1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// This pass exposes codegen information to IR-level passes. Every 11 /// transformation that uses codegen information is broken into three parts: 12 /// 1. The IR-level analysis pass. 13 /// 2. The IR-level transformation interface which provides the needed 14 /// information. 15 /// 3. Codegen-level implementation which uses target-specific hooks. 16 /// 17 /// This file defines #2, which is the interface that IR-level transformations 18 /// use for querying the codegen. 19 /// 20 //===----------------------------------------------------------------------===// 21 22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H 23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H 24 25 #include "llvm/ADT/Optional.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/Pass.h" 29 #include "llvm/Support/DataTypes.h" 30 #include <functional> 31 32 namespace llvm { 33 34 class Function; 35 class GlobalValue; 36 class Loop; 37 class PreservedAnalyses; 38 class Type; 39 class User; 40 class Value; 41 42 /// \brief Information about a load/store intrinsic defined by the target. 43 struct MemIntrinsicInfo { 44 MemIntrinsicInfo() 45 : ReadMem(false), WriteMem(false), IsSimple(false), MatchingId(0), 46 NumMemRefs(0), PtrVal(nullptr) {} 47 bool ReadMem; 48 bool WriteMem; 49 /// True only if this memory operation is non-volatile, non-atomic, and 50 /// unordered. (See LoadInst/StoreInst for details on each) 51 bool IsSimple; 52 // Same Id is set by the target for corresponding load/store intrinsics. 53 unsigned short MatchingId; 54 int NumMemRefs; 55 Value *PtrVal; 56 }; 57 58 /// \brief This pass provides access to the codegen interfaces that are needed 59 /// for IR-level transformations. 60 class TargetTransformInfo { 61 public: 62 /// \brief Construct a TTI object using a type implementing the \c Concept 63 /// API below. 64 /// 65 /// This is used by targets to construct a TTI wrapping their target-specific 66 /// implementaion that encodes appropriate costs for their target. 67 template <typename T> TargetTransformInfo(T Impl); 68 69 /// \brief Construct a baseline TTI object using a minimal implementation of 70 /// the \c Concept API below. 71 /// 72 /// The TTI implementation will reflect the information in the DataLayout 73 /// provided if non-null. 74 explicit TargetTransformInfo(const DataLayout &DL); 75 76 // Provide move semantics. 77 TargetTransformInfo(TargetTransformInfo &&Arg); 78 TargetTransformInfo &operator=(TargetTransformInfo &&RHS); 79 80 // We need to define the destructor out-of-line to define our sub-classes 81 // out-of-line. 82 ~TargetTransformInfo(); 83 84 /// \brief Handle the invalidation of this information. 85 /// 86 /// When used as a result of \c TargetIRAnalysis this method will be called 87 /// when the function this was computed for changes. When it returns false, 88 /// the information is preserved across those changes. 89 bool invalidate(Function &, const PreservedAnalyses &) { 90 // FIXME: We should probably in some way ensure that the subtarget 91 // information for a function hasn't changed. 92 return false; 93 } 94 95 /// \name Generic Target Information 96 /// @{ 97 98 /// \brief Underlying constants for 'cost' values in this interface. 99 /// 100 /// Many APIs in this interface return a cost. This enum defines the 101 /// fundamental values that should be used to interpret (and produce) those 102 /// costs. The costs are returned as an int rather than a member of this 103 /// enumeration because it is expected that the cost of one IR instruction 104 /// may have a multiplicative factor to it or otherwise won't fit directly 105 /// into the enum. Moreover, it is common to sum or average costs which works 106 /// better as simple integral values. Thus this enum only provides constants. 107 /// Also note that the returned costs are signed integers to make it natural 108 /// to add, subtract, and test with zero (a common boundary condition). It is 109 /// not expected that 2^32 is a realistic cost to be modeling at any point. 110 /// 111 /// Note that these costs should usually reflect the intersection of code-size 112 /// cost and execution cost. A free instruction is typically one that folds 113 /// into another instruction. For example, reg-to-reg moves can often be 114 /// skipped by renaming the registers in the CPU, but they still are encoded 115 /// and thus wouldn't be considered 'free' here. 116 enum TargetCostConstants { 117 TCC_Free = 0, ///< Expected to fold away in lowering. 118 TCC_Basic = 1, ///< The cost of a typical 'add' instruction. 119 TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86. 120 }; 121 122 /// \brief Estimate the cost of a specific operation when lowered. 123 /// 124 /// Note that this is designed to work on an arbitrary synthetic opcode, and 125 /// thus work for hypothetical queries before an instruction has even been 126 /// formed. However, this does *not* work for GEPs, and must not be called 127 /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as 128 /// analyzing a GEP's cost required more information. 129 /// 130 /// Typically only the result type is required, and the operand type can be 131 /// omitted. However, if the opcode is one of the cast instructions, the 132 /// operand type is required. 133 /// 134 /// The returned cost is defined in terms of \c TargetCostConstants, see its 135 /// comments for a detailed explanation of the cost values. 136 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const; 137 138 /// \brief Estimate the cost of a GEP operation when lowered. 139 /// 140 /// The contract for this function is the same as \c getOperationCost except 141 /// that it supports an interface that provides extra information specific to 142 /// the GEP operation. 143 int getGEPCost(Type *PointeeType, const Value *Ptr, 144 ArrayRef<const Value *> Operands) const; 145 146 /// \brief Estimate the cost of a function call when lowered. 147 /// 148 /// The contract for this is the same as \c getOperationCost except that it 149 /// supports an interface that provides extra information specific to call 150 /// instructions. 151 /// 152 /// This is the most basic query for estimating call cost: it only knows the 153 /// function type and (potentially) the number of arguments at the call site. 154 /// The latter is only interesting for varargs function types. 155 int getCallCost(FunctionType *FTy, int NumArgs = -1) const; 156 157 /// \brief Estimate the cost of calling a specific function when lowered. 158 /// 159 /// This overload adds the ability to reason about the particular function 160 /// being called in the event it is a library call with special lowering. 161 int getCallCost(const Function *F, int NumArgs = -1) const; 162 163 /// \brief Estimate the cost of calling a specific function when lowered. 164 /// 165 /// This overload allows specifying a set of candidate argument values. 166 int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const; 167 168 /// \brief Estimate the cost of an intrinsic when lowered. 169 /// 170 /// Mirrors the \c getCallCost method but uses an intrinsic identifier. 171 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 172 ArrayRef<Type *> ParamTys) const; 173 174 /// \brief Estimate the cost of an intrinsic when lowered. 175 /// 176 /// Mirrors the \c getCallCost method but uses an intrinsic identifier. 177 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 178 ArrayRef<const Value *> Arguments) const; 179 180 /// \brief Estimate the cost of a given IR user when lowered. 181 /// 182 /// This can estimate the cost of either a ConstantExpr or Instruction when 183 /// lowered. It has two primary advantages over the \c getOperationCost and 184 /// \c getGEPCost above, and one significant disadvantage: it can only be 185 /// used when the IR construct has already been formed. 186 /// 187 /// The advantages are that it can inspect the SSA use graph to reason more 188 /// accurately about the cost. For example, all-constant-GEPs can often be 189 /// folded into a load or other instruction, but if they are used in some 190 /// other context they may not be folded. This routine can distinguish such 191 /// cases. 192 /// 193 /// The returned cost is defined in terms of \c TargetCostConstants, see its 194 /// comments for a detailed explanation of the cost values. 195 int getUserCost(const User *U) const; 196 197 /// \brief Return true if branch divergence exists. 198 /// 199 /// Branch divergence has a significantly negative impact on GPU performance 200 /// when threads in the same wavefront take different paths due to conditional 201 /// branches. 202 bool hasBranchDivergence() const; 203 204 /// \brief Returns whether V is a source of divergence. 205 /// 206 /// This function provides the target-dependent information for 207 /// the target-independent DivergenceAnalysis. DivergenceAnalysis first 208 /// builds the dependency graph, and then runs the reachability algorithm 209 /// starting with the sources of divergence. 210 bool isSourceOfDivergence(const Value *V) const; 211 212 /// \brief Test whether calls to a function lower to actual program function 213 /// calls. 214 /// 215 /// The idea is to test whether the program is likely to require a 'call' 216 /// instruction or equivalent in order to call the given function. 217 /// 218 /// FIXME: It's not clear that this is a good or useful query API. Client's 219 /// should probably move to simpler cost metrics using the above. 220 /// Alternatively, we could split the cost interface into distinct code-size 221 /// and execution-speed costs. This would allow modelling the core of this 222 /// query more accurately as a call is a single small instruction, but 223 /// incurs significant execution cost. 224 bool isLoweredToCall(const Function *F) const; 225 226 /// Parameters that control the generic loop unrolling transformation. 227 struct UnrollingPreferences { 228 /// The cost threshold for the unrolled loop. Should be relative to the 229 /// getUserCost values returned by this API, and the expectation is that 230 /// the unrolled loop's instructions when run through that interface should 231 /// not exceed this cost. However, this is only an estimate. Also, specific 232 /// loops may be unrolled even with a cost above this threshold if deemed 233 /// profitable. Set this to UINT_MAX to disable the loop body cost 234 /// restriction. 235 unsigned Threshold; 236 /// If complete unrolling will reduce the cost of the loop below its 237 /// expected dynamic cost while rolled by this percentage, apply a discount 238 /// (below) to its unrolled cost. 239 unsigned PercentDynamicCostSavedThreshold; 240 /// The discount applied to the unrolled cost when the *dynamic* cost 241 /// savings of unrolling exceed the \c PercentDynamicCostSavedThreshold. 242 unsigned DynamicCostSavingsDiscount; 243 /// The cost threshold for the unrolled loop when optimizing for size (set 244 /// to UINT_MAX to disable). 245 unsigned OptSizeThreshold; 246 /// The cost threshold for the unrolled loop, like Threshold, but used 247 /// for partial/runtime unrolling (set to UINT_MAX to disable). 248 unsigned PartialThreshold; 249 /// The cost threshold for the unrolled loop when optimizing for size, like 250 /// OptSizeThreshold, but used for partial/runtime unrolling (set to 251 /// UINT_MAX to disable). 252 unsigned PartialOptSizeThreshold; 253 /// A forced unrolling factor (the number of concatenated bodies of the 254 /// original loop in the unrolled loop body). When set to 0, the unrolling 255 /// transformation will select an unrolling factor based on the current cost 256 /// threshold and other factors. 257 unsigned Count; 258 // Set the maximum unrolling factor. The unrolling factor may be selected 259 // using the appropriate cost threshold, but may not exceed this number 260 // (set to UINT_MAX to disable). This does not apply in cases where the 261 // loop is being fully unrolled. 262 unsigned MaxCount; 263 /// Allow partial unrolling (unrolling of loops to expand the size of the 264 /// loop body, not only to eliminate small constant-trip-count loops). 265 bool Partial; 266 /// Allow runtime unrolling (unrolling of loops to expand the size of the 267 /// loop body even when the number of loop iterations is not known at 268 /// compile time). 269 bool Runtime; 270 /// Allow emitting expensive instructions (such as divisions) when computing 271 /// the trip count of a loop for runtime unrolling. 272 bool AllowExpensiveTripCount; 273 }; 274 275 /// \brief Get target-customized preferences for the generic loop unrolling 276 /// transformation. The caller will initialize UP with the current 277 /// target-independent defaults. 278 void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const; 279 280 /// @} 281 282 /// \name Scalar Target Information 283 /// @{ 284 285 /// \brief Flags indicating the kind of support for population count. 286 /// 287 /// Compared to the SW implementation, HW support is supposed to 288 /// significantly boost the performance when the population is dense, and it 289 /// may or may not degrade performance if the population is sparse. A HW 290 /// support is considered as "Fast" if it can outperform, or is on a par 291 /// with, SW implementation when the population is sparse; otherwise, it is 292 /// considered as "Slow". 293 enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware }; 294 295 /// \brief Return true if the specified immediate is legal add immediate, that 296 /// is the target has add instructions which can add a register with the 297 /// immediate without having to materialize the immediate into a register. 298 bool isLegalAddImmediate(int64_t Imm) const; 299 300 /// \brief Return true if the specified immediate is legal icmp immediate, 301 /// that is the target has icmp instructions which can compare a register 302 /// against the immediate without having to materialize the immediate into a 303 /// register. 304 bool isLegalICmpImmediate(int64_t Imm) const; 305 306 /// \brief Return true if the addressing mode represented by AM is legal for 307 /// this target, for a load/store of the specified type. 308 /// The type may be VoidTy, in which case only return true if the addressing 309 /// mode is legal for a load/store of any legal type. 310 /// TODO: Handle pre/postinc as well. 311 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 312 bool HasBaseReg, int64_t Scale, 313 unsigned AddrSpace = 0) const; 314 315 /// \brief Return true if the target supports masked load/store 316 /// AVX2 and AVX-512 targets allow masks for consecutive load and store for 317 /// 32 and 64 bit elements. 318 bool isLegalMaskedStore(Type *DataType) const; 319 bool isLegalMaskedLoad(Type *DataType) const; 320 321 /// \brief Return true if the target supports masked gather/scatter 322 /// AVX-512 fully supports gather and scatter for vectors with 32 and 64 323 /// bits scalar type. 324 bool isLegalMaskedScatter(Type *DataType) const; 325 bool isLegalMaskedGather(Type *DataType) const; 326 327 /// \brief Return the cost of the scaling factor used in the addressing 328 /// mode represented by AM for this target, for a load/store 329 /// of the specified type. 330 /// If the AM is supported, the return value must be >= 0. 331 /// If the AM is not supported, it returns a negative value. 332 /// TODO: Handle pre/postinc as well. 333 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 334 bool HasBaseReg, int64_t Scale, 335 unsigned AddrSpace = 0) const; 336 337 /// \brief Return true if it's free to truncate a value of type Ty1 to type 338 /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16 339 /// by referencing its sub-register AX. 340 bool isTruncateFree(Type *Ty1, Type *Ty2) const; 341 342 /// \brief Return true if it is profitable to hoist instruction in the 343 /// then/else to before if. 344 bool isProfitableToHoist(Instruction *I) const; 345 346 /// \brief Return true if this type is legal. 347 bool isTypeLegal(Type *Ty) const; 348 349 /// \brief Returns the target's jmp_buf alignment in bytes. 350 unsigned getJumpBufAlignment() const; 351 352 /// \brief Returns the target's jmp_buf size in bytes. 353 unsigned getJumpBufSize() const; 354 355 /// \brief Return true if switches should be turned into lookup tables for the 356 /// target. 357 bool shouldBuildLookupTables() const; 358 359 /// \brief Don't restrict interleaved unrolling to small loops. 360 bool enableAggressiveInterleaving(bool LoopHasReductions) const; 361 362 /// \brief Enable matching of interleaved access groups. 363 bool enableInterleavedAccessVectorization() const; 364 365 /// \brief Return hardware support for population count. 366 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const; 367 368 /// \brief Return true if the hardware has a fast square-root instruction. 369 bool haveFastSqrt(Type *Ty) const; 370 371 /// \brief Return the expected cost of supporting the floating point operation 372 /// of the specified type. 373 int getFPOpCost(Type *Ty) const; 374 375 /// \brief Return the expected cost of materializing for the given integer 376 /// immediate of the specified type. 377 int getIntImmCost(const APInt &Imm, Type *Ty) const; 378 379 /// \brief Return the expected cost of materialization for the given integer 380 /// immediate of the specified type for a given instruction. The cost can be 381 /// zero if the immediate can be folded into the specified instruction. 382 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, 383 Type *Ty) const; 384 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 385 Type *Ty) const; 386 /// @} 387 388 /// \name Vector Target Information 389 /// @{ 390 391 /// \brief The various kinds of shuffle patterns for vector queries. 392 enum ShuffleKind { 393 SK_Broadcast, ///< Broadcast element 0 to all other elements. 394 SK_Reverse, ///< Reverse the order of the vector. 395 SK_Alternate, ///< Choose alternate elements from vector. 396 SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset. 397 SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset. 398 }; 399 400 /// \brief Additional information about an operand's possible values. 401 enum OperandValueKind { 402 OK_AnyValue, // Operand can have any value. 403 OK_UniformValue, // Operand is uniform (splat of a value). 404 OK_UniformConstantValue, // Operand is uniform constant. 405 OK_NonUniformConstantValue // Operand is a non uniform constant value. 406 }; 407 408 /// \brief Additional properties of an operand's values. 409 enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 }; 410 411 /// \return The number of scalar or vector registers that the target has. 412 /// If 'Vectors' is true, it returns the number of vector registers. If it is 413 /// set to false, it returns the number of scalar registers. 414 unsigned getNumberOfRegisters(bool Vector) const; 415 416 /// \return The width of the largest scalar or vector register type. 417 unsigned getRegisterBitWidth(bool Vector) const; 418 419 /// \return The maximum interleave factor that any transform should try to 420 /// perform for this target. This number depends on the level of parallelism 421 /// and the number of execution units in the CPU. 422 unsigned getMaxInterleaveFactor(unsigned VF) const; 423 424 /// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc. 425 int getArithmeticInstrCost( 426 unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue, 427 OperandValueKind Opd2Info = OK_AnyValue, 428 OperandValueProperties Opd1PropInfo = OP_None, 429 OperandValueProperties Opd2PropInfo = OP_None) const; 430 431 /// \return The cost of a shuffle instruction of kind Kind and of type Tp. 432 /// The index and subtype parameters are used by the subvector insertion and 433 /// extraction shuffle kinds. 434 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0, 435 Type *SubTp = nullptr) const; 436 437 /// \return The expected cost of cast instructions, such as bitcast, trunc, 438 /// zext, etc. 439 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const; 440 441 /// \return The expected cost of control-flow related instructions such as 442 /// Phi, Ret, Br. 443 int getCFInstrCost(unsigned Opcode) const; 444 445 /// \returns The expected cost of compare and select instructions. 446 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 447 Type *CondTy = nullptr) const; 448 449 /// \return The expected cost of vector Insert and Extract. 450 /// Use -1 to indicate that there is no information on the index value. 451 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const; 452 453 /// \return The cost of Load and Store instructions. 454 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 455 unsigned AddressSpace) const; 456 457 /// \return The cost of masked Load and Store instructions. 458 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 459 unsigned AddressSpace) const; 460 461 /// \return The cost of the interleaved memory operation. 462 /// \p Opcode is the memory operation code 463 /// \p VecTy is the vector type of the interleaved access. 464 /// \p Factor is the interleave factor 465 /// \p Indices is the indices for interleaved load members (as interleaved 466 /// load allows gaps) 467 /// \p Alignment is the alignment of the memory operation 468 /// \p AddressSpace is address space of the pointer. 469 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, 470 ArrayRef<unsigned> Indices, unsigned Alignment, 471 unsigned AddressSpace) const; 472 473 /// \brief Calculate the cost of performing a vector reduction. 474 /// 475 /// This is the cost of reducing the vector value of type \p Ty to a scalar 476 /// value using the operation denoted by \p Opcode. The form of the reduction 477 /// can either be a pairwise reduction or a reduction that splits the vector 478 /// at every reduction level. 479 /// 480 /// Pairwise: 481 /// (v0, v1, v2, v3) 482 /// ((v0+v1), (v2, v3), undef, undef) 483 /// Split: 484 /// (v0, v1, v2, v3) 485 /// ((v0+v2), (v1+v3), undef, undef) 486 int getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm) const; 487 488 /// \returns The cost of Intrinsic instructions. 489 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 490 ArrayRef<Type *> Tys) const; 491 492 /// \returns The cost of Call instructions. 493 int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const; 494 495 /// \returns The number of pieces into which the provided type must be 496 /// split during legalization. Zero is returned when the answer is unknown. 497 unsigned getNumberOfParts(Type *Tp) const; 498 499 /// \returns The cost of the address computation. For most targets this can be 500 /// merged into the instruction indexing mode. Some targets might want to 501 /// distinguish between address computation for memory operations on vector 502 /// types and scalar types. Such targets should override this function. 503 /// The 'IsComplex' parameter is a hint that the address computation is likely 504 /// to involve multiple instructions and as such unlikely to be merged into 505 /// the address indexing mode. 506 int getAddressComputationCost(Type *Ty, bool IsComplex = false) const; 507 508 /// \returns The cost, if any, of keeping values of the given types alive 509 /// over a callsite. 510 /// 511 /// Some types may require the use of register classes that do not have 512 /// any callee-saved registers, so would require a spill and fill. 513 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const; 514 515 /// \returns True if the intrinsic is a supported memory intrinsic. Info 516 /// will contain additional information - whether the intrinsic may write 517 /// or read to memory, volatility and the pointer. Info is undefined 518 /// if false is returned. 519 bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const; 520 521 /// \returns A value which is the result of the given memory intrinsic. New 522 /// instructions may be created to extract the result from the given intrinsic 523 /// memory operation. Returns nullptr if the target cannot create a result 524 /// from the given intrinsic. 525 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 526 Type *ExpectedType) const; 527 528 /// \returns True if the two functions have compatible attributes for inlining 529 /// purposes. 530 bool areInlineCompatible(const Function *Caller, 531 const Function *Callee) const; 532 533 /// @} 534 535 private: 536 /// \brief The abstract base class used to type erase specific TTI 537 /// implementations. 538 class Concept; 539 540 /// \brief The template model for the base class which wraps a concrete 541 /// implementation in a type erased interface. 542 template <typename T> class Model; 543 544 std::unique_ptr<Concept> TTIImpl; 545 }; 546 547 class TargetTransformInfo::Concept { 548 public: 549 virtual ~Concept() = 0; 550 virtual const DataLayout &getDataLayout() const = 0; 551 virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0; 552 virtual int getGEPCost(Type *PointeeType, const Value *Ptr, 553 ArrayRef<const Value *> Operands) = 0; 554 virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0; 555 virtual int getCallCost(const Function *F, int NumArgs) = 0; 556 virtual int getCallCost(const Function *F, 557 ArrayRef<const Value *> Arguments) = 0; 558 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 559 ArrayRef<Type *> ParamTys) = 0; 560 virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 561 ArrayRef<const Value *> Arguments) = 0; 562 virtual int getUserCost(const User *U) = 0; 563 virtual bool hasBranchDivergence() = 0; 564 virtual bool isSourceOfDivergence(const Value *V) = 0; 565 virtual bool isLoweredToCall(const Function *F) = 0; 566 virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) = 0; 567 virtual bool isLegalAddImmediate(int64_t Imm) = 0; 568 virtual bool isLegalICmpImmediate(int64_t Imm) = 0; 569 virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, 570 int64_t BaseOffset, bool HasBaseReg, 571 int64_t Scale, 572 unsigned AddrSpace) = 0; 573 virtual bool isLegalMaskedStore(Type *DataType) = 0; 574 virtual bool isLegalMaskedLoad(Type *DataType) = 0; 575 virtual bool isLegalMaskedScatter(Type *DataType) = 0; 576 virtual bool isLegalMaskedGather(Type *DataType) = 0; 577 virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, 578 int64_t BaseOffset, bool HasBaseReg, 579 int64_t Scale, unsigned AddrSpace) = 0; 580 virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0; 581 virtual bool isProfitableToHoist(Instruction *I) = 0; 582 virtual bool isTypeLegal(Type *Ty) = 0; 583 virtual unsigned getJumpBufAlignment() = 0; 584 virtual unsigned getJumpBufSize() = 0; 585 virtual bool shouldBuildLookupTables() = 0; 586 virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0; 587 virtual bool enableInterleavedAccessVectorization() = 0; 588 virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0; 589 virtual bool haveFastSqrt(Type *Ty) = 0; 590 virtual int getFPOpCost(Type *Ty) = 0; 591 virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0; 592 virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, 593 Type *Ty) = 0; 594 virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 595 Type *Ty) = 0; 596 virtual unsigned getNumberOfRegisters(bool Vector) = 0; 597 virtual unsigned getRegisterBitWidth(bool Vector) = 0; 598 virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0; 599 virtual unsigned 600 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 601 OperandValueKind Opd2Info, 602 OperandValueProperties Opd1PropInfo, 603 OperandValueProperties Opd2PropInfo) = 0; 604 virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 605 Type *SubTp) = 0; 606 virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) = 0; 607 virtual int getCFInstrCost(unsigned Opcode) = 0; 608 virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, 609 Type *CondTy) = 0; 610 virtual int getVectorInstrCost(unsigned Opcode, Type *Val, 611 unsigned Index) = 0; 612 virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 613 unsigned AddressSpace) = 0; 614 virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, 615 unsigned Alignment, 616 unsigned AddressSpace) = 0; 617 virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, 618 unsigned Factor, 619 ArrayRef<unsigned> Indices, 620 unsigned Alignment, 621 unsigned AddressSpace) = 0; 622 virtual int getReductionCost(unsigned Opcode, Type *Ty, 623 bool IsPairwiseForm) = 0; 624 virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 625 ArrayRef<Type *> Tys) = 0; 626 virtual int getCallInstrCost(Function *F, Type *RetTy, 627 ArrayRef<Type *> Tys) = 0; 628 virtual unsigned getNumberOfParts(Type *Tp) = 0; 629 virtual int getAddressComputationCost(Type *Ty, bool IsComplex) = 0; 630 virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0; 631 virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst, 632 MemIntrinsicInfo &Info) = 0; 633 virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 634 Type *ExpectedType) = 0; 635 virtual bool areInlineCompatible(const Function *Caller, 636 const Function *Callee) const = 0; 637 }; 638 639 template <typename T> 640 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept { 641 T Impl; 642 643 public: 644 Model(T Impl) : Impl(std::move(Impl)) {} 645 ~Model() override {} 646 647 const DataLayout &getDataLayout() const override { 648 return Impl.getDataLayout(); 649 } 650 651 int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override { 652 return Impl.getOperationCost(Opcode, Ty, OpTy); 653 } 654 int getGEPCost(Type *PointeeType, const Value *Ptr, 655 ArrayRef<const Value *> Operands) override { 656 return Impl.getGEPCost(PointeeType, Ptr, Operands); 657 } 658 int getCallCost(FunctionType *FTy, int NumArgs) override { 659 return Impl.getCallCost(FTy, NumArgs); 660 } 661 int getCallCost(const Function *F, int NumArgs) override { 662 return Impl.getCallCost(F, NumArgs); 663 } 664 int getCallCost(const Function *F, 665 ArrayRef<const Value *> Arguments) override { 666 return Impl.getCallCost(F, Arguments); 667 } 668 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 669 ArrayRef<Type *> ParamTys) override { 670 return Impl.getIntrinsicCost(IID, RetTy, ParamTys); 671 } 672 int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, 673 ArrayRef<const Value *> Arguments) override { 674 return Impl.getIntrinsicCost(IID, RetTy, Arguments); 675 } 676 int getUserCost(const User *U) override { return Impl.getUserCost(U); } 677 bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); } 678 bool isSourceOfDivergence(const Value *V) override { 679 return Impl.isSourceOfDivergence(V); 680 } 681 bool isLoweredToCall(const Function *F) override { 682 return Impl.isLoweredToCall(F); 683 } 684 void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) override { 685 return Impl.getUnrollingPreferences(L, UP); 686 } 687 bool isLegalAddImmediate(int64_t Imm) override { 688 return Impl.isLegalAddImmediate(Imm); 689 } 690 bool isLegalICmpImmediate(int64_t Imm) override { 691 return Impl.isLegalICmpImmediate(Imm); 692 } 693 bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 694 bool HasBaseReg, int64_t Scale, 695 unsigned AddrSpace) override { 696 return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg, 697 Scale, AddrSpace); 698 } 699 bool isLegalMaskedStore(Type *DataType) override { 700 return Impl.isLegalMaskedStore(DataType); 701 } 702 bool isLegalMaskedLoad(Type *DataType) override { 703 return Impl.isLegalMaskedLoad(DataType); 704 } 705 bool isLegalMaskedScatter(Type *DataType) override { 706 return Impl.isLegalMaskedScatter(DataType); 707 } 708 bool isLegalMaskedGather(Type *DataType) override { 709 return Impl.isLegalMaskedGather(DataType); 710 } 711 int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, 712 bool HasBaseReg, int64_t Scale, 713 unsigned AddrSpace) override { 714 return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg, 715 Scale, AddrSpace); 716 } 717 bool isTruncateFree(Type *Ty1, Type *Ty2) override { 718 return Impl.isTruncateFree(Ty1, Ty2); 719 } 720 bool isProfitableToHoist(Instruction *I) override { 721 return Impl.isProfitableToHoist(I); 722 } 723 bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); } 724 unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); } 725 unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); } 726 bool shouldBuildLookupTables() override { 727 return Impl.shouldBuildLookupTables(); 728 } 729 bool enableAggressiveInterleaving(bool LoopHasReductions) override { 730 return Impl.enableAggressiveInterleaving(LoopHasReductions); 731 } 732 bool enableInterleavedAccessVectorization() override { 733 return Impl.enableInterleavedAccessVectorization(); 734 } 735 PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override { 736 return Impl.getPopcntSupport(IntTyWidthInBit); 737 } 738 bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); } 739 740 int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); } 741 742 int getIntImmCost(const APInt &Imm, Type *Ty) override { 743 return Impl.getIntImmCost(Imm, Ty); 744 } 745 int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm, 746 Type *Ty) override { 747 return Impl.getIntImmCost(Opc, Idx, Imm, Ty); 748 } 749 int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm, 750 Type *Ty) override { 751 return Impl.getIntImmCost(IID, Idx, Imm, Ty); 752 } 753 unsigned getNumberOfRegisters(bool Vector) override { 754 return Impl.getNumberOfRegisters(Vector); 755 } 756 unsigned getRegisterBitWidth(bool Vector) override { 757 return Impl.getRegisterBitWidth(Vector); 758 } 759 unsigned getMaxInterleaveFactor(unsigned VF) override { 760 return Impl.getMaxInterleaveFactor(VF); 761 } 762 unsigned 763 getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info, 764 OperandValueKind Opd2Info, 765 OperandValueProperties Opd1PropInfo, 766 OperandValueProperties Opd2PropInfo) override { 767 return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info, 768 Opd1PropInfo, Opd2PropInfo); 769 } 770 int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index, 771 Type *SubTp) override { 772 return Impl.getShuffleCost(Kind, Tp, Index, SubTp); 773 } 774 int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) override { 775 return Impl.getCastInstrCost(Opcode, Dst, Src); 776 } 777 int getCFInstrCost(unsigned Opcode) override { 778 return Impl.getCFInstrCost(Opcode); 779 } 780 int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) override { 781 return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy); 782 } 783 int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override { 784 return Impl.getVectorInstrCost(Opcode, Val, Index); 785 } 786 int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 787 unsigned AddressSpace) override { 788 return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 789 } 790 int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, 791 unsigned AddressSpace) override { 792 return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace); 793 } 794 int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor, 795 ArrayRef<unsigned> Indices, unsigned Alignment, 796 unsigned AddressSpace) override { 797 return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, 798 Alignment, AddressSpace); 799 } 800 int getReductionCost(unsigned Opcode, Type *Ty, 801 bool IsPairwiseForm) override { 802 return Impl.getReductionCost(Opcode, Ty, IsPairwiseForm); 803 } 804 int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy, 805 ArrayRef<Type *> Tys) override { 806 return Impl.getIntrinsicInstrCost(ID, RetTy, Tys); 807 } 808 int getCallInstrCost(Function *F, Type *RetTy, 809 ArrayRef<Type *> Tys) override { 810 return Impl.getCallInstrCost(F, RetTy, Tys); 811 } 812 unsigned getNumberOfParts(Type *Tp) override { 813 return Impl.getNumberOfParts(Tp); 814 } 815 int getAddressComputationCost(Type *Ty, bool IsComplex) override { 816 return Impl.getAddressComputationCost(Ty, IsComplex); 817 } 818 unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override { 819 return Impl.getCostOfKeepingLiveOverCall(Tys); 820 } 821 bool getTgtMemIntrinsic(IntrinsicInst *Inst, 822 MemIntrinsicInfo &Info) override { 823 return Impl.getTgtMemIntrinsic(Inst, Info); 824 } 825 Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst, 826 Type *ExpectedType) override { 827 return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType); 828 } 829 bool areInlineCompatible(const Function *Caller, 830 const Function *Callee) const override { 831 return Impl.areInlineCompatible(Caller, Callee); 832 } 833 }; 834 835 template <typename T> 836 TargetTransformInfo::TargetTransformInfo(T Impl) 837 : TTIImpl(new Model<T>(Impl)) {} 838 839 /// \brief Analysis pass providing the \c TargetTransformInfo. 840 /// 841 /// The core idea of the TargetIRAnalysis is to expose an interface through 842 /// which LLVM targets can analyze and provide information about the middle 843 /// end's target-independent IR. This supports use cases such as target-aware 844 /// cost modeling of IR constructs. 845 /// 846 /// This is a function analysis because much of the cost modeling for targets 847 /// is done in a subtarget specific way and LLVM supports compiling different 848 /// functions targeting different subtargets in order to support runtime 849 /// dispatch according to the observed subtarget. 850 class TargetIRAnalysis { 851 public: 852 typedef TargetTransformInfo Result; 853 854 /// \brief Opaque, unique identifier for this analysis pass. 855 static void *ID() { return (void *)&PassID; } 856 857 /// \brief Provide access to a name for this pass for debugging purposes. 858 static StringRef name() { return "TargetIRAnalysis"; } 859 860 /// \brief Default construct a target IR analysis. 861 /// 862 /// This will use the module's datalayout to construct a baseline 863 /// conservative TTI result. 864 TargetIRAnalysis(); 865 866 /// \brief Construct an IR analysis pass around a target-provide callback. 867 /// 868 /// The callback will be called with a particular function for which the TTI 869 /// is needed and must return a TTI object for that function. 870 TargetIRAnalysis(std::function<Result(const Function &)> TTICallback); 871 872 // Value semantics. We spell out the constructors for MSVC. 873 TargetIRAnalysis(const TargetIRAnalysis &Arg) 874 : TTICallback(Arg.TTICallback) {} 875 TargetIRAnalysis(TargetIRAnalysis &&Arg) 876 : TTICallback(std::move(Arg.TTICallback)) {} 877 TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) { 878 TTICallback = RHS.TTICallback; 879 return *this; 880 } 881 TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) { 882 TTICallback = std::move(RHS.TTICallback); 883 return *this; 884 } 885 886 Result run(const Function &F); 887 888 private: 889 static char PassID; 890 891 /// \brief The callback used to produce a result. 892 /// 893 /// We use a completely opaque callback so that targets can provide whatever 894 /// mechanism they desire for constructing the TTI for a given function. 895 /// 896 /// FIXME: Should we really use std::function? It's relatively inefficient. 897 /// It might be possible to arrange for even stateful callbacks to outlive 898 /// the analysis and thus use a function_ref which would be lighter weight. 899 /// This may also be less error prone as the callback is likely to reference 900 /// the external TargetMachine, and that reference needs to never dangle. 901 std::function<Result(const Function &)> TTICallback; 902 903 /// \brief Helper function used as the callback in the default constructor. 904 static Result getDefaultTTI(const Function &F); 905 }; 906 907 /// \brief Wrapper pass for TargetTransformInfo. 908 /// 909 /// This pass can be constructed from a TTI object which it stores internally 910 /// and is queried by passes. 911 class TargetTransformInfoWrapperPass : public ImmutablePass { 912 TargetIRAnalysis TIRA; 913 Optional<TargetTransformInfo> TTI; 914 915 virtual void anchor(); 916 917 public: 918 static char ID; 919 920 /// \brief We must provide a default constructor for the pass but it should 921 /// never be used. 922 /// 923 /// Use the constructor below or call one of the creation routines. 924 TargetTransformInfoWrapperPass(); 925 926 explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); 927 928 TargetTransformInfo &getTTI(const Function &F); 929 }; 930 931 /// \brief Create an analysis pass wrapper around a TTI object. 932 /// 933 /// This analysis pass just holds the TTI instance and makes it available to 934 /// clients. 935 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA); 936 937 } // End llvm namespace 938 939 #endif 940