1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "large_object_space.h" 18 19 #include <valgrind.h> 20 #include <memory> 21 #include <memcheck/memcheck.h> 22 23 #include "gc/accounting/heap_bitmap-inl.h" 24 #include "gc/accounting/space_bitmap-inl.h" 25 #include "base/logging.h" 26 #include "base/mutex-inl.h" 27 #include "base/stl_util.h" 28 #include "image.h" 29 #include "os.h" 30 #include "scoped_thread_state_change.h" 31 #include "space-inl.h" 32 #include "thread-inl.h" 33 34 namespace art { 35 namespace gc { 36 namespace space { 37 38 class MemoryToolLargeObjectMapSpace FINAL : public LargeObjectMapSpace { 39 public: 40 explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) { 41 } 42 43 ~MemoryToolLargeObjectMapSpace() OVERRIDE { 44 // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't 45 // freed since they are held live by the class linker. 46 MutexLock mu(Thread::Current(), lock_); 47 for (auto& m : large_objects_) { 48 delete m.second.mem_map; 49 } 50 } 51 52 mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, 53 size_t* usable_size, size_t* bytes_tl_bulk_allocated) 54 OVERRIDE { 55 mirror::Object* obj = 56 LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated, 57 usable_size, bytes_tl_bulk_allocated); 58 mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>( 59 reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes); 60 MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes); 61 MEMORY_TOOL_MAKE_NOACCESS( 62 reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes, 63 kMemoryToolRedZoneBytes); 64 if (usable_size != nullptr) { 65 *usable_size = num_bytes; // Since we have redzones, shrink the usable size. 66 } 67 return object_without_rdz; 68 } 69 70 size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE { 71 return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size); 72 } 73 74 bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE { 75 return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj)); 76 } 77 78 size_t Free(Thread* self, mirror::Object* obj) OVERRIDE { 79 mirror::Object* object_with_rdz = ObjectWithRedzone(obj); 80 MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr)); 81 return LargeObjectMapSpace::Free(self, object_with_rdz); 82 } 83 84 bool Contains(const mirror::Object* obj) const OVERRIDE { 85 return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj)); 86 } 87 88 private: 89 static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) { 90 return reinterpret_cast<const mirror::Object*>( 91 reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes); 92 } 93 94 static mirror::Object* ObjectWithRedzone(mirror::Object* obj) { 95 return reinterpret_cast<mirror::Object*>( 96 reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes); 97 } 98 99 static constexpr size_t kMemoryToolRedZoneBytes = kPageSize; 100 }; 101 102 void LargeObjectSpace::SwapBitmaps() { 103 live_bitmap_.swap(mark_bitmap_); 104 // Swap names to get more descriptive diagnostics. 105 std::string temp_name = live_bitmap_->GetName(); 106 live_bitmap_->SetName(mark_bitmap_->GetName()); 107 mark_bitmap_->SetName(temp_name); 108 } 109 110 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end) 111 : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect), 112 num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0), 113 total_objects_allocated_(0), begin_(begin), end_(end) { 114 } 115 116 117 void LargeObjectSpace::CopyLiveToMarked() { 118 mark_bitmap_->CopyFrom(live_bitmap_.get()); 119 } 120 121 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name) 122 : LargeObjectSpace(name, nullptr, nullptr), 123 lock_("large object map space lock", kAllocSpaceLock) {} 124 125 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) { 126 if (Runtime::Current()->IsRunningOnMemoryTool()) { 127 return new MemoryToolLargeObjectMapSpace(name); 128 } else { 129 return new LargeObjectMapSpace(name); 130 } 131 } 132 133 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes, 134 size_t* bytes_allocated, size_t* usable_size, 135 size_t* bytes_tl_bulk_allocated) { 136 std::string error_msg; 137 MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes, 138 PROT_READ | PROT_WRITE, true, false, &error_msg); 139 if (UNLIKELY(mem_map == nullptr)) { 140 LOG(WARNING) << "Large object allocation failed: " << error_msg; 141 return nullptr; 142 } 143 mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin()); 144 if (kIsDebugBuild) { 145 ReaderMutexLock mu2(Thread::Current(), *Locks::heap_bitmap_lock_); 146 auto* heap = Runtime::Current()->GetHeap(); 147 auto* live_bitmap = heap->GetLiveBitmap(); 148 auto* space_bitmap = live_bitmap->GetContinuousSpaceBitmap(obj); 149 CHECK(space_bitmap == nullptr) << obj << " overlaps with bitmap " << *space_bitmap; 150 auto* obj_end = reinterpret_cast<mirror::Object*>(mem_map->End()); 151 space_bitmap = live_bitmap->GetContinuousSpaceBitmap(obj_end - 1); 152 CHECK(space_bitmap == nullptr) << obj_end << " overlaps with bitmap " << *space_bitmap; 153 } 154 MutexLock mu(self, lock_); 155 large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */}); 156 const size_t allocation_size = mem_map->BaseSize(); 157 DCHECK(bytes_allocated != nullptr); 158 begin_ = std::min(begin_, reinterpret_cast<uint8_t*>(obj)); 159 uint8_t* obj_end = reinterpret_cast<uint8_t*>(obj) + allocation_size; 160 if (end_ == nullptr || obj_end > end_) { 161 end_ = obj_end; 162 } 163 *bytes_allocated = allocation_size; 164 if (usable_size != nullptr) { 165 *usable_size = allocation_size; 166 } 167 DCHECK(bytes_tl_bulk_allocated != nullptr); 168 *bytes_tl_bulk_allocated = allocation_size; 169 num_bytes_allocated_ += allocation_size; 170 total_bytes_allocated_ += allocation_size; 171 ++num_objects_allocated_; 172 ++total_objects_allocated_; 173 return obj; 174 } 175 176 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const { 177 MutexLock mu(self, lock_); 178 auto it = large_objects_.find(obj); 179 CHECK(it != large_objects_.end()); 180 return it->second.is_zygote; 181 } 182 183 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) { 184 MutexLock mu(self, lock_); 185 for (auto& pair : large_objects_) { 186 pair.second.is_zygote = true; 187 } 188 } 189 190 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) { 191 MutexLock mu(self, lock_); 192 auto it = large_objects_.find(ptr); 193 if (UNLIKELY(it == large_objects_.end())) { 194 ScopedObjectAccess soa(self); 195 Runtime::Current()->GetHeap()->DumpSpaces(LOG(INTERNAL_FATAL)); 196 LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live"; 197 } 198 MemMap* mem_map = it->second.mem_map; 199 const size_t map_size = mem_map->BaseSize(); 200 DCHECK_GE(num_bytes_allocated_, map_size); 201 size_t allocation_size = map_size; 202 num_bytes_allocated_ -= allocation_size; 203 --num_objects_allocated_; 204 delete mem_map; 205 large_objects_.erase(it); 206 return allocation_size; 207 } 208 209 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) { 210 MutexLock mu(Thread::Current(), lock_); 211 auto it = large_objects_.find(obj); 212 CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live"; 213 size_t alloc_size = it->second.mem_map->BaseSize(); 214 if (usable_size != nullptr) { 215 *usable_size = alloc_size; 216 } 217 return alloc_size; 218 } 219 220 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) { 221 size_t total = 0; 222 for (size_t i = 0; i < num_ptrs; ++i) { 223 if (kDebugSpaces) { 224 CHECK(Contains(ptrs[i])); 225 } 226 total += Free(self, ptrs[i]); 227 } 228 return total; 229 } 230 231 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { 232 MutexLock mu(Thread::Current(), lock_); 233 for (auto& pair : large_objects_) { 234 MemMap* mem_map = pair.second.mem_map; 235 callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg); 236 callback(nullptr, nullptr, 0, arg); 237 } 238 } 239 240 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const { 241 Thread* self = Thread::Current(); 242 if (lock_.IsExclusiveHeld(self)) { 243 // We hold lock_ so do the check. 244 return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end(); 245 } else { 246 MutexLock mu(self, lock_); 247 return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end(); 248 } 249 } 250 251 // Keeps track of allocation sizes + whether or not the previous allocation is free. 252 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object 253 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free 254 // block preceding it. Implemented in such a way that we can also find the iterator for any 255 // allocation info pointer. 256 class AllocationInfo { 257 public: 258 AllocationInfo() : prev_free_(0), alloc_size_(0) { 259 } 260 // Return the number of pages that the allocation info covers. 261 size_t AlignSize() const { 262 return alloc_size_ & kFlagsMask; 263 } 264 // Returns the allocation size in bytes. 265 size_t ByteSize() const { 266 return AlignSize() * FreeListSpace::kAlignment; 267 } 268 // Updates the allocation size and whether or not it is free. 269 void SetByteSize(size_t size, bool free) { 270 DCHECK_EQ(size & ~kFlagsMask, 0u); 271 DCHECK_ALIGNED(size, FreeListSpace::kAlignment); 272 alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u); 273 } 274 // Returns true if the block is free. 275 bool IsFree() const { 276 return (alloc_size_ & kFlagFree) != 0; 277 } 278 // Return true if the large object is a zygote object. 279 bool IsZygoteObject() const { 280 return (alloc_size_ & kFlagZygote) != 0; 281 } 282 // Change the object to be a zygote object. 283 void SetZygoteObject() { 284 alloc_size_ |= kFlagZygote; 285 } 286 // Return true if this is a zygote large object. 287 // Finds and returns the next non free allocation info after ourself. 288 AllocationInfo* GetNextInfo() { 289 return this + AlignSize(); 290 } 291 const AllocationInfo* GetNextInfo() const { 292 return this + AlignSize(); 293 } 294 // Returns the previous free allocation info by using the prev_free_ member to figure out 295 // where it is. This is only used for coalescing so we only need to be able to do it if the 296 // previous allocation info is free. 297 AllocationInfo* GetPrevFreeInfo() { 298 DCHECK_NE(prev_free_, 0U); 299 return this - prev_free_; 300 } 301 // Returns the address of the object associated with this allocation info. 302 mirror::Object* GetObjectAddress() { 303 return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this)); 304 } 305 // Return how many kAlignment units there are before the free block. 306 size_t GetPrevFree() const { 307 return prev_free_; 308 } 309 // Returns how many free bytes there is before the block. 310 size_t GetPrevFreeBytes() const { 311 return GetPrevFree() * FreeListSpace::kAlignment; 312 } 313 // Update the size of the free block prior to the allocation. 314 void SetPrevFreeBytes(size_t bytes) { 315 DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment); 316 prev_free_ = bytes / FreeListSpace::kAlignment; 317 } 318 319 private: 320 static constexpr uint32_t kFlagFree = 0x80000000; // If block is free. 321 static constexpr uint32_t kFlagZygote = 0x40000000; // If the large object is a zygote object. 322 static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote); // Combined flags for masking. 323 // Contains the size of the previous free block with kAlignment as the unit. If 0 then the 324 // allocation before us is not free. 325 // These variables are undefined in the middle of allocations / free blocks. 326 uint32_t prev_free_; 327 // Allocation size of this object in kAlignment as the unit. 328 uint32_t alloc_size_; 329 }; 330 331 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const { 332 DCHECK_GE(info, allocation_info_); 333 DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End())); 334 return info - allocation_info_; 335 } 336 337 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) { 338 return &allocation_info_[GetSlotIndexForAddress(address)]; 339 } 340 341 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const { 342 return &allocation_info_[GetSlotIndexForAddress(address)]; 343 } 344 345 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a, 346 const AllocationInfo* b) const { 347 if (a->GetPrevFree() < b->GetPrevFree()) return true; 348 if (a->GetPrevFree() > b->GetPrevFree()) return false; 349 if (a->AlignSize() < b->AlignSize()) return true; 350 if (a->AlignSize() > b->AlignSize()) return false; 351 return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b); 352 } 353 354 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) { 355 CHECK_EQ(size % kAlignment, 0U); 356 std::string error_msg; 357 MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size, 358 PROT_READ | PROT_WRITE, true, false, &error_msg); 359 CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg; 360 return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End()); 361 } 362 363 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end) 364 : LargeObjectSpace(name, begin, end), 365 mem_map_(mem_map), 366 lock_("free list space lock", kAllocSpaceLock) { 367 const size_t space_capacity = end - begin; 368 free_end_ = space_capacity; 369 CHECK_ALIGNED(space_capacity, kAlignment); 370 const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment); 371 std::string error_msg; 372 allocation_info_map_.reset( 373 MemMap::MapAnonymous("large object free list space allocation info map", 374 nullptr, alloc_info_size, PROT_READ | PROT_WRITE, 375 false, false, &error_msg)); 376 CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map" 377 << error_msg; 378 allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin()); 379 } 380 381 FreeListSpace::~FreeListSpace() {} 382 383 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) { 384 MutexLock mu(Thread::Current(), lock_); 385 const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 386 AllocationInfo* cur_info = &allocation_info_[0]; 387 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start); 388 while (cur_info < end_info) { 389 if (!cur_info->IsFree()) { 390 size_t alloc_size = cur_info->ByteSize(); 391 uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info)); 392 uint8_t* byte_end = byte_start + alloc_size; 393 callback(byte_start, byte_end, alloc_size, arg); 394 callback(nullptr, nullptr, 0, arg); 395 } 396 cur_info = cur_info->GetNextInfo(); 397 } 398 CHECK_EQ(cur_info, end_info); 399 } 400 401 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) { 402 CHECK_GT(info->GetPrevFree(), 0U); 403 auto it = free_blocks_.lower_bound(info); 404 CHECK(it != free_blocks_.end()); 405 CHECK_EQ(*it, info); 406 free_blocks_.erase(it); 407 } 408 409 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) { 410 MutexLock mu(self, lock_); 411 DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " " 412 << reinterpret_cast<void*>(End()); 413 DCHECK_ALIGNED(obj, kAlignment); 414 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); 415 DCHECK(!info->IsFree()); 416 const size_t allocation_size = info->ByteSize(); 417 DCHECK_GT(allocation_size, 0U); 418 DCHECK_ALIGNED(allocation_size, kAlignment); 419 info->SetByteSize(allocation_size, true); // Mark as free. 420 // Look at the next chunk. 421 AllocationInfo* next_info = info->GetNextInfo(); 422 // Calculate the start of the end free block. 423 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 424 size_t prev_free_bytes = info->GetPrevFreeBytes(); 425 size_t new_free_size = allocation_size; 426 if (prev_free_bytes != 0) { 427 // Coalesce with previous free chunk. 428 new_free_size += prev_free_bytes; 429 RemoveFreePrev(info); 430 info = info->GetPrevFreeInfo(); 431 // The previous allocation info must not be free since we are supposed to always coalesce. 432 DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free"; 433 } 434 uintptr_t next_addr = GetAddressForAllocationInfo(next_info); 435 if (next_addr >= free_end_start) { 436 // Easy case, the next chunk is the end free region. 437 CHECK_EQ(next_addr, free_end_start); 438 free_end_ += new_free_size; 439 } else { 440 AllocationInfo* new_free_info; 441 if (next_info->IsFree()) { 442 AllocationInfo* next_next_info = next_info->GetNextInfo(); 443 // Next next info can't be free since we always coalesce. 444 DCHECK(!next_next_info->IsFree()); 445 DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment); 446 new_free_info = next_next_info; 447 new_free_size += next_next_info->GetPrevFreeBytes(); 448 RemoveFreePrev(next_next_info); 449 } else { 450 new_free_info = next_info; 451 } 452 new_free_info->SetPrevFreeBytes(new_free_size); 453 free_blocks_.insert(new_free_info); 454 info->SetByteSize(new_free_size, true); 455 DCHECK_EQ(info->GetNextInfo(), new_free_info); 456 } 457 --num_objects_allocated_; 458 DCHECK_LE(allocation_size, num_bytes_allocated_); 459 num_bytes_allocated_ -= allocation_size; 460 madvise(obj, allocation_size, MADV_DONTNEED); 461 if (kIsDebugBuild) { 462 // Can't disallow reads since we use them to find next chunks during coalescing. 463 mprotect(obj, allocation_size, PROT_READ); 464 } 465 return allocation_size; 466 } 467 468 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) { 469 DCHECK(Contains(obj)); 470 AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); 471 DCHECK(!info->IsFree()); 472 size_t alloc_size = info->ByteSize(); 473 if (usable_size != nullptr) { 474 *usable_size = alloc_size; 475 } 476 return alloc_size; 477 } 478 479 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated, 480 size_t* usable_size, size_t* bytes_tl_bulk_allocated) { 481 MutexLock mu(self, lock_); 482 const size_t allocation_size = RoundUp(num_bytes, kAlignment); 483 AllocationInfo temp_info; 484 temp_info.SetPrevFreeBytes(allocation_size); 485 temp_info.SetByteSize(0, false); 486 AllocationInfo* new_info; 487 // Find the smallest chunk at least num_bytes in size. 488 auto it = free_blocks_.lower_bound(&temp_info); 489 if (it != free_blocks_.end()) { 490 AllocationInfo* info = *it; 491 free_blocks_.erase(it); 492 // Fit our object in the previous allocation info free space. 493 new_info = info->GetPrevFreeInfo(); 494 // Remove the newly allocated block from the info and update the prev_free_. 495 info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size); 496 if (info->GetPrevFreeBytes() > 0) { 497 AllocationInfo* new_free = info - info->GetPrevFree(); 498 new_free->SetPrevFreeBytes(0); 499 new_free->SetByteSize(info->GetPrevFreeBytes(), true); 500 // If there is remaining space, insert back into the free set. 501 free_blocks_.insert(info); 502 } 503 } else { 504 // Try to steal some memory from the free space at the end of the space. 505 if (LIKELY(free_end_ >= allocation_size)) { 506 // Fit our object at the start of the end free block. 507 new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_); 508 free_end_ -= allocation_size; 509 } else { 510 return nullptr; 511 } 512 } 513 DCHECK(bytes_allocated != nullptr); 514 *bytes_allocated = allocation_size; 515 if (usable_size != nullptr) { 516 *usable_size = allocation_size; 517 } 518 DCHECK(bytes_tl_bulk_allocated != nullptr); 519 *bytes_tl_bulk_allocated = allocation_size; 520 // Need to do these inside of the lock. 521 ++num_objects_allocated_; 522 ++total_objects_allocated_; 523 num_bytes_allocated_ += allocation_size; 524 total_bytes_allocated_ += allocation_size; 525 mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info)); 526 // We always put our object at the start of the free block, there cannot be another free block 527 // before it. 528 if (kIsDebugBuild) { 529 mprotect(obj, allocation_size, PROT_READ | PROT_WRITE); 530 } 531 new_info->SetPrevFreeBytes(0); 532 new_info->SetByteSize(allocation_size, false); 533 return obj; 534 } 535 536 void FreeListSpace::Dump(std::ostream& os) const { 537 MutexLock mu(Thread::Current(), lock_); 538 os << GetName() << " -" 539 << " begin: " << reinterpret_cast<void*>(Begin()) 540 << " end: " << reinterpret_cast<void*>(End()) << "\n"; 541 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 542 const AllocationInfo* cur_info = 543 GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())); 544 const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start); 545 while (cur_info < end_info) { 546 size_t size = cur_info->ByteSize(); 547 uintptr_t address = GetAddressForAllocationInfo(cur_info); 548 if (cur_info->IsFree()) { 549 os << "Free block at address: " << reinterpret_cast<const void*>(address) 550 << " of length " << size << " bytes\n"; 551 } else { 552 os << "Large object at address: " << reinterpret_cast<const void*>(address) 553 << " of length " << size << " bytes\n"; 554 } 555 cur_info = cur_info->GetNextInfo(); 556 } 557 if (free_end_) { 558 os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start) 559 << " of length " << free_end_ << " bytes\n"; 560 } 561 } 562 563 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const { 564 const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj)); 565 DCHECK(info != nullptr); 566 return info->IsZygoteObject(); 567 } 568 569 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) { 570 MutexLock mu(self, lock_); 571 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_; 572 for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())), 573 *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info; 574 cur_info = cur_info->GetNextInfo()) { 575 if (!cur_info->IsFree()) { 576 cur_info->SetZygoteObject(); 577 } 578 } 579 } 580 581 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) { 582 SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg); 583 space::LargeObjectSpace* space = context->space->AsLargeObjectSpace(); 584 Thread* self = context->self; 585 Locks::heap_bitmap_lock_->AssertExclusiveHeld(self); 586 // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap 587 // the bitmaps as an optimization. 588 if (!context->swap_bitmaps) { 589 accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap(); 590 for (size_t i = 0; i < num_ptrs; ++i) { 591 bitmap->Clear(ptrs[i]); 592 } 593 } 594 context->freed.objects += num_ptrs; 595 context->freed.bytes += space->FreeList(self, num_ptrs, ptrs); 596 } 597 598 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) { 599 if (Begin() >= End()) { 600 return collector::ObjectBytePair(0, 0); 601 } 602 accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap(); 603 accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap(); 604 if (swap_bitmaps) { 605 std::swap(live_bitmap, mark_bitmap); 606 } 607 AllocSpace::SweepCallbackContext scc(swap_bitmaps, this); 608 accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap, 609 reinterpret_cast<uintptr_t>(Begin()), 610 reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc); 611 return scc.freed; 612 } 613 614 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/, 615 size_t /*failed_alloc_bytes*/) { 616 UNIMPLEMENTED(FATAL); 617 } 618 619 } // namespace space 620 } // namespace gc 621 } // namespace art 622