Home | History | Annotate | Download | only in utils
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_
     18 #define ART_COMPILER_UTILS_ASSEMBLER_H_
     19 
     20 #include <vector>
     21 
     22 #include "arch/instruction_set.h"
     23 #include "arch/instruction_set_features.h"
     24 #include "arm/constants_arm.h"
     25 #include "base/arena_allocator.h"
     26 #include "base/arena_object.h"
     27 #include "base/logging.h"
     28 #include "base/macros.h"
     29 #include "debug/dwarf/debug_frame_opcode_writer.h"
     30 #include "label.h"
     31 #include "managed_register.h"
     32 #include "memory_region.h"
     33 #include "mips/constants_mips.h"
     34 #include "offsets.h"
     35 #include "x86/constants_x86.h"
     36 #include "x86_64/constants_x86_64.h"
     37 
     38 namespace art {
     39 
     40 class Assembler;
     41 class AssemblerBuffer;
     42 
     43 // Assembler fixups are positions in generated code that require processing
     44 // after the code has been copied to executable memory. This includes building
     45 // relocation information.
     46 class AssemblerFixup {
     47  public:
     48   virtual void Process(const MemoryRegion& region, int position) = 0;
     49   virtual ~AssemblerFixup() {}
     50 
     51  private:
     52   AssemblerFixup* previous_;
     53   int position_;
     54 
     55   AssemblerFixup* previous() const { return previous_; }
     56   void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; }
     57 
     58   int position() const { return position_; }
     59   void set_position(int position_in) { position_ = position_in; }
     60 
     61   friend class AssemblerBuffer;
     62 };
     63 
     64 // Parent of all queued slow paths, emitted during finalization
     65 class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> {
     66  public:
     67   SlowPath() : next_(nullptr) {}
     68   virtual ~SlowPath() {}
     69 
     70   Label* Continuation() { return &continuation_; }
     71   Label* Entry() { return &entry_; }
     72   // Generate code for slow path
     73   virtual void Emit(Assembler *sp_asm) = 0;
     74 
     75  protected:
     76   // Entry branched to by fast path
     77   Label entry_;
     78   // Optional continuation that is branched to at the end of the slow path
     79   Label continuation_;
     80   // Next in linked list of slow paths
     81   SlowPath *next_;
     82 
     83  private:
     84   friend class AssemblerBuffer;
     85   DISALLOW_COPY_AND_ASSIGN(SlowPath);
     86 };
     87 
     88 class AssemblerBuffer {
     89  public:
     90   explicit AssemblerBuffer(ArenaAllocator* arena);
     91   ~AssemblerBuffer();
     92 
     93   ArenaAllocator* GetArena() {
     94     return arena_;
     95   }
     96 
     97   // Basic support for emitting, loading, and storing.
     98   template<typename T> void Emit(T value) {
     99     CHECK(HasEnsuredCapacity());
    100     *reinterpret_cast<T*>(cursor_) = value;
    101     cursor_ += sizeof(T);
    102   }
    103 
    104   template<typename T> T Load(size_t position) {
    105     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
    106     return *reinterpret_cast<T*>(contents_ + position);
    107   }
    108 
    109   template<typename T> void Store(size_t position, T value) {
    110     CHECK_LE(position, Size() - static_cast<int>(sizeof(T)));
    111     *reinterpret_cast<T*>(contents_ + position) = value;
    112   }
    113 
    114   void Resize(size_t new_size) {
    115     if (new_size > Capacity()) {
    116       ExtendCapacity(new_size);
    117     }
    118     cursor_ = contents_ + new_size;
    119   }
    120 
    121   void Move(size_t newposition, size_t oldposition, size_t size) {
    122     // Move a chunk of the buffer from oldposition to newposition.
    123     DCHECK_LE(oldposition + size, Size());
    124     DCHECK_LE(newposition + size, Size());
    125     memmove(contents_ + newposition, contents_ + oldposition, size);
    126   }
    127 
    128   // Emit a fixup at the current location.
    129   void EmitFixup(AssemblerFixup* fixup) {
    130     fixup->set_previous(fixup_);
    131     fixup->set_position(Size());
    132     fixup_ = fixup;
    133   }
    134 
    135   void EnqueueSlowPath(SlowPath* slowpath) {
    136     if (slow_path_ == nullptr) {
    137       slow_path_ = slowpath;
    138     } else {
    139       SlowPath* cur = slow_path_;
    140       for ( ; cur->next_ != nullptr ; cur = cur->next_) {}
    141       cur->next_ = slowpath;
    142     }
    143   }
    144 
    145   void EmitSlowPaths(Assembler* sp_asm) {
    146     SlowPath* cur = slow_path_;
    147     SlowPath* next = nullptr;
    148     slow_path_ = nullptr;
    149     for ( ; cur != nullptr ; cur = next) {
    150       cur->Emit(sp_asm);
    151       next = cur->next_;
    152       delete cur;
    153     }
    154   }
    155 
    156   // Get the size of the emitted code.
    157   size_t Size() const {
    158     CHECK_GE(cursor_, contents_);
    159     return cursor_ - contents_;
    160   }
    161 
    162   uint8_t* contents() const { return contents_; }
    163 
    164   // Copy the assembled instructions into the specified memory block
    165   // and apply all fixups.
    166   void FinalizeInstructions(const MemoryRegion& region);
    167 
    168   // To emit an instruction to the assembler buffer, the EnsureCapacity helper
    169   // must be used to guarantee that the underlying data area is big enough to
    170   // hold the emitted instruction. Usage:
    171   //
    172   //     AssemblerBuffer buffer;
    173   //     AssemblerBuffer::EnsureCapacity ensured(&buffer);
    174   //     ... emit bytes for single instruction ...
    175 
    176 #ifndef NDEBUG
    177 
    178   class EnsureCapacity {
    179    public:
    180     explicit EnsureCapacity(AssemblerBuffer* buffer) {
    181       if (buffer->cursor() > buffer->limit()) {
    182         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
    183       }
    184       // In debug mode, we save the assembler buffer along with the gap
    185       // size before we start emitting to the buffer. This allows us to
    186       // check that any single generated instruction doesn't overflow the
    187       // limit implied by the minimum gap size.
    188       buffer_ = buffer;
    189       gap_ = ComputeGap();
    190       // Make sure that extending the capacity leaves a big enough gap
    191       // for any kind of instruction.
    192       CHECK_GE(gap_, kMinimumGap);
    193       // Mark the buffer as having ensured the capacity.
    194       CHECK(!buffer->HasEnsuredCapacity());  // Cannot nest.
    195       buffer->has_ensured_capacity_ = true;
    196     }
    197 
    198     ~EnsureCapacity() {
    199       // Unmark the buffer, so we cannot emit after this.
    200       buffer_->has_ensured_capacity_ = false;
    201       // Make sure the generated instruction doesn't take up more
    202       // space than the minimum gap.
    203       int delta = gap_ - ComputeGap();
    204       CHECK_LE(delta, kMinimumGap);
    205     }
    206 
    207    private:
    208     AssemblerBuffer* buffer_;
    209     int gap_;
    210 
    211     int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); }
    212   };
    213 
    214   bool has_ensured_capacity_;
    215   bool HasEnsuredCapacity() const { return has_ensured_capacity_; }
    216 
    217 #else
    218 
    219   class EnsureCapacity {
    220    public:
    221     explicit EnsureCapacity(AssemblerBuffer* buffer) {
    222       if (buffer->cursor() > buffer->limit()) {
    223         buffer->ExtendCapacity(buffer->Size() + kMinimumGap);
    224       }
    225     }
    226   };
    227 
    228   // When building the C++ tests, assertion code is enabled. To allow
    229   // asserting that the user of the assembler buffer has ensured the
    230   // capacity needed for emitting, we add a dummy method in non-debug mode.
    231   bool HasEnsuredCapacity() const { return true; }
    232 
    233 #endif
    234 
    235   // Returns the position in the instruction stream.
    236   int GetPosition() { return  cursor_ - contents_; }
    237 
    238   size_t Capacity() const {
    239     CHECK_GE(limit_, contents_);
    240     return (limit_ - contents_) + kMinimumGap;
    241   }
    242 
    243   // Unconditionally increase the capacity.
    244   // The provided `min_capacity` must be higher than current `Capacity()`.
    245   void ExtendCapacity(size_t min_capacity);
    246 
    247  private:
    248   // The limit is set to kMinimumGap bytes before the end of the data area.
    249   // This leaves enough space for the longest possible instruction and allows
    250   // for a single, fast space check per instruction.
    251   static const int kMinimumGap = 32;
    252 
    253   ArenaAllocator* arena_;
    254   uint8_t* contents_;
    255   uint8_t* cursor_;
    256   uint8_t* limit_;
    257   AssemblerFixup* fixup_;
    258 #ifndef NDEBUG
    259   bool fixups_processed_;
    260 #endif
    261 
    262   // Head of linked list of slow paths
    263   SlowPath* slow_path_;
    264 
    265   uint8_t* cursor() const { return cursor_; }
    266   uint8_t* limit() const { return limit_; }
    267 
    268   // Process the fixup chain starting at the given fixup. The offset is
    269   // non-zero for fixups in the body if the preamble is non-empty.
    270   void ProcessFixups(const MemoryRegion& region);
    271 
    272   // Compute the limit based on the data area and the capacity. See
    273   // description of kMinimumGap for the reasoning behind the value.
    274   static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) {
    275     return data + capacity - kMinimumGap;
    276   }
    277 
    278   friend class AssemblerFixup;
    279 };
    280 
    281 // The purpose of this class is to ensure that we do not have to explicitly
    282 // call the AdvancePC method (which is good for convenience and correctness).
    283 class DebugFrameOpCodeWriterForAssembler FINAL
    284     : public dwarf::DebugFrameOpCodeWriter<> {
    285  public:
    286   struct DelayedAdvancePC {
    287     uint32_t stream_pos;
    288     uint32_t pc;
    289   };
    290 
    291   // This method is called the by the opcode writers.
    292   virtual void ImplicitlyAdvancePC() FINAL;
    293 
    294   explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer)
    295       : dwarf::DebugFrameOpCodeWriter<>(false /* enabled */),
    296         assembler_(buffer),
    297         delay_emitting_advance_pc_(false),
    298         delayed_advance_pcs_() {
    299   }
    300 
    301   ~DebugFrameOpCodeWriterForAssembler() {
    302     DCHECK(delayed_advance_pcs_.empty());
    303   }
    304 
    305   // Tell the writer to delay emitting advance PC info.
    306   // The assembler must explicitly process all the delayed advances.
    307   void DelayEmittingAdvancePCs() {
    308     delay_emitting_advance_pc_ = true;
    309   }
    310 
    311   // Override the last delayed PC. The new PC can be out of order.
    312   void OverrideDelayedPC(size_t pc) {
    313     DCHECK(delay_emitting_advance_pc_);
    314     DCHECK(!delayed_advance_pcs_.empty());
    315     delayed_advance_pcs_.back().pc = pc;
    316   }
    317 
    318   // Return the number of delayed advance PC entries.
    319   size_t NumberOfDelayedAdvancePCs() const {
    320     return delayed_advance_pcs_.size();
    321   }
    322 
    323   // Release the CFI stream and advance PC infos so that the assembler can patch it.
    324   std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>>
    325   ReleaseStreamAndPrepareForDelayedAdvancePC() {
    326     DCHECK(delay_emitting_advance_pc_);
    327     delay_emitting_advance_pc_ = false;
    328     std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result;
    329     result.first.swap(opcodes_);
    330     result.second.swap(delayed_advance_pcs_);
    331     return result;
    332   }
    333 
    334   // Reserve space for the CFI stream.
    335   void ReserveCFIStream(size_t capacity) {
    336     opcodes_.reserve(capacity);
    337   }
    338 
    339   // Append raw data to the CFI stream.
    340   void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) {
    341     DCHECK_LE(0u, first);
    342     DCHECK_LE(first, last);
    343     DCHECK_LE(last, raw_data.size());
    344     opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last);
    345   }
    346 
    347  private:
    348   Assembler* assembler_;
    349   bool delay_emitting_advance_pc_;
    350   std::vector<DelayedAdvancePC> delayed_advance_pcs_;
    351 };
    352 
    353 class Assembler : public DeletableArenaObject<kArenaAllocAssembler> {
    354  public:
    355   static std::unique_ptr<Assembler> Create(
    356       ArenaAllocator* arena,
    357       InstructionSet instruction_set,
    358       const InstructionSetFeatures* instruction_set_features = nullptr);
    359 
    360   // Finalize the code; emit slow paths, fixup branches, add literal pool, etc.
    361   virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); }
    362 
    363   // Size of generated code
    364   virtual size_t CodeSize() const { return buffer_.Size(); }
    365   virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); }
    366 
    367   // Copy instructions out of assembly buffer into the given region of memory
    368   virtual void FinalizeInstructions(const MemoryRegion& region) {
    369     buffer_.FinalizeInstructions(region);
    370   }
    371 
    372   // TODO: Implement with disassembler.
    373   virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {}
    374 
    375   // Emit code that will create an activation on the stack
    376   virtual void BuildFrame(size_t frame_size, ManagedRegister method_reg,
    377                           const std::vector<ManagedRegister>& callee_save_regs,
    378                           const ManagedRegisterEntrySpills& entry_spills) = 0;
    379 
    380   // Emit code that will remove an activation from the stack
    381   virtual void RemoveFrame(size_t frame_size,
    382                            const std::vector<ManagedRegister>& callee_save_regs) = 0;
    383 
    384   virtual void IncreaseFrameSize(size_t adjust) = 0;
    385   virtual void DecreaseFrameSize(size_t adjust) = 0;
    386 
    387   // Store routines
    388   virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0;
    389   virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0;
    390   virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0;
    391 
    392   virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm,
    393                                      ManagedRegister scratch) = 0;
    394 
    395   virtual void StoreImmediateToThread32(ThreadOffset<4> dest, uint32_t imm,
    396                                         ManagedRegister scratch);
    397   virtual void StoreImmediateToThread64(ThreadOffset<8> dest, uint32_t imm,
    398                                         ManagedRegister scratch);
    399 
    400   virtual void StoreStackOffsetToThread32(ThreadOffset<4> thr_offs,
    401                                           FrameOffset fr_offs,
    402                                           ManagedRegister scratch);
    403   virtual void StoreStackOffsetToThread64(ThreadOffset<8> thr_offs,
    404                                           FrameOffset fr_offs,
    405                                           ManagedRegister scratch);
    406 
    407   virtual void StoreStackPointerToThread32(ThreadOffset<4> thr_offs);
    408   virtual void StoreStackPointerToThread64(ThreadOffset<8> thr_offs);
    409 
    410   virtual void StoreSpanning(FrameOffset dest, ManagedRegister src,
    411                              FrameOffset in_off, ManagedRegister scratch) = 0;
    412 
    413   // Load routines
    414   virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0;
    415 
    416   virtual void LoadFromThread32(ManagedRegister dest, ThreadOffset<4> src, size_t size);
    417   virtual void LoadFromThread64(ManagedRegister dest, ThreadOffset<8> src, size_t size);
    418 
    419   virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0;
    420   // If unpoison_reference is true and kPoisonReference is true, then we negate the read reference.
    421   virtual void LoadRef(ManagedRegister dest, ManagedRegister base, MemberOffset offs,
    422                        bool unpoison_reference) = 0;
    423 
    424   virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0;
    425 
    426   virtual void LoadRawPtrFromThread32(ManagedRegister dest, ThreadOffset<4> offs);
    427   virtual void LoadRawPtrFromThread64(ManagedRegister dest, ThreadOffset<8> offs);
    428 
    429   // Copying routines
    430   virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0;
    431 
    432   virtual void CopyRawPtrFromThread32(FrameOffset fr_offs, ThreadOffset<4> thr_offs,
    433                                       ManagedRegister scratch);
    434   virtual void CopyRawPtrFromThread64(FrameOffset fr_offs, ThreadOffset<8> thr_offs,
    435                                       ManagedRegister scratch);
    436 
    437   virtual void CopyRawPtrToThread32(ThreadOffset<4> thr_offs, FrameOffset fr_offs,
    438                                     ManagedRegister scratch);
    439   virtual void CopyRawPtrToThread64(ThreadOffset<8> thr_offs, FrameOffset fr_offs,
    440                                     ManagedRegister scratch);
    441 
    442   virtual void CopyRef(FrameOffset dest, FrameOffset src,
    443                        ManagedRegister scratch) = 0;
    444 
    445   virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0;
    446 
    447   virtual void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset,
    448                     ManagedRegister scratch, size_t size) = 0;
    449 
    450   virtual void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src,
    451                     ManagedRegister scratch, size_t size) = 0;
    452 
    453   virtual void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset,
    454                     ManagedRegister scratch, size_t size) = 0;
    455 
    456   virtual void Copy(ManagedRegister dest, Offset dest_offset,
    457                     ManagedRegister src, Offset src_offset,
    458                     ManagedRegister scratch, size_t size) = 0;
    459 
    460   virtual void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset,
    461                     ManagedRegister scratch, size_t size) = 0;
    462 
    463   virtual void MemoryBarrier(ManagedRegister scratch) = 0;
    464 
    465   // Sign extension
    466   virtual void SignExtend(ManagedRegister mreg, size_t size) = 0;
    467 
    468   // Zero extension
    469   virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0;
    470 
    471   // Exploit fast access in managed code to Thread::Current()
    472   virtual void GetCurrentThread(ManagedRegister tr) = 0;
    473   virtual void GetCurrentThread(FrameOffset dest_offset,
    474                                 ManagedRegister scratch) = 0;
    475 
    476   // Set up out_reg to hold a Object** into the handle scope, or to be null if the
    477   // value is null and null_allowed. in_reg holds a possibly stale reference
    478   // that can be used to avoid loading the handle scope entry to see if the value is
    479   // null.
    480   virtual void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset,
    481                                ManagedRegister in_reg, bool null_allowed) = 0;
    482 
    483   // Set up out_off to hold a Object** into the handle scope, or to be null if the
    484   // value is null and null_allowed.
    485   virtual void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset,
    486                                ManagedRegister scratch, bool null_allowed) = 0;
    487 
    488   // src holds a handle scope entry (Object**) load this into dst
    489   virtual void LoadReferenceFromHandleScope(ManagedRegister dst,
    490                                      ManagedRegister src) = 0;
    491 
    492   // Heap::VerifyObject on src. In some cases (such as a reference to this) we
    493   // know that src may not be null.
    494   virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0;
    495   virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0;
    496 
    497   // Call to address held at [base+offset]
    498   virtual void Call(ManagedRegister base, Offset offset,
    499                     ManagedRegister scratch) = 0;
    500   virtual void Call(FrameOffset base, Offset offset,
    501                     ManagedRegister scratch) = 0;
    502   virtual void CallFromThread32(ThreadOffset<4> offset, ManagedRegister scratch);
    503   virtual void CallFromThread64(ThreadOffset<8> offset, ManagedRegister scratch);
    504 
    505   // Generate code to check if Thread::Current()->exception_ is non-null
    506   // and branch to a ExceptionSlowPath if it is.
    507   virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0;
    508 
    509   virtual void Bind(Label* label) = 0;
    510   virtual void Jump(Label* label) = 0;
    511 
    512   virtual ~Assembler() {}
    513 
    514   /**
    515    * @brief Buffer of DWARF's Call Frame Information opcodes.
    516    * @details It is used by debuggers and other tools to unwind the call stack.
    517    */
    518   DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; }
    519 
    520  protected:
    521   explicit Assembler(ArenaAllocator* arena) : buffer_(arena), cfi_(this) {}
    522 
    523   ArenaAllocator* GetArena() {
    524     return buffer_.GetArena();
    525   }
    526 
    527   AssemblerBuffer buffer_;
    528 
    529   DebugFrameOpCodeWriterForAssembler cfi_;
    530 };
    531 
    532 }  // namespace art
    533 
    534 #endif  // ART_COMPILER_UTILS_ASSEMBLER_H_
    535