Home | History | Annotate | Download | only in Utils
      1 //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This family of functions perform manipulations on basic blocks, and
     11 // instructions contained within basic blocks.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     16 #include "llvm/Analysis/AliasAnalysis.h"
     17 #include "llvm/Analysis/CFG.h"
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     20 #include "llvm/IR/Constant.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/Function.h"
     24 #include "llvm/IR/Instructions.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Type.h"
     27 #include "llvm/IR/ValueHandle.h"
     28 #include "llvm/Support/ErrorHandling.h"
     29 #include "llvm/Transforms/Scalar.h"
     30 #include "llvm/Transforms/Utils/Local.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 /// DeleteDeadBlock - Delete the specified block, which must have no
     35 /// predecessors.
     36 void llvm::DeleteDeadBlock(BasicBlock *BB) {
     37   assert((pred_begin(BB) == pred_end(BB) ||
     38          // Can delete self loop.
     39          BB->getSinglePredecessor() == BB) && "Block is not dead!");
     40   TerminatorInst *BBTerm = BB->getTerminator();
     41 
     42   // Loop through all of our successors and make sure they know that one
     43   // of their predecessors is going away.
     44   for (BasicBlock *Succ : BBTerm->successors())
     45     Succ->removePredecessor(BB);
     46 
     47   // Zap all the instructions in the block.
     48   while (!BB->empty()) {
     49     Instruction &I = BB->back();
     50     // If this instruction is used, replace uses with an arbitrary value.
     51     // Because control flow can't get here, we don't care what we replace the
     52     // value with.  Note that since this block is unreachable, and all values
     53     // contained within it must dominate their uses, that all uses will
     54     // eventually be removed (they are themselves dead).
     55     if (!I.use_empty())
     56       I.replaceAllUsesWith(UndefValue::get(I.getType()));
     57     BB->getInstList().pop_back();
     58   }
     59 
     60   // Zap the block!
     61   BB->eraseFromParent();
     62 }
     63 
     64 /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are
     65 /// any single-entry PHI nodes in it, fold them away.  This handles the case
     66 /// when all entries to the PHI nodes in a block are guaranteed equal, such as
     67 /// when the block has exactly one predecessor.
     68 void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
     69                                    MemoryDependenceAnalysis *MemDep) {
     70   if (!isa<PHINode>(BB->begin())) return;
     71 
     72   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
     73     if (PN->getIncomingValue(0) != PN)
     74       PN->replaceAllUsesWith(PN->getIncomingValue(0));
     75     else
     76       PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
     77 
     78     if (MemDep)
     79       MemDep->removeInstruction(PN);  // Memdep updates AA itself.
     80 
     81     PN->eraseFromParent();
     82   }
     83 }
     84 
     85 
     86 /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it
     87 /// is dead. Also recursively delete any operands that become dead as
     88 /// a result. This includes tracing the def-use list from the PHI to see if
     89 /// it is ultimately unused or if it reaches an unused cycle.
     90 bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
     91   // Recursively deleting a PHI may cause multiple PHIs to be deleted
     92   // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete.
     93   SmallVector<WeakVH, 8> PHIs;
     94   for (BasicBlock::iterator I = BB->begin();
     95        PHINode *PN = dyn_cast<PHINode>(I); ++I)
     96     PHIs.push_back(PN);
     97 
     98   bool Changed = false;
     99   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    100     if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
    101       Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
    102 
    103   return Changed;
    104 }
    105 
    106 /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor,
    107 /// if possible.  The return value indicates success or failure.
    108 bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DominatorTree *DT,
    109                                      LoopInfo *LI,
    110                                      MemoryDependenceAnalysis *MemDep) {
    111   // Don't merge away blocks who have their address taken.
    112   if (BB->hasAddressTaken()) return false;
    113 
    114   // Can't merge if there are multiple predecessors, or no predecessors.
    115   BasicBlock *PredBB = BB->getUniquePredecessor();
    116   if (!PredBB) return false;
    117 
    118   // Don't break self-loops.
    119   if (PredBB == BB) return false;
    120   // Don't break unwinding instructions.
    121   if (PredBB->getTerminator()->isExceptional())
    122     return false;
    123 
    124   succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB));
    125   BasicBlock *OnlySucc = BB;
    126   for (; SI != SE; ++SI)
    127     if (*SI != OnlySucc) {
    128       OnlySucc = nullptr;     // There are multiple distinct successors!
    129       break;
    130     }
    131 
    132   // Can't merge if there are multiple successors.
    133   if (!OnlySucc) return false;
    134 
    135   // Can't merge if there is PHI loop.
    136   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) {
    137     if (PHINode *PN = dyn_cast<PHINode>(BI)) {
    138       for (Value *IncValue : PN->incoming_values())
    139         if (IncValue == PN)
    140           return false;
    141     } else
    142       break;
    143   }
    144 
    145   // Begin by getting rid of unneeded PHIs.
    146   if (isa<PHINode>(BB->front()))
    147     FoldSingleEntryPHINodes(BB, MemDep);
    148 
    149   // Delete the unconditional branch from the predecessor...
    150   PredBB->getInstList().pop_back();
    151 
    152   // Make all PHI nodes that referred to BB now refer to Pred as their
    153   // source...
    154   BB->replaceAllUsesWith(PredBB);
    155 
    156   // Move all definitions in the successor to the predecessor...
    157   PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
    158 
    159   // Inherit predecessors name if it exists.
    160   if (!PredBB->hasName())
    161     PredBB->takeName(BB);
    162 
    163   // Finally, erase the old block and update dominator info.
    164   if (DT)
    165     if (DomTreeNode *DTN = DT->getNode(BB)) {
    166       DomTreeNode *PredDTN = DT->getNode(PredBB);
    167       SmallVector<DomTreeNode *, 8> Children(DTN->begin(), DTN->end());
    168       for (SmallVectorImpl<DomTreeNode *>::iterator DI = Children.begin(),
    169                                                     DE = Children.end();
    170            DI != DE; ++DI)
    171         DT->changeImmediateDominator(*DI, PredDTN);
    172 
    173       DT->eraseNode(BB);
    174     }
    175 
    176   if (LI)
    177     LI->removeBlock(BB);
    178 
    179   if (MemDep)
    180     MemDep->invalidateCachedPredecessors();
    181 
    182   BB->eraseFromParent();
    183   return true;
    184 }
    185 
    186 /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
    187 /// with a value, then remove and delete the original instruction.
    188 ///
    189 void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
    190                                 BasicBlock::iterator &BI, Value *V) {
    191   Instruction &I = *BI;
    192   // Replaces all of the uses of the instruction with uses of the value
    193   I.replaceAllUsesWith(V);
    194 
    195   // Make sure to propagate a name if there is one already.
    196   if (I.hasName() && !V->hasName())
    197     V->takeName(&I);
    198 
    199   // Delete the unnecessary instruction now...
    200   BI = BIL.erase(BI);
    201 }
    202 
    203 
    204 /// ReplaceInstWithInst - Replace the instruction specified by BI with the
    205 /// instruction specified by I.  The original instruction is deleted and BI is
    206 /// updated to point to the new instruction.
    207 ///
    208 void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
    209                                BasicBlock::iterator &BI, Instruction *I) {
    210   assert(I->getParent() == nullptr &&
    211          "ReplaceInstWithInst: Instruction already inserted into basic block!");
    212 
    213   // Copy debug location to newly added instruction, if it wasn't already set
    214   // by the caller.
    215   if (!I->getDebugLoc())
    216     I->setDebugLoc(BI->getDebugLoc());
    217 
    218   // Insert the new instruction into the basic block...
    219   BasicBlock::iterator New = BIL.insert(BI, I);
    220 
    221   // Replace all uses of the old instruction, and delete it.
    222   ReplaceInstWithValue(BIL, BI, I);
    223 
    224   // Move BI back to point to the newly inserted instruction
    225   BI = New;
    226 }
    227 
    228 /// ReplaceInstWithInst - Replace the instruction specified by From with the
    229 /// instruction specified by To.
    230 ///
    231 void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
    232   BasicBlock::iterator BI(From);
    233   ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
    234 }
    235 
    236 /// SplitEdge -  Split the edge connecting specified block. Pass P must
    237 /// not be NULL.
    238 BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
    239                             LoopInfo *LI) {
    240   unsigned SuccNum = GetSuccessorNumber(BB, Succ);
    241 
    242   // If this is a critical edge, let SplitCriticalEdge do it.
    243   TerminatorInst *LatchTerm = BB->getTerminator();
    244   if (SplitCriticalEdge(LatchTerm, SuccNum, CriticalEdgeSplittingOptions(DT, LI)
    245                                                 .setPreserveLCSSA()))
    246     return LatchTerm->getSuccessor(SuccNum);
    247 
    248   // If the edge isn't critical, then BB has a single successor or Succ has a
    249   // single pred.  Split the block.
    250   if (BasicBlock *SP = Succ->getSinglePredecessor()) {
    251     // If the successor only has a single pred, split the top of the successor
    252     // block.
    253     assert(SP == BB && "CFG broken");
    254     SP = nullptr;
    255     return SplitBlock(Succ, &Succ->front(), DT, LI);
    256   }
    257 
    258   // Otherwise, if BB has a single successor, split it at the bottom of the
    259   // block.
    260   assert(BB->getTerminator()->getNumSuccessors() == 1 &&
    261          "Should have a single succ!");
    262   return SplitBlock(BB, BB->getTerminator(), DT, LI);
    263 }
    264 
    265 unsigned
    266 llvm::SplitAllCriticalEdges(Function &F,
    267                             const CriticalEdgeSplittingOptions &Options) {
    268   unsigned NumBroken = 0;
    269   for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
    270     TerminatorInst *TI = I->getTerminator();
    271     if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
    272       for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    273         if (SplitCriticalEdge(TI, i, Options))
    274           ++NumBroken;
    275   }
    276   return NumBroken;
    277 }
    278 
    279 /// SplitBlock - Split the specified block at the specified instruction - every
    280 /// thing before SplitPt stays in Old and everything starting with SplitPt moves
    281 /// to a new block.  The two blocks are joined by an unconditional branch and
    282 /// the loop info is updated.
    283 ///
    284 BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
    285                              DominatorTree *DT, LoopInfo *LI) {
    286   BasicBlock::iterator SplitIt = SplitPt->getIterator();
    287   while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
    288     ++SplitIt;
    289   BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
    290 
    291   // The new block lives in whichever loop the old one did. This preserves
    292   // LCSSA as well, because we force the split point to be after any PHI nodes.
    293   if (LI)
    294     if (Loop *L = LI->getLoopFor(Old))
    295       L->addBasicBlockToLoop(New, *LI);
    296 
    297   if (DT)
    298     // Old dominates New. New node dominates all other nodes dominated by Old.
    299     if (DomTreeNode *OldNode = DT->getNode(Old)) {
    300       std::vector<DomTreeNode *> Children;
    301       for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end();
    302            I != E; ++I)
    303         Children.push_back(*I);
    304 
    305       DomTreeNode *NewNode = DT->addNewBlock(New, Old);
    306       for (std::vector<DomTreeNode *>::iterator I = Children.begin(),
    307              E = Children.end(); I != E; ++I)
    308         DT->changeImmediateDominator(*I, NewNode);
    309     }
    310 
    311   return New;
    312 }
    313 
    314 /// UpdateAnalysisInformation - Update DominatorTree, LoopInfo, and LCCSA
    315 /// analysis information.
    316 static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
    317                                       ArrayRef<BasicBlock *> Preds,
    318                                       DominatorTree *DT, LoopInfo *LI,
    319                                       bool PreserveLCSSA, bool &HasLoopExit) {
    320   // Update dominator tree if available.
    321   if (DT)
    322     DT->splitBlock(NewBB);
    323 
    324   // The rest of the logic is only relevant for updating the loop structures.
    325   if (!LI)
    326     return;
    327 
    328   Loop *L = LI->getLoopFor(OldBB);
    329 
    330   // If we need to preserve loop analyses, collect some information about how
    331   // this split will affect loops.
    332   bool IsLoopEntry = !!L;
    333   bool SplitMakesNewLoopHeader = false;
    334   for (ArrayRef<BasicBlock *>::iterator i = Preds.begin(), e = Preds.end();
    335        i != e; ++i) {
    336     BasicBlock *Pred = *i;
    337 
    338     // If we need to preserve LCSSA, determine if any of the preds is a loop
    339     // exit.
    340     if (PreserveLCSSA)
    341       if (Loop *PL = LI->getLoopFor(Pred))
    342         if (!PL->contains(OldBB))
    343           HasLoopExit = true;
    344 
    345     // If we need to preserve LoopInfo, note whether any of the preds crosses
    346     // an interesting loop boundary.
    347     if (!L)
    348       continue;
    349     if (L->contains(Pred))
    350       IsLoopEntry = false;
    351     else
    352       SplitMakesNewLoopHeader = true;
    353   }
    354 
    355   // Unless we have a loop for OldBB, nothing else to do here.
    356   if (!L)
    357     return;
    358 
    359   if (IsLoopEntry) {
    360     // Add the new block to the nearest enclosing loop (and not an adjacent
    361     // loop). To find this, examine each of the predecessors and determine which
    362     // loops enclose them, and select the most-nested loop which contains the
    363     // loop containing the block being split.
    364     Loop *InnermostPredLoop = nullptr;
    365     for (ArrayRef<BasicBlock*>::iterator
    366            i = Preds.begin(), e = Preds.end(); i != e; ++i) {
    367       BasicBlock *Pred = *i;
    368       if (Loop *PredLoop = LI->getLoopFor(Pred)) {
    369         // Seek a loop which actually contains the block being split (to avoid
    370         // adjacent loops).
    371         while (PredLoop && !PredLoop->contains(OldBB))
    372           PredLoop = PredLoop->getParentLoop();
    373 
    374         // Select the most-nested of these loops which contains the block.
    375         if (PredLoop && PredLoop->contains(OldBB) &&
    376             (!InnermostPredLoop ||
    377              InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
    378           InnermostPredLoop = PredLoop;
    379       }
    380     }
    381 
    382     if (InnermostPredLoop)
    383       InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
    384   } else {
    385     L->addBasicBlockToLoop(NewBB, *LI);
    386     if (SplitMakesNewLoopHeader)
    387       L->moveToHeader(NewBB);
    388   }
    389 }
    390 
    391 /// UpdatePHINodes - Update the PHI nodes in OrigBB to include the values coming
    392 /// from NewBB. This also updates AliasAnalysis, if available.
    393 static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
    394                            ArrayRef<BasicBlock *> Preds, BranchInst *BI,
    395                            bool HasLoopExit) {
    396   // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
    397   SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
    398   for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
    399     PHINode *PN = cast<PHINode>(I++);
    400 
    401     // Check to see if all of the values coming in are the same.  If so, we
    402     // don't need to create a new PHI node, unless it's needed for LCSSA.
    403     Value *InVal = nullptr;
    404     if (!HasLoopExit) {
    405       InVal = PN->getIncomingValueForBlock(Preds[0]);
    406       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    407         if (!PredSet.count(PN->getIncomingBlock(i)))
    408           continue;
    409         if (!InVal)
    410           InVal = PN->getIncomingValue(i);
    411         else if (InVal != PN->getIncomingValue(i)) {
    412           InVal = nullptr;
    413           break;
    414         }
    415       }
    416     }
    417 
    418     if (InVal) {
    419       // If all incoming values for the new PHI would be the same, just don't
    420       // make a new PHI.  Instead, just remove the incoming values from the old
    421       // PHI.
    422 
    423       // NOTE! This loop walks backwards for a reason! First off, this minimizes
    424       // the cost of removal if we end up removing a large number of values, and
    425       // second off, this ensures that the indices for the incoming values
    426       // aren't invalidated when we remove one.
    427       for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
    428         if (PredSet.count(PN->getIncomingBlock(i)))
    429           PN->removeIncomingValue(i, false);
    430 
    431       // Add an incoming value to the PHI node in the loop for the preheader
    432       // edge.
    433       PN->addIncoming(InVal, NewBB);
    434       continue;
    435     }
    436 
    437     // If the values coming into the block are not the same, we need a new
    438     // PHI.
    439     // Create the new PHI node, insert it into NewBB at the end of the block
    440     PHINode *NewPHI =
    441         PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
    442 
    443     // NOTE! This loop walks backwards for a reason! First off, this minimizes
    444     // the cost of removal if we end up removing a large number of values, and
    445     // second off, this ensures that the indices for the incoming values aren't
    446     // invalidated when we remove one.
    447     for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
    448       BasicBlock *IncomingBB = PN->getIncomingBlock(i);
    449       if (PredSet.count(IncomingBB)) {
    450         Value *V = PN->removeIncomingValue(i, false);
    451         NewPHI->addIncoming(V, IncomingBB);
    452       }
    453     }
    454 
    455     PN->addIncoming(NewPHI, NewBB);
    456   }
    457 }
    458 
    459 /// SplitBlockPredecessors - This method introduces at least one new basic block
    460 /// into the function and moves some of the predecessors of BB to be
    461 /// predecessors of the new block. The new predecessors are indicated by the
    462 /// Preds array. The new block is given a suffix of 'Suffix'. Returns new basic
    463 /// block to which predecessors from Preds are now pointing.
    464 ///
    465 /// If BB is a landingpad block then additional basicblock might be introduced.
    466 /// It will have suffix of 'Suffix'+".split_lp".
    467 /// See SplitLandingPadPredecessors for more details on this case.
    468 ///
    469 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    470 /// LoopInfo, and LCCSA but no other analyses. In particular, it does not
    471 /// preserve LoopSimplify (because it's complicated to handle the case where one
    472 /// of the edges being split is an exit of a loop with other exits).
    473 ///
    474 BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
    475                                          ArrayRef<BasicBlock *> Preds,
    476                                          const char *Suffix, DominatorTree *DT,
    477                                          LoopInfo *LI, bool PreserveLCSSA) {
    478   // Do not attempt to split that which cannot be split.
    479   if (!BB->canSplitPredecessors())
    480     return nullptr;
    481 
    482   // For the landingpads we need to act a bit differently.
    483   // Delegate this work to the SplitLandingPadPredecessors.
    484   if (BB->isLandingPad()) {
    485     SmallVector<BasicBlock*, 2> NewBBs;
    486     std::string NewName = std::string(Suffix) + ".split-lp";
    487 
    488     SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
    489                                 LI, PreserveLCSSA);
    490     return NewBBs[0];
    491   }
    492 
    493   // Create new basic block, insert right before the original block.
    494   BasicBlock *NewBB = BasicBlock::Create(
    495       BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
    496 
    497   // The new block unconditionally branches to the old block.
    498   BranchInst *BI = BranchInst::Create(BB, NewBB);
    499   BI->setDebugLoc(BB->getFirstNonPHI()->getDebugLoc());
    500 
    501   // Move the edges from Preds to point to NewBB instead of BB.
    502   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    503     // This is slightly more strict than necessary; the minimum requirement
    504     // is that there be no more than one indirectbr branching to BB. And
    505     // all BlockAddress uses would need to be updated.
    506     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    507            "Cannot split an edge from an IndirectBrInst");
    508     Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
    509   }
    510 
    511   // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
    512   // node becomes an incoming value for BB's phi node.  However, if the Preds
    513   // list is empty, we need to insert dummy entries into the PHI nodes in BB to
    514   // account for the newly created predecessor.
    515   if (Preds.size() == 0) {
    516     // Insert dummy values as the incoming value.
    517     for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
    518       cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
    519     return NewBB;
    520   }
    521 
    522   // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    523   bool HasLoopExit = false;
    524   UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, PreserveLCSSA,
    525                             HasLoopExit);
    526 
    527   // Update the PHI nodes in BB with the values coming from NewBB.
    528   UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
    529   return NewBB;
    530 }
    531 
    532 /// SplitLandingPadPredecessors - This method transforms the landing pad,
    533 /// OrigBB, by introducing two new basic blocks into the function. One of those
    534 /// new basic blocks gets the predecessors listed in Preds. The other basic
    535 /// block gets the remaining predecessors of OrigBB. The landingpad instruction
    536 /// OrigBB is clone into both of the new basic blocks. The new blocks are given
    537 /// the suffixes 'Suffix1' and 'Suffix2', and are returned in the NewBBs vector.
    538 ///
    539 /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree,
    540 /// DominanceFrontier, LoopInfo, and LCCSA but no other analyses. In particular,
    541 /// it does not preserve LoopSimplify (because it's complicated to handle the
    542 /// case where one of the edges being split is an exit of a loop with other
    543 /// exits).
    544 ///
    545 void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
    546                                        ArrayRef<BasicBlock *> Preds,
    547                                        const char *Suffix1, const char *Suffix2,
    548                                        SmallVectorImpl<BasicBlock *> &NewBBs,
    549                                        DominatorTree *DT, LoopInfo *LI,
    550                                        bool PreserveLCSSA) {
    551   assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
    552 
    553   // Create a new basic block for OrigBB's predecessors listed in Preds. Insert
    554   // it right before the original block.
    555   BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
    556                                           OrigBB->getName() + Suffix1,
    557                                           OrigBB->getParent(), OrigBB);
    558   NewBBs.push_back(NewBB1);
    559 
    560   // The new block unconditionally branches to the old block.
    561   BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
    562   BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
    563 
    564   // Move the edges from Preds to point to NewBB1 instead of OrigBB.
    565   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
    566     // This is slightly more strict than necessary; the minimum requirement
    567     // is that there be no more than one indirectbr branching to BB. And
    568     // all BlockAddress uses would need to be updated.
    569     assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
    570            "Cannot split an edge from an IndirectBrInst");
    571     Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
    572   }
    573 
    574   bool HasLoopExit = false;
    575   UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, PreserveLCSSA,
    576                             HasLoopExit);
    577 
    578   // Update the PHI nodes in OrigBB with the values coming from NewBB1.
    579   UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
    580 
    581   // Move the remaining edges from OrigBB to point to NewBB2.
    582   SmallVector<BasicBlock*, 8> NewBB2Preds;
    583   for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
    584        i != e; ) {
    585     BasicBlock *Pred = *i++;
    586     if (Pred == NewBB1) continue;
    587     assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
    588            "Cannot split an edge from an IndirectBrInst");
    589     NewBB2Preds.push_back(Pred);
    590     e = pred_end(OrigBB);
    591   }
    592 
    593   BasicBlock *NewBB2 = nullptr;
    594   if (!NewBB2Preds.empty()) {
    595     // Create another basic block for the rest of OrigBB's predecessors.
    596     NewBB2 = BasicBlock::Create(OrigBB->getContext(),
    597                                 OrigBB->getName() + Suffix2,
    598                                 OrigBB->getParent(), OrigBB);
    599     NewBBs.push_back(NewBB2);
    600 
    601     // The new block unconditionally branches to the old block.
    602     BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
    603     BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
    604 
    605     // Move the remaining edges from OrigBB to point to NewBB2.
    606     for (SmallVectorImpl<BasicBlock*>::iterator
    607            i = NewBB2Preds.begin(), e = NewBB2Preds.end(); i != e; ++i)
    608       (*i)->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
    609 
    610     // Update DominatorTree, LoopInfo, and LCCSA analysis information.
    611     HasLoopExit = false;
    612     UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI,
    613                               PreserveLCSSA, HasLoopExit);
    614 
    615     // Update the PHI nodes in OrigBB with the values coming from NewBB2.
    616     UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
    617   }
    618 
    619   LandingPadInst *LPad = OrigBB->getLandingPadInst();
    620   Instruction *Clone1 = LPad->clone();
    621   Clone1->setName(Twine("lpad") + Suffix1);
    622   NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
    623 
    624   if (NewBB2) {
    625     Instruction *Clone2 = LPad->clone();
    626     Clone2->setName(Twine("lpad") + Suffix2);
    627     NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
    628 
    629     // Create a PHI node for the two cloned landingpad instructions.
    630     PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
    631     PN->addIncoming(Clone1, NewBB1);
    632     PN->addIncoming(Clone2, NewBB2);
    633     LPad->replaceAllUsesWith(PN);
    634     LPad->eraseFromParent();
    635   } else {
    636     // There is no second clone. Just replace the landing pad with the first
    637     // clone.
    638     LPad->replaceAllUsesWith(Clone1);
    639     LPad->eraseFromParent();
    640   }
    641 }
    642 
    643 /// FoldReturnIntoUncondBranch - This method duplicates the specified return
    644 /// instruction into a predecessor which ends in an unconditional branch. If
    645 /// the return instruction returns a value defined by a PHI, propagate the
    646 /// right value into the return. It returns the new return instruction in the
    647 /// predecessor.
    648 ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
    649                                              BasicBlock *Pred) {
    650   Instruction *UncondBranch = Pred->getTerminator();
    651   // Clone the return and add it to the end of the predecessor.
    652   Instruction *NewRet = RI->clone();
    653   Pred->getInstList().push_back(NewRet);
    654 
    655   // If the return instruction returns a value, and if the value was a
    656   // PHI node in "BB", propagate the right value into the return.
    657   for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
    658        i != e; ++i) {
    659     Value *V = *i;
    660     Instruction *NewBC = nullptr;
    661     if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
    662       // Return value might be bitcasted. Clone and insert it before the
    663       // return instruction.
    664       V = BCI->getOperand(0);
    665       NewBC = BCI->clone();
    666       Pred->getInstList().insert(NewRet->getIterator(), NewBC);
    667       *i = NewBC;
    668     }
    669     if (PHINode *PN = dyn_cast<PHINode>(V)) {
    670       if (PN->getParent() == BB) {
    671         if (NewBC)
    672           NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
    673         else
    674           *i = PN->getIncomingValueForBlock(Pred);
    675       }
    676     }
    677   }
    678 
    679   // Update any PHI nodes in the returning block to realize that we no
    680   // longer branch to them.
    681   BB->removePredecessor(Pred);
    682   UncondBranch->eraseFromParent();
    683   return cast<ReturnInst>(NewRet);
    684 }
    685 
    686 /// SplitBlockAndInsertIfThen - Split the containing block at the
    687 /// specified instruction - everything before and including SplitBefore stays
    688 /// in the old basic block, and everything after SplitBefore is moved to a
    689 /// new block. The two blocks are connected by a conditional branch
    690 /// (with value of Cmp being the condition).
    691 /// Before:
    692 ///   Head
    693 ///   SplitBefore
    694 ///   Tail
    695 /// After:
    696 ///   Head
    697 ///   if (Cond)
    698 ///     ThenBlock
    699 ///   SplitBefore
    700 ///   Tail
    701 ///
    702 /// If Unreachable is true, then ThenBlock ends with
    703 /// UnreachableInst, otherwise it branches to Tail.
    704 /// Returns the NewBasicBlock's terminator.
    705 
    706 TerminatorInst *llvm::SplitBlockAndInsertIfThen(Value *Cond,
    707                                                 Instruction *SplitBefore,
    708                                                 bool Unreachable,
    709                                                 MDNode *BranchWeights,
    710                                                 DominatorTree *DT) {
    711   BasicBlock *Head = SplitBefore->getParent();
    712   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
    713   TerminatorInst *HeadOldTerm = Head->getTerminator();
    714   LLVMContext &C = Head->getContext();
    715   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    716   TerminatorInst *CheckTerm;
    717   if (Unreachable)
    718     CheckTerm = new UnreachableInst(C, ThenBlock);
    719   else
    720     CheckTerm = BranchInst::Create(Tail, ThenBlock);
    721   CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
    722   BranchInst *HeadNewTerm =
    723     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
    724   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    725   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    726 
    727   if (DT) {
    728     if (DomTreeNode *OldNode = DT->getNode(Head)) {
    729       std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
    730 
    731       DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
    732       for (auto Child : Children)
    733         DT->changeImmediateDominator(Child, NewNode);
    734 
    735       // Head dominates ThenBlock.
    736       DT->addNewBlock(ThenBlock, Head);
    737     }
    738   }
    739 
    740   return CheckTerm;
    741 }
    742 
    743 /// SplitBlockAndInsertIfThenElse is similar to SplitBlockAndInsertIfThen,
    744 /// but also creates the ElseBlock.
    745 /// Before:
    746 ///   Head
    747 ///   SplitBefore
    748 ///   Tail
    749 /// After:
    750 ///   Head
    751 ///   if (Cond)
    752 ///     ThenBlock
    753 ///   else
    754 ///     ElseBlock
    755 ///   SplitBefore
    756 ///   Tail
    757 void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
    758                                          TerminatorInst **ThenTerm,
    759                                          TerminatorInst **ElseTerm,
    760                                          MDNode *BranchWeights) {
    761   BasicBlock *Head = SplitBefore->getParent();
    762   BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
    763   TerminatorInst *HeadOldTerm = Head->getTerminator();
    764   LLVMContext &C = Head->getContext();
    765   BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    766   BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
    767   *ThenTerm = BranchInst::Create(Tail, ThenBlock);
    768   (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    769   *ElseTerm = BranchInst::Create(Tail, ElseBlock);
    770   (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
    771   BranchInst *HeadNewTerm =
    772     BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
    773   HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
    774   ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
    775 }
    776 
    777 
    778 /// GetIfCondition - Given a basic block (BB) with two predecessors,
    779 /// check to see if the merge at this block is due
    780 /// to an "if condition".  If so, return the boolean condition that determines
    781 /// which entry into BB will be taken.  Also, return by references the block
    782 /// that will be entered from if the condition is true, and the block that will
    783 /// be entered if the condition is false.
    784 ///
    785 /// This does no checking to see if the true/false blocks have large or unsavory
    786 /// instructions in them.
    787 Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
    788                              BasicBlock *&IfFalse) {
    789   PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
    790   BasicBlock *Pred1 = nullptr;
    791   BasicBlock *Pred2 = nullptr;
    792 
    793   if (SomePHI) {
    794     if (SomePHI->getNumIncomingValues() != 2)
    795       return nullptr;
    796     Pred1 = SomePHI->getIncomingBlock(0);
    797     Pred2 = SomePHI->getIncomingBlock(1);
    798   } else {
    799     pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    800     if (PI == PE) // No predecessor
    801       return nullptr;
    802     Pred1 = *PI++;
    803     if (PI == PE) // Only one predecessor
    804       return nullptr;
    805     Pred2 = *PI++;
    806     if (PI != PE) // More than two predecessors
    807       return nullptr;
    808   }
    809 
    810   // We can only handle branches.  Other control flow will be lowered to
    811   // branches if possible anyway.
    812   BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
    813   BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
    814   if (!Pred1Br || !Pred2Br)
    815     return nullptr;
    816 
    817   // Eliminate code duplication by ensuring that Pred1Br is conditional if
    818   // either are.
    819   if (Pred2Br->isConditional()) {
    820     // If both branches are conditional, we don't have an "if statement".  In
    821     // reality, we could transform this case, but since the condition will be
    822     // required anyway, we stand no chance of eliminating it, so the xform is
    823     // probably not profitable.
    824     if (Pred1Br->isConditional())
    825       return nullptr;
    826 
    827     std::swap(Pred1, Pred2);
    828     std::swap(Pred1Br, Pred2Br);
    829   }
    830 
    831   if (Pred1Br->isConditional()) {
    832     // The only thing we have to watch out for here is to make sure that Pred2
    833     // doesn't have incoming edges from other blocks.  If it does, the condition
    834     // doesn't dominate BB.
    835     if (!Pred2->getSinglePredecessor())
    836       return nullptr;
    837 
    838     // If we found a conditional branch predecessor, make sure that it branches
    839     // to BB and Pred2Br.  If it doesn't, this isn't an "if statement".
    840     if (Pred1Br->getSuccessor(0) == BB &&
    841         Pred1Br->getSuccessor(1) == Pred2) {
    842       IfTrue = Pred1;
    843       IfFalse = Pred2;
    844     } else if (Pred1Br->getSuccessor(0) == Pred2 &&
    845                Pred1Br->getSuccessor(1) == BB) {
    846       IfTrue = Pred2;
    847       IfFalse = Pred1;
    848     } else {
    849       // We know that one arm of the conditional goes to BB, so the other must
    850       // go somewhere unrelated, and this must not be an "if statement".
    851       return nullptr;
    852     }
    853 
    854     return Pred1Br->getCondition();
    855   }
    856 
    857   // Ok, if we got here, both predecessors end with an unconditional branch to
    858   // BB.  Don't panic!  If both blocks only have a single (identical)
    859   // predecessor, and THAT is a conditional branch, then we're all ok!
    860   BasicBlock *CommonPred = Pred1->getSinglePredecessor();
    861   if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
    862     return nullptr;
    863 
    864   // Otherwise, if this is a conditional branch, then we can use it!
    865   BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
    866   if (!BI) return nullptr;
    867 
    868   assert(BI->isConditional() && "Two successors but not conditional?");
    869   if (BI->getSuccessor(0) == Pred1) {
    870     IfTrue = Pred1;
    871     IfFalse = Pred2;
    872   } else {
    873     IfTrue = Pred2;
    874     IfFalse = Pred1;
    875   }
    876   return BI->getCondition();
    877 }
    878