Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "large_object_space.h"
     18 
     19 #include <valgrind.h>
     20 #include <memory>
     21 #include <memcheck/memcheck.h>
     22 
     23 #include "gc/accounting/heap_bitmap-inl.h"
     24 #include "gc/accounting/space_bitmap-inl.h"
     25 #include "base/logging.h"
     26 #include "base/mutex-inl.h"
     27 #include "base/stl_util.h"
     28 #include "image.h"
     29 #include "os.h"
     30 #include "scoped_thread_state_change.h"
     31 #include "space-inl.h"
     32 #include "thread-inl.h"
     33 
     34 namespace art {
     35 namespace gc {
     36 namespace space {
     37 
     38 class MemoryToolLargeObjectMapSpace FINAL : public LargeObjectMapSpace {
     39  public:
     40   explicit MemoryToolLargeObjectMapSpace(const std::string& name) : LargeObjectMapSpace(name) {
     41   }
     42 
     43   ~MemoryToolLargeObjectMapSpace() OVERRIDE {
     44     // Keep valgrind happy if there is any large objects such as dex cache arrays which aren't
     45     // freed since they are held live by the class linker.
     46     MutexLock mu(Thread::Current(), lock_);
     47     for (auto& m : large_objects_) {
     48       delete m.second.mem_map;
     49     }
     50   }
     51 
     52   mirror::Object* Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
     53                         size_t* usable_size, size_t* bytes_tl_bulk_allocated)
     54       OVERRIDE {
     55     mirror::Object* obj =
     56         LargeObjectMapSpace::Alloc(self, num_bytes + kMemoryToolRedZoneBytes * 2, bytes_allocated,
     57                                    usable_size, bytes_tl_bulk_allocated);
     58     mirror::Object* object_without_rdz = reinterpret_cast<mirror::Object*>(
     59         reinterpret_cast<uintptr_t>(obj) + kMemoryToolRedZoneBytes);
     60     MEMORY_TOOL_MAKE_NOACCESS(reinterpret_cast<void*>(obj), kMemoryToolRedZoneBytes);
     61     MEMORY_TOOL_MAKE_NOACCESS(
     62         reinterpret_cast<uint8_t*>(object_without_rdz) + num_bytes,
     63         kMemoryToolRedZoneBytes);
     64     if (usable_size != nullptr) {
     65       *usable_size = num_bytes;  // Since we have redzones, shrink the usable size.
     66     }
     67     return object_without_rdz;
     68   }
     69 
     70   size_t AllocationSize(mirror::Object* obj, size_t* usable_size) OVERRIDE {
     71     return LargeObjectMapSpace::AllocationSize(ObjectWithRedzone(obj), usable_size);
     72   }
     73 
     74   bool IsZygoteLargeObject(Thread* self, mirror::Object* obj) const OVERRIDE {
     75     return LargeObjectMapSpace::IsZygoteLargeObject(self, ObjectWithRedzone(obj));
     76   }
     77 
     78   size_t Free(Thread* self, mirror::Object* obj) OVERRIDE {
     79     mirror::Object* object_with_rdz = ObjectWithRedzone(obj);
     80     MEMORY_TOOL_MAKE_UNDEFINED(object_with_rdz, AllocationSize(obj, nullptr));
     81     return LargeObjectMapSpace::Free(self, object_with_rdz);
     82   }
     83 
     84   bool Contains(const mirror::Object* obj) const OVERRIDE {
     85     return LargeObjectMapSpace::Contains(ObjectWithRedzone(obj));
     86   }
     87 
     88  private:
     89   static const mirror::Object* ObjectWithRedzone(const mirror::Object* obj) {
     90     return reinterpret_cast<const mirror::Object*>(
     91         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
     92   }
     93 
     94   static mirror::Object* ObjectWithRedzone(mirror::Object* obj) {
     95     return reinterpret_cast<mirror::Object*>(
     96         reinterpret_cast<uintptr_t>(obj) - kMemoryToolRedZoneBytes);
     97   }
     98 
     99   static constexpr size_t kMemoryToolRedZoneBytes = kPageSize;
    100 };
    101 
    102 void LargeObjectSpace::SwapBitmaps() {
    103   live_bitmap_.swap(mark_bitmap_);
    104   // Swap names to get more descriptive diagnostics.
    105   std::string temp_name = live_bitmap_->GetName();
    106   live_bitmap_->SetName(mark_bitmap_->GetName());
    107   mark_bitmap_->SetName(temp_name);
    108 }
    109 
    110 LargeObjectSpace::LargeObjectSpace(const std::string& name, uint8_t* begin, uint8_t* end)
    111     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
    112       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
    113       total_objects_allocated_(0), begin_(begin), end_(end) {
    114 }
    115 
    116 
    117 void LargeObjectSpace::CopyLiveToMarked() {
    118   mark_bitmap_->CopyFrom(live_bitmap_.get());
    119 }
    120 
    121 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
    122     : LargeObjectSpace(name, nullptr, nullptr),
    123       lock_("large object map space lock", kAllocSpaceLock) {}
    124 
    125 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
    126   if (Runtime::Current()->IsRunningOnMemoryTool()) {
    127     return new MemoryToolLargeObjectMapSpace(name);
    128   } else {
    129     return new LargeObjectMapSpace(name);
    130   }
    131 }
    132 
    133 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes,
    134                                            size_t* bytes_allocated, size_t* usable_size,
    135                                            size_t* bytes_tl_bulk_allocated) {
    136   std::string error_msg;
    137   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", nullptr, num_bytes,
    138                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
    139   if (UNLIKELY(mem_map == nullptr)) {
    140     LOG(WARNING) << "Large object allocation failed: " << error_msg;
    141     return nullptr;
    142   }
    143   mirror::Object* const obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
    144   if (kIsDebugBuild) {
    145     ReaderMutexLock mu2(Thread::Current(), *Locks::heap_bitmap_lock_);
    146     auto* heap = Runtime::Current()->GetHeap();
    147     auto* live_bitmap = heap->GetLiveBitmap();
    148     auto* space_bitmap = live_bitmap->GetContinuousSpaceBitmap(obj);
    149     CHECK(space_bitmap == nullptr) << obj << " overlaps with bitmap " << *space_bitmap;
    150     auto* obj_end = reinterpret_cast<mirror::Object*>(mem_map->End());
    151     space_bitmap = live_bitmap->GetContinuousSpaceBitmap(obj_end - 1);
    152     CHECK(space_bitmap == nullptr) << obj_end << " overlaps with bitmap " << *space_bitmap;
    153   }
    154   MutexLock mu(self, lock_);
    155   large_objects_.Put(obj, LargeObject {mem_map, false /* not zygote */});
    156   const size_t allocation_size = mem_map->BaseSize();
    157   DCHECK(bytes_allocated != nullptr);
    158   begin_ = std::min(begin_, reinterpret_cast<uint8_t*>(obj));
    159   uint8_t* obj_end = reinterpret_cast<uint8_t*>(obj) + allocation_size;
    160   if (end_ == nullptr || obj_end > end_) {
    161     end_ = obj_end;
    162   }
    163   *bytes_allocated = allocation_size;
    164   if (usable_size != nullptr) {
    165     *usable_size = allocation_size;
    166   }
    167   DCHECK(bytes_tl_bulk_allocated != nullptr);
    168   *bytes_tl_bulk_allocated = allocation_size;
    169   num_bytes_allocated_ += allocation_size;
    170   total_bytes_allocated_ += allocation_size;
    171   ++num_objects_allocated_;
    172   ++total_objects_allocated_;
    173   return obj;
    174 }
    175 
    176 bool LargeObjectMapSpace::IsZygoteLargeObject(Thread* self, mirror::Object* obj) const {
    177   MutexLock mu(self, lock_);
    178   auto it = large_objects_.find(obj);
    179   CHECK(it != large_objects_.end());
    180   return it->second.is_zygote;
    181 }
    182 
    183 void LargeObjectMapSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
    184   MutexLock mu(self, lock_);
    185   for (auto& pair : large_objects_) {
    186     pair.second.is_zygote = true;
    187   }
    188 }
    189 
    190 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
    191   MutexLock mu(self, lock_);
    192   auto it = large_objects_.find(ptr);
    193   if (UNLIKELY(it == large_objects_.end())) {
    194     ScopedObjectAccess soa(self);
    195     Runtime::Current()->GetHeap()->DumpSpaces(LOG(INTERNAL_FATAL));
    196     LOG(FATAL) << "Attempted to free large object " << ptr << " which was not live";
    197   }
    198   MemMap* mem_map = it->second.mem_map;
    199   const size_t map_size = mem_map->BaseSize();
    200   DCHECK_GE(num_bytes_allocated_, map_size);
    201   size_t allocation_size = map_size;
    202   num_bytes_allocated_ -= allocation_size;
    203   --num_objects_allocated_;
    204   delete mem_map;
    205   large_objects_.erase(it);
    206   return allocation_size;
    207 }
    208 
    209 size_t LargeObjectMapSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
    210   MutexLock mu(Thread::Current(), lock_);
    211   auto it = large_objects_.find(obj);
    212   CHECK(it != large_objects_.end()) << "Attempted to get size of a large object which is not live";
    213   size_t alloc_size = it->second.mem_map->BaseSize();
    214   if (usable_size != nullptr) {
    215     *usable_size = alloc_size;
    216   }
    217   return alloc_size;
    218 }
    219 
    220 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
    221   size_t total = 0;
    222   for (size_t i = 0; i < num_ptrs; ++i) {
    223     if (kDebugSpaces) {
    224       CHECK(Contains(ptrs[i]));
    225     }
    226     total += Free(self, ptrs[i]);
    227   }
    228   return total;
    229 }
    230 
    231 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
    232   MutexLock mu(Thread::Current(), lock_);
    233   for (auto& pair : large_objects_) {
    234     MemMap* mem_map = pair.second.mem_map;
    235     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
    236     callback(nullptr, nullptr, 0, arg);
    237   }
    238 }
    239 
    240 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
    241   Thread* self = Thread::Current();
    242   if (lock_.IsExclusiveHeld(self)) {
    243     // We hold lock_ so do the check.
    244     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
    245   } else {
    246     MutexLock mu(self, lock_);
    247     return large_objects_.find(const_cast<mirror::Object*>(obj)) != large_objects_.end();
    248   }
    249 }
    250 
    251 // Keeps track of allocation sizes + whether or not the previous allocation is free.
    252 // Used to coalesce free blocks and find the best fit block for an allocation for best fit object
    253 // allocation. Each allocation has an AllocationInfo which contains the size of the previous free
    254 // block preceding it. Implemented in such a way that we can also find the iterator for any
    255 // allocation info pointer.
    256 class AllocationInfo {
    257  public:
    258   AllocationInfo() : prev_free_(0), alloc_size_(0) {
    259   }
    260   // Return the number of pages that the allocation info covers.
    261   size_t AlignSize() const {
    262     return alloc_size_ & kFlagsMask;
    263   }
    264   // Returns the allocation size in bytes.
    265   size_t ByteSize() const {
    266     return AlignSize() * FreeListSpace::kAlignment;
    267   }
    268   // Updates the allocation size and whether or not it is free.
    269   void SetByteSize(size_t size, bool free) {
    270     DCHECK_EQ(size & ~kFlagsMask, 0u);
    271     DCHECK_ALIGNED(size, FreeListSpace::kAlignment);
    272     alloc_size_ = (size / FreeListSpace::kAlignment) | (free ? kFlagFree : 0u);
    273   }
    274   // Returns true if the block is free.
    275   bool IsFree() const {
    276     return (alloc_size_ & kFlagFree) != 0;
    277   }
    278   // Return true if the large object is a zygote object.
    279   bool IsZygoteObject() const {
    280     return (alloc_size_ & kFlagZygote) != 0;
    281   }
    282   // Change the object to be a zygote object.
    283   void SetZygoteObject() {
    284     alloc_size_ |= kFlagZygote;
    285   }
    286   // Return true if this is a zygote large object.
    287   // Finds and returns the next non free allocation info after ourself.
    288   AllocationInfo* GetNextInfo() {
    289     return this + AlignSize();
    290   }
    291   const AllocationInfo* GetNextInfo() const {
    292     return this + AlignSize();
    293   }
    294   // Returns the previous free allocation info by using the prev_free_ member to figure out
    295   // where it is. This is only used for coalescing so we only need to be able to do it if the
    296   // previous allocation info is free.
    297   AllocationInfo* GetPrevFreeInfo() {
    298     DCHECK_NE(prev_free_, 0U);
    299     return this - prev_free_;
    300   }
    301   // Returns the address of the object associated with this allocation info.
    302   mirror::Object* GetObjectAddress() {
    303     return reinterpret_cast<mirror::Object*>(reinterpret_cast<uintptr_t>(this) + sizeof(*this));
    304   }
    305   // Return how many kAlignment units there are before the free block.
    306   size_t GetPrevFree() const {
    307     return prev_free_;
    308   }
    309   // Returns how many free bytes there is before the block.
    310   size_t GetPrevFreeBytes() const {
    311     return GetPrevFree() * FreeListSpace::kAlignment;
    312   }
    313   // Update the size of the free block prior to the allocation.
    314   void SetPrevFreeBytes(size_t bytes) {
    315     DCHECK_ALIGNED(bytes, FreeListSpace::kAlignment);
    316     prev_free_ = bytes / FreeListSpace::kAlignment;
    317   }
    318 
    319  private:
    320   static constexpr uint32_t kFlagFree = 0x80000000;  // If block is free.
    321   static constexpr uint32_t kFlagZygote = 0x40000000;  // If the large object is a zygote object.
    322   static constexpr uint32_t kFlagsMask = ~(kFlagFree | kFlagZygote);  // Combined flags for masking.
    323   // Contains the size of the previous free block with kAlignment as the unit. If 0 then the
    324   // allocation before us is not free.
    325   // These variables are undefined in the middle of allocations / free blocks.
    326   uint32_t prev_free_;
    327   // Allocation size of this object in kAlignment as the unit.
    328   uint32_t alloc_size_;
    329 };
    330 
    331 size_t FreeListSpace::GetSlotIndexForAllocationInfo(const AllocationInfo* info) const {
    332   DCHECK_GE(info, allocation_info_);
    333   DCHECK_LT(info, reinterpret_cast<AllocationInfo*>(allocation_info_map_->End()));
    334   return info - allocation_info_;
    335 }
    336 
    337 AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) {
    338   return &allocation_info_[GetSlotIndexForAddress(address)];
    339 }
    340 
    341 const AllocationInfo* FreeListSpace::GetAllocationInfoForAddress(uintptr_t address) const {
    342   return &allocation_info_[GetSlotIndexForAddress(address)];
    343 }
    344 
    345 inline bool FreeListSpace::SortByPrevFree::operator()(const AllocationInfo* a,
    346                                                       const AllocationInfo* b) const {
    347   if (a->GetPrevFree() < b->GetPrevFree()) return true;
    348   if (a->GetPrevFree() > b->GetPrevFree()) return false;
    349   if (a->AlignSize() < b->AlignSize()) return true;
    350   if (a->AlignSize() > b->AlignSize()) return false;
    351   return reinterpret_cast<uintptr_t>(a) < reinterpret_cast<uintptr_t>(b);
    352 }
    353 
    354 FreeListSpace* FreeListSpace::Create(const std::string& name, uint8_t* requested_begin, size_t size) {
    355   CHECK_EQ(size % kAlignment, 0U);
    356   std::string error_msg;
    357   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
    358                                          PROT_READ | PROT_WRITE, true, false, &error_msg);
    359   CHECK(mem_map != nullptr) << "Failed to allocate large object space mem map: " << error_msg;
    360   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
    361 }
    362 
    363 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, uint8_t* begin, uint8_t* end)
    364     : LargeObjectSpace(name, begin, end),
    365       mem_map_(mem_map),
    366       lock_("free list space lock", kAllocSpaceLock) {
    367   const size_t space_capacity = end - begin;
    368   free_end_ = space_capacity;
    369   CHECK_ALIGNED(space_capacity, kAlignment);
    370   const size_t alloc_info_size = sizeof(AllocationInfo) * (space_capacity / kAlignment);
    371   std::string error_msg;
    372   allocation_info_map_.reset(
    373       MemMap::MapAnonymous("large object free list space allocation info map",
    374                            nullptr, alloc_info_size, PROT_READ | PROT_WRITE,
    375                            false, false, &error_msg));
    376   CHECK(allocation_info_map_.get() != nullptr) << "Failed to allocate allocation info map"
    377       << error_msg;
    378   allocation_info_ = reinterpret_cast<AllocationInfo*>(allocation_info_map_->Begin());
    379 }
    380 
    381 FreeListSpace::~FreeListSpace() {}
    382 
    383 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
    384   MutexLock mu(Thread::Current(), lock_);
    385   const uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    386   AllocationInfo* cur_info = &allocation_info_[0];
    387   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
    388   while (cur_info < end_info) {
    389     if (!cur_info->IsFree()) {
    390       size_t alloc_size = cur_info->ByteSize();
    391       uint8_t* byte_start = reinterpret_cast<uint8_t*>(GetAddressForAllocationInfo(cur_info));
    392       uint8_t* byte_end = byte_start + alloc_size;
    393       callback(byte_start, byte_end, alloc_size, arg);
    394       callback(nullptr, nullptr, 0, arg);
    395     }
    396     cur_info = cur_info->GetNextInfo();
    397   }
    398   CHECK_EQ(cur_info, end_info);
    399 }
    400 
    401 void FreeListSpace::RemoveFreePrev(AllocationInfo* info) {
    402   CHECK_GT(info->GetPrevFree(), 0U);
    403   auto it = free_blocks_.lower_bound(info);
    404   CHECK(it != free_blocks_.end());
    405   CHECK_EQ(*it, info);
    406   free_blocks_.erase(it);
    407 }
    408 
    409 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
    410   MutexLock mu(self, lock_);
    411   DCHECK(Contains(obj)) << reinterpret_cast<void*>(Begin()) << " " << obj << " "
    412                         << reinterpret_cast<void*>(End());
    413   DCHECK_ALIGNED(obj, kAlignment);
    414   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    415   DCHECK(!info->IsFree());
    416   const size_t allocation_size = info->ByteSize();
    417   DCHECK_GT(allocation_size, 0U);
    418   DCHECK_ALIGNED(allocation_size, kAlignment);
    419   info->SetByteSize(allocation_size, true);  // Mark as free.
    420   // Look at the next chunk.
    421   AllocationInfo* next_info = info->GetNextInfo();
    422   // Calculate the start of the end free block.
    423   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    424   size_t prev_free_bytes = info->GetPrevFreeBytes();
    425   size_t new_free_size = allocation_size;
    426   if (prev_free_bytes != 0) {
    427     // Coalesce with previous free chunk.
    428     new_free_size += prev_free_bytes;
    429     RemoveFreePrev(info);
    430     info = info->GetPrevFreeInfo();
    431     // The previous allocation info must not be free since we are supposed to always coalesce.
    432     DCHECK_EQ(info->GetPrevFreeBytes(), 0U) << "Previous allocation was free";
    433   }
    434   uintptr_t next_addr = GetAddressForAllocationInfo(next_info);
    435   if (next_addr >= free_end_start) {
    436     // Easy case, the next chunk is the end free region.
    437     CHECK_EQ(next_addr, free_end_start);
    438     free_end_ += new_free_size;
    439   } else {
    440     AllocationInfo* new_free_info;
    441     if (next_info->IsFree()) {
    442       AllocationInfo* next_next_info = next_info->GetNextInfo();
    443       // Next next info can't be free since we always coalesce.
    444       DCHECK(!next_next_info->IsFree());
    445       DCHECK_ALIGNED(next_next_info->ByteSize(), kAlignment);
    446       new_free_info = next_next_info;
    447       new_free_size += next_next_info->GetPrevFreeBytes();
    448       RemoveFreePrev(next_next_info);
    449     } else {
    450       new_free_info = next_info;
    451     }
    452     new_free_info->SetPrevFreeBytes(new_free_size);
    453     free_blocks_.insert(new_free_info);
    454     info->SetByteSize(new_free_size, true);
    455     DCHECK_EQ(info->GetNextInfo(), new_free_info);
    456   }
    457   --num_objects_allocated_;
    458   DCHECK_LE(allocation_size, num_bytes_allocated_);
    459   num_bytes_allocated_ -= allocation_size;
    460   madvise(obj, allocation_size, MADV_DONTNEED);
    461   if (kIsDebugBuild) {
    462     // Can't disallow reads since we use them to find next chunks during coalescing.
    463     mprotect(obj, allocation_size, PROT_READ);
    464   }
    465   return allocation_size;
    466 }
    467 
    468 size_t FreeListSpace::AllocationSize(mirror::Object* obj, size_t* usable_size) {
    469   DCHECK(Contains(obj));
    470   AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    471   DCHECK(!info->IsFree());
    472   size_t alloc_size = info->ByteSize();
    473   if (usable_size != nullptr) {
    474     *usable_size = alloc_size;
    475   }
    476   return alloc_size;
    477 }
    478 
    479 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated,
    480                                      size_t* usable_size, size_t* bytes_tl_bulk_allocated) {
    481   MutexLock mu(self, lock_);
    482   const size_t allocation_size = RoundUp(num_bytes, kAlignment);
    483   AllocationInfo temp_info;
    484   temp_info.SetPrevFreeBytes(allocation_size);
    485   temp_info.SetByteSize(0, false);
    486   AllocationInfo* new_info;
    487   // Find the smallest chunk at least num_bytes in size.
    488   auto it = free_blocks_.lower_bound(&temp_info);
    489   if (it != free_blocks_.end()) {
    490     AllocationInfo* info = *it;
    491     free_blocks_.erase(it);
    492     // Fit our object in the previous allocation info free space.
    493     new_info = info->GetPrevFreeInfo();
    494     // Remove the newly allocated block from the info and update the prev_free_.
    495     info->SetPrevFreeBytes(info->GetPrevFreeBytes() - allocation_size);
    496     if (info->GetPrevFreeBytes() > 0) {
    497       AllocationInfo* new_free = info - info->GetPrevFree();
    498       new_free->SetPrevFreeBytes(0);
    499       new_free->SetByteSize(info->GetPrevFreeBytes(), true);
    500       // If there is remaining space, insert back into the free set.
    501       free_blocks_.insert(info);
    502     }
    503   } else {
    504     // Try to steal some memory from the free space at the end of the space.
    505     if (LIKELY(free_end_ >= allocation_size)) {
    506       // Fit our object at the start of the end free block.
    507       new_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(End()) - free_end_);
    508       free_end_ -= allocation_size;
    509     } else {
    510       return nullptr;
    511     }
    512   }
    513   DCHECK(bytes_allocated != nullptr);
    514   *bytes_allocated = allocation_size;
    515   if (usable_size != nullptr) {
    516     *usable_size = allocation_size;
    517   }
    518   DCHECK(bytes_tl_bulk_allocated != nullptr);
    519   *bytes_tl_bulk_allocated = allocation_size;
    520   // Need to do these inside of the lock.
    521   ++num_objects_allocated_;
    522   ++total_objects_allocated_;
    523   num_bytes_allocated_ += allocation_size;
    524   total_bytes_allocated_ += allocation_size;
    525   mirror::Object* obj = reinterpret_cast<mirror::Object*>(GetAddressForAllocationInfo(new_info));
    526   // We always put our object at the start of the free block, there cannot be another free block
    527   // before it.
    528   if (kIsDebugBuild) {
    529     mprotect(obj, allocation_size, PROT_READ | PROT_WRITE);
    530   }
    531   new_info->SetPrevFreeBytes(0);
    532   new_info->SetByteSize(allocation_size, false);
    533   return obj;
    534 }
    535 
    536 void FreeListSpace::Dump(std::ostream& os) const {
    537   MutexLock mu(Thread::Current(), lock_);
    538   os << GetName() << " -"
    539      << " begin: " << reinterpret_cast<void*>(Begin())
    540      << " end: " << reinterpret_cast<void*>(End()) << "\n";
    541   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    542   const AllocationInfo* cur_info =
    543       GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin()));
    544   const AllocationInfo* end_info = GetAllocationInfoForAddress(free_end_start);
    545   while (cur_info < end_info) {
    546     size_t size = cur_info->ByteSize();
    547     uintptr_t address = GetAddressForAllocationInfo(cur_info);
    548     if (cur_info->IsFree()) {
    549       os << "Free block at address: " << reinterpret_cast<const void*>(address)
    550          << " of length " << size << " bytes\n";
    551     } else {
    552       os << "Large object at address: " << reinterpret_cast<const void*>(address)
    553          << " of length " << size << " bytes\n";
    554     }
    555     cur_info = cur_info->GetNextInfo();
    556   }
    557   if (free_end_) {
    558     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
    559        << " of length " << free_end_ << " bytes\n";
    560   }
    561 }
    562 
    563 bool FreeListSpace::IsZygoteLargeObject(Thread* self ATTRIBUTE_UNUSED, mirror::Object* obj) const {
    564   const AllocationInfo* info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(obj));
    565   DCHECK(info != nullptr);
    566   return info->IsZygoteObject();
    567 }
    568 
    569 void FreeListSpace::SetAllLargeObjectsAsZygoteObjects(Thread* self) {
    570   MutexLock mu(self, lock_);
    571   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
    572   for (AllocationInfo* cur_info = GetAllocationInfoForAddress(reinterpret_cast<uintptr_t>(Begin())),
    573       *end_info = GetAllocationInfoForAddress(free_end_start); cur_info < end_info;
    574       cur_info = cur_info->GetNextInfo()) {
    575     if (!cur_info->IsFree()) {
    576       cur_info->SetZygoteObject();
    577     }
    578   }
    579 }
    580 
    581 void LargeObjectSpace::SweepCallback(size_t num_ptrs, mirror::Object** ptrs, void* arg) {
    582   SweepCallbackContext* context = static_cast<SweepCallbackContext*>(arg);
    583   space::LargeObjectSpace* space = context->space->AsLargeObjectSpace();
    584   Thread* self = context->self;
    585   Locks::heap_bitmap_lock_->AssertExclusiveHeld(self);
    586   // If the bitmaps aren't swapped we need to clear the bits since the GC isn't going to re-swap
    587   // the bitmaps as an optimization.
    588   if (!context->swap_bitmaps) {
    589     accounting::LargeObjectBitmap* bitmap = space->GetLiveBitmap();
    590     for (size_t i = 0; i < num_ptrs; ++i) {
    591       bitmap->Clear(ptrs[i]);
    592     }
    593   }
    594   context->freed.objects += num_ptrs;
    595   context->freed.bytes += space->FreeList(self, num_ptrs, ptrs);
    596 }
    597 
    598 collector::ObjectBytePair LargeObjectSpace::Sweep(bool swap_bitmaps) {
    599   if (Begin() >= End()) {
    600     return collector::ObjectBytePair(0, 0);
    601   }
    602   accounting::LargeObjectBitmap* live_bitmap = GetLiveBitmap();
    603   accounting::LargeObjectBitmap* mark_bitmap = GetMarkBitmap();
    604   if (swap_bitmaps) {
    605     std::swap(live_bitmap, mark_bitmap);
    606   }
    607   AllocSpace::SweepCallbackContext scc(swap_bitmaps, this);
    608   accounting::LargeObjectBitmap::SweepWalk(*live_bitmap, *mark_bitmap,
    609                                            reinterpret_cast<uintptr_t>(Begin()),
    610                                            reinterpret_cast<uintptr_t>(End()), SweepCallback, &scc);
    611   return scc.freed;
    612 }
    613 
    614 void LargeObjectSpace::LogFragmentationAllocFailure(std::ostream& /*os*/,
    615                                                     size_t /*failed_alloc_bytes*/) {
    616   UNIMPLEMENTED(FATAL);
    617 }
    618 
    619 }  // namespace space
    620 }  // namespace gc
    621 }  // namespace art
    622