining_; 254 ZoneList<OutSet*>* successors_; 255 friend class Trace; 256 }; 257 258 259 // A mapping from integers, specified as ranges, to a set of integers. 260 // Used for mapping character ranges to choices. 261 class DispatchTable : public ZoneObject { 262 public: 263 explicit DispatchTable(Zone* zone) : tree_(zone) { } 264 265 class Entry { 266 public: 267 Entry() : from_(0), to_(0), out_set_(NULL) { } 268 Entry(uc16 from, uc16 to, OutSet* out_set) 269 : from_(from), to_(to), out_set_(out_set) { } 270 uc16 from() { return from_; } 271 uc16 to() { return to_; } 272 void set_to(uc16 value) { to_ = value; } 273 void AddValue(int value, Zone* zone) { 274 out_set_ = out_set_->Extend(value, zone); 275 } 276 OutSet* out_set() { return out_set_; } 277 private: 278 uc16 from_; 279 uc16 to_; 280 OutSet* out_set_; 281 }; 282 283 class Config { 284 public: 285 typedef uc16 Key; 286 typedef Entry Value; 287 static const uc16 kNoKey; 288 static const Entry NoValue() { return Value(); } 289 static inline int Compare(uc16 a, uc16 b) { 290 if (a == b) 291 return 0; 292 else if (a < b) 293 return -1; 294 else 295 return 1; 296 } 297 }; 298 299 void AddRange(CharacterRange range, int value, Zone* zone); 300 OutSet* Get(uc16 value); 301 void Dump(); 302 303 template <typename Callback> 304 void ForEach(Callback* callback) { 305 return tree()->ForEach(callback); 306 } 307 308 private: 309 // There can't be a static empty set since it allocates its 310 // successors in a zone and caches them. 311 OutSet* empty() { return &empty_; } 312 OutSet empty_; 313 ZoneSplayTree<Config>* tree() { return &tree_; } 314 ZoneSplayTree<Config> tree_; 315 }; 316 317 318 #define FOR_EACH_NODE_TYPE(VISIT) \ 319 VISIT(End) \ 320 VISIT(Action) \ 321 VISIT(Choice) \ 322 VISIT(BackReference) \ 323 VISIT(Assertion) \ 324 VISIT(Text) 325 326 327 class Trace; 328 struct PreloadState; 329 class GreedyLoopState; 330 class AlternativeGenerationList; 331 332 struct NodeInfo { 333 NodeInfo() 334 : being_analyzed(false), 335 been_analyzed(false), 336 follows_word_interest(false), 337 follows_newline_interest(false), 338 follows_start_interest(false), 339 at_end(false), 340 visited(false), 341 replacement_calculated(false) { } 342 343 // Returns true if the interests and assumptions of this node 344 // matches the given one. 345 bool Matches(NodeInfo* that) { 346 return (at_end == that->at_end) && 347 (follows_word_interest == that->follows_word_interest) && 348 (follows_newline_interest == that->follows_newline_interest) && 349 (follows_start_interest == that->follows_start_interest); 350 } 351 352 // Updates the interests of this node given the interests of the 353 // node preceding it. 354 void AddFromPreceding(NodeInfo* that) { 355 at_end |= that->at_end; 356 follows_word_interest |= that->follows_word_interest; 357 follows_newline_interest |= that->follows_newline_interest; 358 follows_start_interest |= that->follows_start_interest; 359 } 360 361 bool HasLookbehind() { 362 return follows_word_interest || 363 follows_newline_interest || 364 follows_start_interest; 365 } 366 367 // Sets the interests of this node to include the interests of the 368 // following node. 369 void AddFromFollowing(NodeInfo* that) { 370 follows_word_interest |= that->follows_word_interest; 371 follows_newline_interest |= that->follows_newline_interest; 372 follows_start_interest |= that->follows_start_interest; 373 } 374 375 void ResetCompilationState() { 376 being_analyzed = false; 377 been_analyzed = false; 378 } 379 380 bool being_analyzed: 1; 381 bool been_analyzed: 1; 382 383 // These bits are set of this node has to know what the preceding 384 // character was. 385 bool follows_word_interest: 1; 386 bool follows_newline_interest: 1; 387 bool follows_start_interest: 1; 388 389 bool at_end: 1; 390 bool visited: 1; 391 bool replacement_calculated: 1; 392 }; 393 394 395 // Details of a quick mask-compare check that can look ahead in the 396 // input stream. 397 class QuickCheckDetails { 398 public: 399 QuickCheckDetails() 400 : characters_(0), 401 mask_(0), 402 value_(0), 403 cannot_match_(false) { } 404 explicit QuickCheckDetails(int characters) 405 : characters_(characters), 406 mask_(0), 407 value_(0), 408 cannot_match_(false) { } 409 bool Rationalize(bool one_byte); 410 // Merge in the information from another branch of an alternation. 411 void Merge(QuickCheckDetails* other, int from_index); 412 // Advance the current position by some amount. 413 void Advance(int by, bool one_byte); 414 void Clear(); 415 bool cannot_match() { return cannot_match_; } 416 void set_cannot_match() { cannot_match_ = true; } 417 struct Position { 418 Position() : mask(0), value(0), determines_perfectly(false) { } 419 uc16 mask; 420 uc16 value; 421 bool determines_perfectly; 422 }; 423 int characters() { return characters_; } 424 void set_characters(int characters) { characters_ = characters; } 425 Position* positions(int index) { 426 DCHECK(index >= 0); 427 DCHECK(index < characters_); 428 return positions_ + index; 429 } 430 uint32_t mask() { return mask_; } 431 uint32_t value() { return value_; } 432 433 private: 434 // How many characters do we have quick check information from. This is 435 // the same for all branches of a choice node. 436 int characters_; 437 Position positions_[4]; 438 // These values are the condensate of the above array after Rationalize(). 439 uint32_t mask_; 440 uint32_t value_; 441 // If set to true, there is no way this quick check can match at all. 442 // E.g., if it requires to be at the start of the input, and isn't. 443 bool cannot_match_; 444 }; 445 446 447 extern int kUninitializedRegExpNodePlaceHolder; 448 449 450 class RegExpNode: public ZoneObject { 451 public: 452 explicit RegExpNode(Zone* zone) 453 : replacement_(NULL), on_work_list_(false), trace_count_(0), zone_(zone) { 454 bm_info_[0] = bm_info_[1] = NULL; 455 } 456 virtual ~RegExpNode(); 457 virtual void Accept(NodeVisitor* visitor) = 0; 458 // Generates a goto to this node or actually generates the code at this point. 459 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0; 460 // How many characters must this node consume at a minimum in order to 461 // succeed. If we have found at least 'still_to_find' characters that 462 // must be consumed there is no need to ask any following nodes whether 463 // they are sure to eat any more characters. The not_at_start argument is 464 // used to indicate that we know we are not at the start of the input. In 465 // this case anchored branches will always fail and can be ignored when 466 // determining how many characters are consumed on success. 467 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0; 468 // Emits some quick code that checks whether the preloaded characters match. 469 // Falls through on certain failure, jumps to the label on possible success. 470 // If the node cannot make a quick check it does nothing and returns false. 471 bool EmitQuickCheck(RegExpCompiler* compiler, 472 Trace* bounds_check_trace, 473 Trace* trace, 474 bool preload_has_checked_bounds, 475 Label* on_possible_success, 476 QuickCheckDetails* details_return, 477 bool fall_through_on_failure); 478 // For a given number of characters this returns a mask and a value. The 479 // next n characters are anded with the mask and compared with the value. 480 // A comparison failure indicates the node cannot match the next n characters. 481 // A comparison success indicates the node may match. 482 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 483 RegExpCompiler* compiler, 484 int characters_filled_in, 485 bool not_at_start) = 0; 486 static const int kNodeIsTooComplexForGreedyLoops = kMinInt; 487 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 488 // Only returns the successor for a text node of length 1 that matches any 489 // character and that has no guards on it. 490 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 491 RegExpCompiler* compiler) { 492 return NULL; 493 } 494 495 // Collects information on the possible code units (mod 128) that can match if 496 // we look forward. This is used for a Boyer-Moore-like string searching 497 // implementation. TODO(erikcorry): This should share more code with 498 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit 499 // the number of nodes we are willing to look at in order to create this data. 500 static const int kRecursionBudget = 200; 501 bool KeepRecursing(RegExpCompiler* compiler); 502 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 503 BoyerMooreLookahead* bm, bool not_at_start) { 504 UNREACHABLE(); 505 } 506 507 // If we know that the input is one-byte then there are some nodes that can 508 // never match. This method returns a node that can be substituted for 509 // itself, or NULL if the node can never match. 510 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case) { 511 return this; 512 } 513 // Helper for FilterOneByte. 514 RegExpNode* replacement() { 515 DCHECK(info()->replacement_calculated); 516 return replacement_; 517 } 518 RegExpNode* set_replacement(RegExpNode* replacement) { 519 info()->replacement_calculated = true; 520 replacement_ = replacement; 521 return replacement; // For convenience. 522 } 523 524 // We want to avoid recalculating the lookahead info, so we store it on the 525 // node. Only info that is for this node is stored. We can tell that the 526 // info is for this node when offset == 0, so the information is calculated 527 // relative to this node. 528 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) { 529 if (offset == 0) set_bm_info(not_at_start, bm); 530 } 531 532 Label* label() { return &label_; } 533 // If non-generic code is generated for a node (i.e. the node is not at the 534 // start of the trace) then it cannot be reused. This variable sets a limit 535 // on how often we allow that to happen before we insist on starting a new 536 // trace and generating generic code for a node that can be reused by flushing 537 // the deferred actions in the current trace and generating a goto. 538 static const int kMaxCopiesCodeGenerated = 10; 539 540 bool on_work_list() { return on_work_list_; } 541 void set_on_work_list(bool value) { on_work_list_ = value; } 542 543 NodeInfo* info() { return &info_; } 544 545 BoyerMooreLookahead* bm_info(bool not_at_start) { 546 return bm_info_[not_at_start ? 1 : 0]; 547 } 548 549 Zone* zone() const { return zone_; } 550 551 protected: 552 enum LimitResult { DONE, CONTINUE }; 553 RegExpNode* replacement_; 554 555 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace); 556 557 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) { 558 bm_info_[not_at_start ? 1 : 0] = bm; 559 } 560 561 private: 562 static const int kFirstCharBudget = 10; 563 Label label_; 564 bool on_work_list_; 565 NodeInfo info_; 566 // This variable keeps track of how many times code has been generated for 567 // this node (in different traces). We don't keep track of where the 568 // generated code is located unless the code is generated at the start of 569 // a trace, in which case it is generic and can be reused by flushing the 570 // deferred operations in the current trace and generating a goto. 571 int trace_count_; 572 BoyerMooreLookahead* bm_info_[2]; 573 574 Zone* zone_; 575 }; 576 577 578 class SeqRegExpNode: public RegExpNode { 579 public: 580 explicit SeqRegExpNode(RegExpNode* on_success) 581 : RegExpNode(on_success->zone()), on_success_(on_success) { } 582 RegExpNode* on_success() { return on_success_; } 583 void set_on_success(RegExpNode* node) { on_success_ = node; } 584 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 585 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 586 BoyerMooreLookahead* bm, bool not_at_start) { 587 on_success_->FillInBMInfo(isolate, offset, budget - 1, bm, not_at_start); 588 if (offset == 0) set_bm_info(not_at_start, bm); 589 } 590 591 protected: 592 RegExpNode* FilterSuccessor(int depth, bool ignore_case); 593 594 private: 595 RegExpNode* on_success_; 596 }; 597 598 599 class ActionNode: public SeqRegExpNode { 600 public: 601 enum ActionType { 602 SET_REGISTER, 603 INCREMENT_REGISTER, 604 STORE_POSITION, 605 BEGIN_SUBMATCH, 606 POSITIVE_SUBMATCH_SUCCESS, 607 EMPTY_MATCH_CHECK, 608 CLEAR_CAPTURES 609 }; 610 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success); 611 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success); 612 static ActionNode* StorePosition(int reg, 613 bool is_capture, 614 RegExpNode* on_success); 615 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success); 616 static ActionNode* BeginSubmatch(int stack_pointer_reg, 617 int position_reg, 618 RegExpNode* on_success); 619 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg, 620 int restore_reg, 621 int clear_capture_count, 622 int clear_capture_from, 623 RegExpNode* on_success); 624 static ActionNode* EmptyMatchCheck(int start_register, 625 int repetition_register, 626 int repetition_limit, 627 RegExpNode* on_success); 628 virtual void Accept(NodeVisitor* visitor); 629 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 630 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 631 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 632 RegExpCompiler* compiler, 633 int filled_in, 634 bool not_at_start) { 635 return on_success()->GetQuickCheckDetails( 636 details, compiler, filled_in, not_at_start); 637 } 638 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 639 BoyerMooreLookahead* bm, bool not_at_start); 640 ActionType action_type() { return action_type_; } 641 // TODO(erikcorry): We should allow some action nodes in greedy loops. 642 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; } 643 644 private: 645 union { 646 struct { 647 int reg; 648 int value; 649 } u_store_register; 650 struct { 651 int reg; 652 } u_increment_register; 653 struct { 654 int reg; 655 bool is_capture; 656 } u_position_register; 657 struct { 658 int stack_pointer_register; 659 int current_position_register; 660 int clear_register_count; 661 int clear_register_from; 662 } u_submatch; 663 struct { 664 int start_register; 665 int repetition_register; 666 int repetition_limit; 667 } u_empty_match_check; 668 struct { 669 int range_from; 670 int range_to; 671 } u_clear_captures; 672 } data_; 673 ActionNode(ActionType action_type, RegExpNode* on_success) 674 : SeqRegExpNode(on_success), 675 action_type_(action_type) { } 676 ActionType action_type_; 677 friend class DotPrinter; 678 }; 679 680 681 class TextNode: public SeqRegExpNode { 682 public: 683 TextNode(ZoneList<TextElement>* elms, bool read_backward, 684 RegExpNode* on_success) 685 : SeqRegExpNode(on_success), elms_(elms), read_backward_(read_backward) {} 686 TextNode(RegExpCharacterClass* that, bool read_backward, 687 RegExpNode* on_success) 688 : SeqRegExpNode(on_success), 689 elms_(new (zone()) ZoneList<TextElement>(1, zone())), 690 read_backward_(read_backward) { 691 elms_->Add(TextElement::CharClass(that), zone()); 692 } 693 virtual void Accept(NodeVisitor* visitor); 694 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 695 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 696 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 697 RegExpCompiler* compiler, 698 int characters_filled_in, 699 bool not_at_start); 700 ZoneList<TextElement>* elements() { return elms_; } 701 bool read_backward() { return read_backward_; } 702 void MakeCaseIndependent(Isolate* isolate, bool is_one_byte); 703 virtual int GreedyLoopTextLength(); 704 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode( 705 RegExpCompiler* compiler); 706 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 707 BoyerMooreLookahead* bm, bool not_at_start); 708 void CalculateOffsets(); 709 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 710 711 private: 712 enum TextEmitPassType { 713 NON_LATIN1_MATCH, // Check for characters that can't match. 714 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check. 715 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs. 716 CASE_CHARACTER_MATCH, // Case-independent single character check. 717 CHARACTER_CLASS_MATCH // Character class. 718 }; 719 static bool SkipPass(int pass, bool ignore_case); 720 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH; 721 static const int kLastPass = CHARACTER_CLASS_MATCH; 722 void TextEmitPass(RegExpCompiler* compiler, 723 TextEmitPassType pass, 724 bool preloaded, 725 Trace* trace, 726 bool first_element_checked, 727 int* checked_up_to); 728 int Length(); 729 ZoneList<TextElement>* elms_; 730 bool read_backward_; 731 }; 732 733 734 class AssertionNode: public SeqRegExpNode { 735 public: 736 enum AssertionType { 737 AT_END, 738 AT_START, 739 AT_BOUNDARY, 740 AT_NON_BOUNDARY, 741 AFTER_NEWLINE 742 }; 743 static AssertionNode* AtEnd(RegExpNode* on_success) { 744 return new(on_success->zone()) AssertionNode(AT_END, on_success); 745 } 746 static AssertionNode* AtStart(RegExpNode* on_success) { 747 return new(on_success->zone()) AssertionNode(AT_START, on_success); 748 } 749 static AssertionNode* AtBoundary(RegExpNode* on_success) { 750 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success); 751 } 752 static AssertionNode* AtNonBoundary(RegExpNode* on_success) { 753 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success); 754 } 755 static AssertionNode* AfterNewline(RegExpNode* on_success) { 756 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success); 757 } 758 virtual void Accept(NodeVisitor* visitor); 759 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 760 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 761 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 762 RegExpCompiler* compiler, 763 int filled_in, 764 bool not_at_start); 765 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 766 BoyerMooreLookahead* bm, bool not_at_start); 767 AssertionType assertion_type() { return assertion_type_; } 768 769 private: 770 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace); 771 enum IfPrevious { kIsNonWord, kIsWord }; 772 void BacktrackIfPrevious(RegExpCompiler* compiler, 773 Trace* trace, 774 IfPrevious backtrack_if_previous); 775 AssertionNode(AssertionType t, RegExpNode* on_success) 776 : SeqRegExpNode(on_success), assertion_type_(t) { } 777 AssertionType assertion_type_; 778 }; 779 780 781 class BackReferenceNode: public SeqRegExpNode { 782 public: 783 BackReferenceNode(int start_reg, int end_reg, bool read_backward, 784 RegExpNode* on_success) 785 : SeqRegExpNode(on_success), 786 start_reg_(start_reg), 787 end_reg_(end_reg), 788 read_backward_(read_backward) {} 789 virtual void Accept(NodeVisitor* visitor); 790 int start_register() { return start_reg_; } 791 int end_register() { return end_reg_; } 792 bool read_backward() { return read_backward_; } 793 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 794 virtual int EatsAtLeast(int still_to_find, 795 int recursion_depth, 796 bool not_at_start); 797 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 798 RegExpCompiler* compiler, 799 int characters_filled_in, 800 bool not_at_start) { 801 return; 802 } 803 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 804 BoyerMooreLookahead* bm, bool not_at_start); 805 806 private: 807 int start_reg_; 808 int end_reg_; 809 bool read_backward_; 810 }; 811 812 813 class EndNode: public RegExpNode { 814 public: 815 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS }; 816 explicit EndNode(Action action, Zone* zone) 817 : RegExpNode(zone), action_(action) { } 818 virtual void Accept(NodeVisitor* visitor); 819 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 820 virtual int EatsAtLeast(int still_to_find, 821 int recursion_depth, 822 bool not_at_start) { return 0; } 823 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 824 RegExpCompiler* compiler, 825 int characters_filled_in, 826 bool not_at_start) { 827 // Returning 0 from EatsAtLeast should ensure we never get here. 828 UNREACHABLE(); 829 } 830 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 831 BoyerMooreLookahead* bm, bool not_at_start) { 832 // Returning 0 from EatsAtLeast should ensure we never get here. 833 UNREACHABLE(); 834 } 835 836 private: 837 Action action_; 838 }; 839 840 841 class NegativeSubmatchSuccess: public EndNode { 842 public: 843 NegativeSubmatchSuccess(int stack_pointer_reg, 844 int position_reg, 845 int clear_capture_count, 846 int clear_capture_start, 847 Zone* zone) 848 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone), 849 stack_pointer_register_(stack_pointer_reg), 850 current_position_register_(position_reg), 851 clear_capture_count_(clear_capture_count), 852 clear_capture_start_(clear_capture_start) { } 853 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 854 855 private: 856 int stack_pointer_register_; 857 int current_position_register_; 858 int clear_capture_count_; 859 int clear_capture_start_; 860 }; 861 862 863 class Guard: public ZoneObject { 864 public: 865 enum Relation { LT, GEQ }; 866 Guard(int reg, Relation op, int value) 867 : reg_(reg), 868 op_(op), 869 value_(value) { } 870 int reg() { return reg_; } 871 Relation op() { return op_; } 872 int value() { return value_; } 873 874 private: 875 int reg_; 876 Relation op_; 877 int value_; 878 }; 879 880 881 class GuardedAlternative { 882 public: 883 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { } 884 void AddGuard(Guard* guard, Zone* zone); 885 RegExpNode* node() { return node_; } 886 void set_node(RegExpNode* node) { node_ = node; } 887 ZoneList<Guard*>* guards() { return guards_; } 888 889 private: 890 RegExpNode* node_; 891 ZoneList<Guard*>* guards_; 892 }; 893 894 895 class AlternativeGeneration; 896 897 898 class ChoiceNode: public RegExpNode { 899 public: 900 explicit ChoiceNode(int expected_size, Zone* zone) 901 : RegExpNode(zone), 902 alternatives_(new(zone) 903 ZoneList<GuardedAlternative>(expected_size, zone)), 904 table_(NULL), 905 not_at_start_(false), 906 being_calculated_(false) { } 907 virtual void Accept(NodeVisitor* visitor); 908 void AddAlternative(GuardedAlternative node) { 909 alternatives()->Add(node, zone()); 910 } 911 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; } 912 DispatchTable* GetTable(bool ignore_case); 913 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 914 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 915 int EatsAtLeastHelper(int still_to_find, 916 int budget, 917 RegExpNode* ignore_this_node, 918 bool not_at_start); 919 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 920 RegExpCompiler* compiler, 921 int characters_filled_in, 922 bool not_at_start); 923 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 924 BoyerMooreLookahead* bm, bool not_at_start); 925 926 bool being_calculated() { return being_calculated_; } 927 bool not_at_start() { return not_at_start_; } 928 void set_not_at_start() { not_at_start_ = true; } 929 void set_being_calculated(bool b) { being_calculated_ = b; } 930 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { 931 return true; 932 } 933 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 934 virtual bool read_backward() { return false; } 935 936 protected: 937 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative); 938 ZoneList<GuardedAlternative>* alternatives_; 939 940 private: 941 friend class DispatchTableConstructor; 942 friend class Analysis; 943 void GenerateGuard(RegExpMacroAssembler* macro_assembler, 944 Guard* guard, 945 Trace* trace); 946 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least); 947 void EmitOutOfLineContinuation(RegExpCompiler* compiler, 948 Trace* trace, 949 GuardedAlternative alternative, 950 AlternativeGeneration* alt_gen, 951 int preload_characters, 952 bool next_expects_preload); 953 void SetUpPreLoad(RegExpCompiler* compiler, 954 Trace* current_trace, 955 PreloadState* preloads); 956 void AssertGuardsMentionRegisters(Trace* trace); 957 int EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, Trace* trace); 958 Trace* EmitGreedyLoop(RegExpCompiler* compiler, 959 Trace* trace, 960 AlternativeGenerationList* alt_gens, 961 PreloadState* preloads, 962 GreedyLoopState* greedy_loop_state, 963 int text_length); 964 void EmitChoices(RegExpCompiler* compiler, 965 AlternativeGenerationList* alt_gens, 966 int first_choice, 967 Trace* trace, 968 PreloadState* preloads); 969 DispatchTable* table_; 970 // If true, this node is never checked at the start of the input. 971 // Allows a new trace to start with at_start() set to false. 972 bool not_at_start_; 973 bool being_calculated_; 974 }; 975 976 977 class NegativeLookaroundChoiceNode : public ChoiceNode { 978 public: 979 explicit NegativeLookaroundChoiceNode(GuardedAlternative this_must_fail, 980 GuardedAlternative then_do_this, 981 Zone* zone) 982 : ChoiceNode(2, zone) { 983 AddAlternative(this_must_fail); 984 AddAlternative(then_do_this); 985 } 986 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 987 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 988 RegExpCompiler* compiler, 989 int characters_filled_in, 990 bool not_at_start); 991 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 992 BoyerMooreLookahead* bm, bool not_at_start) { 993 alternatives_->at(1).node()->FillInBMInfo(isolate, offset, budget - 1, bm, 994 not_at_start); 995 if (offset == 0) set_bm_info(not_at_start, bm); 996 } 997 // For a negative lookahead we don't emit the quick check for the 998 // alternative that is expected to fail. This is because quick check code 999 // starts by loading enough characters for the alternative that takes fewest 1000 // characters, but on a negative lookahead the negative branch did not take 1001 // part in that calculation (EatsAtLeast) so the assumptions don't hold. 1002 virtual bool try_to_emit_quick_check_for_alternative(bool is_first) { 1003 return !is_first; 1004 } 1005 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 1006 }; 1007 1008 1009 class LoopChoiceNode: public ChoiceNode { 1010 public: 1011 LoopChoiceNode(bool body_can_be_zero_length, bool read_backward, Zone* zone) 1012 : ChoiceNode(2, zone), 1013 loop_node_(NULL), 1014 continue_node_(NULL), 1015 body_can_be_zero_length_(body_can_be_zero_length), 1016 read_backward_(read_backward) {} 1017 void AddLoopAlternative(GuardedAlternative alt); 1018 void AddContinueAlternative(GuardedAlternative alt); 1019 virtual void Emit(RegExpCompiler* compiler, Trace* trace); 1020 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start); 1021 virtual void GetQuickCheckDetails(QuickCheckDetails* details, 1022 RegExpCompiler* compiler, 1023 int characters_filled_in, 1024 bool not_at_start); 1025 virtual void FillInBMInfo(Isolate* isolate, int offset, int budget, 1026 BoyerMooreLookahead* bm, bool not_at_start); 1027 RegExpNode* loop_node() { return loop_node_; } 1028 RegExpNode* continue_node() { return continue_node_; } 1029 bool body_can_be_zero_length() { return body_can_be_zero_length_; } 1030 virtual bool read_backward() { return read_backward_; } 1031 virtual void Accept(NodeVisitor* visitor); 1032 virtual RegExpNode* FilterOneByte(int depth, bool ignore_case); 1033 1034 private: 1035 // AddAlternative is made private for loop nodes because alternatives 1036 // should not be added freely, we need to keep track of which node 1037 // goes back to the node itself. 1038 void AddAlternative(GuardedAlternative node) { 1039 ChoiceNode::AddAlternative(node); 1040 } 1041 1042 RegExpNode* loop_node_; 1043 RegExpNode* continue_node_; 1044 bool body_can_be_zero_length_; 1045 bool read_backward_; 1046 }; 1047 1048 1049 // Improve the speed that we scan for an initial point where a non-anchored 1050 // regexp can match by using a Boyer-Moore-like table. This is done by 1051 // identifying non-greedy non-capturing loops in the nodes that eat any 1052 // character one at a time. For example in the middle of the regexp 1053 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly 1054 // inserted at the start of any non-anchored regexp. 1055 // 1056 // When we have found such a loop we look ahead in the nodes to find the set of 1057 // characters that can come at given distances. For example for the regexp 1058 // /.?foo/ we know that there are at least 3 characters ahead of us, and the 1059 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in 1060 // the lookahead info where the set of characters is reasonably constrained. In 1061 // our example this is from index 1 to 2 (0 is not constrained). We can now 1062 // look 3 characters ahead and if we don't find one of [f, o] (the union of 1063 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2). 1064 // 1065 // For Unicode input strings we do the same, but modulo 128. 1066 // 1067 // We also look at the first string fed to the regexp and use that to get a hint 1068 // of the character frequencies in the inputs. This affects the assessment of 1069 // whether the set of characters is 'reasonably constrained'. 1070 // 1071 // We also have another lookahead mechanism (called quick check in the code), 1072 // which uses a wide load of multiple characters followed by a mask and compare 1073 // to determine whether a match is possible at this point. 1074 enum ContainedInLattice { 1075 kNotYet = 0, 1076 kLatticeIn = 1, 1077 kLatticeOut = 2, 1078 kLatticeUnknown = 3 // Can also mean both in and out. 1079 }; 1080 1081 1082 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) { 1083 return static_cast<ContainedInLattice>(a | b); 1084 } 1085 1086 1087 ContainedInLattice AddRange(ContainedInLattice a, 1088 const int* ranges, 1089 int ranges_size, 1090 Interval new_range); 1091 1092 1093 class BoyerMoorePositionInfo : public ZoneObject { 1094 public: 1095 explicit BoyerMoorePositionInfo(Zone* zone) 1096 : map_(new(zone) ZoneList<bool>(kMapSize, zone)), 1097 map_count_(0), 1098 w_(kNotYet), 1099 s_(kNotYet), 1100 d_(kNotYet), 1101 surrogate_(kNotYet) { 1102 for (int i = 0; i < kMapSize; i++) { 1103 map_->Add(false, zone); 1104 } 1105 } 1106 1107 bool& at(int i) { return map_->at(i); } 1108 1109 static const int kMapSize = 128; 1110 static const int kMask = kMapSize - 1; 1111 1112 int map_count() const { return map_count_; } 1113 1114 void Set(int character); 1115 void SetInterval(const Interval& interval); 1116 void SetAll(); 1117 bool is_non_word() { return w_ == kLatticeOut; } 1118 bool is_word() { return w_ == kLatticeIn; } 1119 1120 private: 1121 ZoneList<bool>* map_; 1122 int map_count_; // Number of set bits in the map. 1123 ContainedInLattice w_; // The \w character class. 1124 ContainedInLattice s_; // The \s character class. 1125 ContainedInLattice d_; // The \d character class. 1126 ContainedInLattice surrogate_; // Surrogate UTF-16 code units. 1127 }; 1128 1129 1130 class BoyerMooreLookahead : public ZoneObject { 1131 public: 1132 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone); 1133 1134 int length() { return length_; } 1135 int max_char() { return max_char_; } 1136 RegExpCompiler* compiler() { return compiler_; } 1137 1138 int Count(int map_number) { 1139 return bitmaps_->at(map_number)->map_count(); 1140 } 1141 1142 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); } 1143 1144 void Set(int map_number, int character) { 1145 if (character > max_char_) return; 1146 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1147 info->Set(character); 1148 } 1149 1150 void SetInterval(int map_number, const Interval& interval) { 1151 if (interval.from() > max_char_) return; 1152 BoyerMoorePositionInfo* info = bitmaps_->at(map_number); 1153 if (interval.to() > max_char_) { 1154 info->SetInterval(Interval(interval.from(), max_char_)); 1155 } else { 1156 info->SetInterval(interval); 1157 } 1158 } 1159 1160 void SetAll(int map_number) { 1161 bitmaps_->at(map_number)->SetAll(); 1162 } 1163 1164 void SetRest(int from_map) { 1165 for (int i = from_map; i < length_; i++) SetAll(i); 1166 } 1167 void EmitSkipInstructions(RegExpMacroAssembler* masm); 1168 1169 private: 1170 // This is the value obtained by EatsAtLeast. If we do not have at least this 1171 // many characters left in the sample string then the match is bound to fail. 1172 // Therefore it is OK to read a character this far ahead of the current match 1173 // point. 1174 int length_; 1175 RegExpCompiler* compiler_; 1176 // 0xff for Latin1, 0xffff for UTF-16. 1177 int max_char_; 1178 ZoneList<BoyerMoorePositionInfo*>* bitmaps_; 1179 1180 int GetSkipTable(int min_lookahead, 1181 int max_lookahead, 1182 Handle<ByteArray> boolean_skip_table); 1183 bool FindWorthwhileInterval(int* from, int* to); 1184 int FindBestInterval( 1185 int max_number_of_chars, int old_biggest_points, int* from, int* to); 1186 }; 1187 1188 1189 // There are many ways to generate code for a node. This class encapsulates 1190 // the current way we should be generating. In other words it encapsulates 1191 // the current state of the code generator. The effect of this is that we 1192 // generate code for paths that the matcher can take through the regular 1193 // expression. A given node in the regexp can be code-generated several times 1194 // as it can be part of several traces. For example for the regexp: 1195 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part 1196 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code 1197 // to match foo is generated only once (the traces have a common prefix). The 1198 // code to store the capture is deferred and generated (twice) after the places 1199 // where baz has been matched. 1200 class Trace { 1201 public: 1202 // A value for a property that is either known to be true, know to be false, 1203 // or not known. 1204 enum TriBool { 1205 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1 1206 }; 1207 1208 class DeferredAction { 1209 public: 1210 DeferredAction(ActionNode::ActionType action_type, int reg) 1211 : action_type_(action_type), reg_(reg), next_(NULL) { } 1212 DeferredAction* next() { return next_; } 1213 bool Mentions(int reg); 1214 int reg() { return reg_; } 1215 ActionNode::ActionType action_type() { return action_type_; } 1216 private: 1217 ActionNode::ActionType action_type_; 1218 int reg_; 1219 DeferredAction* next_; 1220 friend class Trace; 1221 }; 1222 1223 class DeferredCapture : public DeferredAction { 1224 public: 1225 DeferredCapture(int reg, bool is_capture, Trace* trace) 1226 : DeferredAction(ActionNode::STORE_POSITION, reg), 1227 cp_offset_(trace->cp_offset()), 1228 is_capture_(is_capture) { } 1229 int cp_offset() { return cp_offset_; } 1230 bool is_capture() { return is_capture_; } 1231 private: 1232 int cp_offset_; 1233 bool is_capture_; 1234 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; } 1235 }; 1236 1237 class DeferredSetRegister : public DeferredAction { 1238 public: 1239 DeferredSetRegister(int reg, int value) 1240 : DeferredAction(ActionNode::SET_REGISTER, reg), 1241 value_(value) { } 1242 int value() { return value_; } 1243 private: 1244 int value_; 1245 }; 1246 1247 class DeferredClearCaptures : public DeferredAction { 1248 public: 1249 explicit DeferredClearCaptures(Interval range) 1250 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1), 1251 range_(range) { } 1252 Interval range() { return range_; } 1253 private: 1254 Interval range_; 1255 }; 1256 1257 class DeferredIncrementRegister : public DeferredAction { 1258 public: 1259 explicit DeferredIncrementRegister(int reg) 1260 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { } 1261 }; 1262 1263 Trace() 1264 : cp_offset_(0), 1265 actions_(NULL), 1266 backtrack_(NULL), 1267 stop_node_(NULL), 1268 loop_label_(NULL), 1269 characters_preloaded_(0), 1270 bound_checked_up_to_(0), 1271 flush_budget_(100), 1272 at_start_(UNKNOWN) { } 1273 1274 // End the trace. This involves flushing the deferred actions in the trace 1275 // and pushing a backtrack location onto the backtrack stack. Once this is 1276 // done we can start a new trace or go to one that has already been 1277 // generated. 1278 void Flush(RegExpCompiler* compiler, RegExpNode* successor); 1279 int cp_offset() { return cp_offset_; } 1280 DeferredAction* actions() { return actions_; } 1281 // A trivial trace is one that has no deferred actions or other state that 1282 // affects the assumptions used when generating code. There is no recorded 1283 // backtrack location in a trivial trace, so with a trivial trace we will 1284 // generate code that, on a failure to match, gets the backtrack location 1285 // from the backtrack stack rather than using a direct jump instruction. We 1286 // always start code generation with a trivial trace and non-trivial traces 1287 // are created as we emit code for nodes or add to the list of deferred 1288 // actions in the trace. The location of the code generated for a node using 1289 // a trivial trace is recorded in a label in the node so that gotos can be 1290 // generated to that code. 1291 bool is_trivial() { 1292 return backtrack_ == NULL && 1293 actions_ == NULL && 1294 cp_offset_ == 0 && 1295 characters_preloaded_ == 0 && 1296 bound_checked_up_to_ == 0 && 1297 quick_check_performed_.characters() == 0 && 1298 at_start_ == UNKNOWN; 1299 } 1300 TriBool at_start() { return at_start_; } 1301 void set_at_start(TriBool at_start) { at_start_ = at_start; } 1302 Label* backtrack() { return backtrack_; } 1303 Label* loop_label() { return loop_label_; } 1304 RegExpNode* stop_node() { return stop_node_; } 1305 int characters_preloaded() { return characters_preloaded_; } 1306 int bound_checked_up_to() { return bound_checked_up_to_; } 1307 int flush_budget() { return flush_budget_; } 1308 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; } 1309 bool mentions_reg(int reg); 1310 // Returns true if a deferred position store exists to the specified 1311 // register and stores the offset in the out-parameter. Otherwise 1312 // returns false. 1313 bool GetStoredPosition(int reg, int* cp_offset); 1314 // These set methods and AdvanceCurrentPositionInTrace should be used only on 1315 // new traces - the intention is that traces are immutable after creation. 1316 void add_action(DeferredAction* new_action) { 1317 DCHECK(new_action->next_ == NULL); 1318 new_action->next_ = actions_; 1319 actions_ = new_action; 1320 } 1321 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; } 1322 void set_stop_node(RegExpNode* node) { stop_node_ = node; } 1323 void set_loop_label(Label* label) { loop_label_ = label; } 1324 void set_characters_preloaded(int count) { characters_preloaded_ = count; } 1325 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; } 1326 void set_flush_budget(int to) { flush_budget_ = to; } 1327 void set_quick_check_performed(QuickCheckDetails* d) { 1328 quick_check_performed_ = *d; 1329 } 1330 void InvalidateCurrentCharacter(); 1331 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler); 1332 1333 private: 1334 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone); 1335 void PerformDeferredActions(RegExpMacroAssembler* macro, 1336 int max_register, 1337 const OutSet& affected_registers, 1338 OutSet* registers_to_pop, 1339 OutSet* registers_to_clear, 1340 Zone* zone); 1341 void RestoreAffectedRegisters(RegExpMacroAssembler* macro, 1342 int max_register, 1343 const OutSet& registers_to_pop, 1344 const OutSet& registers_to_clear); 1345 int cp_offset_; 1346 DeferredAction* actions_; 1347 Label* backtrack_; 1348 RegExpNode* stop_node_; 1349 Label* loop_label_; 1350 int characters_preloaded_; 1351 int bound_checked_up_to_; 1352 QuickCheckDetails quick_check_performed_; 1353 int flush_budget_; 1354 TriBool at_start_; 1355 }; 1356 1357 1358 class GreedyLoopState { 1359 public: 1360 explicit GreedyLoopState(bool not_at_start); 1361 1362 Label* label() { return &label_; } 1363 Trace* counter_backtrack_trace() { return &counter_backtrack_trace_; } 1364 1365 private: 1366 Label label_; 1367 Trace counter_backtrack_trace_; 1368 }; 1369 1370 1371 struct PreloadState { 1372 static const int kEatsAtLeastNotYetInitialized = -1; 1373 bool preload_is_current_; 1374 bool preload_has_checked_bounds_; 1375 int preload_characters_; 1376 int eats_at_least_; 1377 void init() { 1378 eats_at_least_ = kEatsAtLeastNotYetInitialized; 1379 } 1380 }; 1381 1382 1383 class NodeVisitor { 1384 public: 1385 virtual ~NodeVisitor() { } 1386 #define DECLARE_VISIT(Type) \ 1387 virtual void Visit##Type(Type##Node* that) = 0; 1388 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1389 #undef DECLARE_VISIT 1390 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); } 1391 }; 1392 1393 1394 // Node visitor used to add the start set of the alternatives to the 1395 // dispatch table of a choice node. 1396 class DispatchTableConstructor: public NodeVisitor { 1397 public: 1398 DispatchTableConstructor(DispatchTable* table, bool ignore_case, 1399 Zone* zone) 1400 : table_(table), 1401 choice_index_(-1), 1402 ignore_case_(ignore_case), 1403 zone_(zone) { } 1404 1405 void BuildTable(ChoiceNode* node); 1406 1407 void AddRange(CharacterRange range) { 1408 table()->AddRange(range, choice_index_, zone_); 1409 } 1410 1411 void AddInverse(ZoneList<CharacterRange>* ranges); 1412 1413 #define DECLARE_VISIT(Type) \ 1414 virtual void Visit##Type(Type##Node* that); 1415 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1416 #undef DECLARE_VISIT 1417 1418 DispatchTable* table() { return table_; } 1419 void set_choice_index(int value) { choice_index_ = value; } 1420 1421 protected: 1422 DispatchTable* table_; 1423 int choice_index_; 1424 bool ignore_case_; 1425 Zone* zone_; 1426 }; 1427 1428 1429 // Assertion propagation moves information about assertions such as 1430 // \b to the affected nodes. For instance, in /.\b./ information must 1431 // be propagated to the first '.' that whatever follows needs to know 1432 // if it matched a word or a non-word, and to the second '.' that it 1433 // has to check if it succeeds a word or non-word. In this case the 1434 // result will be something like: 1435 // 1436 // +-------+ +------------+ 1437 // | . | | . | 1438 // +-------+ ---> +------------+ 1439 // | word? | | check word | 1440 // +-------+ +------------+ 1441 class Analysis: public NodeVisitor { 1442 public: 1443 Analysis(Isolate* isolate, bool ignore_case, bool is_one_byte) 1444 : isolate_(isolate), 1445 ignore_case_(ignore_case), 1446 is_one_byte_(is_one_byte), 1447 error_message_(NULL) {} 1448 void EnsureAnalyzed(RegExpNode* node); 1449 1450 #define DECLARE_VISIT(Type) \ 1451 virtual void Visit##Type(Type##Node* that); 1452 FOR_EACH_NODE_TYPE(DECLARE_VISIT) 1453 #undef DECLARE_VISIT 1454 virtual void VisitLoopChoice(LoopChoiceNode* that); 1455 1456 bool has_failed() { return error_message_ != NULL; } 1457 const char* error_message() { 1458 DCHECK(error_message_ != NULL); 1459 return error_message_; 1460 } 1461 void fail(const char* error_message) { 1462 error_message_ = error_message; 1463 } 1464 1465 Isolate* isolate() const { return isolate_; } 1466 1467 private: 1468 Isolate* isolate_; 1469 bool ignore_case_; 1470 bool is_one_byte_; 1471 const char* error_message_; 1472 1473 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis); 1474 }; 1475 1476 1477 struct RegExpCompileData { 1478 RegExpCompileData() 1479 : tree(NULL), 1480 node(NULL), 1481 simple(true), 1482 contains_anchor(false), 1483 capture_count(0) { } 1484 RegExpTree* tree; 1485 RegExpNode* node; 1486 bool simple; 1487 bool contains_anchor; 1488 Handle<String> error; 1489 int capture_count; 1490 }; 1491 1492 1493 class RegExpEngine: public AllStatic { 1494 public: 1495 struct CompilationResult { 1496 CompilationResult(Isolate* isolate, const char* error_message) 1497 : error_message(error_message), 1498 code(isolate->heap()->the_hole_value()), 1499 num_registers(0) {} 1500 CompilationResult(Object* code, int registers) 1501 : error_message(NULL), code(code), num_registers(registers) {} 1502 const char* error_message; 1503 Object* code; 1504 int num_registers; 1505 }; 1506 1507 static CompilationResult Compile(Isolate* isolate, Zone* zone, 1508 RegExpCompileData* input, bool ignore_case, 1509 bool global, bool multiline, bool sticky, 1510 Handle<String> pattern, 1511 Handle<String> sample_subject, 1512 bool is_one_byte); 1513 1514 static bool TooMuchRegExpCode(Handle<String> pattern); 1515 1516 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case); 1517 }; 1518 1519 1520 class RegExpResultsCache : public AllStatic { 1521 public: 1522 enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS }; 1523 1524 // Attempt to retrieve a cached result. On failure, 0 is returned as a Smi. 1525 // On success, the returned result is guaranteed to be a COW-array. 1526 static Object* Lookup(Heap* heap, String* key_string, Object* key_pattern, 1527 FixedArray** last_match_out, ResultsCacheType type); 1528 // Attempt to add value_array to the cache specified by type. On success, 1529 // value_array is turned into a COW-array. 1530 static void Enter(Isolate* isolate, Handle<String> key_string, 1531 Handle<Object> key_pattern, Handle<FixedArray> value_array, 1532 Handle<FixedArray> last_match_cache, ResultsCacheType type); 1533 static void Clear(FixedArray* cache); 1534 static const int kRegExpResultsCacheSize = 0x100; 1535 1536 private: 1537 static const int kArrayEntriesPerCacheEntry = 4; 1538 static const int kStringOffset = 0; 1539 static const int kPatternOffset = 1; 1540 static const int kArrayOffset = 2; 1541 static const int kLastMatchOffset = 3; 1542 }; 1543 1544 } // namespace internal 1545 } // namespace v8 1546 1547 #endif // V8_REGEXP_JSREGEXP_H_ 1548