1 // Copyright 2014 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include <iomanip> 6 7 #include "src/types.h" 8 9 #include "src/ostreams.h" 10 #include "src/types-inl.h" 11 12 namespace v8 { 13 namespace internal { 14 15 16 // NOTE: If code is marked as being a "shortcut", this means that removing 17 // the code won't affect the semantics of the surrounding function definition. 18 19 20 // ----------------------------------------------------------------------------- 21 // Range-related helper functions. 22 23 template <class Config> 24 bool TypeImpl<Config>::Limits::IsEmpty() { 25 return this->min > this->max; 26 } 27 28 29 template<class Config> 30 typename TypeImpl<Config>::Limits TypeImpl<Config>::Limits::Intersect( 31 Limits lhs, Limits rhs) { 32 DisallowHeapAllocation no_allocation; 33 Limits result(lhs); 34 if (lhs.min < rhs.min) result.min = rhs.min; 35 if (lhs.max > rhs.max) result.max = rhs.max; 36 return result; 37 } 38 39 40 template <class Config> 41 typename TypeImpl<Config>::Limits TypeImpl<Config>::Limits::Union( 42 Limits lhs, Limits rhs) { 43 DisallowHeapAllocation no_allocation; 44 if (lhs.IsEmpty()) return rhs; 45 if (rhs.IsEmpty()) return lhs; 46 Limits result(lhs); 47 if (lhs.min > rhs.min) result.min = rhs.min; 48 if (lhs.max < rhs.max) result.max = rhs.max; 49 return result; 50 } 51 52 53 template<class Config> 54 bool TypeImpl<Config>::Overlap( 55 typename TypeImpl<Config>::RangeType* lhs, 56 typename TypeImpl<Config>::RangeType* rhs) { 57 DisallowHeapAllocation no_allocation; 58 return !Limits::Intersect(Limits(lhs), Limits(rhs)).IsEmpty(); 59 } 60 61 62 template<class Config> 63 bool TypeImpl<Config>::Contains( 64 typename TypeImpl<Config>::RangeType* lhs, 65 typename TypeImpl<Config>::RangeType* rhs) { 66 DisallowHeapAllocation no_allocation; 67 return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max(); 68 } 69 70 71 template <class Config> 72 bool TypeImpl<Config>::Contains(typename TypeImpl<Config>::RangeType* lhs, 73 typename TypeImpl<Config>::ConstantType* rhs) { 74 DisallowHeapAllocation no_allocation; 75 return IsInteger(*rhs->Value()) && 76 lhs->Min() <= rhs->Value()->Number() && 77 rhs->Value()->Number() <= lhs->Max(); 78 } 79 80 81 template<class Config> 82 bool TypeImpl<Config>::Contains( 83 typename TypeImpl<Config>::RangeType* range, i::Object* val) { 84 DisallowHeapAllocation no_allocation; 85 return IsInteger(val) && 86 range->Min() <= val->Number() && val->Number() <= range->Max(); 87 } 88 89 90 // ----------------------------------------------------------------------------- 91 // Min and Max computation. 92 93 template<class Config> 94 double TypeImpl<Config>::Min() { 95 DCHECK(this->SemanticIs(Number())); 96 if (this->IsBitset()) return BitsetType::Min(this->AsBitset()); 97 if (this->IsUnion()) { 98 double min = +V8_INFINITY; 99 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 100 min = std::min(min, this->AsUnion()->Get(i)->Min()); 101 } 102 return min; 103 } 104 if (this->IsRange()) return this->AsRange()->Min(); 105 if (this->IsConstant()) return this->AsConstant()->Value()->Number(); 106 UNREACHABLE(); 107 return 0; 108 } 109 110 111 template<class Config> 112 double TypeImpl<Config>::Max() { 113 DCHECK(this->SemanticIs(Number())); 114 if (this->IsBitset()) return BitsetType::Max(this->AsBitset()); 115 if (this->IsUnion()) { 116 double max = -V8_INFINITY; 117 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 118 max = std::max(max, this->AsUnion()->Get(i)->Max()); 119 } 120 return max; 121 } 122 if (this->IsRange()) return this->AsRange()->Max(); 123 if (this->IsConstant()) return this->AsConstant()->Value()->Number(); 124 UNREACHABLE(); 125 return 0; 126 } 127 128 129 // ----------------------------------------------------------------------------- 130 // Glb and lub computation. 131 132 133 // The largest bitset subsumed by this type. 134 template<class Config> 135 typename TypeImpl<Config>::bitset 136 TypeImpl<Config>::BitsetType::Glb(TypeImpl* type) { 137 DisallowHeapAllocation no_allocation; 138 // Fast case. 139 if (type->IsBitset()) { 140 return type->AsBitset(); 141 } else if (type->IsUnion()) { 142 SLOW_DCHECK(type->AsUnion()->Wellformed()); 143 return type->AsUnion()->Get(0)->BitsetGlb() | 144 SEMANTIC(type->AsUnion()->Get(1)->BitsetGlb()); // Shortcut. 145 } else if (type->IsRange()) { 146 bitset glb = SEMANTIC( 147 BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max())); 148 return glb | REPRESENTATION(type->BitsetLub()); 149 } else { 150 return type->Representation(); 151 } 152 } 153 154 155 // The smallest bitset subsuming this type, possibly not a proper one. 156 template<class Config> 157 typename TypeImpl<Config>::bitset 158 TypeImpl<Config>::BitsetType::Lub(TypeImpl* type) { 159 DisallowHeapAllocation no_allocation; 160 if (type->IsBitset()) return type->AsBitset(); 161 if (type->IsUnion()) { 162 // Take the representation from the first element, which is always 163 // a bitset. 164 int bitset = type->AsUnion()->Get(0)->BitsetLub(); 165 for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { 166 // Other elements only contribute their semantic part. 167 bitset |= SEMANTIC(type->AsUnion()->Get(i)->BitsetLub()); 168 } 169 return bitset; 170 } 171 if (type->IsClass()) return type->AsClass()->Lub(); 172 if (type->IsConstant()) return type->AsConstant()->Lub(); 173 if (type->IsRange()) return type->AsRange()->Lub(); 174 if (type->IsContext()) return kInternal & kTaggedPointer; 175 if (type->IsArray()) return kOtherObject; 176 if (type->IsFunction()) return kFunction; 177 UNREACHABLE(); 178 return kNone; 179 } 180 181 182 template<class Config> 183 typename TypeImpl<Config>::bitset 184 TypeImpl<Config>::BitsetType::Lub(i::Map* map) { 185 DisallowHeapAllocation no_allocation; 186 switch (map->instance_type()) { 187 case STRING_TYPE: 188 case ONE_BYTE_STRING_TYPE: 189 case CONS_STRING_TYPE: 190 case CONS_ONE_BYTE_STRING_TYPE: 191 case SLICED_STRING_TYPE: 192 case SLICED_ONE_BYTE_STRING_TYPE: 193 case EXTERNAL_STRING_TYPE: 194 case EXTERNAL_ONE_BYTE_STRING_TYPE: 195 case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: 196 case SHORT_EXTERNAL_STRING_TYPE: 197 case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: 198 case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: 199 return kOtherString; 200 case INTERNALIZED_STRING_TYPE: 201 case ONE_BYTE_INTERNALIZED_STRING_TYPE: 202 case EXTERNAL_INTERNALIZED_STRING_TYPE: 203 case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: 204 case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: 205 case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE: 206 case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: 207 case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: 208 return kInternalizedString; 209 case SYMBOL_TYPE: 210 return kSymbol; 211 case ODDBALL_TYPE: { 212 Heap* heap = map->GetHeap(); 213 if (map == heap->undefined_map()) return kUndefined; 214 if (map == heap->null_map()) return kNull; 215 if (map == heap->boolean_map()) return kBoolean; 216 DCHECK(map == heap->the_hole_map() || 217 map == heap->uninitialized_map() || 218 map == heap->no_interceptor_result_sentinel_map() || 219 map == heap->termination_exception_map() || 220 map == heap->arguments_marker_map()); 221 return kInternal & kTaggedPointer; 222 } 223 case HEAP_NUMBER_TYPE: 224 return kNumber & kTaggedPointer; 225 case SIMD128_VALUE_TYPE: 226 return kSimd; 227 case JS_VALUE_TYPE: 228 case JS_MESSAGE_OBJECT_TYPE: 229 case JS_DATE_TYPE: 230 case JS_OBJECT_TYPE: 231 case JS_CONTEXT_EXTENSION_OBJECT_TYPE: 232 case JS_GENERATOR_OBJECT_TYPE: 233 case JS_MODULE_TYPE: 234 case JS_GLOBAL_OBJECT_TYPE: 235 case JS_GLOBAL_PROXY_TYPE: 236 case JS_ARRAY_BUFFER_TYPE: 237 case JS_ARRAY_TYPE: 238 case JS_TYPED_ARRAY_TYPE: 239 case JS_DATA_VIEW_TYPE: 240 case JS_SET_TYPE: 241 case JS_MAP_TYPE: 242 case JS_SET_ITERATOR_TYPE: 243 case JS_MAP_ITERATOR_TYPE: 244 case JS_ITERATOR_RESULT_TYPE: 245 case JS_WEAK_MAP_TYPE: 246 case JS_WEAK_SET_TYPE: 247 case JS_PROMISE_TYPE: 248 case JS_BOUND_FUNCTION_TYPE: 249 if (map->is_undetectable()) return kUndetectable; 250 return kOtherObject; 251 case JS_FUNCTION_TYPE: 252 if (map->is_undetectable()) return kUndetectable; 253 return kFunction; 254 case JS_REGEXP_TYPE: 255 return kOtherObject; // TODO(rossberg): there should be a RegExp type. 256 case JS_PROXY_TYPE: 257 return kProxy; 258 case MAP_TYPE: 259 // When compiling stub templates, the meta map is used as a place holder 260 // for the actual map with which the template is later instantiated. 261 // We treat it as a kind of type variable whose upper bound is Any. 262 // TODO(rossberg): for caching of CompareNilIC stubs to work correctly, 263 // we must exclude Undetectable here. This makes no sense, really, 264 // because it means that the template isn't actually parametric. 265 // Also, it doesn't apply elsewhere. 8-( 266 // We ought to find a cleaner solution for compiling stubs parameterised 267 // over type or class variables, esp ones with bounds... 268 return kDetectable & kTaggedPointer; 269 case ALLOCATION_SITE_TYPE: 270 case DECLARED_ACCESSOR_INFO_TYPE: 271 case EXECUTABLE_ACCESSOR_INFO_TYPE: 272 case SHARED_FUNCTION_INFO_TYPE: 273 case ACCESSOR_PAIR_TYPE: 274 case FIXED_ARRAY_TYPE: 275 case FIXED_DOUBLE_ARRAY_TYPE: 276 case BYTE_ARRAY_TYPE: 277 case BYTECODE_ARRAY_TYPE: 278 case TRANSITION_ARRAY_TYPE: 279 case FOREIGN_TYPE: 280 case SCRIPT_TYPE: 281 case CODE_TYPE: 282 case PROPERTY_CELL_TYPE: 283 return kInternal & kTaggedPointer; 284 285 // Remaining instance types are unsupported for now. If any of them do 286 // require bit set types, they should get kInternal & kTaggedPointer. 287 case MUTABLE_HEAP_NUMBER_TYPE: 288 case FREE_SPACE_TYPE: 289 #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ 290 case FIXED_##TYPE##_ARRAY_TYPE: 291 292 TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE) 293 #undef FIXED_TYPED_ARRAY_CASE 294 case FILLER_TYPE: 295 case DECLARED_ACCESSOR_DESCRIPTOR_TYPE: 296 case ACCESS_CHECK_INFO_TYPE: 297 case INTERCEPTOR_INFO_TYPE: 298 case CALL_HANDLER_INFO_TYPE: 299 case FUNCTION_TEMPLATE_INFO_TYPE: 300 case OBJECT_TEMPLATE_INFO_TYPE: 301 case SIGNATURE_INFO_TYPE: 302 case TYPE_SWITCH_INFO_TYPE: 303 case ALLOCATION_MEMENTO_TYPE: 304 case CODE_CACHE_TYPE: 305 case POLYMORPHIC_CODE_CACHE_TYPE: 306 case TYPE_FEEDBACK_INFO_TYPE: 307 case ALIASED_ARGUMENTS_ENTRY_TYPE: 308 case BOX_TYPE: 309 case DEBUG_INFO_TYPE: 310 case BREAK_POINT_INFO_TYPE: 311 case CELL_TYPE: 312 case WEAK_CELL_TYPE: 313 case PROTOTYPE_INFO_TYPE: 314 case SLOPPY_BLOCK_WITH_EVAL_CONTEXT_EXTENSION_TYPE: 315 UNREACHABLE(); 316 return kNone; 317 } 318 UNREACHABLE(); 319 return kNone; 320 } 321 322 323 template<class Config> 324 typename TypeImpl<Config>::bitset 325 TypeImpl<Config>::BitsetType::Lub(i::Object* value) { 326 DisallowHeapAllocation no_allocation; 327 if (value->IsNumber()) { 328 return Lub(value->Number()) & 329 (value->IsSmi() ? kTaggedSigned : kTaggedPointer); 330 } 331 return Lub(i::HeapObject::cast(value)->map()); 332 } 333 334 335 template<class Config> 336 typename TypeImpl<Config>::bitset 337 TypeImpl<Config>::BitsetType::Lub(double value) { 338 DisallowHeapAllocation no_allocation; 339 if (i::IsMinusZero(value)) return kMinusZero; 340 if (std::isnan(value)) return kNaN; 341 if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value); 342 return kOtherNumber; 343 } 344 345 346 // Minimum values of plain numeric bitsets. 347 template <class Config> 348 const typename TypeImpl<Config>::BitsetType::Boundary 349 TypeImpl<Config>::BitsetType::BoundariesArray[] = { 350 {kOtherNumber, kPlainNumber, -V8_INFINITY}, 351 {kOtherSigned32, kNegative32, kMinInt}, 352 {kNegative31, kNegative31, -0x40000000}, 353 {kUnsigned30, kUnsigned30, 0}, 354 {kOtherUnsigned31, kUnsigned31, 0x40000000}, 355 {kOtherUnsigned32, kUnsigned32, 0x80000000}, 356 {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}}; 357 358 359 template <class Config> 360 const typename TypeImpl<Config>::BitsetType::Boundary* 361 TypeImpl<Config>::BitsetType::Boundaries() { 362 return BoundariesArray; 363 } 364 365 366 template <class Config> 367 size_t TypeImpl<Config>::BitsetType::BoundariesSize() { 368 // Windows doesn't like arraysize here. 369 // return arraysize(BoundariesArray); 370 return 7; 371 } 372 373 374 template <class Config> 375 typename TypeImpl<Config>::bitset TypeImpl<Config>::BitsetType::ExpandInternals( 376 typename TypeImpl<Config>::bitset bits) { 377 DisallowHeapAllocation no_allocation; 378 if (!(bits & SEMANTIC(kPlainNumber))) return bits; // Shortcut. 379 const Boundary* boundaries = Boundaries(); 380 for (size_t i = 0; i < BoundariesSize(); ++i) { 381 DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external)); 382 if (bits & SEMANTIC(boundaries[i].internal)) 383 bits |= SEMANTIC(boundaries[i].external); 384 } 385 return bits; 386 } 387 388 389 template<class Config> 390 typename TypeImpl<Config>::bitset 391 TypeImpl<Config>::BitsetType::Lub(double min, double max) { 392 DisallowHeapAllocation no_allocation; 393 int lub = kNone; 394 const Boundary* mins = Boundaries(); 395 396 for (size_t i = 1; i < BoundariesSize(); ++i) { 397 if (min < mins[i].min) { 398 lub |= mins[i-1].internal; 399 if (max < mins[i].min) return lub; 400 } 401 } 402 return lub | mins[BoundariesSize() - 1].internal; 403 } 404 405 406 template <class Config> 407 typename TypeImpl<Config>::bitset TypeImpl<Config>::BitsetType::NumberBits( 408 bitset bits) { 409 return SEMANTIC(bits & kPlainNumber); 410 } 411 412 413 template <class Config> 414 typename TypeImpl<Config>::bitset TypeImpl<Config>::BitsetType::Glb( 415 double min, double max) { 416 DisallowHeapAllocation no_allocation; 417 int glb = kNone; 418 const Boundary* mins = Boundaries(); 419 420 // If the range does not touch 0, the bound is empty. 421 if (max < -1 || min > 0) return glb; 422 423 for (size_t i = 1; i + 1 < BoundariesSize(); ++i) { 424 if (min <= mins[i].min) { 425 if (max + 1 < mins[i + 1].min) break; 426 glb |= mins[i].external; 427 } 428 } 429 // OtherNumber also contains float numbers, so it can never be 430 // in the greatest lower bound. 431 return glb & ~(SEMANTIC(kOtherNumber)); 432 } 433 434 435 template <class Config> 436 double TypeImpl<Config>::BitsetType::Min(bitset bits) { 437 DisallowHeapAllocation no_allocation; 438 DCHECK(Is(SEMANTIC(bits), kNumber)); 439 const Boundary* mins = Boundaries(); 440 bool mz = SEMANTIC(bits & kMinusZero); 441 for (size_t i = 0; i < BoundariesSize(); ++i) { 442 if (Is(SEMANTIC(mins[i].internal), bits)) { 443 return mz ? std::min(0.0, mins[i].min) : mins[i].min; 444 } 445 } 446 if (mz) return 0; 447 return std::numeric_limits<double>::quiet_NaN(); 448 } 449 450 451 template<class Config> 452 double TypeImpl<Config>::BitsetType::Max(bitset bits) { 453 DisallowHeapAllocation no_allocation; 454 DCHECK(Is(SEMANTIC(bits), kNumber)); 455 const Boundary* mins = Boundaries(); 456 bool mz = SEMANTIC(bits & kMinusZero); 457 if (BitsetType::Is(SEMANTIC(mins[BoundariesSize() - 1].internal), bits)) { 458 return +V8_INFINITY; 459 } 460 for (size_t i = BoundariesSize() - 1; i-- > 0;) { 461 if (Is(SEMANTIC(mins[i].internal), bits)) { 462 return mz ? 463 std::max(0.0, mins[i+1].min - 1) : mins[i+1].min - 1; 464 } 465 } 466 if (mz) return 0; 467 return std::numeric_limits<double>::quiet_NaN(); 468 } 469 470 471 // ----------------------------------------------------------------------------- 472 // Predicates. 473 474 475 template<class Config> 476 bool TypeImpl<Config>::SimplyEquals(TypeImpl* that) { 477 DisallowHeapAllocation no_allocation; 478 if (this->IsClass()) { 479 return that->IsClass() 480 && *this->AsClass()->Map() == *that->AsClass()->Map(); 481 } 482 if (this->IsConstant()) { 483 return that->IsConstant() 484 && *this->AsConstant()->Value() == *that->AsConstant()->Value(); 485 } 486 if (this->IsContext()) { 487 return that->IsContext() 488 && this->AsContext()->Outer()->Equals(that->AsContext()->Outer()); 489 } 490 if (this->IsArray()) { 491 return that->IsArray() 492 && this->AsArray()->Element()->Equals(that->AsArray()->Element()); 493 } 494 if (this->IsFunction()) { 495 if (!that->IsFunction()) return false; 496 FunctionType* this_fun = this->AsFunction(); 497 FunctionType* that_fun = that->AsFunction(); 498 if (this_fun->Arity() != that_fun->Arity() || 499 !this_fun->Result()->Equals(that_fun->Result()) || 500 !this_fun->Receiver()->Equals(that_fun->Receiver())) { 501 return false; 502 } 503 for (int i = 0, n = this_fun->Arity(); i < n; ++i) { 504 if (!this_fun->Parameter(i)->Equals(that_fun->Parameter(i))) return false; 505 } 506 return true; 507 } 508 UNREACHABLE(); 509 return false; 510 } 511 512 513 template <class Config> 514 typename TypeImpl<Config>::bitset TypeImpl<Config>::Representation() { 515 return REPRESENTATION(this->BitsetLub()); 516 } 517 518 519 // Check if [this] <= [that]. 520 template<class Config> 521 bool TypeImpl<Config>::SlowIs(TypeImpl* that) { 522 DisallowHeapAllocation no_allocation; 523 524 // Fast bitset cases 525 if (that->IsBitset()) { 526 return BitsetType::Is(this->BitsetLub(), that->AsBitset()); 527 } 528 529 if (this->IsBitset()) { 530 return BitsetType::Is(this->AsBitset(), that->BitsetGlb()); 531 } 532 533 // Check the representations. 534 if (!BitsetType::Is(Representation(), that->Representation())) { 535 return false; 536 } 537 538 // Check the semantic part. 539 return SemanticIs(that); 540 } 541 542 543 // Check if SEMANTIC([this]) <= SEMANTIC([that]). The result of the method 544 // should be independent of the representation axis of the types. 545 template <class Config> 546 bool TypeImpl<Config>::SemanticIs(TypeImpl* that) { 547 DisallowHeapAllocation no_allocation; 548 549 if (this == that) return true; 550 551 if (that->IsBitset()) { 552 return BitsetType::Is(SEMANTIC(this->BitsetLub()), that->AsBitset()); 553 } 554 if (this->IsBitset()) { 555 return BitsetType::Is(SEMANTIC(this->AsBitset()), that->BitsetGlb()); 556 } 557 558 // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T) 559 if (this->IsUnion()) { 560 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 561 if (!this->AsUnion()->Get(i)->SemanticIs(that)) return false; 562 } 563 return true; 564 } 565 566 // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn) 567 if (that->IsUnion()) { 568 for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { 569 if (this->SemanticIs(that->AsUnion()->Get(i)->unhandle())) return true; 570 if (i > 1 && this->IsRange()) return false; // Shortcut. 571 } 572 return false; 573 } 574 575 if (that->IsRange()) { 576 return (this->IsRange() && Contains(that->AsRange(), this->AsRange())) || 577 (this->IsConstant() && 578 Contains(that->AsRange(), this->AsConstant())); 579 } 580 if (this->IsRange()) return false; 581 582 return this->SimplyEquals(that); 583 } 584 585 586 template<class Config> 587 bool TypeImpl<Config>::NowIs(TypeImpl* that) { 588 DisallowHeapAllocation no_allocation; 589 590 // TODO(rossberg): this is incorrect for 591 // Union(Constant(V), T)->NowIs(Class(M)) 592 // but fuzzing does not cover that! 593 if (this->IsConstant()) { 594 i::Object* object = *this->AsConstant()->Value(); 595 if (object->IsHeapObject()) { 596 i::Map* map = i::HeapObject::cast(object)->map(); 597 for (Iterator<i::Map> it = that->Classes(); !it.Done(); it.Advance()) { 598 if (*it.Current() == map) return true; 599 } 600 } 601 } 602 return this->Is(that); 603 } 604 605 606 // Check if [this] contains only (currently) stable classes. 607 template<class Config> 608 bool TypeImpl<Config>::NowStable() { 609 DisallowHeapAllocation no_allocation; 610 return !this->IsClass() || this->AsClass()->Map()->is_stable(); 611 } 612 613 614 // Check if [this] and [that] overlap. 615 template<class Config> 616 bool TypeImpl<Config>::Maybe(TypeImpl* that) { 617 DisallowHeapAllocation no_allocation; 618 619 // Take care of the representation part (and also approximate 620 // the semantic part). 621 if (!BitsetType::IsInhabited(this->BitsetLub() & that->BitsetLub())) 622 return false; 623 624 return SemanticMaybe(that); 625 } 626 627 template <class Config> 628 bool TypeImpl<Config>::SemanticMaybe(TypeImpl* that) { 629 DisallowHeapAllocation no_allocation; 630 631 // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T) 632 if (this->IsUnion()) { 633 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 634 if (this->AsUnion()->Get(i)->SemanticMaybe(that)) return true; 635 } 636 return false; 637 } 638 639 // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn) 640 if (that->IsUnion()) { 641 for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { 642 if (this->SemanticMaybe(that->AsUnion()->Get(i)->unhandle())) return true; 643 } 644 return false; 645 } 646 647 if (!BitsetType::SemanticIsInhabited(this->BitsetLub() & that->BitsetLub())) 648 return false; 649 650 if (this->IsBitset() && that->IsBitset()) return true; 651 652 if (this->IsClass() != that->IsClass()) return true; 653 654 if (this->IsRange()) { 655 if (that->IsConstant()) { 656 return Contains(this->AsRange(), that->AsConstant()); 657 } 658 if (that->IsRange()) { 659 return Overlap(this->AsRange(), that->AsRange()); 660 } 661 if (that->IsBitset()) { 662 bitset number_bits = BitsetType::NumberBits(that->AsBitset()); 663 if (number_bits == BitsetType::kNone) { 664 return false; 665 } 666 double min = std::max(BitsetType::Min(number_bits), this->Min()); 667 double max = std::min(BitsetType::Max(number_bits), this->Max()); 668 return min <= max; 669 } 670 } 671 if (that->IsRange()) { 672 return that->SemanticMaybe(this); // This case is handled above. 673 } 674 675 if (this->IsBitset() || that->IsBitset()) return true; 676 677 return this->SimplyEquals(that); 678 } 679 680 681 // Return the range in [this], or [NULL]. 682 template<class Config> 683 typename TypeImpl<Config>::RangeType* TypeImpl<Config>::GetRange() { 684 DisallowHeapAllocation no_allocation; 685 if (this->IsRange()) return this->AsRange(); 686 if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) { 687 return this->AsUnion()->Get(1)->AsRange(); 688 } 689 return NULL; 690 } 691 692 693 template<class Config> 694 bool TypeImpl<Config>::Contains(i::Object* value) { 695 DisallowHeapAllocation no_allocation; 696 for (Iterator<i::Object> it = this->Constants(); !it.Done(); it.Advance()) { 697 if (*it.Current() == value) return true; 698 } 699 if (IsInteger(value)) { 700 RangeType* range = this->GetRange(); 701 if (range != NULL && Contains(range, value)) return true; 702 } 703 return BitsetType::New(BitsetType::Lub(value))->Is(this); 704 } 705 706 707 template<class Config> 708 bool TypeImpl<Config>::UnionType::Wellformed() { 709 DisallowHeapAllocation no_allocation; 710 // This checks the invariants of the union representation: 711 // 1. There are at least two elements. 712 // 2. The first element is a bitset, no other element is a bitset. 713 // 3. At most one element is a range, and it must be the second one. 714 // 4. No element is itself a union. 715 // 5. No element (except the bitset) is a subtype of any other. 716 // 6. If there is a range, then the bitset type does not contain 717 // plain number bits. 718 DCHECK(this->Length() >= 2); // (1) 719 DCHECK(this->Get(0)->IsBitset()); // (2a) 720 721 for (int i = 0; i < this->Length(); ++i) { 722 if (i != 0) DCHECK(!this->Get(i)->IsBitset()); // (2b) 723 if (i != 1) DCHECK(!this->Get(i)->IsRange()); // (3) 724 DCHECK(!this->Get(i)->IsUnion()); // (4) 725 for (int j = 0; j < this->Length(); ++j) { 726 if (i != j && i != 0) 727 DCHECK(!this->Get(i)->SemanticIs(this->Get(j)->unhandle())); // (5) 728 } 729 } 730 DCHECK(!this->Get(1)->IsRange() || 731 (BitsetType::NumberBits(this->Get(0)->AsBitset()) == 732 BitsetType::kNone)); // (6) 733 return true; 734 } 735 736 737 // ----------------------------------------------------------------------------- 738 // Union and intersection 739 740 741 static bool AddIsSafe(int x, int y) { 742 return x >= 0 ? 743 y <= std::numeric_limits<int>::max() - x : 744 y >= std::numeric_limits<int>::min() - x; 745 } 746 747 748 template<class Config> 749 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Intersect( 750 TypeHandle type1, TypeHandle type2, Region* region) { 751 752 // Fast case: bit sets. 753 if (type1->IsBitset() && type2->IsBitset()) { 754 return BitsetType::New(type1->AsBitset() & type2->AsBitset(), region); 755 } 756 757 // Fast case: top or bottom types. 758 if (type1->IsNone() || type2->IsAny()) return type1; // Shortcut. 759 if (type2->IsNone() || type1->IsAny()) return type2; // Shortcut. 760 761 // Semi-fast case. 762 if (type1->Is(type2)) return type1; 763 if (type2->Is(type1)) return type2; 764 765 // Slow case: create union. 766 767 // Figure out the representation of the result first. 768 // The rest of the method should not change this representation and 769 // it should not make any decisions based on representations (i.e., 770 // it should only use the semantic part of types). 771 const bitset representation = 772 type1->Representation() & type2->Representation(); 773 774 // Semantic subtyping check - this is needed for consistency with the 775 // semi-fast case above - we should behave the same way regardless of 776 // representations. Intersection with a universal bitset should only update 777 // the representations. 778 if (type1->SemanticIs(type2->unhandle())) { 779 type2 = Any(region); 780 } else if (type2->SemanticIs(type1->unhandle())) { 781 type1 = Any(region); 782 } 783 784 bitset bits = 785 SEMANTIC(type1->BitsetGlb() & type2->BitsetGlb()) | representation; 786 int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; 787 int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; 788 if (!AddIsSafe(size1, size2)) return Any(region); 789 int size = size1 + size2; 790 if (!AddIsSafe(size, 2)) return Any(region); 791 size += 2; 792 UnionHandle result = UnionType::New(size, region); 793 size = 0; 794 795 // Deal with bitsets. 796 result->Set(size++, BitsetType::New(bits, region)); 797 798 Limits lims = Limits::Empty(); 799 size = IntersectAux(type1, type2, result, size, &lims, region); 800 801 // If the range is not empty, then insert it into the union and 802 // remove the number bits from the bitset. 803 if (!lims.IsEmpty()) { 804 size = UpdateRange(RangeType::New(lims, representation, region), result, 805 size, region); 806 807 // Remove the number bits. 808 bitset number_bits = BitsetType::NumberBits(bits); 809 bits &= ~number_bits; 810 result->Set(0, BitsetType::New(bits, region)); 811 } 812 return NormalizeUnion(result, size, region); 813 } 814 815 816 template<class Config> 817 int TypeImpl<Config>::UpdateRange( 818 RangeHandle range, UnionHandle result, int size, Region* region) { 819 if (size == 1) { 820 result->Set(size++, range); 821 } else { 822 // Make space for the range. 823 result->Set(size++, result->Get(1)); 824 result->Set(1, range); 825 } 826 827 // Remove any components that just got subsumed. 828 for (int i = 2; i < size; ) { 829 if (result->Get(i)->SemanticIs(range->unhandle())) { 830 result->Set(i, result->Get(--size)); 831 } else { 832 ++i; 833 } 834 } 835 return size; 836 } 837 838 839 template <class Config> 840 typename TypeImpl<Config>::Limits TypeImpl<Config>::ToLimits(bitset bits, 841 Region* region) { 842 bitset number_bits = BitsetType::NumberBits(bits); 843 844 if (number_bits == BitsetType::kNone) { 845 return Limits::Empty(); 846 } 847 848 return Limits(BitsetType::Min(number_bits), BitsetType::Max(number_bits)); 849 } 850 851 852 template <class Config> 853 typename TypeImpl<Config>::Limits TypeImpl<Config>::IntersectRangeAndBitset( 854 TypeHandle range, TypeHandle bitset, Region* region) { 855 Limits range_lims(range->AsRange()); 856 Limits bitset_lims = ToLimits(bitset->AsBitset(), region); 857 return Limits::Intersect(range_lims, bitset_lims); 858 } 859 860 861 template <class Config> 862 int TypeImpl<Config>::IntersectAux(TypeHandle lhs, TypeHandle rhs, 863 UnionHandle result, int size, Limits* lims, 864 Region* region) { 865 if (lhs->IsUnion()) { 866 for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) { 867 size = 868 IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, lims, region); 869 } 870 return size; 871 } 872 if (rhs->IsUnion()) { 873 for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) { 874 size = 875 IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, lims, region); 876 } 877 return size; 878 } 879 880 if (!BitsetType::SemanticIsInhabited(lhs->BitsetLub() & rhs->BitsetLub())) { 881 return size; 882 } 883 884 if (lhs->IsRange()) { 885 if (rhs->IsBitset()) { 886 Limits lim = IntersectRangeAndBitset(lhs, rhs, region); 887 888 if (!lim.IsEmpty()) { 889 *lims = Limits::Union(lim, *lims); 890 } 891 return size; 892 } 893 if (rhs->IsClass()) { 894 *lims = Limits::Union(Limits(lhs->AsRange()), *lims); 895 } 896 if (rhs->IsConstant() && Contains(lhs->AsRange(), rhs->AsConstant())) { 897 return AddToUnion(rhs, result, size, region); 898 } 899 if (rhs->IsRange()) { 900 Limits lim = Limits::Intersect( 901 Limits(lhs->AsRange()), Limits(rhs->AsRange())); 902 if (!lim.IsEmpty()) { 903 *lims = Limits::Union(lim, *lims); 904 } 905 } 906 return size; 907 } 908 if (rhs->IsRange()) { 909 // This case is handled symmetrically above. 910 return IntersectAux(rhs, lhs, result, size, lims, region); 911 } 912 if (lhs->IsBitset() || rhs->IsBitset()) { 913 return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, region); 914 } 915 if (lhs->IsClass() != rhs->IsClass()) { 916 return AddToUnion(lhs->IsClass() ? rhs : lhs, result, size, region); 917 } 918 if (lhs->SimplyEquals(rhs->unhandle())) { 919 return AddToUnion(lhs, result, size, region); 920 } 921 return size; 922 } 923 924 925 // Make sure that we produce a well-formed range and bitset: 926 // If the range is non-empty, the number bits in the bitset should be 927 // clear. Moreover, if we have a canonical range (such as Signed32), 928 // we want to produce a bitset rather than a range. 929 template <class Config> 930 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::NormalizeRangeAndBitset( 931 RangeHandle range, bitset* bits, Region* region) { 932 // Fast path: If the bitset does not mention numbers, we can just keep the 933 // range. 934 bitset number_bits = BitsetType::NumberBits(*bits); 935 if (number_bits == 0) { 936 return range; 937 } 938 939 // If the range is semantically contained within the bitset, return None and 940 // leave the bitset untouched. 941 bitset range_lub = SEMANTIC(range->BitsetLub()); 942 if (BitsetType::Is(range_lub, *bits)) { 943 return None(region); 944 } 945 946 // Slow path: reconcile the bitset range and the range. 947 double bitset_min = BitsetType::Min(number_bits); 948 double bitset_max = BitsetType::Max(number_bits); 949 950 double range_min = range->Min(); 951 double range_max = range->Max(); 952 953 // Remove the number bits from the bitset, they would just confuse us now. 954 // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which 955 // case we already returned after the subtype check above. 956 *bits &= ~number_bits; 957 958 if (range_min <= bitset_min && range_max >= bitset_max) { 959 // Bitset is contained within the range, just return the range. 960 return range; 961 } 962 963 if (bitset_min < range_min) { 964 range_min = bitset_min; 965 } 966 if (bitset_max > range_max) { 967 range_max = bitset_max; 968 } 969 return RangeType::New(range_min, range_max, 970 BitsetType::New(BitsetType::kNone, region), region); 971 } 972 973 974 template<class Config> 975 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Union( 976 TypeHandle type1, TypeHandle type2, Region* region) { 977 // Fast case: bit sets. 978 if (type1->IsBitset() && type2->IsBitset()) { 979 return BitsetType::New(type1->AsBitset() | type2->AsBitset(), region); 980 } 981 982 // Fast case: top or bottom types. 983 if (type1->IsAny() || type2->IsNone()) return type1; 984 if (type2->IsAny() || type1->IsNone()) return type2; 985 986 // Semi-fast case. 987 if (type1->Is(type2)) return type2; 988 if (type2->Is(type1)) return type1; 989 990 // Figure out the representation of the result. 991 // The rest of the method should not change this representation and 992 // it should not make any decisions based on representations (i.e., 993 // it should only use the semantic part of types). 994 const bitset representation = 995 type1->Representation() | type2->Representation(); 996 997 // Slow case: create union. 998 int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; 999 int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; 1000 if (!AddIsSafe(size1, size2)) return Any(region); 1001 int size = size1 + size2; 1002 if (!AddIsSafe(size, 2)) return Any(region); 1003 size += 2; 1004 UnionHandle result = UnionType::New(size, region); 1005 size = 0; 1006 1007 // Compute the new bitset. 1008 bitset new_bitset = SEMANTIC(type1->BitsetGlb() | type2->BitsetGlb()); 1009 1010 // Deal with ranges. 1011 TypeHandle range = None(region); 1012 RangeType* range1 = type1->GetRange(); 1013 RangeType* range2 = type2->GetRange(); 1014 if (range1 != NULL && range2 != NULL) { 1015 Limits lims = Limits::Union(Limits(range1), Limits(range2)); 1016 RangeHandle union_range = RangeType::New(lims, representation, region); 1017 range = NormalizeRangeAndBitset(union_range, &new_bitset, region); 1018 } else if (range1 != NULL) { 1019 range = NormalizeRangeAndBitset(handle(range1), &new_bitset, region); 1020 } else if (range2 != NULL) { 1021 range = NormalizeRangeAndBitset(handle(range2), &new_bitset, region); 1022 } 1023 new_bitset = SEMANTIC(new_bitset) | representation; 1024 TypeHandle bits = BitsetType::New(new_bitset, region); 1025 result->Set(size++, bits); 1026 if (!range->IsNone()) result->Set(size++, range); 1027 1028 size = AddToUnion(type1, result, size, region); 1029 size = AddToUnion(type2, result, size, region); 1030 return NormalizeUnion(result, size, region); 1031 } 1032 1033 1034 // Add [type] to [result] unless [type] is bitset, range, or already subsumed. 1035 // Return new size of [result]. 1036 template<class Config> 1037 int TypeImpl<Config>::AddToUnion( 1038 TypeHandle type, UnionHandle result, int size, Region* region) { 1039 if (type->IsBitset() || type->IsRange()) return size; 1040 if (type->IsUnion()) { 1041 for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { 1042 size = AddToUnion(type->AsUnion()->Get(i), result, size, region); 1043 } 1044 return size; 1045 } 1046 for (int i = 0; i < size; ++i) { 1047 if (type->SemanticIs(result->Get(i)->unhandle())) return size; 1048 } 1049 result->Set(size++, type); 1050 return size; 1051 } 1052 1053 1054 template <class Config> 1055 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::NormalizeUnion( 1056 UnionHandle unioned, int size, Region* region) { 1057 DCHECK(size >= 1); 1058 DCHECK(unioned->Get(0)->IsBitset()); 1059 // If the union has just one element, return it. 1060 if (size == 1) { 1061 return unioned->Get(0); 1062 } 1063 bitset bits = unioned->Get(0)->AsBitset(); 1064 // If the union only consists of a range, we can get rid of the union. 1065 if (size == 2 && SEMANTIC(bits) == BitsetType::kNone) { 1066 bitset representation = REPRESENTATION(bits); 1067 if (representation == unioned->Get(1)->Representation()) { 1068 return unioned->Get(1); 1069 } 1070 if (unioned->Get(1)->IsRange()) { 1071 return RangeType::New(unioned->Get(1)->AsRange()->Min(), 1072 unioned->Get(1)->AsRange()->Max(), unioned->Get(0), 1073 region); 1074 } 1075 } 1076 unioned->Shrink(size); 1077 SLOW_DCHECK(unioned->Wellformed()); 1078 return unioned; 1079 } 1080 1081 1082 // ----------------------------------------------------------------------------- 1083 // Component extraction 1084 1085 // static 1086 template <class Config> 1087 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Representation( 1088 TypeHandle t, Region* region) { 1089 return BitsetType::New(t->Representation(), region); 1090 } 1091 1092 1093 // static 1094 template <class Config> 1095 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Semantic( 1096 TypeHandle t, Region* region) { 1097 return Intersect(t, BitsetType::New(BitsetType::kSemantic, region), region); 1098 } 1099 1100 1101 // ----------------------------------------------------------------------------- 1102 // Iteration. 1103 1104 template<class Config> 1105 int TypeImpl<Config>::NumClasses() { 1106 DisallowHeapAllocation no_allocation; 1107 if (this->IsClass()) { 1108 return 1; 1109 } else if (this->IsUnion()) { 1110 int result = 0; 1111 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 1112 if (this->AsUnion()->Get(i)->IsClass()) ++result; 1113 } 1114 return result; 1115 } else { 1116 return 0; 1117 } 1118 } 1119 1120 1121 template<class Config> 1122 int TypeImpl<Config>::NumConstants() { 1123 DisallowHeapAllocation no_allocation; 1124 if (this->IsConstant()) { 1125 return 1; 1126 } else if (this->IsUnion()) { 1127 int result = 0; 1128 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 1129 if (this->AsUnion()->Get(i)->IsConstant()) ++result; 1130 } 1131 return result; 1132 } else { 1133 return 0; 1134 } 1135 } 1136 1137 1138 template<class Config> template<class T> 1139 typename TypeImpl<Config>::TypeHandle 1140 TypeImpl<Config>::Iterator<T>::get_type() { 1141 DCHECK(!Done()); 1142 return type_->IsUnion() ? type_->AsUnion()->Get(index_) : type_; 1143 } 1144 1145 1146 // C++ cannot specialise nested templates, so we have to go through this 1147 // contortion with an auxiliary template to simulate it. 1148 template<class Config, class T> 1149 struct TypeImplIteratorAux { 1150 static bool matches(typename TypeImpl<Config>::TypeHandle type); 1151 static i::Handle<T> current(typename TypeImpl<Config>::TypeHandle type); 1152 }; 1153 1154 template<class Config> 1155 struct TypeImplIteratorAux<Config, i::Map> { 1156 static bool matches(typename TypeImpl<Config>::TypeHandle type) { 1157 return type->IsClass(); 1158 } 1159 static i::Handle<i::Map> current(typename TypeImpl<Config>::TypeHandle type) { 1160 return type->AsClass()->Map(); 1161 } 1162 }; 1163 1164 template<class Config> 1165 struct TypeImplIteratorAux<Config, i::Object> { 1166 static bool matches(typename TypeImpl<Config>::TypeHandle type) { 1167 return type->IsConstant(); 1168 } 1169 static i::Handle<i::Object> current( 1170 typename TypeImpl<Config>::TypeHandle type) { 1171 return type->AsConstant()->Value(); 1172 } 1173 }; 1174 1175 template<class Config> template<class T> 1176 bool TypeImpl<Config>::Iterator<T>::matches(TypeHandle type) { 1177 return TypeImplIteratorAux<Config, T>::matches(type); 1178 } 1179 1180 template<class Config> template<class T> 1181 i::Handle<T> TypeImpl<Config>::Iterator<T>::Current() { 1182 return TypeImplIteratorAux<Config, T>::current(get_type()); 1183 } 1184 1185 1186 template<class Config> template<class T> 1187 void TypeImpl<Config>::Iterator<T>::Advance() { 1188 DisallowHeapAllocation no_allocation; 1189 ++index_; 1190 if (type_->IsUnion()) { 1191 for (int n = type_->AsUnion()->Length(); index_ < n; ++index_) { 1192 if (matches(type_->AsUnion()->Get(index_))) return; 1193 } 1194 } else if (index_ == 0 && matches(type_)) { 1195 return; 1196 } 1197 index_ = -1; 1198 } 1199 1200 1201 // ----------------------------------------------------------------------------- 1202 // Conversion between low-level representations. 1203 1204 template<class Config> 1205 template<class OtherType> 1206 typename TypeImpl<Config>::TypeHandle TypeImpl<Config>::Convert( 1207 typename OtherType::TypeHandle type, Region* region) { 1208 if (type->IsBitset()) { 1209 return BitsetType::New(type->AsBitset(), region); 1210 } else if (type->IsClass()) { 1211 return ClassType::New(type->AsClass()->Map(), region); 1212 } else if (type->IsConstant()) { 1213 return ConstantType::New(type->AsConstant()->Value(), region); 1214 } else if (type->IsRange()) { 1215 return RangeType::New( 1216 type->AsRange()->Min(), type->AsRange()->Max(), 1217 BitsetType::New(REPRESENTATION(type->BitsetLub()), region), region); 1218 } else if (type->IsContext()) { 1219 TypeHandle outer = Convert<OtherType>(type->AsContext()->Outer(), region); 1220 return ContextType::New(outer, region); 1221 } else if (type->IsUnion()) { 1222 int length = type->AsUnion()->Length(); 1223 UnionHandle unioned = UnionType::New(length, region); 1224 for (int i = 0; i < length; ++i) { 1225 TypeHandle t = Convert<OtherType>(type->AsUnion()->Get(i), region); 1226 unioned->Set(i, t); 1227 } 1228 return unioned; 1229 } else if (type->IsArray()) { 1230 TypeHandle element = Convert<OtherType>(type->AsArray()->Element(), region); 1231 return ArrayType::New(element, region); 1232 } else if (type->IsFunction()) { 1233 TypeHandle res = Convert<OtherType>(type->AsFunction()->Result(), region); 1234 TypeHandle rcv = Convert<OtherType>(type->AsFunction()->Receiver(), region); 1235 FunctionHandle function = FunctionType::New( 1236 res, rcv, type->AsFunction()->Arity(), region); 1237 for (int i = 0; i < function->Arity(); ++i) { 1238 TypeHandle param = Convert<OtherType>( 1239 type->AsFunction()->Parameter(i), region); 1240 function->InitParameter(i, param); 1241 } 1242 return function; 1243 } else { 1244 UNREACHABLE(); 1245 return None(region); 1246 } 1247 } 1248 1249 1250 // ----------------------------------------------------------------------------- 1251 // Printing. 1252 1253 template<class Config> 1254 const char* TypeImpl<Config>::BitsetType::Name(bitset bits) { 1255 switch (bits) { 1256 case REPRESENTATION(kAny): return "Any"; 1257 #define RETURN_NAMED_REPRESENTATION_TYPE(type, value) \ 1258 case REPRESENTATION(k##type): return #type; 1259 REPRESENTATION_BITSET_TYPE_LIST(RETURN_NAMED_REPRESENTATION_TYPE) 1260 #undef RETURN_NAMED_REPRESENTATION_TYPE 1261 1262 #define RETURN_NAMED_SEMANTIC_TYPE(type, value) \ 1263 case SEMANTIC(k##type): return #type; 1264 SEMANTIC_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE) 1265 INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_SEMANTIC_TYPE) 1266 #undef RETURN_NAMED_SEMANTIC_TYPE 1267 1268 default: 1269 return NULL; 1270 } 1271 } 1272 1273 1274 template <class Config> 1275 void TypeImpl<Config>::BitsetType::Print(std::ostream& os, // NOLINT 1276 bitset bits) { 1277 DisallowHeapAllocation no_allocation; 1278 const char* name = Name(bits); 1279 if (name != NULL) { 1280 os << name; 1281 return; 1282 } 1283 1284 // clang-format off 1285 static const bitset named_bitsets[] = { 1286 #define BITSET_CONSTANT(type, value) REPRESENTATION(k##type), 1287 REPRESENTATION_BITSET_TYPE_LIST(BITSET_CONSTANT) 1288 #undef BITSET_CONSTANT 1289 1290 #define BITSET_CONSTANT(type, value) SEMANTIC(k##type), 1291 INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT) 1292 SEMANTIC_BITSET_TYPE_LIST(BITSET_CONSTANT) 1293 #undef BITSET_CONSTANT 1294 }; 1295 // clang-format on 1296 1297 bool is_first = true; 1298 os << "("; 1299 for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) { 1300 bitset subset = named_bitsets[i]; 1301 if ((bits & subset) == subset) { 1302 if (!is_first) os << " | "; 1303 is_first = false; 1304 os << Name(subset); 1305 bits -= subset; 1306 } 1307 } 1308 DCHECK(bits == 0); 1309 os << ")"; 1310 } 1311 1312 1313 template <class Config> 1314 void TypeImpl<Config>::PrintTo(std::ostream& os, PrintDimension dim) { 1315 DisallowHeapAllocation no_allocation; 1316 if (dim != REPRESENTATION_DIM) { 1317 if (this->IsBitset()) { 1318 BitsetType::Print(os, SEMANTIC(this->AsBitset())); 1319 } else if (this->IsClass()) { 1320 os << "Class(" << static_cast<void*>(*this->AsClass()->Map()) << " < "; 1321 BitsetType::New(BitsetType::Lub(this))->PrintTo(os, dim); 1322 os << ")"; 1323 } else if (this->IsConstant()) { 1324 os << "Constant(" << Brief(*this->AsConstant()->Value()) << ")"; 1325 } else if (this->IsRange()) { 1326 std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed); 1327 std::streamsize saved_precision = os.precision(0); 1328 os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max() 1329 << ")"; 1330 os.flags(saved_flags); 1331 os.precision(saved_precision); 1332 } else if (this->IsContext()) { 1333 os << "Context("; 1334 this->AsContext()->Outer()->PrintTo(os, dim); 1335 os << ")"; 1336 } else if (this->IsUnion()) { 1337 os << "("; 1338 for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { 1339 TypeHandle type_i = this->AsUnion()->Get(i); 1340 if (i > 0) os << " | "; 1341 type_i->PrintTo(os, dim); 1342 } 1343 os << ")"; 1344 } else if (this->IsArray()) { 1345 os << "Array("; 1346 AsArray()->Element()->PrintTo(os, dim); 1347 os << ")"; 1348 } else if (this->IsFunction()) { 1349 if (!this->AsFunction()->Receiver()->IsAny()) { 1350 this->AsFunction()->Receiver()->PrintTo(os, dim); 1351 os << "."; 1352 } 1353 os << "("; 1354 for (int i = 0; i < this->AsFunction()->Arity(); ++i) { 1355 if (i > 0) os << ", "; 1356 this->AsFunction()->Parameter(i)->PrintTo(os, dim); 1357 } 1358 os << ")->"; 1359 this->AsFunction()->Result()->PrintTo(os, dim); 1360 } else { 1361 UNREACHABLE(); 1362 } 1363 } 1364 if (dim == BOTH_DIMS) os << "/"; 1365 if (dim != SEMANTIC_DIM) { 1366 BitsetType::Print(os, REPRESENTATION(this->BitsetLub())); 1367 } 1368 } 1369 1370 1371 #ifdef DEBUG 1372 template <class Config> 1373 void TypeImpl<Config>::Print() { 1374 OFStream os(stdout); 1375 PrintTo(os); 1376 os << std::endl; 1377 } 1378 template <class Config> 1379 void TypeImpl<Config>::BitsetType::Print(bitset bits) { 1380 OFStream os(stdout); 1381 Print(os, bits); 1382 os << std::endl; 1383 } 1384 #endif 1385 1386 1387 // ----------------------------------------------------------------------------- 1388 // Instantiations. 1389 1390 template class TypeImpl<ZoneTypeConfig>; 1391 template class TypeImpl<ZoneTypeConfig>::Iterator<i::Map>; 1392 template class TypeImpl<ZoneTypeConfig>::Iterator<i::Object>; 1393 1394 template class TypeImpl<HeapTypeConfig>; 1395 template class TypeImpl<HeapTypeConfig>::Iterator<i::Map>; 1396 template class TypeImpl<HeapTypeConfig>::Iterator<i::Object>; 1397 1398 template TypeImpl<ZoneTypeConfig>::TypeHandle 1399 TypeImpl<ZoneTypeConfig>::Convert<HeapType>( 1400 TypeImpl<HeapTypeConfig>::TypeHandle, TypeImpl<ZoneTypeConfig>::Region*); 1401 template TypeImpl<HeapTypeConfig>::TypeHandle 1402 TypeImpl<HeapTypeConfig>::Convert<Type>( 1403 TypeImpl<ZoneTypeConfig>::TypeHandle, TypeImpl<HeapTypeConfig>::Region*); 1404 1405 } // namespace internal 1406 } // namespace v8 1407