Home | History | Annotate | Download | only in Analysis
      1 //===- TargetTransformInfo.h ------------------------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This pass exposes codegen information to IR-level passes. Every
     11 /// transformation that uses codegen information is broken into three parts:
     12 /// 1. The IR-level analysis pass.
     13 /// 2. The IR-level transformation interface which provides the needed
     14 ///    information.
     15 /// 3. Codegen-level implementation which uses target-specific hooks.
     16 ///
     17 /// This file defines #2, which is the interface that IR-level transformations
     18 /// use for querying the codegen.
     19 ///
     20 //===----------------------------------------------------------------------===//
     21 
     22 #ifndef LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
     23 #define LLVM_ANALYSIS_TARGETTRANSFORMINFO_H
     24 
     25 #include "llvm/ADT/Optional.h"
     26 #include "llvm/IR/IntrinsicInst.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/Pass.h"
     29 #include "llvm/Support/DataTypes.h"
     30 #include <functional>
     31 
     32 namespace llvm {
     33 
     34 class Function;
     35 class GlobalValue;
     36 class Loop;
     37 class PreservedAnalyses;
     38 class Type;
     39 class User;
     40 class Value;
     41 
     42 /// \brief Information about a load/store intrinsic defined by the target.
     43 struct MemIntrinsicInfo {
     44   MemIntrinsicInfo()
     45       : ReadMem(false), WriteMem(false), IsSimple(false), MatchingId(0),
     46         NumMemRefs(0), PtrVal(nullptr) {}
     47   bool ReadMem;
     48   bool WriteMem;
     49   /// True only if this memory operation is non-volatile, non-atomic, and
     50   /// unordered.  (See LoadInst/StoreInst for details on each)
     51   bool IsSimple;
     52   // Same Id is set by the target for corresponding load/store intrinsics.
     53   unsigned short MatchingId;
     54   int NumMemRefs;
     55   Value *PtrVal;
     56 };
     57 
     58 /// \brief This pass provides access to the codegen interfaces that are needed
     59 /// for IR-level transformations.
     60 class TargetTransformInfo {
     61 public:
     62   /// \brief Construct a TTI object using a type implementing the \c Concept
     63   /// API below.
     64   ///
     65   /// This is used by targets to construct a TTI wrapping their target-specific
     66   /// implementaion that encodes appropriate costs for their target.
     67   template <typename T> TargetTransformInfo(T Impl);
     68 
     69   /// \brief Construct a baseline TTI object using a minimal implementation of
     70   /// the \c Concept API below.
     71   ///
     72   /// The TTI implementation will reflect the information in the DataLayout
     73   /// provided if non-null.
     74   explicit TargetTransformInfo(const DataLayout &DL);
     75 
     76   // Provide move semantics.
     77   TargetTransformInfo(TargetTransformInfo &&Arg);
     78   TargetTransformInfo &operator=(TargetTransformInfo &&RHS);
     79 
     80   // We need to define the destructor out-of-line to define our sub-classes
     81   // out-of-line.
     82   ~TargetTransformInfo();
     83 
     84   /// \brief Handle the invalidation of this information.
     85   ///
     86   /// When used as a result of \c TargetIRAnalysis this method will be called
     87   /// when the function this was computed for changes. When it returns false,
     88   /// the information is preserved across those changes.
     89   bool invalidate(Function &, const PreservedAnalyses &) {
     90     // FIXME: We should probably in some way ensure that the subtarget
     91     // information for a function hasn't changed.
     92     return false;
     93   }
     94 
     95   /// \name Generic Target Information
     96   /// @{
     97 
     98   /// \brief Underlying constants for 'cost' values in this interface.
     99   ///
    100   /// Many APIs in this interface return a cost. This enum defines the
    101   /// fundamental values that should be used to interpret (and produce) those
    102   /// costs. The costs are returned as an int rather than a member of this
    103   /// enumeration because it is expected that the cost of one IR instruction
    104   /// may have a multiplicative factor to it or otherwise won't fit directly
    105   /// into the enum. Moreover, it is common to sum or average costs which works
    106   /// better as simple integral values. Thus this enum only provides constants.
    107   /// Also note that the returned costs are signed integers to make it natural
    108   /// to add, subtract, and test with zero (a common boundary condition). It is
    109   /// not expected that 2^32 is a realistic cost to be modeling at any point.
    110   ///
    111   /// Note that these costs should usually reflect the intersection of code-size
    112   /// cost and execution cost. A free instruction is typically one that folds
    113   /// into another instruction. For example, reg-to-reg moves can often be
    114   /// skipped by renaming the registers in the CPU, but they still are encoded
    115   /// and thus wouldn't be considered 'free' here.
    116   enum TargetCostConstants {
    117     TCC_Free = 0,     ///< Expected to fold away in lowering.
    118     TCC_Basic = 1,    ///< The cost of a typical 'add' instruction.
    119     TCC_Expensive = 4 ///< The cost of a 'div' instruction on x86.
    120   };
    121 
    122   /// \brief Estimate the cost of a specific operation when lowered.
    123   ///
    124   /// Note that this is designed to work on an arbitrary synthetic opcode, and
    125   /// thus work for hypothetical queries before an instruction has even been
    126   /// formed. However, this does *not* work for GEPs, and must not be called
    127   /// for a GEP instruction. Instead, use the dedicated getGEPCost interface as
    128   /// analyzing a GEP's cost required more information.
    129   ///
    130   /// Typically only the result type is required, and the operand type can be
    131   /// omitted. However, if the opcode is one of the cast instructions, the
    132   /// operand type is required.
    133   ///
    134   /// The returned cost is defined in terms of \c TargetCostConstants, see its
    135   /// comments for a detailed explanation of the cost values.
    136   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy = nullptr) const;
    137 
    138   /// \brief Estimate the cost of a GEP operation when lowered.
    139   ///
    140   /// The contract for this function is the same as \c getOperationCost except
    141   /// that it supports an interface that provides extra information specific to
    142   /// the GEP operation.
    143   int getGEPCost(Type *PointeeType, const Value *Ptr,
    144                  ArrayRef<const Value *> Operands) const;
    145 
    146   /// \brief Estimate the cost of a function call when lowered.
    147   ///
    148   /// The contract for this is the same as \c getOperationCost except that it
    149   /// supports an interface that provides extra information specific to call
    150   /// instructions.
    151   ///
    152   /// This is the most basic query for estimating call cost: it only knows the
    153   /// function type and (potentially) the number of arguments at the call site.
    154   /// The latter is only interesting for varargs function types.
    155   int getCallCost(FunctionType *FTy, int NumArgs = -1) const;
    156 
    157   /// \brief Estimate the cost of calling a specific function when lowered.
    158   ///
    159   /// This overload adds the ability to reason about the particular function
    160   /// being called in the event it is a library call with special lowering.
    161   int getCallCost(const Function *F, int NumArgs = -1) const;
    162 
    163   /// \brief Estimate the cost of calling a specific function when lowered.
    164   ///
    165   /// This overload allows specifying a set of candidate argument values.
    166   int getCallCost(const Function *F, ArrayRef<const Value *> Arguments) const;
    167 
    168   /// \brief Estimate the cost of an intrinsic when lowered.
    169   ///
    170   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
    171   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    172                        ArrayRef<Type *> ParamTys) const;
    173 
    174   /// \brief Estimate the cost of an intrinsic when lowered.
    175   ///
    176   /// Mirrors the \c getCallCost method but uses an intrinsic identifier.
    177   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    178                        ArrayRef<const Value *> Arguments) const;
    179 
    180   /// \brief Estimate the cost of a given IR user when lowered.
    181   ///
    182   /// This can estimate the cost of either a ConstantExpr or Instruction when
    183   /// lowered. It has two primary advantages over the \c getOperationCost and
    184   /// \c getGEPCost above, and one significant disadvantage: it can only be
    185   /// used when the IR construct has already been formed.
    186   ///
    187   /// The advantages are that it can inspect the SSA use graph to reason more
    188   /// accurately about the cost. For example, all-constant-GEPs can often be
    189   /// folded into a load or other instruction, but if they are used in some
    190   /// other context they may not be folded. This routine can distinguish such
    191   /// cases.
    192   ///
    193   /// The returned cost is defined in terms of \c TargetCostConstants, see its
    194   /// comments for a detailed explanation of the cost values.
    195   int getUserCost(const User *U) const;
    196 
    197   /// \brief Return true if branch divergence exists.
    198   ///
    199   /// Branch divergence has a significantly negative impact on GPU performance
    200   /// when threads in the same wavefront take different paths due to conditional
    201   /// branches.
    202   bool hasBranchDivergence() const;
    203 
    204   /// \brief Returns whether V is a source of divergence.
    205   ///
    206   /// This function provides the target-dependent information for
    207   /// the target-independent DivergenceAnalysis. DivergenceAnalysis first
    208   /// builds the dependency graph, and then runs the reachability algorithm
    209   /// starting with the sources of divergence.
    210   bool isSourceOfDivergence(const Value *V) const;
    211 
    212   /// \brief Test whether calls to a function lower to actual program function
    213   /// calls.
    214   ///
    215   /// The idea is to test whether the program is likely to require a 'call'
    216   /// instruction or equivalent in order to call the given function.
    217   ///
    218   /// FIXME: It's not clear that this is a good or useful query API. Client's
    219   /// should probably move to simpler cost metrics using the above.
    220   /// Alternatively, we could split the cost interface into distinct code-size
    221   /// and execution-speed costs. This would allow modelling the core of this
    222   /// query more accurately as a call is a single small instruction, but
    223   /// incurs significant execution cost.
    224   bool isLoweredToCall(const Function *F) const;
    225 
    226   /// Parameters that control the generic loop unrolling transformation.
    227   struct UnrollingPreferences {
    228     /// The cost threshold for the unrolled loop. Should be relative to the
    229     /// getUserCost values returned by this API, and the expectation is that
    230     /// the unrolled loop's instructions when run through that interface should
    231     /// not exceed this cost. However, this is only an estimate. Also, specific
    232     /// loops may be unrolled even with a cost above this threshold if deemed
    233     /// profitable. Set this to UINT_MAX to disable the loop body cost
    234     /// restriction.
    235     unsigned Threshold;
    236     /// If complete unrolling will reduce the cost of the loop below its
    237     /// expected dynamic cost while rolled by this percentage, apply a discount
    238     /// (below) to its unrolled cost.
    239     unsigned PercentDynamicCostSavedThreshold;
    240     /// The discount applied to the unrolled cost when the *dynamic* cost
    241     /// savings of unrolling exceed the \c PercentDynamicCostSavedThreshold.
    242     unsigned DynamicCostSavingsDiscount;
    243     /// The cost threshold for the unrolled loop when optimizing for size (set
    244     /// to UINT_MAX to disable).
    245     unsigned OptSizeThreshold;
    246     /// The cost threshold for the unrolled loop, like Threshold, but used
    247     /// for partial/runtime unrolling (set to UINT_MAX to disable).
    248     unsigned PartialThreshold;
    249     /// The cost threshold for the unrolled loop when optimizing for size, like
    250     /// OptSizeThreshold, but used for partial/runtime unrolling (set to
    251     /// UINT_MAX to disable).
    252     unsigned PartialOptSizeThreshold;
    253     /// A forced unrolling factor (the number of concatenated bodies of the
    254     /// original loop in the unrolled loop body). When set to 0, the unrolling
    255     /// transformation will select an unrolling factor based on the current cost
    256     /// threshold and other factors.
    257     unsigned Count;
    258     // Set the maximum unrolling factor. The unrolling factor may be selected
    259     // using the appropriate cost threshold, but may not exceed this number
    260     // (set to UINT_MAX to disable). This does not apply in cases where the
    261     // loop is being fully unrolled.
    262     unsigned MaxCount;
    263     /// Allow partial unrolling (unrolling of loops to expand the size of the
    264     /// loop body, not only to eliminate small constant-trip-count loops).
    265     bool Partial;
    266     /// Allow runtime unrolling (unrolling of loops to expand the size of the
    267     /// loop body even when the number of loop iterations is not known at
    268     /// compile time).
    269     bool Runtime;
    270     /// Allow emitting expensive instructions (such as divisions) when computing
    271     /// the trip count of a loop for runtime unrolling.
    272     bool AllowExpensiveTripCount;
    273   };
    274 
    275   /// \brief Get target-customized preferences for the generic loop unrolling
    276   /// transformation. The caller will initialize UP with the current
    277   /// target-independent defaults.
    278   void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) const;
    279 
    280   /// @}
    281 
    282   /// \name Scalar Target Information
    283   /// @{
    284 
    285   /// \brief Flags indicating the kind of support for population count.
    286   ///
    287   /// Compared to the SW implementation, HW support is supposed to
    288   /// significantly boost the performance when the population is dense, and it
    289   /// may or may not degrade performance if the population is sparse. A HW
    290   /// support is considered as "Fast" if it can outperform, or is on a par
    291   /// with, SW implementation when the population is sparse; otherwise, it is
    292   /// considered as "Slow".
    293   enum PopcntSupportKind { PSK_Software, PSK_SlowHardware, PSK_FastHardware };
    294 
    295   /// \brief Return true if the specified immediate is legal add immediate, that
    296   /// is the target has add instructions which can add a register with the
    297   /// immediate without having to materialize the immediate into a register.
    298   bool isLegalAddImmediate(int64_t Imm) const;
    299 
    300   /// \brief Return true if the specified immediate is legal icmp immediate,
    301   /// that is the target has icmp instructions which can compare a register
    302   /// against the immediate without having to materialize the immediate into a
    303   /// register.
    304   bool isLegalICmpImmediate(int64_t Imm) const;
    305 
    306   /// \brief Return true if the addressing mode represented by AM is legal for
    307   /// this target, for a load/store of the specified type.
    308   /// The type may be VoidTy, in which case only return true if the addressing
    309   /// mode is legal for a load/store of any legal type.
    310   /// TODO: Handle pre/postinc as well.
    311   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    312                              bool HasBaseReg, int64_t Scale,
    313                              unsigned AddrSpace = 0) const;
    314 
    315   /// \brief Return true if the target supports masked load/store
    316   /// AVX2 and AVX-512 targets allow masks for consecutive load and store for
    317   /// 32 and 64 bit elements.
    318   bool isLegalMaskedStore(Type *DataType) const;
    319   bool isLegalMaskedLoad(Type *DataType) const;
    320 
    321   /// \brief Return true if the target supports masked gather/scatter
    322   /// AVX-512 fully supports gather and scatter for vectors with 32 and 64
    323   /// bits scalar type.
    324   bool isLegalMaskedScatter(Type *DataType) const;
    325   bool isLegalMaskedGather(Type *DataType) const;
    326 
    327   /// \brief Return the cost of the scaling factor used in the addressing
    328   /// mode represented by AM for this target, for a load/store
    329   /// of the specified type.
    330   /// If the AM is supported, the return value must be >= 0.
    331   /// If the AM is not supported, it returns a negative value.
    332   /// TODO: Handle pre/postinc as well.
    333   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    334                            bool HasBaseReg, int64_t Scale,
    335                            unsigned AddrSpace = 0) const;
    336 
    337   /// \brief Return true if it's free to truncate a value of type Ty1 to type
    338   /// Ty2. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
    339   /// by referencing its sub-register AX.
    340   bool isTruncateFree(Type *Ty1, Type *Ty2) const;
    341 
    342   /// \brief Return true if it is profitable to hoist instruction in the
    343   /// then/else to before if.
    344   bool isProfitableToHoist(Instruction *I) const;
    345 
    346   /// \brief Return true if this type is legal.
    347   bool isTypeLegal(Type *Ty) const;
    348 
    349   /// \brief Returns the target's jmp_buf alignment in bytes.
    350   unsigned getJumpBufAlignment() const;
    351 
    352   /// \brief Returns the target's jmp_buf size in bytes.
    353   unsigned getJumpBufSize() const;
    354 
    355   /// \brief Return true if switches should be turned into lookup tables for the
    356   /// target.
    357   bool shouldBuildLookupTables() const;
    358 
    359   /// \brief Don't restrict interleaved unrolling to small loops.
    360   bool enableAggressiveInterleaving(bool LoopHasReductions) const;
    361 
    362   /// \brief Enable matching of interleaved access groups.
    363   bool enableInterleavedAccessVectorization() const;
    364 
    365   /// \brief Return hardware support for population count.
    366   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) const;
    367 
    368   /// \brief Return true if the hardware has a fast square-root instruction.
    369   bool haveFastSqrt(Type *Ty) const;
    370 
    371   /// \brief Return the expected cost of supporting the floating point operation
    372   /// of the specified type.
    373   int getFPOpCost(Type *Ty) const;
    374 
    375   /// \brief Return the expected cost of materializing for the given integer
    376   /// immediate of the specified type.
    377   int getIntImmCost(const APInt &Imm, Type *Ty) const;
    378 
    379   /// \brief Return the expected cost of materialization for the given integer
    380   /// immediate of the specified type for a given instruction. The cost can be
    381   /// zero if the immediate can be folded into the specified instruction.
    382   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    383                     Type *Ty) const;
    384   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    385                     Type *Ty) const;
    386   /// @}
    387 
    388   /// \name Vector Target Information
    389   /// @{
    390 
    391   /// \brief The various kinds of shuffle patterns for vector queries.
    392   enum ShuffleKind {
    393     SK_Broadcast,       ///< Broadcast element 0 to all other elements.
    394     SK_Reverse,         ///< Reverse the order of the vector.
    395     SK_Alternate,       ///< Choose alternate elements from vector.
    396     SK_InsertSubvector, ///< InsertSubvector. Index indicates start offset.
    397     SK_ExtractSubvector ///< ExtractSubvector Index indicates start offset.
    398   };
    399 
    400   /// \brief Additional information about an operand's possible values.
    401   enum OperandValueKind {
    402     OK_AnyValue,               // Operand can have any value.
    403     OK_UniformValue,           // Operand is uniform (splat of a value).
    404     OK_UniformConstantValue,   // Operand is uniform constant.
    405     OK_NonUniformConstantValue // Operand is a non uniform constant value.
    406   };
    407 
    408   /// \brief Additional properties of an operand's values.
    409   enum OperandValueProperties { OP_None = 0, OP_PowerOf2 = 1 };
    410 
    411   /// \return The number of scalar or vector registers that the target has.
    412   /// If 'Vectors' is true, it returns the number of vector registers. If it is
    413   /// set to false, it returns the number of scalar registers.
    414   unsigned getNumberOfRegisters(bool Vector) const;
    415 
    416   /// \return The width of the largest scalar or vector register type.
    417   unsigned getRegisterBitWidth(bool Vector) const;
    418 
    419   /// \return The maximum interleave factor that any transform should try to
    420   /// perform for this target. This number depends on the level of parallelism
    421   /// and the number of execution units in the CPU.
    422   unsigned getMaxInterleaveFactor(unsigned VF) const;
    423 
    424   /// \return The expected cost of arithmetic ops, such as mul, xor, fsub, etc.
    425   int getArithmeticInstrCost(
    426       unsigned Opcode, Type *Ty, OperandValueKind Opd1Info = OK_AnyValue,
    427       OperandValueKind Opd2Info = OK_AnyValue,
    428       OperandValueProperties Opd1PropInfo = OP_None,
    429       OperandValueProperties Opd2PropInfo = OP_None) const;
    430 
    431   /// \return The cost of a shuffle instruction of kind Kind and of type Tp.
    432   /// The index and subtype parameters are used by the subvector insertion and
    433   /// extraction shuffle kinds.
    434   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index = 0,
    435                      Type *SubTp = nullptr) const;
    436 
    437   /// \return The expected cost of cast instructions, such as bitcast, trunc,
    438   /// zext, etc.
    439   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const;
    440 
    441   /// \return The expected cost of control-flow related instructions such as
    442   /// Phi, Ret, Br.
    443   int getCFInstrCost(unsigned Opcode) const;
    444 
    445   /// \returns The expected cost of compare and select instructions.
    446   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    447                          Type *CondTy = nullptr) const;
    448 
    449   /// \return The expected cost of vector Insert and Extract.
    450   /// Use -1 to indicate that there is no information on the index value.
    451   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index = -1) const;
    452 
    453   /// \return The cost of Load and Store instructions.
    454   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    455                       unsigned AddressSpace) const;
    456 
    457   /// \return The cost of masked Load and Store instructions.
    458   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    459                             unsigned AddressSpace) const;
    460 
    461   /// \return The cost of the interleaved memory operation.
    462   /// \p Opcode is the memory operation code
    463   /// \p VecTy is the vector type of the interleaved access.
    464   /// \p Factor is the interleave factor
    465   /// \p Indices is the indices for interleaved load members (as interleaved
    466   ///    load allows gaps)
    467   /// \p Alignment is the alignment of the memory operation
    468   /// \p AddressSpace is address space of the pointer.
    469   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
    470                                  ArrayRef<unsigned> Indices, unsigned Alignment,
    471                                  unsigned AddressSpace) const;
    472 
    473   /// \brief Calculate the cost of performing a vector reduction.
    474   ///
    475   /// This is the cost of reducing the vector value of type \p Ty to a scalar
    476   /// value using the operation denoted by \p Opcode. The form of the reduction
    477   /// can either be a pairwise reduction or a reduction that splits the vector
    478   /// at every reduction level.
    479   ///
    480   /// Pairwise:
    481   ///  (v0, v1, v2, v3)
    482   ///  ((v0+v1), (v2, v3), undef, undef)
    483   /// Split:
    484   ///  (v0, v1, v2, v3)
    485   ///  ((v0+v2), (v1+v3), undef, undef)
    486   int getReductionCost(unsigned Opcode, Type *Ty, bool IsPairwiseForm) const;
    487 
    488   /// \returns The cost of Intrinsic instructions.
    489   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    490                             ArrayRef<Type *> Tys) const;
    491 
    492   /// \returns The cost of Call instructions.
    493   int getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) const;
    494 
    495   /// \returns The number of pieces into which the provided type must be
    496   /// split during legalization. Zero is returned when the answer is unknown.
    497   unsigned getNumberOfParts(Type *Tp) const;
    498 
    499   /// \returns The cost of the address computation. For most targets this can be
    500   /// merged into the instruction indexing mode. Some targets might want to
    501   /// distinguish between address computation for memory operations on vector
    502   /// types and scalar types. Such targets should override this function.
    503   /// The 'IsComplex' parameter is a hint that the address computation is likely
    504   /// to involve multiple instructions and as such unlikely to be merged into
    505   /// the address indexing mode.
    506   int getAddressComputationCost(Type *Ty, bool IsComplex = false) const;
    507 
    508   /// \returns The cost, if any, of keeping values of the given types alive
    509   /// over a callsite.
    510   ///
    511   /// Some types may require the use of register classes that do not have
    512   /// any callee-saved registers, so would require a spill and fill.
    513   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const;
    514 
    515   /// \returns True if the intrinsic is a supported memory intrinsic.  Info
    516   /// will contain additional information - whether the intrinsic may write
    517   /// or read to memory, volatility and the pointer.  Info is undefined
    518   /// if false is returned.
    519   bool getTgtMemIntrinsic(IntrinsicInst *Inst, MemIntrinsicInfo &Info) const;
    520 
    521   /// \returns A value which is the result of the given memory intrinsic.  New
    522   /// instructions may be created to extract the result from the given intrinsic
    523   /// memory operation.  Returns nullptr if the target cannot create a result
    524   /// from the given intrinsic.
    525   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    526                                            Type *ExpectedType) const;
    527 
    528   /// \returns True if the two functions have compatible attributes for inlining
    529   /// purposes.
    530   bool areInlineCompatible(const Function *Caller,
    531                            const Function *Callee) const;
    532 
    533   /// @}
    534 
    535 private:
    536   /// \brief The abstract base class used to type erase specific TTI
    537   /// implementations.
    538   class Concept;
    539 
    540   /// \brief The template model for the base class which wraps a concrete
    541   /// implementation in a type erased interface.
    542   template <typename T> class Model;
    543 
    544   std::unique_ptr<Concept> TTIImpl;
    545 };
    546 
    547 class TargetTransformInfo::Concept {
    548 public:
    549   virtual ~Concept() = 0;
    550   virtual const DataLayout &getDataLayout() const = 0;
    551   virtual int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) = 0;
    552   virtual int getGEPCost(Type *PointeeType, const Value *Ptr,
    553                          ArrayRef<const Value *> Operands) = 0;
    554   virtual int getCallCost(FunctionType *FTy, int NumArgs) = 0;
    555   virtual int getCallCost(const Function *F, int NumArgs) = 0;
    556   virtual int getCallCost(const Function *F,
    557                           ArrayRef<const Value *> Arguments) = 0;
    558   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    559                                ArrayRef<Type *> ParamTys) = 0;
    560   virtual int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    561                                ArrayRef<const Value *> Arguments) = 0;
    562   virtual int getUserCost(const User *U) = 0;
    563   virtual bool hasBranchDivergence() = 0;
    564   virtual bool isSourceOfDivergence(const Value *V) = 0;
    565   virtual bool isLoweredToCall(const Function *F) = 0;
    566   virtual void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) = 0;
    567   virtual bool isLegalAddImmediate(int64_t Imm) = 0;
    568   virtual bool isLegalICmpImmediate(int64_t Imm) = 0;
    569   virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
    570                                      int64_t BaseOffset, bool HasBaseReg,
    571                                      int64_t Scale,
    572                                      unsigned AddrSpace) = 0;
    573   virtual bool isLegalMaskedStore(Type *DataType) = 0;
    574   virtual bool isLegalMaskedLoad(Type *DataType) = 0;
    575   virtual bool isLegalMaskedScatter(Type *DataType) = 0;
    576   virtual bool isLegalMaskedGather(Type *DataType) = 0;
    577   virtual int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
    578                                    int64_t BaseOffset, bool HasBaseReg,
    579                                    int64_t Scale, unsigned AddrSpace) = 0;
    580   virtual bool isTruncateFree(Type *Ty1, Type *Ty2) = 0;
    581   virtual bool isProfitableToHoist(Instruction *I) = 0;
    582   virtual bool isTypeLegal(Type *Ty) = 0;
    583   virtual unsigned getJumpBufAlignment() = 0;
    584   virtual unsigned getJumpBufSize() = 0;
    585   virtual bool shouldBuildLookupTables() = 0;
    586   virtual bool enableAggressiveInterleaving(bool LoopHasReductions) = 0;
    587   virtual bool enableInterleavedAccessVectorization() = 0;
    588   virtual PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) = 0;
    589   virtual bool haveFastSqrt(Type *Ty) = 0;
    590   virtual int getFPOpCost(Type *Ty) = 0;
    591   virtual int getIntImmCost(const APInt &Imm, Type *Ty) = 0;
    592   virtual int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    593                             Type *Ty) = 0;
    594   virtual int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    595                             Type *Ty) = 0;
    596   virtual unsigned getNumberOfRegisters(bool Vector) = 0;
    597   virtual unsigned getRegisterBitWidth(bool Vector) = 0;
    598   virtual unsigned getMaxInterleaveFactor(unsigned VF) = 0;
    599   virtual unsigned
    600   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
    601                          OperandValueKind Opd2Info,
    602                          OperandValueProperties Opd1PropInfo,
    603                          OperandValueProperties Opd2PropInfo) = 0;
    604   virtual int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    605                              Type *SubTp) = 0;
    606   virtual int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) = 0;
    607   virtual int getCFInstrCost(unsigned Opcode) = 0;
    608   virtual int getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    609                                  Type *CondTy) = 0;
    610   virtual int getVectorInstrCost(unsigned Opcode, Type *Val,
    611                                  unsigned Index) = 0;
    612   virtual int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    613                               unsigned AddressSpace) = 0;
    614   virtual int getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
    615                                     unsigned Alignment,
    616                                     unsigned AddressSpace) = 0;
    617   virtual int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
    618                                          unsigned Factor,
    619                                          ArrayRef<unsigned> Indices,
    620                                          unsigned Alignment,
    621                                          unsigned AddressSpace) = 0;
    622   virtual int getReductionCost(unsigned Opcode, Type *Ty,
    623                                bool IsPairwiseForm) = 0;
    624   virtual int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    625                                     ArrayRef<Type *> Tys) = 0;
    626   virtual int getCallInstrCost(Function *F, Type *RetTy,
    627                                ArrayRef<Type *> Tys) = 0;
    628   virtual unsigned getNumberOfParts(Type *Tp) = 0;
    629   virtual int getAddressComputationCost(Type *Ty, bool IsComplex) = 0;
    630   virtual unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) = 0;
    631   virtual bool getTgtMemIntrinsic(IntrinsicInst *Inst,
    632                                   MemIntrinsicInfo &Info) = 0;
    633   virtual Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    634                                                    Type *ExpectedType) = 0;
    635   virtual bool areInlineCompatible(const Function *Caller,
    636                                    const Function *Callee) const = 0;
    637 };
    638 
    639 template <typename T>
    640 class TargetTransformInfo::Model final : public TargetTransformInfo::Concept {
    641   T Impl;
    642 
    643 public:
    644   Model(T Impl) : Impl(std::move(Impl)) {}
    645   ~Model() override {}
    646 
    647   const DataLayout &getDataLayout() const override {
    648     return Impl.getDataLayout();
    649   }
    650 
    651   int getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) override {
    652     return Impl.getOperationCost(Opcode, Ty, OpTy);
    653   }
    654   int getGEPCost(Type *PointeeType, const Value *Ptr,
    655                  ArrayRef<const Value *> Operands) override {
    656     return Impl.getGEPCost(PointeeType, Ptr, Operands);
    657   }
    658   int getCallCost(FunctionType *FTy, int NumArgs) override {
    659     return Impl.getCallCost(FTy, NumArgs);
    660   }
    661   int getCallCost(const Function *F, int NumArgs) override {
    662     return Impl.getCallCost(F, NumArgs);
    663   }
    664   int getCallCost(const Function *F,
    665                   ArrayRef<const Value *> Arguments) override {
    666     return Impl.getCallCost(F, Arguments);
    667   }
    668   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    669                        ArrayRef<Type *> ParamTys) override {
    670     return Impl.getIntrinsicCost(IID, RetTy, ParamTys);
    671   }
    672   int getIntrinsicCost(Intrinsic::ID IID, Type *RetTy,
    673                        ArrayRef<const Value *> Arguments) override {
    674     return Impl.getIntrinsicCost(IID, RetTy, Arguments);
    675   }
    676   int getUserCost(const User *U) override { return Impl.getUserCost(U); }
    677   bool hasBranchDivergence() override { return Impl.hasBranchDivergence(); }
    678   bool isSourceOfDivergence(const Value *V) override {
    679     return Impl.isSourceOfDivergence(V);
    680   }
    681   bool isLoweredToCall(const Function *F) override {
    682     return Impl.isLoweredToCall(F);
    683   }
    684   void getUnrollingPreferences(Loop *L, UnrollingPreferences &UP) override {
    685     return Impl.getUnrollingPreferences(L, UP);
    686   }
    687   bool isLegalAddImmediate(int64_t Imm) override {
    688     return Impl.isLegalAddImmediate(Imm);
    689   }
    690   bool isLegalICmpImmediate(int64_t Imm) override {
    691     return Impl.isLegalICmpImmediate(Imm);
    692   }
    693   bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    694                              bool HasBaseReg, int64_t Scale,
    695                              unsigned AddrSpace) override {
    696     return Impl.isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
    697                                       Scale, AddrSpace);
    698   }
    699   bool isLegalMaskedStore(Type *DataType) override {
    700     return Impl.isLegalMaskedStore(DataType);
    701   }
    702   bool isLegalMaskedLoad(Type *DataType) override {
    703     return Impl.isLegalMaskedLoad(DataType);
    704   }
    705   bool isLegalMaskedScatter(Type *DataType) override {
    706     return Impl.isLegalMaskedScatter(DataType);
    707   }
    708   bool isLegalMaskedGather(Type *DataType) override {
    709     return Impl.isLegalMaskedGather(DataType);
    710   }
    711   int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
    712                            bool HasBaseReg, int64_t Scale,
    713                            unsigned AddrSpace) override {
    714     return Impl.getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
    715                                      Scale, AddrSpace);
    716   }
    717   bool isTruncateFree(Type *Ty1, Type *Ty2) override {
    718     return Impl.isTruncateFree(Ty1, Ty2);
    719   }
    720   bool isProfitableToHoist(Instruction *I) override {
    721     return Impl.isProfitableToHoist(I);
    722   }
    723   bool isTypeLegal(Type *Ty) override { return Impl.isTypeLegal(Ty); }
    724   unsigned getJumpBufAlignment() override { return Impl.getJumpBufAlignment(); }
    725   unsigned getJumpBufSize() override { return Impl.getJumpBufSize(); }
    726   bool shouldBuildLookupTables() override {
    727     return Impl.shouldBuildLookupTables();
    728   }
    729   bool enableAggressiveInterleaving(bool LoopHasReductions) override {
    730     return Impl.enableAggressiveInterleaving(LoopHasReductions);
    731   }
    732   bool enableInterleavedAccessVectorization() override {
    733     return Impl.enableInterleavedAccessVectorization();
    734   }
    735   PopcntSupportKind getPopcntSupport(unsigned IntTyWidthInBit) override {
    736     return Impl.getPopcntSupport(IntTyWidthInBit);
    737   }
    738   bool haveFastSqrt(Type *Ty) override { return Impl.haveFastSqrt(Ty); }
    739 
    740   int getFPOpCost(Type *Ty) override { return Impl.getFPOpCost(Ty); }
    741 
    742   int getIntImmCost(const APInt &Imm, Type *Ty) override {
    743     return Impl.getIntImmCost(Imm, Ty);
    744   }
    745   int getIntImmCost(unsigned Opc, unsigned Idx, const APInt &Imm,
    746                     Type *Ty) override {
    747     return Impl.getIntImmCost(Opc, Idx, Imm, Ty);
    748   }
    749   int getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
    750                     Type *Ty) override {
    751     return Impl.getIntImmCost(IID, Idx, Imm, Ty);
    752   }
    753   unsigned getNumberOfRegisters(bool Vector) override {
    754     return Impl.getNumberOfRegisters(Vector);
    755   }
    756   unsigned getRegisterBitWidth(bool Vector) override {
    757     return Impl.getRegisterBitWidth(Vector);
    758   }
    759   unsigned getMaxInterleaveFactor(unsigned VF) override {
    760     return Impl.getMaxInterleaveFactor(VF);
    761   }
    762   unsigned
    763   getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind Opd1Info,
    764                          OperandValueKind Opd2Info,
    765                          OperandValueProperties Opd1PropInfo,
    766                          OperandValueProperties Opd2PropInfo) override {
    767     return Impl.getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
    768                                        Opd1PropInfo, Opd2PropInfo);
    769   }
    770   int getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    771                      Type *SubTp) override {
    772     return Impl.getShuffleCost(Kind, Tp, Index, SubTp);
    773   }
    774   int getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) override {
    775     return Impl.getCastInstrCost(Opcode, Dst, Src);
    776   }
    777   int getCFInstrCost(unsigned Opcode) override {
    778     return Impl.getCFInstrCost(Opcode);
    779   }
    780   int getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) override {
    781     return Impl.getCmpSelInstrCost(Opcode, ValTy, CondTy);
    782   }
    783   int getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) override {
    784     return Impl.getVectorInstrCost(Opcode, Val, Index);
    785   }
    786   int getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    787                       unsigned AddressSpace) override {
    788     return Impl.getMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
    789   }
    790   int getMaskedMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    791                             unsigned AddressSpace) override {
    792     return Impl.getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace);
    793   }
    794   int getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, unsigned Factor,
    795                                  ArrayRef<unsigned> Indices, unsigned Alignment,
    796                                  unsigned AddressSpace) override {
    797     return Impl.getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
    798                                            Alignment, AddressSpace);
    799   }
    800   int getReductionCost(unsigned Opcode, Type *Ty,
    801                        bool IsPairwiseForm) override {
    802     return Impl.getReductionCost(Opcode, Ty, IsPairwiseForm);
    803   }
    804   int getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
    805                             ArrayRef<Type *> Tys) override {
    806     return Impl.getIntrinsicInstrCost(ID, RetTy, Tys);
    807   }
    808   int getCallInstrCost(Function *F, Type *RetTy,
    809                        ArrayRef<Type *> Tys) override {
    810     return Impl.getCallInstrCost(F, RetTy, Tys);
    811   }
    812   unsigned getNumberOfParts(Type *Tp) override {
    813     return Impl.getNumberOfParts(Tp);
    814   }
    815   int getAddressComputationCost(Type *Ty, bool IsComplex) override {
    816     return Impl.getAddressComputationCost(Ty, IsComplex);
    817   }
    818   unsigned getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) override {
    819     return Impl.getCostOfKeepingLiveOverCall(Tys);
    820   }
    821   bool getTgtMemIntrinsic(IntrinsicInst *Inst,
    822                           MemIntrinsicInfo &Info) override {
    823     return Impl.getTgtMemIntrinsic(Inst, Info);
    824   }
    825   Value *getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
    826                                            Type *ExpectedType) override {
    827     return Impl.getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
    828   }
    829   bool areInlineCompatible(const Function *Caller,
    830                            const Function *Callee) const override {
    831     return Impl.areInlineCompatible(Caller, Callee);
    832   }
    833 };
    834 
    835 template <typename T>
    836 TargetTransformInfo::TargetTransformInfo(T Impl)
    837     : TTIImpl(new Model<T>(Impl)) {}
    838 
    839 /// \brief Analysis pass providing the \c TargetTransformInfo.
    840 ///
    841 /// The core idea of the TargetIRAnalysis is to expose an interface through
    842 /// which LLVM targets can analyze and provide information about the middle
    843 /// end's target-independent IR. This supports use cases such as target-aware
    844 /// cost modeling of IR constructs.
    845 ///
    846 /// This is a function analysis because much of the cost modeling for targets
    847 /// is done in a subtarget specific way and LLVM supports compiling different
    848 /// functions targeting different subtargets in order to support runtime
    849 /// dispatch according to the observed subtarget.
    850 class TargetIRAnalysis {
    851 public:
    852   typedef TargetTransformInfo Result;
    853 
    854   /// \brief Opaque, unique identifier for this analysis pass.
    855   static void *ID() { return (void *)&PassID; }
    856 
    857   /// \brief Provide access to a name for this pass for debugging purposes.
    858   static StringRef name() { return "TargetIRAnalysis"; }
    859 
    860   /// \brief Default construct a target IR analysis.
    861   ///
    862   /// This will use the module's datalayout to construct a baseline
    863   /// conservative TTI result.
    864   TargetIRAnalysis();
    865 
    866   /// \brief Construct an IR analysis pass around a target-provide callback.
    867   ///
    868   /// The callback will be called with a particular function for which the TTI
    869   /// is needed and must return a TTI object for that function.
    870   TargetIRAnalysis(std::function<Result(const Function &)> TTICallback);
    871 
    872   // Value semantics. We spell out the constructors for MSVC.
    873   TargetIRAnalysis(const TargetIRAnalysis &Arg)
    874       : TTICallback(Arg.TTICallback) {}
    875   TargetIRAnalysis(TargetIRAnalysis &&Arg)
    876       : TTICallback(std::move(Arg.TTICallback)) {}
    877   TargetIRAnalysis &operator=(const TargetIRAnalysis &RHS) {
    878     TTICallback = RHS.TTICallback;
    879     return *this;
    880   }
    881   TargetIRAnalysis &operator=(TargetIRAnalysis &&RHS) {
    882     TTICallback = std::move(RHS.TTICallback);
    883     return *this;
    884   }
    885 
    886   Result run(const Function &F);
    887 
    888 private:
    889   static char PassID;
    890 
    891   /// \brief The callback used to produce a result.
    892   ///
    893   /// We use a completely opaque callback so that targets can provide whatever
    894   /// mechanism they desire for constructing the TTI for a given function.
    895   ///
    896   /// FIXME: Should we really use std::function? It's relatively inefficient.
    897   /// It might be possible to arrange for even stateful callbacks to outlive
    898   /// the analysis and thus use a function_ref which would be lighter weight.
    899   /// This may also be less error prone as the callback is likely to reference
    900   /// the external TargetMachine, and that reference needs to never dangle.
    901   std::function<Result(const Function &)> TTICallback;
    902 
    903   /// \brief Helper function used as the callback in the default constructor.
    904   static Result getDefaultTTI(const Function &F);
    905 };
    906 
    907 /// \brief Wrapper pass for TargetTransformInfo.
    908 ///
    909 /// This pass can be constructed from a TTI object which it stores internally
    910 /// and is queried by passes.
    911 class TargetTransformInfoWrapperPass : public ImmutablePass {
    912   TargetIRAnalysis TIRA;
    913   Optional<TargetTransformInfo> TTI;
    914 
    915   virtual void anchor();
    916 
    917 public:
    918   static char ID;
    919 
    920   /// \brief We must provide a default constructor for the pass but it should
    921   /// never be used.
    922   ///
    923   /// Use the constructor below or call one of the creation routines.
    924   TargetTransformInfoWrapperPass();
    925 
    926   explicit TargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
    927 
    928   TargetTransformInfo &getTTI(const Function &F);
    929 };
    930 
    931 /// \brief Create an analysis pass wrapper around a TTI object.
    932 ///
    933 /// This analysis pass just holds the TTI instance and makes it available to
    934 /// clients.
    935 ImmutablePass *createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA);
    936 
    937 } // End llvm namespace
    938 
    939 #endif
    940