Home | History | Annotate | Download | only in Support
      1 //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some functions that are useful for math stuff.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_SUPPORT_MATHEXTRAS_H
     15 #define LLVM_SUPPORT_MATHEXTRAS_H
     16 
     17 #include "llvm/Support/Compiler.h"
     18 #include "llvm/Support/SwapByteOrder.h"
     19 #include <cassert>
     20 #include <cstring>
     21 #include <type_traits>
     22 
     23 #ifdef _MSC_VER
     24 #include <intrin.h>
     25 #endif
     26 
     27 #ifdef __ANDROID_NDK__
     28 #include <android/api-level.h>
     29 #endif
     30 
     31 namespace llvm {
     32 /// \brief The behavior an operation has on an input of 0.
     33 enum ZeroBehavior {
     34   /// \brief The returned value is undefined.
     35   ZB_Undefined,
     36   /// \brief The returned value is numeric_limits<T>::max()
     37   ZB_Max,
     38   /// \brief The returned value is numeric_limits<T>::digits
     39   ZB_Width
     40 };
     41 
     42 namespace detail {
     43 template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter {
     44   static std::size_t count(T Val, ZeroBehavior) {
     45     if (!Val)
     46       return std::numeric_limits<T>::digits;
     47     if (Val & 0x1)
     48       return 0;
     49 
     50     // Bisection method.
     51     std::size_t ZeroBits = 0;
     52     T Shift = std::numeric_limits<T>::digits >> 1;
     53     T Mask = std::numeric_limits<T>::max() >> Shift;
     54     while (Shift) {
     55       if ((Val & Mask) == 0) {
     56         Val >>= Shift;
     57         ZeroBits |= Shift;
     58       }
     59       Shift >>= 1;
     60       Mask >>= Shift;
     61     }
     62     return ZeroBits;
     63   }
     64 };
     65 
     66 #if __GNUC__ >= 4 || defined(_MSC_VER)
     67 template <typename T> struct TrailingZerosCounter<T, 4> {
     68   static std::size_t count(T Val, ZeroBehavior ZB) {
     69     if (ZB != ZB_Undefined && Val == 0)
     70       return 32;
     71 
     72 #if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
     73     return __builtin_ctz(Val);
     74 #elif defined(_MSC_VER)
     75     unsigned long Index;
     76     _BitScanForward(&Index, Val);
     77     return Index;
     78 #endif
     79   }
     80 };
     81 
     82 #if !defined(_MSC_VER) || defined(_M_X64)
     83 template <typename T> struct TrailingZerosCounter<T, 8> {
     84   static std::size_t count(T Val, ZeroBehavior ZB) {
     85     if (ZB != ZB_Undefined && Val == 0)
     86       return 64;
     87 
     88 #if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
     89     return __builtin_ctzll(Val);
     90 #elif defined(_MSC_VER)
     91     unsigned long Index;
     92     _BitScanForward64(&Index, Val);
     93     return Index;
     94 #endif
     95   }
     96 };
     97 #endif
     98 #endif
     99 } // namespace detail
    100 
    101 /// \brief Count number of 0's from the least significant bit to the most
    102 ///   stopping at the first 1.
    103 ///
    104 /// Only unsigned integral types are allowed.
    105 ///
    106 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
    107 ///   valid arguments.
    108 template <typename T>
    109 std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
    110   static_assert(std::numeric_limits<T>::is_integer &&
    111                     !std::numeric_limits<T>::is_signed,
    112                 "Only unsigned integral types are allowed.");
    113   return detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
    114 }
    115 
    116 namespace detail {
    117 template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter {
    118   static std::size_t count(T Val, ZeroBehavior) {
    119     if (!Val)
    120       return std::numeric_limits<T>::digits;
    121 
    122     // Bisection method.
    123     std::size_t ZeroBits = 0;
    124     for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
    125       T Tmp = Val >> Shift;
    126       if (Tmp)
    127         Val = Tmp;
    128       else
    129         ZeroBits |= Shift;
    130     }
    131     return ZeroBits;
    132   }
    133 };
    134 
    135 #if __GNUC__ >= 4 || defined(_MSC_VER)
    136 template <typename T> struct LeadingZerosCounter<T, 4> {
    137   static std::size_t count(T Val, ZeroBehavior ZB) {
    138     if (ZB != ZB_Undefined && Val == 0)
    139       return 32;
    140 
    141 #if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
    142     return __builtin_clz(Val);
    143 #elif defined(_MSC_VER)
    144     unsigned long Index;
    145     _BitScanReverse(&Index, Val);
    146     return Index ^ 31;
    147 #endif
    148   }
    149 };
    150 
    151 #if !defined(_MSC_VER) || defined(_M_X64)
    152 template <typename T> struct LeadingZerosCounter<T, 8> {
    153   static std::size_t count(T Val, ZeroBehavior ZB) {
    154     if (ZB != ZB_Undefined && Val == 0)
    155       return 64;
    156 
    157 #if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
    158     return __builtin_clzll(Val);
    159 #elif defined(_MSC_VER)
    160     unsigned long Index;
    161     _BitScanReverse64(&Index, Val);
    162     return Index ^ 63;
    163 #endif
    164   }
    165 };
    166 #endif
    167 #endif
    168 } // namespace detail
    169 
    170 /// \brief Count number of 0's from the most significant bit to the least
    171 ///   stopping at the first 1.
    172 ///
    173 /// Only unsigned integral types are allowed.
    174 ///
    175 /// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
    176 ///   valid arguments.
    177 template <typename T>
    178 std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
    179   static_assert(std::numeric_limits<T>::is_integer &&
    180                     !std::numeric_limits<T>::is_signed,
    181                 "Only unsigned integral types are allowed.");
    182   return detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
    183 }
    184 
    185 /// \brief Get the index of the first set bit starting from the least
    186 ///   significant bit.
    187 ///
    188 /// Only unsigned integral types are allowed.
    189 ///
    190 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    191 ///   valid arguments.
    192 template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
    193   if (ZB == ZB_Max && Val == 0)
    194     return std::numeric_limits<T>::max();
    195 
    196   return countTrailingZeros(Val, ZB_Undefined);
    197 }
    198 
    199 /// \brief Get the index of the last set bit starting from the least
    200 ///   significant bit.
    201 ///
    202 /// Only unsigned integral types are allowed.
    203 ///
    204 /// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
    205 ///   valid arguments.
    206 template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
    207   if (ZB == ZB_Max && Val == 0)
    208     return std::numeric_limits<T>::max();
    209 
    210   // Use ^ instead of - because both gcc and llvm can remove the associated ^
    211   // in the __builtin_clz intrinsic on x86.
    212   return countLeadingZeros(Val, ZB_Undefined) ^
    213          (std::numeric_limits<T>::digits - 1);
    214 }
    215 
    216 /// \brief Macro compressed bit reversal table for 256 bits.
    217 ///
    218 /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
    219 static const unsigned char BitReverseTable256[256] = {
    220 #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
    221 #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
    222 #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
    223   R6(0), R6(2), R6(1), R6(3)
    224 #undef R2
    225 #undef R4
    226 #undef R6
    227 };
    228 
    229 /// \brief Reverse the bits in \p Val.
    230 template <typename T>
    231 T reverseBits(T Val) {
    232   unsigned char in[sizeof(Val)];
    233   unsigned char out[sizeof(Val)];
    234   std::memcpy(in, &Val, sizeof(Val));
    235   for (unsigned i = 0; i < sizeof(Val); ++i)
    236     out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
    237   std::memcpy(&Val, out, sizeof(Val));
    238   return Val;
    239 }
    240 
    241 // NOTE: The following support functions use the _32/_64 extensions instead of
    242 // type overloading so that signed and unsigned integers can be used without
    243 // ambiguity.
    244 
    245 /// Hi_32 - This function returns the high 32 bits of a 64 bit value.
    246 inline uint32_t Hi_32(uint64_t Value) {
    247   return static_cast<uint32_t>(Value >> 32);
    248 }
    249 
    250 /// Lo_32 - This function returns the low 32 bits of a 64 bit value.
    251 inline uint32_t Lo_32(uint64_t Value) {
    252   return static_cast<uint32_t>(Value);
    253 }
    254 
    255 /// Make_64 - This functions makes a 64-bit integer from a high / low pair of
    256 ///           32-bit integers.
    257 inline uint64_t Make_64(uint32_t High, uint32_t Low) {
    258   return ((uint64_t)High << 32) | (uint64_t)Low;
    259 }
    260 
    261 /// isInt - Checks if an integer fits into the given bit width.
    262 template<unsigned N>
    263 inline bool isInt(int64_t x) {
    264   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    265 }
    266 // Template specializations to get better code for common cases.
    267 template<>
    268 inline bool isInt<8>(int64_t x) {
    269   return static_cast<int8_t>(x) == x;
    270 }
    271 template<>
    272 inline bool isInt<16>(int64_t x) {
    273   return static_cast<int16_t>(x) == x;
    274 }
    275 template<>
    276 inline bool isInt<32>(int64_t x) {
    277   return static_cast<int32_t>(x) == x;
    278 }
    279 
    280 /// isShiftedInt<N,S> - Checks if a signed integer is an N bit number shifted
    281 ///                     left by S.
    282 template<unsigned N, unsigned S>
    283 inline bool isShiftedInt(int64_t x) {
    284   return isInt<N+S>(x) && (x % (1<<S) == 0);
    285 }
    286 
    287 /// isUInt - Checks if an unsigned integer fits into the given bit width.
    288 template<unsigned N>
    289 inline bool isUInt(uint64_t x) {
    290   return N >= 64 || x < (UINT64_C(1)<<(N));
    291 }
    292 // Template specializations to get better code for common cases.
    293 template<>
    294 inline bool isUInt<8>(uint64_t x) {
    295   return static_cast<uint8_t>(x) == x;
    296 }
    297 template<>
    298 inline bool isUInt<16>(uint64_t x) {
    299   return static_cast<uint16_t>(x) == x;
    300 }
    301 template<>
    302 inline bool isUInt<32>(uint64_t x) {
    303   return static_cast<uint32_t>(x) == x;
    304 }
    305 
    306 /// isShiftedUInt<N,S> - Checks if a unsigned integer is an N bit number shifted
    307 ///                     left by S.
    308 template<unsigned N, unsigned S>
    309 inline bool isShiftedUInt(uint64_t x) {
    310   return isUInt<N+S>(x) && (x % (1<<S) == 0);
    311 }
    312 
    313 /// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
    314 /// bit width.
    315 inline bool isUIntN(unsigned N, uint64_t x) {
    316   return N >= 64 || x < (UINT64_C(1)<<(N));
    317 }
    318 
    319 /// isIntN - Checks if an signed integer fits into the given (dynamic)
    320 /// bit width.
    321 inline bool isIntN(unsigned N, int64_t x) {
    322   return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
    323 }
    324 
    325 /// isMask_32 - This function returns true if the argument is a non-empty
    326 /// sequence of ones starting at the least significant bit with the remainder
    327 /// zero (32 bit version).  Ex. isMask_32(0x0000FFFFU) == true.
    328 inline bool isMask_32(uint32_t Value) {
    329   return Value && ((Value + 1) & Value) == 0;
    330 }
    331 
    332 /// isMask_64 - This function returns true if the argument is a non-empty
    333 /// sequence of ones starting at the least significant bit with the remainder
    334 /// zero (64 bit version).
    335 inline bool isMask_64(uint64_t Value) {
    336   return Value && ((Value + 1) & Value) == 0;
    337 }
    338 
    339 /// isShiftedMask_32 - This function returns true if the argument contains a
    340 /// non-empty sequence of ones with the remainder zero (32 bit version.)
    341 /// Ex. isShiftedMask_32(0x0000FF00U) == true.
    342 inline bool isShiftedMask_32(uint32_t Value) {
    343   return Value && isMask_32((Value - 1) | Value);
    344 }
    345 
    346 /// isShiftedMask_64 - This function returns true if the argument contains a
    347 /// non-empty sequence of ones with the remainder zero (64 bit version.)
    348 inline bool isShiftedMask_64(uint64_t Value) {
    349   return Value && isMask_64((Value - 1) | Value);
    350 }
    351 
    352 /// isPowerOf2_32 - This function returns true if the argument is a power of
    353 /// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
    354 inline bool isPowerOf2_32(uint32_t Value) {
    355   return Value && !(Value & (Value - 1));
    356 }
    357 
    358 /// isPowerOf2_64 - This function returns true if the argument is a power of two
    359 /// > 0 (64 bit edition.)
    360 inline bool isPowerOf2_64(uint64_t Value) {
    361   return Value && !(Value & (Value - int64_t(1L)));
    362 }
    363 
    364 /// ByteSwap_16 - This function returns a byte-swapped representation of the
    365 /// 16-bit argument, Value.
    366 inline uint16_t ByteSwap_16(uint16_t Value) {
    367   return sys::SwapByteOrder_16(Value);
    368 }
    369 
    370 /// ByteSwap_32 - This function returns a byte-swapped representation of the
    371 /// 32-bit argument, Value.
    372 inline uint32_t ByteSwap_32(uint32_t Value) {
    373   return sys::SwapByteOrder_32(Value);
    374 }
    375 
    376 /// ByteSwap_64 - This function returns a byte-swapped representation of the
    377 /// 64-bit argument, Value.
    378 inline uint64_t ByteSwap_64(uint64_t Value) {
    379   return sys::SwapByteOrder_64(Value);
    380 }
    381 
    382 /// \brief Count the number of ones from the most significant bit to the first
    383 /// zero bit.
    384 ///
    385 /// Ex. CountLeadingOnes(0xFF0FFF00) == 8.
    386 /// Only unsigned integral types are allowed.
    387 ///
    388 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
    389 /// ZB_Undefined are valid arguments.
    390 template <typename T>
    391 std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
    392   static_assert(std::numeric_limits<T>::is_integer &&
    393                     !std::numeric_limits<T>::is_signed,
    394                 "Only unsigned integral types are allowed.");
    395   return countLeadingZeros(~Value, ZB);
    396 }
    397 
    398 /// \brief Count the number of ones from the least significant bit to the first
    399 /// zero bit.
    400 ///
    401 /// Ex. countTrailingOnes(0x00FF00FF) == 8.
    402 /// Only unsigned integral types are allowed.
    403 ///
    404 /// \param ZB the behavior on an input of all ones. Only ZB_Width and
    405 /// ZB_Undefined are valid arguments.
    406 template <typename T>
    407 std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
    408   static_assert(std::numeric_limits<T>::is_integer &&
    409                     !std::numeric_limits<T>::is_signed,
    410                 "Only unsigned integral types are allowed.");
    411   return countTrailingZeros(~Value, ZB);
    412 }
    413 
    414 namespace detail {
    415 template <typename T, std::size_t SizeOfT> struct PopulationCounter {
    416   static unsigned count(T Value) {
    417     // Generic version, forward to 32 bits.
    418     static_assert(SizeOfT <= 4, "Not implemented!");
    419 #if __GNUC__ >= 4
    420     return __builtin_popcount(Value);
    421 #else
    422     uint32_t v = Value;
    423     v = v - ((v >> 1) & 0x55555555);
    424     v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
    425     return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
    426 #endif
    427   }
    428 };
    429 
    430 template <typename T> struct PopulationCounter<T, 8> {
    431   static unsigned count(T Value) {
    432 #if __GNUC__ >= 4
    433     return __builtin_popcountll(Value);
    434 #else
    435     uint64_t v = Value;
    436     v = v - ((v >> 1) & 0x5555555555555555ULL);
    437     v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
    438     v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
    439     return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
    440 #endif
    441   }
    442 };
    443 } // namespace detail
    444 
    445 /// \brief Count the number of set bits in a value.
    446 /// Ex. countPopulation(0xF000F000) = 8
    447 /// Returns 0 if the word is zero.
    448 template <typename T>
    449 inline unsigned countPopulation(T Value) {
    450   static_assert(std::numeric_limits<T>::is_integer &&
    451                     !std::numeric_limits<T>::is_signed,
    452                 "Only unsigned integral types are allowed.");
    453   return detail::PopulationCounter<T, sizeof(T)>::count(Value);
    454 }
    455 
    456 /// Log2 - This function returns the log base 2 of the specified value
    457 inline double Log2(double Value) {
    458 #if defined(__ANDROID_API__) && __ANDROID_API__ < 18
    459   return __builtin_log(Value) / __builtin_log(2.0);
    460 #else
    461   return log2(Value);
    462 #endif
    463 }
    464 
    465 /// Log2_32 - This function returns the floor log base 2 of the specified value,
    466 /// -1 if the value is zero. (32 bit edition.)
    467 /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
    468 inline unsigned Log2_32(uint32_t Value) {
    469   return 31 - countLeadingZeros(Value);
    470 }
    471 
    472 /// Log2_64 - This function returns the floor log base 2 of the specified value,
    473 /// -1 if the value is zero. (64 bit edition.)
    474 inline unsigned Log2_64(uint64_t Value) {
    475   return 63 - countLeadingZeros(Value);
    476 }
    477 
    478 /// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
    479 /// value, 32 if the value is zero. (32 bit edition).
    480 /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
    481 inline unsigned Log2_32_Ceil(uint32_t Value) {
    482   return 32 - countLeadingZeros(Value - 1);
    483 }
    484 
    485 /// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
    486 /// value, 64 if the value is zero. (64 bit edition.)
    487 inline unsigned Log2_64_Ceil(uint64_t Value) {
    488   return 64 - countLeadingZeros(Value - 1);
    489 }
    490 
    491 /// GreatestCommonDivisor64 - Return the greatest common divisor of the two
    492 /// values using Euclid's algorithm.
    493 inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
    494   while (B) {
    495     uint64_t T = B;
    496     B = A % B;
    497     A = T;
    498   }
    499   return A;
    500 }
    501 
    502 /// BitsToDouble - This function takes a 64-bit integer and returns the bit
    503 /// equivalent double.
    504 inline double BitsToDouble(uint64_t Bits) {
    505   union {
    506     uint64_t L;
    507     double D;
    508   } T;
    509   T.L = Bits;
    510   return T.D;
    511 }
    512 
    513 /// BitsToFloat - This function takes a 32-bit integer and returns the bit
    514 /// equivalent float.
    515 inline float BitsToFloat(uint32_t Bits) {
    516   union {
    517     uint32_t I;
    518     float F;
    519   } T;
    520   T.I = Bits;
    521   return T.F;
    522 }
    523 
    524 /// DoubleToBits - This function takes a double and returns the bit
    525 /// equivalent 64-bit integer.  Note that copying doubles around
    526 /// changes the bits of NaNs on some hosts, notably x86, so this
    527 /// routine cannot be used if these bits are needed.
    528 inline uint64_t DoubleToBits(double Double) {
    529   union {
    530     uint64_t L;
    531     double D;
    532   } T;
    533   T.D = Double;
    534   return T.L;
    535 }
    536 
    537 /// FloatToBits - This function takes a float and returns the bit
    538 /// equivalent 32-bit integer.  Note that copying floats around
    539 /// changes the bits of NaNs on some hosts, notably x86, so this
    540 /// routine cannot be used if these bits are needed.
    541 inline uint32_t FloatToBits(float Float) {
    542   union {
    543     uint32_t I;
    544     float F;
    545   } T;
    546   T.F = Float;
    547   return T.I;
    548 }
    549 
    550 /// MinAlign - A and B are either alignments or offsets.  Return the minimum
    551 /// alignment that may be assumed after adding the two together.
    552 inline uint64_t MinAlign(uint64_t A, uint64_t B) {
    553   // The largest power of 2 that divides both A and B.
    554   //
    555   // Replace "-Value" by "1+~Value" in the following commented code to avoid
    556   // MSVC warning C4146
    557   //    return (A | B) & -(A | B);
    558   return (A | B) & (1 + ~(A | B));
    559 }
    560 
    561 /// \brief Aligns \c Addr to \c Alignment bytes, rounding up.
    562 ///
    563 /// Alignment should be a power of two.  This method rounds up, so
    564 /// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
    565 inline uintptr_t alignAddr(const void *Addr, size_t Alignment) {
    566   assert(Alignment && isPowerOf2_64((uint64_t)Alignment) &&
    567          "Alignment is not a power of two!");
    568 
    569   assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
    570 
    571   return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
    572 }
    573 
    574 /// \brief Returns the necessary adjustment for aligning \c Ptr to \c Alignment
    575 /// bytes, rounding up.
    576 inline size_t alignmentAdjustment(const void *Ptr, size_t Alignment) {
    577   return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
    578 }
    579 
    580 /// NextPowerOf2 - Returns the next power of two (in 64-bits)
    581 /// that is strictly greater than A.  Returns zero on overflow.
    582 inline uint64_t NextPowerOf2(uint64_t A) {
    583   A |= (A >> 1);
    584   A |= (A >> 2);
    585   A |= (A >> 4);
    586   A |= (A >> 8);
    587   A |= (A >> 16);
    588   A |= (A >> 32);
    589   return A + 1;
    590 }
    591 
    592 /// Returns the power of two which is less than or equal to the given value.
    593 /// Essentially, it is a floor operation across the domain of powers of two.
    594 inline uint64_t PowerOf2Floor(uint64_t A) {
    595   if (!A) return 0;
    596   return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
    597 }
    598 
    599 /// Returns the next integer (mod 2**64) that is greater than or equal to
    600 /// \p Value and is a multiple of \p Align. \p Align must be non-zero.
    601 ///
    602 /// If non-zero \p Skew is specified, the return value will be a minimal
    603 /// integer that is greater than or equal to \p Value and equal to
    604 /// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
    605 /// \p Align, its value is adjusted to '\p Skew mod \p Align'.
    606 ///
    607 /// Examples:
    608 /// \code
    609 ///   RoundUpToAlignment(5, 8) = 8
    610 ///   RoundUpToAlignment(17, 8) = 24
    611 ///   RoundUpToAlignment(~0LL, 8) = 0
    612 ///   RoundUpToAlignment(321, 255) = 510
    613 ///
    614 ///   RoundUpToAlignment(5, 8, 7) = 7
    615 ///   RoundUpToAlignment(17, 8, 1) = 17
    616 ///   RoundUpToAlignment(~0LL, 8, 3) = 3
    617 ///   RoundUpToAlignment(321, 255, 42) = 552
    618 /// \endcode
    619 inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align,
    620                                    uint64_t Skew = 0) {
    621   Skew %= Align;
    622   return (Value + Align - 1 - Skew) / Align * Align + Skew;
    623 }
    624 
    625 /// Returns the offset to the next integer (mod 2**64) that is greater than
    626 /// or equal to \p Value and is a multiple of \p Align. \p Align must be
    627 /// non-zero.
    628 inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
    629   return RoundUpToAlignment(Value, Align) - Value;
    630 }
    631 
    632 /// SignExtend32 - Sign extend B-bit number x to 32-bit int.
    633 /// Usage int32_t r = SignExtend32<5>(x);
    634 template <unsigned B> inline int32_t SignExtend32(uint32_t x) {
    635   return int32_t(x << (32 - B)) >> (32 - B);
    636 }
    637 
    638 /// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
    639 /// Requires 0 < B <= 32.
    640 inline int32_t SignExtend32(uint32_t X, unsigned B) {
    641   return int32_t(X << (32 - B)) >> (32 - B);
    642 }
    643 
    644 /// SignExtend64 - Sign extend B-bit number x to 64-bit int.
    645 /// Usage int64_t r = SignExtend64<5>(x);
    646 template <unsigned B> inline int64_t SignExtend64(uint64_t x) {
    647   return int64_t(x << (64 - B)) >> (64 - B);
    648 }
    649 
    650 /// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
    651 /// Requires 0 < B <= 64.
    652 inline int64_t SignExtend64(uint64_t X, unsigned B) {
    653   return int64_t(X << (64 - B)) >> (64 - B);
    654 }
    655 
    656 /// \brief Add two unsigned integers, X and Y, of type T.
    657 /// Clamp the result to the maximum representable value of T on overflow.
    658 /// ResultOverflowed indicates if the result is larger than the maximum
    659 /// representable value of type T.
    660 template <typename T>
    661 typename std::enable_if<std::is_unsigned<T>::value, T>::type
    662 SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) {
    663   bool Dummy;
    664   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
    665   // Hacker's Delight, p. 29
    666   T Z = X + Y;
    667   Overflowed = (Z < X || Z < Y);
    668   if (Overflowed)
    669     return std::numeric_limits<T>::max();
    670   else
    671     return Z;
    672 }
    673 
    674 /// \brief Multiply two unsigned integers, X and Y, of type T.
    675 /// Clamp the result to the maximum representable value of T on overflow.
    676 /// ResultOverflowed indicates if the result is larger than the maximum
    677 /// representable value of type T.
    678 template <typename T>
    679 typename std::enable_if<std::is_unsigned<T>::value, T>::type
    680 SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) {
    681   bool Dummy;
    682   bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
    683 
    684   // Hacker's Delight, p. 30 has a different algorithm, but we don't use that
    685   // because it fails for uint16_t (where multiplication can have undefined
    686   // behavior due to promotion to int), and requires a division in addition
    687   // to the multiplication.
    688 
    689   Overflowed = false;
    690 
    691   // Log2(Z) would be either Log2Z or Log2Z + 1.
    692   // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
    693   // will necessarily be less than Log2Max as desired.
    694   int Log2Z = Log2_64(X) + Log2_64(Y);
    695   const T Max = std::numeric_limits<T>::max();
    696   int Log2Max = Log2_64(Max);
    697   if (Log2Z < Log2Max) {
    698     return X * Y;
    699   }
    700   if (Log2Z > Log2Max) {
    701     Overflowed = true;
    702     return Max;
    703   }
    704 
    705   // We're going to use the top bit, and maybe overflow one
    706   // bit past it. Multiply all but the bottom bit then add
    707   // that on at the end.
    708   T Z = (X >> 1) * Y;
    709   if (Z & ~(Max >> 1)) {
    710     Overflowed = true;
    711     return Max;
    712   }
    713   Z <<= 1;
    714   if (X & 1)
    715     return SaturatingAdd(Z, Y, ResultOverflowed);
    716 
    717   return Z;
    718 }
    719 
    720 extern const float huge_valf;
    721 } // End llvm namespace
    722 
    723 #endif
    724