Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/MapVector.h - Map w/ deterministic value order --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a map that provides insertion order iteration. The
     11 // interface is purposefully minimal. The key is assumed to be cheap to copy
     12 // and 2 copies are kept, one for indexing in a DenseMap, one for iteration in
     13 // a std::vector.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_MAPVECTOR_H
     18 #define LLVM_ADT_MAPVECTOR_H
     19 
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include <vector>
     23 
     24 namespace llvm {
     25 
     26 /// This class implements a map that also provides access to all stored values
     27 /// in a deterministic order. The values are kept in a std::vector and the
     28 /// mapping is done with DenseMap from Keys to indexes in that vector.
     29 template<typename KeyT, typename ValueT,
     30          typename MapType = llvm::DenseMap<KeyT, unsigned>,
     31          typename VectorType = std::vector<std::pair<KeyT, ValueT> > >
     32 class MapVector {
     33   typedef typename VectorType::size_type size_type;
     34 
     35   MapType Map;
     36   VectorType Vector;
     37 
     38 public:
     39   typedef typename VectorType::iterator iterator;
     40   typedef typename VectorType::const_iterator const_iterator;
     41   typedef typename VectorType::reverse_iterator reverse_iterator;
     42   typedef typename VectorType::const_reverse_iterator const_reverse_iterator;
     43 
     44   size_type size() const { return Vector.size(); }
     45 
     46   iterator begin() { return Vector.begin(); }
     47   const_iterator begin() const { return Vector.begin(); }
     48   iterator end() { return Vector.end(); }
     49   const_iterator end() const { return Vector.end(); }
     50 
     51   reverse_iterator rbegin() { return Vector.rbegin(); }
     52   const_reverse_iterator rbegin() const { return Vector.rbegin(); }
     53   reverse_iterator rend() { return Vector.rend(); }
     54   const_reverse_iterator rend() const { return Vector.rend(); }
     55 
     56   bool empty() const {
     57     return Vector.empty();
     58   }
     59 
     60   std::pair<KeyT, ValueT>       &front()       { return Vector.front(); }
     61   const std::pair<KeyT, ValueT> &front() const { return Vector.front(); }
     62   std::pair<KeyT, ValueT>       &back()        { return Vector.back(); }
     63   const std::pair<KeyT, ValueT> &back()  const { return Vector.back(); }
     64 
     65   void clear() {
     66     Map.clear();
     67     Vector.clear();
     68   }
     69 
     70   void swap(MapVector &RHS) {
     71     std::swap(Map, RHS.Map);
     72     std::swap(Vector, RHS.Vector);
     73   }
     74 
     75   ValueT &operator[](const KeyT &Key) {
     76     std::pair<KeyT, unsigned> Pair = std::make_pair(Key, 0);
     77     std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
     78     unsigned &I = Result.first->second;
     79     if (Result.second) {
     80       Vector.push_back(std::make_pair(Key, ValueT()));
     81       I = Vector.size() - 1;
     82     }
     83     return Vector[I].second;
     84   }
     85 
     86   ValueT lookup(const KeyT &Key) const {
     87     typename MapType::const_iterator Pos = Map.find(Key);
     88     return Pos == Map.end()? ValueT() : Vector[Pos->second].second;
     89   }
     90 
     91   std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
     92     std::pair<KeyT, unsigned> Pair = std::make_pair(KV.first, 0);
     93     std::pair<typename MapType::iterator, bool> Result = Map.insert(Pair);
     94     unsigned &I = Result.first->second;
     95     if (Result.second) {
     96       Vector.push_back(std::make_pair(KV.first, KV.second));
     97       I = Vector.size() - 1;
     98       return std::make_pair(std::prev(end()), true);
     99     }
    100     return std::make_pair(begin() + I, false);
    101   }
    102 
    103   size_type count(const KeyT &Key) const {
    104     typename MapType::const_iterator Pos = Map.find(Key);
    105     return Pos == Map.end()? 0 : 1;
    106   }
    107 
    108   iterator find(const KeyT &Key) {
    109     typename MapType::const_iterator Pos = Map.find(Key);
    110     return Pos == Map.end()? Vector.end() :
    111                             (Vector.begin() + Pos->second);
    112   }
    113 
    114   const_iterator find(const KeyT &Key) const {
    115     typename MapType::const_iterator Pos = Map.find(Key);
    116     return Pos == Map.end()? Vector.end() :
    117                             (Vector.begin() + Pos->second);
    118   }
    119 
    120   /// \brief Remove the last element from the vector.
    121   void pop_back() {
    122     typename MapType::iterator Pos = Map.find(Vector.back().first);
    123     Map.erase(Pos);
    124     Vector.pop_back();
    125   }
    126 
    127   /// \brief Remove the element given by Iterator.
    128   ///
    129   /// Returns an iterator to the element following the one which was removed,
    130   /// which may be end().
    131   ///
    132   /// \note This is a deceivingly expensive operation (linear time).  It's
    133   /// usually better to use \a remove_if() if possible.
    134   typename VectorType::iterator erase(typename VectorType::iterator Iterator) {
    135     Map.erase(Iterator->first);
    136     auto Next = Vector.erase(Iterator);
    137     if (Next == Vector.end())
    138       return Next;
    139 
    140     // Update indices in the map.
    141     size_t Index = Next - Vector.begin();
    142     for (auto &I : Map) {
    143       assert(I.second != Index && "Index was already erased!");
    144       if (I.second > Index)
    145         --I.second;
    146     }
    147     return Next;
    148   }
    149 
    150   /// \brief Remove all elements with the key value Key.
    151   ///
    152   /// Returns the number of elements removed.
    153   size_type erase(const KeyT &Key) {
    154     auto Iterator = find(Key);
    155     if (Iterator == end())
    156       return 0;
    157     erase(Iterator);
    158     return 1;
    159   }
    160 
    161   /// \brief Remove the elements that match the predicate.
    162   ///
    163   /// Erase all elements that match \c Pred in a single pass.  Takes linear
    164   /// time.
    165   template <class Predicate> void remove_if(Predicate Pred);
    166 };
    167 
    168 template <typename KeyT, typename ValueT, typename MapType, typename VectorType>
    169 template <class Function>
    170 void MapVector<KeyT, ValueT, MapType, VectorType>::remove_if(Function Pred) {
    171   auto O = Vector.begin();
    172   for (auto I = O, E = Vector.end(); I != E; ++I) {
    173     if (Pred(*I)) {
    174       // Erase from the map.
    175       Map.erase(I->first);
    176       continue;
    177     }
    178 
    179     if (I != O) {
    180       // Move the value and update the index in the map.
    181       *O = std::move(*I);
    182       Map[O->first] = O - Vector.begin();
    183     }
    184     ++O;
    185   }
    186   // Erase trailing entries in the vector.
    187   Vector.erase(O, Vector.end());
    188 }
    189 
    190 /// \brief A MapVector that performs no allocations if smaller than a certain
    191 /// size.
    192 template <typename KeyT, typename ValueT, unsigned N>
    193 struct SmallMapVector
    194     : MapVector<KeyT, ValueT, SmallDenseMap<KeyT, unsigned, N>,
    195                 SmallVector<std::pair<KeyT, ValueT>, N>> {
    196 };
    197 
    198 } // end namespace llvm
    199 
    200 #endif
    201