1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of classes 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGBlocks.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "clang/AST/CXXInheritance.h" 20 #include "clang/AST/DeclTemplate.h" 21 #include "clang/AST/EvaluatedExprVisitor.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtCXX.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/CodeGen/CGFunctionInfo.h" 26 #include "clang/Frontend/CodeGenOptions.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Metadata.h" 29 30 using namespace clang; 31 using namespace CodeGen; 32 33 /// Return the best known alignment for an unknown pointer to a 34 /// particular class. 35 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) { 36 if (!RD->isCompleteDefinition()) 37 return CharUnits::One(); // Hopefully won't be used anywhere. 38 39 auto &layout = getContext().getASTRecordLayout(RD); 40 41 // If the class is final, then we know that the pointer points to an 42 // object of that type and can use the full alignment. 43 if (RD->hasAttr<FinalAttr>()) { 44 return layout.getAlignment(); 45 46 // Otherwise, we have to assume it could be a subclass. 47 } else { 48 return layout.getNonVirtualAlignment(); 49 } 50 } 51 52 /// Return the best known alignment for a pointer to a virtual base, 53 /// given the alignment of a pointer to the derived class. 54 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign, 55 const CXXRecordDecl *derivedClass, 56 const CXXRecordDecl *vbaseClass) { 57 // The basic idea here is that an underaligned derived pointer might 58 // indicate an underaligned base pointer. 59 60 assert(vbaseClass->isCompleteDefinition()); 61 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass); 62 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment(); 63 64 return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass, 65 expectedVBaseAlign); 66 } 67 68 CharUnits 69 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign, 70 const CXXRecordDecl *baseDecl, 71 CharUnits expectedTargetAlign) { 72 // If the base is an incomplete type (which is, alas, possible with 73 // member pointers), be pessimistic. 74 if (!baseDecl->isCompleteDefinition()) 75 return std::min(actualBaseAlign, expectedTargetAlign); 76 77 auto &baseLayout = getContext().getASTRecordLayout(baseDecl); 78 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment(); 79 80 // If the class is properly aligned, assume the target offset is, too. 81 // 82 // This actually isn't necessarily the right thing to do --- if the 83 // class is a complete object, but it's only properly aligned for a 84 // base subobject, then the alignments of things relative to it are 85 // probably off as well. (Note that this requires the alignment of 86 // the target to be greater than the NV alignment of the derived 87 // class.) 88 // 89 // However, our approach to this kind of under-alignment can only 90 // ever be best effort; after all, we're never going to propagate 91 // alignments through variables or parameters. Note, in particular, 92 // that constructing a polymorphic type in an address that's less 93 // than pointer-aligned will generally trap in the constructor, 94 // unless we someday add some sort of attribute to change the 95 // assumed alignment of 'this'. So our goal here is pretty much 96 // just to allow the user to explicitly say that a pointer is 97 // under-aligned and then safely access its fields and v-tables. 98 if (actualBaseAlign >= expectedBaseAlign) { 99 return expectedTargetAlign; 100 } 101 102 // Otherwise, we might be offset by an arbitrary multiple of the 103 // actual alignment. The correct adjustment is to take the min of 104 // the two alignments. 105 return std::min(actualBaseAlign, expectedTargetAlign); 106 } 107 108 Address CodeGenFunction::LoadCXXThisAddress() { 109 assert(CurFuncDecl && "loading 'this' without a func declaration?"); 110 assert(isa<CXXMethodDecl>(CurFuncDecl)); 111 112 // Lazily compute CXXThisAlignment. 113 if (CXXThisAlignment.isZero()) { 114 // Just use the best known alignment for the parent. 115 // TODO: if we're currently emitting a complete-object ctor/dtor, 116 // we can always use the complete-object alignment. 117 auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent(); 118 CXXThisAlignment = CGM.getClassPointerAlignment(RD); 119 } 120 121 return Address(LoadCXXThis(), CXXThisAlignment); 122 } 123 124 /// Emit the address of a field using a member data pointer. 125 /// 126 /// \param E Only used for emergency diagnostics 127 Address 128 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 129 llvm::Value *memberPtr, 130 const MemberPointerType *memberPtrType, 131 AlignmentSource *alignSource) { 132 // Ask the ABI to compute the actual address. 133 llvm::Value *ptr = 134 CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base, 135 memberPtr, memberPtrType); 136 137 QualType memberType = memberPtrType->getPointeeType(); 138 CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource); 139 memberAlign = 140 CGM.getDynamicOffsetAlignment(base.getAlignment(), 141 memberPtrType->getClass()->getAsCXXRecordDecl(), 142 memberAlign); 143 return Address(ptr, memberAlign); 144 } 145 146 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset( 147 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start, 148 CastExpr::path_const_iterator End) { 149 CharUnits Offset = CharUnits::Zero(); 150 151 const ASTContext &Context = getContext(); 152 const CXXRecordDecl *RD = DerivedClass; 153 154 for (CastExpr::path_const_iterator I = Start; I != End; ++I) { 155 const CXXBaseSpecifier *Base = *I; 156 assert(!Base->isVirtual() && "Should not see virtual bases here!"); 157 158 // Get the layout. 159 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 160 161 const CXXRecordDecl *BaseDecl = 162 cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl()); 163 164 // Add the offset. 165 Offset += Layout.getBaseClassOffset(BaseDecl); 166 167 RD = BaseDecl; 168 } 169 170 return Offset; 171 } 172 173 llvm::Constant * 174 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl, 175 CastExpr::path_const_iterator PathBegin, 176 CastExpr::path_const_iterator PathEnd) { 177 assert(PathBegin != PathEnd && "Base path should not be empty!"); 178 179 CharUnits Offset = 180 computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd); 181 if (Offset.isZero()) 182 return nullptr; 183 184 llvm::Type *PtrDiffTy = 185 Types.ConvertType(getContext().getPointerDiffType()); 186 187 return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity()); 188 } 189 190 /// Gets the address of a direct base class within a complete object. 191 /// This should only be used for (1) non-virtual bases or (2) virtual bases 192 /// when the type is known to be complete (e.g. in complete destructors). 193 /// 194 /// The object pointed to by 'This' is assumed to be non-null. 195 Address 196 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This, 197 const CXXRecordDecl *Derived, 198 const CXXRecordDecl *Base, 199 bool BaseIsVirtual) { 200 // 'this' must be a pointer (in some address space) to Derived. 201 assert(This.getElementType() == ConvertType(Derived)); 202 203 // Compute the offset of the virtual base. 204 CharUnits Offset; 205 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived); 206 if (BaseIsVirtual) 207 Offset = Layout.getVBaseClassOffset(Base); 208 else 209 Offset = Layout.getBaseClassOffset(Base); 210 211 // Shift and cast down to the base type. 212 // TODO: for complete types, this should be possible with a GEP. 213 Address V = This; 214 if (!Offset.isZero()) { 215 V = Builder.CreateElementBitCast(V, Int8Ty); 216 V = Builder.CreateConstInBoundsByteGEP(V, Offset); 217 } 218 V = Builder.CreateElementBitCast(V, ConvertType(Base)); 219 220 return V; 221 } 222 223 static Address 224 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr, 225 CharUnits nonVirtualOffset, 226 llvm::Value *virtualOffset, 227 const CXXRecordDecl *derivedClass, 228 const CXXRecordDecl *nearestVBase) { 229 // Assert that we have something to do. 230 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr); 231 232 // Compute the offset from the static and dynamic components. 233 llvm::Value *baseOffset; 234 if (!nonVirtualOffset.isZero()) { 235 baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy, 236 nonVirtualOffset.getQuantity()); 237 if (virtualOffset) { 238 baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset); 239 } 240 } else { 241 baseOffset = virtualOffset; 242 } 243 244 // Apply the base offset. 245 llvm::Value *ptr = addr.getPointer(); 246 ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy); 247 ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr"); 248 249 // If we have a virtual component, the alignment of the result will 250 // be relative only to the known alignment of that vbase. 251 CharUnits alignment; 252 if (virtualOffset) { 253 assert(nearestVBase && "virtual offset without vbase?"); 254 alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(), 255 derivedClass, nearestVBase); 256 } else { 257 alignment = addr.getAlignment(); 258 } 259 alignment = alignment.alignmentAtOffset(nonVirtualOffset); 260 261 return Address(ptr, alignment); 262 } 263 264 Address CodeGenFunction::GetAddressOfBaseClass( 265 Address Value, const CXXRecordDecl *Derived, 266 CastExpr::path_const_iterator PathBegin, 267 CastExpr::path_const_iterator PathEnd, bool NullCheckValue, 268 SourceLocation Loc) { 269 assert(PathBegin != PathEnd && "Base path should not be empty!"); 270 271 CastExpr::path_const_iterator Start = PathBegin; 272 const CXXRecordDecl *VBase = nullptr; 273 274 // Sema has done some convenient canonicalization here: if the 275 // access path involved any virtual steps, the conversion path will 276 // *start* with a step down to the correct virtual base subobject, 277 // and hence will not require any further steps. 278 if ((*Start)->isVirtual()) { 279 VBase = 280 cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl()); 281 ++Start; 282 } 283 284 // Compute the static offset of the ultimate destination within its 285 // allocating subobject (the virtual base, if there is one, or else 286 // the "complete" object that we see). 287 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset( 288 VBase ? VBase : Derived, Start, PathEnd); 289 290 // If there's a virtual step, we can sometimes "devirtualize" it. 291 // For now, that's limited to when the derived type is final. 292 // TODO: "devirtualize" this for accesses to known-complete objects. 293 if (VBase && Derived->hasAttr<FinalAttr>()) { 294 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived); 295 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase); 296 NonVirtualOffset += vBaseOffset; 297 VBase = nullptr; // we no longer have a virtual step 298 } 299 300 // Get the base pointer type. 301 llvm::Type *BasePtrTy = 302 ConvertType((PathEnd[-1])->getType())->getPointerTo(); 303 304 QualType DerivedTy = getContext().getRecordType(Derived); 305 CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived); 306 307 // If the static offset is zero and we don't have a virtual step, 308 // just do a bitcast; null checks are unnecessary. 309 if (NonVirtualOffset.isZero() && !VBase) { 310 if (sanitizePerformTypeCheck()) { 311 EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(), 312 DerivedTy, DerivedAlign, !NullCheckValue); 313 } 314 return Builder.CreateBitCast(Value, BasePtrTy); 315 } 316 317 llvm::BasicBlock *origBB = nullptr; 318 llvm::BasicBlock *endBB = nullptr; 319 320 // Skip over the offset (and the vtable load) if we're supposed to 321 // null-check the pointer. 322 if (NullCheckValue) { 323 origBB = Builder.GetInsertBlock(); 324 llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull"); 325 endBB = createBasicBlock("cast.end"); 326 327 llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer()); 328 Builder.CreateCondBr(isNull, endBB, notNullBB); 329 EmitBlock(notNullBB); 330 } 331 332 if (sanitizePerformTypeCheck()) { 333 EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc, 334 Value.getPointer(), DerivedTy, DerivedAlign, true); 335 } 336 337 // Compute the virtual offset. 338 llvm::Value *VirtualOffset = nullptr; 339 if (VBase) { 340 VirtualOffset = 341 CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase); 342 } 343 344 // Apply both offsets. 345 Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset, 346 VirtualOffset, Derived, VBase); 347 348 // Cast to the destination type. 349 Value = Builder.CreateBitCast(Value, BasePtrTy); 350 351 // Build a phi if we needed a null check. 352 if (NullCheckValue) { 353 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock(); 354 Builder.CreateBr(endBB); 355 EmitBlock(endBB); 356 357 llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result"); 358 PHI->addIncoming(Value.getPointer(), notNullBB); 359 PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB); 360 Value = Address(PHI, Value.getAlignment()); 361 } 362 363 return Value; 364 } 365 366 Address 367 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr, 368 const CXXRecordDecl *Derived, 369 CastExpr::path_const_iterator PathBegin, 370 CastExpr::path_const_iterator PathEnd, 371 bool NullCheckValue) { 372 assert(PathBegin != PathEnd && "Base path should not be empty!"); 373 374 QualType DerivedTy = 375 getContext().getCanonicalType(getContext().getTagDeclType(Derived)); 376 llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo(); 377 378 llvm::Value *NonVirtualOffset = 379 CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd); 380 381 if (!NonVirtualOffset) { 382 // No offset, we can just cast back. 383 return Builder.CreateBitCast(BaseAddr, DerivedPtrTy); 384 } 385 386 llvm::BasicBlock *CastNull = nullptr; 387 llvm::BasicBlock *CastNotNull = nullptr; 388 llvm::BasicBlock *CastEnd = nullptr; 389 390 if (NullCheckValue) { 391 CastNull = createBasicBlock("cast.null"); 392 CastNotNull = createBasicBlock("cast.notnull"); 393 CastEnd = createBasicBlock("cast.end"); 394 395 llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer()); 396 Builder.CreateCondBr(IsNull, CastNull, CastNotNull); 397 EmitBlock(CastNotNull); 398 } 399 400 // Apply the offset. 401 llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy); 402 Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset), 403 "sub.ptr"); 404 405 // Just cast. 406 Value = Builder.CreateBitCast(Value, DerivedPtrTy); 407 408 // Produce a PHI if we had a null-check. 409 if (NullCheckValue) { 410 Builder.CreateBr(CastEnd); 411 EmitBlock(CastNull); 412 Builder.CreateBr(CastEnd); 413 EmitBlock(CastEnd); 414 415 llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2); 416 PHI->addIncoming(Value, CastNotNull); 417 PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull); 418 Value = PHI; 419 } 420 421 return Address(Value, CGM.getClassPointerAlignment(Derived)); 422 } 423 424 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD, 425 bool ForVirtualBase, 426 bool Delegating) { 427 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) { 428 // This constructor/destructor does not need a VTT parameter. 429 return nullptr; 430 } 431 432 const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent(); 433 const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 434 435 llvm::Value *VTT; 436 437 uint64_t SubVTTIndex; 438 439 if (Delegating) { 440 // If this is a delegating constructor call, just load the VTT. 441 return LoadCXXVTT(); 442 } else if (RD == Base) { 443 // If the record matches the base, this is the complete ctor/dtor 444 // variant calling the base variant in a class with virtual bases. 445 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) && 446 "doing no-op VTT offset in base dtor/ctor?"); 447 assert(!ForVirtualBase && "Can't have same class as virtual base!"); 448 SubVTTIndex = 0; 449 } else { 450 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 451 CharUnits BaseOffset = ForVirtualBase ? 452 Layout.getVBaseClassOffset(Base) : 453 Layout.getBaseClassOffset(Base); 454 455 SubVTTIndex = 456 CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset)); 457 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!"); 458 } 459 460 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 461 // A VTT parameter was passed to the constructor, use it. 462 VTT = LoadCXXVTT(); 463 VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex); 464 } else { 465 // We're the complete constructor, so get the VTT by name. 466 VTT = CGM.getVTables().GetAddrOfVTT(RD); 467 VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex); 468 } 469 470 return VTT; 471 } 472 473 namespace { 474 /// Call the destructor for a direct base class. 475 struct CallBaseDtor final : EHScopeStack::Cleanup { 476 const CXXRecordDecl *BaseClass; 477 bool BaseIsVirtual; 478 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual) 479 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {} 480 481 void Emit(CodeGenFunction &CGF, Flags flags) override { 482 const CXXRecordDecl *DerivedClass = 483 cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent(); 484 485 const CXXDestructorDecl *D = BaseClass->getDestructor(); 486 Address Addr = 487 CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(), 488 DerivedClass, BaseClass, 489 BaseIsVirtual); 490 CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual, 491 /*Delegating=*/false, Addr); 492 } 493 }; 494 495 /// A visitor which checks whether an initializer uses 'this' in a 496 /// way which requires the vtable to be properly set. 497 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> { 498 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super; 499 500 bool UsesThis; 501 502 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {} 503 504 // Black-list all explicit and implicit references to 'this'. 505 // 506 // Do we need to worry about external references to 'this' derived 507 // from arbitrary code? If so, then anything which runs arbitrary 508 // external code might potentially access the vtable. 509 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; } 510 }; 511 } // end anonymous namespace 512 513 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) { 514 DynamicThisUseChecker Checker(C); 515 Checker.Visit(Init); 516 return Checker.UsesThis; 517 } 518 519 static void EmitBaseInitializer(CodeGenFunction &CGF, 520 const CXXRecordDecl *ClassDecl, 521 CXXCtorInitializer *BaseInit, 522 CXXCtorType CtorType) { 523 assert(BaseInit->isBaseInitializer() && 524 "Must have base initializer!"); 525 526 Address ThisPtr = CGF.LoadCXXThisAddress(); 527 528 const Type *BaseType = BaseInit->getBaseClass(); 529 CXXRecordDecl *BaseClassDecl = 530 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 531 532 bool isBaseVirtual = BaseInit->isBaseVirtual(); 533 534 // The base constructor doesn't construct virtual bases. 535 if (CtorType == Ctor_Base && isBaseVirtual) 536 return; 537 538 // If the initializer for the base (other than the constructor 539 // itself) accesses 'this' in any way, we need to initialize the 540 // vtables. 541 if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit())) 542 CGF.InitializeVTablePointers(ClassDecl); 543 544 // We can pretend to be a complete class because it only matters for 545 // virtual bases, and we only do virtual bases for complete ctors. 546 Address V = 547 CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl, 548 BaseClassDecl, 549 isBaseVirtual); 550 AggValueSlot AggSlot = 551 AggValueSlot::forAddr(V, Qualifiers(), 552 AggValueSlot::IsDestructed, 553 AggValueSlot::DoesNotNeedGCBarriers, 554 AggValueSlot::IsNotAliased); 555 556 CGF.EmitAggExpr(BaseInit->getInit(), AggSlot); 557 558 if (CGF.CGM.getLangOpts().Exceptions && 559 !BaseClassDecl->hasTrivialDestructor()) 560 CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl, 561 isBaseVirtual); 562 } 563 564 static void EmitAggMemberInitializer(CodeGenFunction &CGF, 565 LValue LHS, 566 Expr *Init, 567 Address ArrayIndexVar, 568 QualType T, 569 ArrayRef<VarDecl *> ArrayIndexes, 570 unsigned Index) { 571 if (Index == ArrayIndexes.size()) { 572 LValue LV = LHS; 573 574 if (ArrayIndexVar.isValid()) { 575 // If we have an array index variable, load it and use it as an offset. 576 // Then, increment the value. 577 llvm::Value *Dest = LHS.getPointer(); 578 llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar); 579 Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress"); 580 llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1); 581 Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc"); 582 CGF.Builder.CreateStore(Next, ArrayIndexVar); 583 584 // Update the LValue. 585 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T); 586 CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize); 587 LV.setAddress(Address(Dest, Align)); 588 } 589 590 switch (CGF.getEvaluationKind(T)) { 591 case TEK_Scalar: 592 CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false); 593 break; 594 case TEK_Complex: 595 CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true); 596 break; 597 case TEK_Aggregate: { 598 AggValueSlot Slot = 599 AggValueSlot::forLValue(LV, 600 AggValueSlot::IsDestructed, 601 AggValueSlot::DoesNotNeedGCBarriers, 602 AggValueSlot::IsNotAliased); 603 604 CGF.EmitAggExpr(Init, Slot); 605 break; 606 } 607 } 608 609 return; 610 } 611 612 const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T); 613 assert(Array && "Array initialization without the array type?"); 614 Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]); 615 616 // Initialize this index variable to zero. 617 llvm::Value* Zero 618 = llvm::Constant::getNullValue(IndexVar.getElementType()); 619 CGF.Builder.CreateStore(Zero, IndexVar); 620 621 // Start the loop with a block that tests the condition. 622 llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond"); 623 llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end"); 624 625 CGF.EmitBlock(CondBlock); 626 627 llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body"); 628 // Generate: if (loop-index < number-of-elements) fall to the loop body, 629 // otherwise, go to the block after the for-loop. 630 uint64_t NumElements = Array->getSize().getZExtValue(); 631 llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar); 632 llvm::Value *NumElementsPtr = 633 llvm::ConstantInt::get(Counter->getType(), NumElements); 634 llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr, 635 "isless"); 636 637 // If the condition is true, execute the body. 638 CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor); 639 640 CGF.EmitBlock(ForBody); 641 llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc"); 642 643 // Inside the loop body recurse to emit the inner loop or, eventually, the 644 // constructor call. 645 EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar, 646 Array->getElementType(), ArrayIndexes, Index + 1); 647 648 CGF.EmitBlock(ContinueBlock); 649 650 // Emit the increment of the loop counter. 651 llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1); 652 Counter = CGF.Builder.CreateLoad(IndexVar); 653 NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc"); 654 CGF.Builder.CreateStore(NextVal, IndexVar); 655 656 // Finally, branch back up to the condition for the next iteration. 657 CGF.EmitBranch(CondBlock); 658 659 // Emit the fall-through block. 660 CGF.EmitBlock(AfterFor, true); 661 } 662 663 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) { 664 auto *CD = dyn_cast<CXXConstructorDecl>(D); 665 if (!(CD && CD->isCopyOrMoveConstructor()) && 666 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator()) 667 return false; 668 669 // We can emit a memcpy for a trivial copy or move constructor/assignment. 670 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding()) 671 return true; 672 673 // We *must* emit a memcpy for a defaulted union copy or move op. 674 if (D->getParent()->isUnion() && D->isDefaulted()) 675 return true; 676 677 return false; 678 } 679 680 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF, 681 CXXCtorInitializer *MemberInit, 682 LValue &LHS) { 683 FieldDecl *Field = MemberInit->getAnyMember(); 684 if (MemberInit->isIndirectMemberInitializer()) { 685 // If we are initializing an anonymous union field, drill down to the field. 686 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember(); 687 for (const auto *I : IndirectField->chain()) 688 LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I)); 689 } else { 690 LHS = CGF.EmitLValueForFieldInitialization(LHS, Field); 691 } 692 } 693 694 static void EmitMemberInitializer(CodeGenFunction &CGF, 695 const CXXRecordDecl *ClassDecl, 696 CXXCtorInitializer *MemberInit, 697 const CXXConstructorDecl *Constructor, 698 FunctionArgList &Args) { 699 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation()); 700 assert(MemberInit->isAnyMemberInitializer() && 701 "Must have member initializer!"); 702 assert(MemberInit->getInit() && "Must have initializer!"); 703 704 // non-static data member initializers. 705 FieldDecl *Field = MemberInit->getAnyMember(); 706 QualType FieldType = Field->getType(); 707 708 llvm::Value *ThisPtr = CGF.LoadCXXThis(); 709 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 710 LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy); 711 712 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS); 713 714 // Special case: if we are in a copy or move constructor, and we are copying 715 // an array of PODs or classes with trivial copy constructors, ignore the 716 // AST and perform the copy we know is equivalent. 717 // FIXME: This is hacky at best... if we had a bit more explicit information 718 // in the AST, we could generalize it more easily. 719 const ConstantArrayType *Array 720 = CGF.getContext().getAsConstantArrayType(FieldType); 721 if (Array && Constructor->isDefaulted() && 722 Constructor->isCopyOrMoveConstructor()) { 723 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array); 724 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 725 if (BaseElementTy.isPODType(CGF.getContext()) || 726 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) { 727 unsigned SrcArgIndex = 728 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args); 729 llvm::Value *SrcPtr 730 = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex])); 731 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 732 LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field); 733 734 // Copy the aggregate. 735 CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType, 736 LHS.isVolatileQualified()); 737 // Ensure that we destroy the objects if an exception is thrown later in 738 // the constructor. 739 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 740 if (CGF.needsEHCleanup(dtorKind)) 741 CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 742 return; 743 } 744 } 745 746 ArrayRef<VarDecl *> ArrayIndexes; 747 if (MemberInit->getNumArrayIndices()) 748 ArrayIndexes = MemberInit->getArrayIndexes(); 749 CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes); 750 } 751 752 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS, 753 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) { 754 QualType FieldType = Field->getType(); 755 switch (getEvaluationKind(FieldType)) { 756 case TEK_Scalar: 757 if (LHS.isSimple()) { 758 EmitExprAsInit(Init, Field, LHS, false); 759 } else { 760 RValue RHS = RValue::get(EmitScalarExpr(Init)); 761 EmitStoreThroughLValue(RHS, LHS); 762 } 763 break; 764 case TEK_Complex: 765 EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true); 766 break; 767 case TEK_Aggregate: { 768 Address ArrayIndexVar = Address::invalid(); 769 if (ArrayIndexes.size()) { 770 // The LHS is a pointer to the first object we'll be constructing, as 771 // a flat array. 772 QualType BaseElementTy = getContext().getBaseElementType(FieldType); 773 llvm::Type *BasePtr = ConvertType(BaseElementTy); 774 BasePtr = llvm::PointerType::getUnqual(BasePtr); 775 Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr); 776 LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy); 777 778 // Create an array index that will be used to walk over all of the 779 // objects we're constructing. 780 ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index"); 781 llvm::Value *Zero = 782 llvm::Constant::getNullValue(ArrayIndexVar.getElementType()); 783 Builder.CreateStore(Zero, ArrayIndexVar); 784 785 // Emit the block variables for the array indices, if any. 786 for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I) 787 EmitAutoVarDecl(*ArrayIndexes[I]); 788 } 789 790 EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType, 791 ArrayIndexes, 0); 792 } 793 } 794 795 // Ensure that we destroy this object if an exception is thrown 796 // later in the constructor. 797 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 798 if (needsEHCleanup(dtorKind)) 799 pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 800 } 801 802 /// Checks whether the given constructor is a valid subject for the 803 /// complete-to-base constructor delegation optimization, i.e. 804 /// emitting the complete constructor as a simple call to the base 805 /// constructor. 806 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) { 807 808 // Currently we disable the optimization for classes with virtual 809 // bases because (1) the addresses of parameter variables need to be 810 // consistent across all initializers but (2) the delegate function 811 // call necessarily creates a second copy of the parameter variable. 812 // 813 // The limiting example (purely theoretical AFAIK): 814 // struct A { A(int &c) { c++; } }; 815 // struct B : virtual A { 816 // B(int count) : A(count) { printf("%d\n", count); } 817 // }; 818 // ...although even this example could in principle be emitted as a 819 // delegation since the address of the parameter doesn't escape. 820 if (Ctor->getParent()->getNumVBases()) { 821 // TODO: white-list trivial vbase initializers. This case wouldn't 822 // be subject to the restrictions below. 823 824 // TODO: white-list cases where: 825 // - there are no non-reference parameters to the constructor 826 // - the initializers don't access any non-reference parameters 827 // - the initializers don't take the address of non-reference 828 // parameters 829 // - etc. 830 // If we ever add any of the above cases, remember that: 831 // - function-try-blocks will always blacklist this optimization 832 // - we need to perform the constructor prologue and cleanup in 833 // EmitConstructorBody. 834 835 return false; 836 } 837 838 // We also disable the optimization for variadic functions because 839 // it's impossible to "re-pass" varargs. 840 if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic()) 841 return false; 842 843 // FIXME: Decide if we can do a delegation of a delegating constructor. 844 if (Ctor->isDelegatingConstructor()) 845 return false; 846 847 return true; 848 } 849 850 // Emit code in ctor (Prologue==true) or dtor (Prologue==false) 851 // to poison the extra field paddings inserted under 852 // -fsanitize-address-field-padding=1|2. 853 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) { 854 ASTContext &Context = getContext(); 855 const CXXRecordDecl *ClassDecl = 856 Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent() 857 : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent(); 858 if (!ClassDecl->mayInsertExtraPadding()) return; 859 860 struct SizeAndOffset { 861 uint64_t Size; 862 uint64_t Offset; 863 }; 864 865 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits(); 866 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl); 867 868 // Populate sizes and offsets of fields. 869 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount()); 870 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) 871 SSV[i].Offset = 872 Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity(); 873 874 size_t NumFields = 0; 875 for (const auto *Field : ClassDecl->fields()) { 876 const FieldDecl *D = Field; 877 std::pair<CharUnits, CharUnits> FieldInfo = 878 Context.getTypeInfoInChars(D->getType()); 879 CharUnits FieldSize = FieldInfo.first; 880 assert(NumFields < SSV.size()); 881 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity(); 882 NumFields++; 883 } 884 assert(NumFields == SSV.size()); 885 if (SSV.size() <= 1) return; 886 887 // We will insert calls to __asan_* run-time functions. 888 // LLVM AddressSanitizer pass may decide to inline them later. 889 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy}; 890 llvm::FunctionType *FTy = 891 llvm::FunctionType::get(CGM.VoidTy, Args, false); 892 llvm::Constant *F = CGM.CreateRuntimeFunction( 893 FTy, Prologue ? "__asan_poison_intra_object_redzone" 894 : "__asan_unpoison_intra_object_redzone"); 895 896 llvm::Value *ThisPtr = LoadCXXThis(); 897 ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy); 898 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity(); 899 // For each field check if it has sufficient padding, 900 // if so (un)poison it with a call. 901 for (size_t i = 0; i < SSV.size(); i++) { 902 uint64_t AsanAlignment = 8; 903 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset; 904 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size; 905 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size; 906 if (PoisonSize < AsanAlignment || !SSV[i].Size || 907 (NextField % AsanAlignment) != 0) 908 continue; 909 Builder.CreateCall( 910 F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)), 911 Builder.getIntN(PtrSize, PoisonSize)}); 912 } 913 } 914 915 /// EmitConstructorBody - Emits the body of the current constructor. 916 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) { 917 EmitAsanPrologueOrEpilogue(true); 918 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl()); 919 CXXCtorType CtorType = CurGD.getCtorType(); 920 921 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() || 922 CtorType == Ctor_Complete) && 923 "can only generate complete ctor for this ABI"); 924 925 // Before we go any further, try the complete->base constructor 926 // delegation optimization. 927 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) && 928 CGM.getTarget().getCXXABI().hasConstructorVariants()) { 929 EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd()); 930 return; 931 } 932 933 const FunctionDecl *Definition = nullptr; 934 Stmt *Body = Ctor->getBody(Definition); 935 assert(Definition == Ctor && "emitting wrong constructor body"); 936 937 // Enter the function-try-block before the constructor prologue if 938 // applicable. 939 bool IsTryBody = (Body && isa<CXXTryStmt>(Body)); 940 if (IsTryBody) 941 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 942 943 incrementProfileCounter(Body); 944 945 RunCleanupsScope RunCleanups(*this); 946 947 // TODO: in restricted cases, we can emit the vbase initializers of 948 // a complete ctor and then delegate to the base ctor. 949 950 // Emit the constructor prologue, i.e. the base and member 951 // initializers. 952 EmitCtorPrologue(Ctor, CtorType, Args); 953 954 // Emit the body of the statement. 955 if (IsTryBody) 956 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 957 else if (Body) 958 EmitStmt(Body); 959 960 // Emit any cleanup blocks associated with the member or base 961 // initializers, which includes (along the exceptional path) the 962 // destructors for those members and bases that were fully 963 // constructed. 964 RunCleanups.ForceCleanup(); 965 966 if (IsTryBody) 967 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 968 } 969 970 namespace { 971 /// RAII object to indicate that codegen is copying the value representation 972 /// instead of the object representation. Useful when copying a struct or 973 /// class which has uninitialized members and we're only performing 974 /// lvalue-to-rvalue conversion on the object but not its members. 975 class CopyingValueRepresentation { 976 public: 977 explicit CopyingValueRepresentation(CodeGenFunction &CGF) 978 : CGF(CGF), OldSanOpts(CGF.SanOpts) { 979 CGF.SanOpts.set(SanitizerKind::Bool, false); 980 CGF.SanOpts.set(SanitizerKind::Enum, false); 981 } 982 ~CopyingValueRepresentation() { 983 CGF.SanOpts = OldSanOpts; 984 } 985 private: 986 CodeGenFunction &CGF; 987 SanitizerSet OldSanOpts; 988 }; 989 } 990 991 namespace { 992 class FieldMemcpyizer { 993 public: 994 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl, 995 const VarDecl *SrcRec) 996 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec), 997 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)), 998 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0), 999 LastFieldOffset(0), LastAddedFieldIndex(0) {} 1000 1001 bool isMemcpyableField(FieldDecl *F) const { 1002 // Never memcpy fields when we are adding poisoned paddings. 1003 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding) 1004 return false; 1005 Qualifiers Qual = F->getType().getQualifiers(); 1006 if (Qual.hasVolatile() || Qual.hasObjCLifetime()) 1007 return false; 1008 return true; 1009 } 1010 1011 void addMemcpyableField(FieldDecl *F) { 1012 if (!FirstField) 1013 addInitialField(F); 1014 else 1015 addNextField(F); 1016 } 1017 1018 CharUnits getMemcpySize(uint64_t FirstByteOffset) const { 1019 unsigned LastFieldSize = 1020 LastField->isBitField() ? 1021 LastField->getBitWidthValue(CGF.getContext()) : 1022 CGF.getContext().getTypeSize(LastField->getType()); 1023 uint64_t MemcpySizeBits = 1024 LastFieldOffset + LastFieldSize - FirstByteOffset + 1025 CGF.getContext().getCharWidth() - 1; 1026 CharUnits MemcpySize = 1027 CGF.getContext().toCharUnitsFromBits(MemcpySizeBits); 1028 return MemcpySize; 1029 } 1030 1031 void emitMemcpy() { 1032 // Give the subclass a chance to bail out if it feels the memcpy isn't 1033 // worth it (e.g. Hasn't aggregated enough data). 1034 if (!FirstField) { 1035 return; 1036 } 1037 1038 uint64_t FirstByteOffset; 1039 if (FirstField->isBitField()) { 1040 const CGRecordLayout &RL = 1041 CGF.getTypes().getCGRecordLayout(FirstField->getParent()); 1042 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField); 1043 // FirstFieldOffset is not appropriate for bitfields, 1044 // we need to use the storage offset instead. 1045 FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset); 1046 } else { 1047 FirstByteOffset = FirstFieldOffset; 1048 } 1049 1050 CharUnits MemcpySize = getMemcpySize(FirstByteOffset); 1051 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1052 Address ThisPtr = CGF.LoadCXXThisAddress(); 1053 LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1054 LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField); 1055 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec)); 1056 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy); 1057 LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField); 1058 1059 emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(), 1060 Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(), 1061 MemcpySize); 1062 reset(); 1063 } 1064 1065 void reset() { 1066 FirstField = nullptr; 1067 } 1068 1069 protected: 1070 CodeGenFunction &CGF; 1071 const CXXRecordDecl *ClassDecl; 1072 1073 private: 1074 1075 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) { 1076 llvm::PointerType *DPT = DestPtr.getType(); 1077 llvm::Type *DBP = 1078 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace()); 1079 DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP); 1080 1081 llvm::PointerType *SPT = SrcPtr.getType(); 1082 llvm::Type *SBP = 1083 llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace()); 1084 SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP); 1085 1086 CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity()); 1087 } 1088 1089 void addInitialField(FieldDecl *F) { 1090 FirstField = F; 1091 LastField = F; 1092 FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1093 LastFieldOffset = FirstFieldOffset; 1094 LastAddedFieldIndex = F->getFieldIndex(); 1095 return; 1096 } 1097 1098 void addNextField(FieldDecl *F) { 1099 // For the most part, the following invariant will hold: 1100 // F->getFieldIndex() == LastAddedFieldIndex + 1 1101 // The one exception is that Sema won't add a copy-initializer for an 1102 // unnamed bitfield, which will show up here as a gap in the sequence. 1103 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 && 1104 "Cannot aggregate fields out of order."); 1105 LastAddedFieldIndex = F->getFieldIndex(); 1106 1107 // The 'first' and 'last' fields are chosen by offset, rather than field 1108 // index. This allows the code to support bitfields, as well as regular 1109 // fields. 1110 uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex()); 1111 if (FOffset < FirstFieldOffset) { 1112 FirstField = F; 1113 FirstFieldOffset = FOffset; 1114 } else if (FOffset > LastFieldOffset) { 1115 LastField = F; 1116 LastFieldOffset = FOffset; 1117 } 1118 } 1119 1120 const VarDecl *SrcRec; 1121 const ASTRecordLayout &RecLayout; 1122 FieldDecl *FirstField; 1123 FieldDecl *LastField; 1124 uint64_t FirstFieldOffset, LastFieldOffset; 1125 unsigned LastAddedFieldIndex; 1126 }; 1127 1128 class ConstructorMemcpyizer : public FieldMemcpyizer { 1129 private: 1130 1131 /// Get source argument for copy constructor. Returns null if not a copy 1132 /// constructor. 1133 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF, 1134 const CXXConstructorDecl *CD, 1135 FunctionArgList &Args) { 1136 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted()) 1137 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)]; 1138 return nullptr; 1139 } 1140 1141 // Returns true if a CXXCtorInitializer represents a member initialization 1142 // that can be rolled into a memcpy. 1143 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const { 1144 if (!MemcpyableCtor) 1145 return false; 1146 FieldDecl *Field = MemberInit->getMember(); 1147 assert(Field && "No field for member init."); 1148 QualType FieldType = Field->getType(); 1149 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit()); 1150 1151 // Bail out on non-memcpyable, not-trivially-copyable members. 1152 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) && 1153 !(FieldType.isTriviallyCopyableType(CGF.getContext()) || 1154 FieldType->isReferenceType())) 1155 return false; 1156 1157 // Bail out on volatile fields. 1158 if (!isMemcpyableField(Field)) 1159 return false; 1160 1161 // Otherwise we're good. 1162 return true; 1163 } 1164 1165 public: 1166 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD, 1167 FunctionArgList &Args) 1168 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)), 1169 ConstructorDecl(CD), 1170 MemcpyableCtor(CD->isDefaulted() && 1171 CD->isCopyOrMoveConstructor() && 1172 CGF.getLangOpts().getGC() == LangOptions::NonGC), 1173 Args(Args) { } 1174 1175 void addMemberInitializer(CXXCtorInitializer *MemberInit) { 1176 if (isMemberInitMemcpyable(MemberInit)) { 1177 AggregatedInits.push_back(MemberInit); 1178 addMemcpyableField(MemberInit->getMember()); 1179 } else { 1180 emitAggregatedInits(); 1181 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit, 1182 ConstructorDecl, Args); 1183 } 1184 } 1185 1186 void emitAggregatedInits() { 1187 if (AggregatedInits.size() <= 1) { 1188 // This memcpy is too small to be worthwhile. Fall back on default 1189 // codegen. 1190 if (!AggregatedInits.empty()) { 1191 CopyingValueRepresentation CVR(CGF); 1192 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), 1193 AggregatedInits[0], ConstructorDecl, Args); 1194 AggregatedInits.clear(); 1195 } 1196 reset(); 1197 return; 1198 } 1199 1200 pushEHDestructors(); 1201 emitMemcpy(); 1202 AggregatedInits.clear(); 1203 } 1204 1205 void pushEHDestructors() { 1206 Address ThisPtr = CGF.LoadCXXThisAddress(); 1207 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl); 1208 LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy); 1209 1210 for (unsigned i = 0; i < AggregatedInits.size(); ++i) { 1211 CXXCtorInitializer *MemberInit = AggregatedInits[i]; 1212 QualType FieldType = MemberInit->getAnyMember()->getType(); 1213 QualType::DestructionKind dtorKind = FieldType.isDestructedType(); 1214 if (!CGF.needsEHCleanup(dtorKind)) 1215 continue; 1216 LValue FieldLHS = LHS; 1217 EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS); 1218 CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType); 1219 } 1220 } 1221 1222 void finish() { 1223 emitAggregatedInits(); 1224 } 1225 1226 private: 1227 const CXXConstructorDecl *ConstructorDecl; 1228 bool MemcpyableCtor; 1229 FunctionArgList &Args; 1230 SmallVector<CXXCtorInitializer*, 16> AggregatedInits; 1231 }; 1232 1233 class AssignmentMemcpyizer : public FieldMemcpyizer { 1234 private: 1235 1236 // Returns the memcpyable field copied by the given statement, if one 1237 // exists. Otherwise returns null. 1238 FieldDecl *getMemcpyableField(Stmt *S) { 1239 if (!AssignmentsMemcpyable) 1240 return nullptr; 1241 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) { 1242 // Recognise trivial assignments. 1243 if (BO->getOpcode() != BO_Assign) 1244 return nullptr; 1245 MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS()); 1246 if (!ME) 1247 return nullptr; 1248 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1249 if (!Field || !isMemcpyableField(Field)) 1250 return nullptr; 1251 Stmt *RHS = BO->getRHS(); 1252 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS)) 1253 RHS = EC->getSubExpr(); 1254 if (!RHS) 1255 return nullptr; 1256 MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS); 1257 if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field) 1258 return nullptr; 1259 return Field; 1260 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) { 1261 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl()); 1262 if (!(MD && isMemcpyEquivalentSpecialMember(MD))) 1263 return nullptr; 1264 MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument()); 1265 if (!IOA) 1266 return nullptr; 1267 FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl()); 1268 if (!Field || !isMemcpyableField(Field)) 1269 return nullptr; 1270 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0)); 1271 if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl())) 1272 return nullptr; 1273 return Field; 1274 } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) { 1275 FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl()); 1276 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy) 1277 return nullptr; 1278 Expr *DstPtr = CE->getArg(0); 1279 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr)) 1280 DstPtr = DC->getSubExpr(); 1281 UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr); 1282 if (!DUO || DUO->getOpcode() != UO_AddrOf) 1283 return nullptr; 1284 MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr()); 1285 if (!ME) 1286 return nullptr; 1287 FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl()); 1288 if (!Field || !isMemcpyableField(Field)) 1289 return nullptr; 1290 Expr *SrcPtr = CE->getArg(1); 1291 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr)) 1292 SrcPtr = SC->getSubExpr(); 1293 UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr); 1294 if (!SUO || SUO->getOpcode() != UO_AddrOf) 1295 return nullptr; 1296 MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr()); 1297 if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl())) 1298 return nullptr; 1299 return Field; 1300 } 1301 1302 return nullptr; 1303 } 1304 1305 bool AssignmentsMemcpyable; 1306 SmallVector<Stmt*, 16> AggregatedStmts; 1307 1308 public: 1309 1310 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD, 1311 FunctionArgList &Args) 1312 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]), 1313 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) { 1314 assert(Args.size() == 2); 1315 } 1316 1317 void emitAssignment(Stmt *S) { 1318 FieldDecl *F = getMemcpyableField(S); 1319 if (F) { 1320 addMemcpyableField(F); 1321 AggregatedStmts.push_back(S); 1322 } else { 1323 emitAggregatedStmts(); 1324 CGF.EmitStmt(S); 1325 } 1326 } 1327 1328 void emitAggregatedStmts() { 1329 if (AggregatedStmts.size() <= 1) { 1330 if (!AggregatedStmts.empty()) { 1331 CopyingValueRepresentation CVR(CGF); 1332 CGF.EmitStmt(AggregatedStmts[0]); 1333 } 1334 reset(); 1335 } 1336 1337 emitMemcpy(); 1338 AggregatedStmts.clear(); 1339 } 1340 1341 void finish() { 1342 emitAggregatedStmts(); 1343 } 1344 }; 1345 } // end anonymous namespace 1346 1347 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) { 1348 const Type *BaseType = BaseInit->getBaseClass(); 1349 const auto *BaseClassDecl = 1350 cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); 1351 return BaseClassDecl->isDynamicClass(); 1352 } 1353 1354 /// EmitCtorPrologue - This routine generates necessary code to initialize 1355 /// base classes and non-static data members belonging to this constructor. 1356 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD, 1357 CXXCtorType CtorType, 1358 FunctionArgList &Args) { 1359 if (CD->isDelegatingConstructor()) 1360 return EmitDelegatingCXXConstructorCall(CD, Args); 1361 1362 const CXXRecordDecl *ClassDecl = CD->getParent(); 1363 1364 CXXConstructorDecl::init_const_iterator B = CD->init_begin(), 1365 E = CD->init_end(); 1366 1367 llvm::BasicBlock *BaseCtorContinueBB = nullptr; 1368 if (ClassDecl->getNumVBases() && 1369 !CGM.getTarget().getCXXABI().hasConstructorVariants()) { 1370 // The ABIs that don't have constructor variants need to put a branch 1371 // before the virtual base initialization code. 1372 BaseCtorContinueBB = 1373 CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl); 1374 assert(BaseCtorContinueBB); 1375 } 1376 1377 llvm::Value *const OldThis = CXXThisValue; 1378 // Virtual base initializers first. 1379 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) { 1380 if (CGM.getCodeGenOpts().StrictVTablePointers && 1381 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1382 isInitializerOfDynamicClass(*B)) 1383 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1384 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1385 } 1386 1387 if (BaseCtorContinueBB) { 1388 // Complete object handler should continue to the remaining initializers. 1389 Builder.CreateBr(BaseCtorContinueBB); 1390 EmitBlock(BaseCtorContinueBB); 1391 } 1392 1393 // Then, non-virtual base initializers. 1394 for (; B != E && (*B)->isBaseInitializer(); B++) { 1395 assert(!(*B)->isBaseVirtual()); 1396 1397 if (CGM.getCodeGenOpts().StrictVTablePointers && 1398 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1399 isInitializerOfDynamicClass(*B)) 1400 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1401 EmitBaseInitializer(*this, ClassDecl, *B, CtorType); 1402 } 1403 1404 CXXThisValue = OldThis; 1405 1406 InitializeVTablePointers(ClassDecl); 1407 1408 // And finally, initialize class members. 1409 FieldConstructionScope FCS(*this, LoadCXXThisAddress()); 1410 ConstructorMemcpyizer CM(*this, CD, Args); 1411 for (; B != E; B++) { 1412 CXXCtorInitializer *Member = (*B); 1413 assert(!Member->isBaseInitializer()); 1414 assert(Member->isAnyMemberInitializer() && 1415 "Delegating initializer on non-delegating constructor"); 1416 CM.addMemberInitializer(Member); 1417 } 1418 CM.finish(); 1419 } 1420 1421 static bool 1422 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field); 1423 1424 static bool 1425 HasTrivialDestructorBody(ASTContext &Context, 1426 const CXXRecordDecl *BaseClassDecl, 1427 const CXXRecordDecl *MostDerivedClassDecl) 1428 { 1429 // If the destructor is trivial we don't have to check anything else. 1430 if (BaseClassDecl->hasTrivialDestructor()) 1431 return true; 1432 1433 if (!BaseClassDecl->getDestructor()->hasTrivialBody()) 1434 return false; 1435 1436 // Check fields. 1437 for (const auto *Field : BaseClassDecl->fields()) 1438 if (!FieldHasTrivialDestructorBody(Context, Field)) 1439 return false; 1440 1441 // Check non-virtual bases. 1442 for (const auto &I : BaseClassDecl->bases()) { 1443 if (I.isVirtual()) 1444 continue; 1445 1446 const CXXRecordDecl *NonVirtualBase = 1447 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1448 if (!HasTrivialDestructorBody(Context, NonVirtualBase, 1449 MostDerivedClassDecl)) 1450 return false; 1451 } 1452 1453 if (BaseClassDecl == MostDerivedClassDecl) { 1454 // Check virtual bases. 1455 for (const auto &I : BaseClassDecl->vbases()) { 1456 const CXXRecordDecl *VirtualBase = 1457 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1458 if (!HasTrivialDestructorBody(Context, VirtualBase, 1459 MostDerivedClassDecl)) 1460 return false; 1461 } 1462 } 1463 1464 return true; 1465 } 1466 1467 static bool 1468 FieldHasTrivialDestructorBody(ASTContext &Context, 1469 const FieldDecl *Field) 1470 { 1471 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType()); 1472 1473 const RecordType *RT = FieldBaseElementType->getAs<RecordType>(); 1474 if (!RT) 1475 return true; 1476 1477 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl()); 1478 1479 // The destructor for an implicit anonymous union member is never invoked. 1480 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) 1481 return false; 1482 1483 return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl); 1484 } 1485 1486 /// CanSkipVTablePointerInitialization - Check whether we need to initialize 1487 /// any vtable pointers before calling this destructor. 1488 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF, 1489 const CXXDestructorDecl *Dtor) { 1490 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1491 if (!ClassDecl->isDynamicClass()) 1492 return true; 1493 1494 if (!Dtor->hasTrivialBody()) 1495 return false; 1496 1497 // Check the fields. 1498 for (const auto *Field : ClassDecl->fields()) 1499 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field)) 1500 return false; 1501 1502 return true; 1503 } 1504 1505 /// EmitDestructorBody - Emits the body of the current destructor. 1506 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) { 1507 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl()); 1508 CXXDtorType DtorType = CurGD.getDtorType(); 1509 1510 Stmt *Body = Dtor->getBody(); 1511 if (Body) 1512 incrementProfileCounter(Body); 1513 1514 // The call to operator delete in a deleting destructor happens 1515 // outside of the function-try-block, which means it's always 1516 // possible to delegate the destructor body to the complete 1517 // destructor. Do so. 1518 if (DtorType == Dtor_Deleting) { 1519 EnterDtorCleanups(Dtor, Dtor_Deleting); 1520 EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false, 1521 /*Delegating=*/false, LoadCXXThisAddress()); 1522 PopCleanupBlock(); 1523 return; 1524 } 1525 1526 // If the body is a function-try-block, enter the try before 1527 // anything else. 1528 bool isTryBody = (Body && isa<CXXTryStmt>(Body)); 1529 if (isTryBody) 1530 EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1531 EmitAsanPrologueOrEpilogue(false); 1532 1533 // Enter the epilogue cleanups. 1534 RunCleanupsScope DtorEpilogue(*this); 1535 1536 // If this is the complete variant, just invoke the base variant; 1537 // the epilogue will destruct the virtual bases. But we can't do 1538 // this optimization if the body is a function-try-block, because 1539 // we'd introduce *two* handler blocks. In the Microsoft ABI, we 1540 // always delegate because we might not have a definition in this TU. 1541 switch (DtorType) { 1542 case Dtor_Comdat: 1543 llvm_unreachable("not expecting a COMDAT"); 1544 1545 case Dtor_Deleting: llvm_unreachable("already handled deleting case"); 1546 1547 case Dtor_Complete: 1548 assert((Body || getTarget().getCXXABI().isMicrosoft()) && 1549 "can't emit a dtor without a body for non-Microsoft ABIs"); 1550 1551 // Enter the cleanup scopes for virtual bases. 1552 EnterDtorCleanups(Dtor, Dtor_Complete); 1553 1554 if (!isTryBody) { 1555 EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false, 1556 /*Delegating=*/false, LoadCXXThisAddress()); 1557 break; 1558 } 1559 // Fallthrough: act like we're in the base variant. 1560 1561 case Dtor_Base: 1562 assert(Body); 1563 1564 // Enter the cleanup scopes for fields and non-virtual bases. 1565 EnterDtorCleanups(Dtor, Dtor_Base); 1566 1567 // Initialize the vtable pointers before entering the body. 1568 if (!CanSkipVTablePointerInitialization(*this, Dtor)) { 1569 // Insert the llvm.invariant.group.barrier intrinsic before initializing 1570 // the vptrs to cancel any previous assumptions we might have made. 1571 if (CGM.getCodeGenOpts().StrictVTablePointers && 1572 CGM.getCodeGenOpts().OptimizationLevel > 0) 1573 CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis()); 1574 InitializeVTablePointers(Dtor->getParent()); 1575 } 1576 1577 if (isTryBody) 1578 EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock()); 1579 else if (Body) 1580 EmitStmt(Body); 1581 else { 1582 assert(Dtor->isImplicit() && "bodyless dtor not implicit"); 1583 // nothing to do besides what's in the epilogue 1584 } 1585 // -fapple-kext must inline any call to this dtor into 1586 // the caller's body. 1587 if (getLangOpts().AppleKext) 1588 CurFn->addFnAttr(llvm::Attribute::AlwaysInline); 1589 1590 break; 1591 } 1592 1593 // Jump out through the epilogue cleanups. 1594 DtorEpilogue.ForceCleanup(); 1595 1596 // Exit the try if applicable. 1597 if (isTryBody) 1598 ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true); 1599 } 1600 1601 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) { 1602 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl()); 1603 const Stmt *RootS = AssignOp->getBody(); 1604 assert(isa<CompoundStmt>(RootS) && 1605 "Body of an implicit assignment operator should be compound stmt."); 1606 const CompoundStmt *RootCS = cast<CompoundStmt>(RootS); 1607 1608 LexicalScope Scope(*this, RootCS->getSourceRange()); 1609 1610 AssignmentMemcpyizer AM(*this, AssignOp, Args); 1611 for (auto *I : RootCS->body()) 1612 AM.emitAssignment(I); 1613 AM.finish(); 1614 } 1615 1616 namespace { 1617 /// Call the operator delete associated with the current destructor. 1618 struct CallDtorDelete final : EHScopeStack::Cleanup { 1619 CallDtorDelete() {} 1620 1621 void Emit(CodeGenFunction &CGF, Flags flags) override { 1622 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1623 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1624 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1625 CGF.getContext().getTagDeclType(ClassDecl)); 1626 } 1627 }; 1628 1629 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup { 1630 llvm::Value *ShouldDeleteCondition; 1631 public: 1632 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition) 1633 : ShouldDeleteCondition(ShouldDeleteCondition) { 1634 assert(ShouldDeleteCondition != nullptr); 1635 } 1636 1637 void Emit(CodeGenFunction &CGF, Flags flags) override { 1638 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete"); 1639 llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue"); 1640 llvm::Value *ShouldCallDelete 1641 = CGF.Builder.CreateIsNull(ShouldDeleteCondition); 1642 CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB); 1643 1644 CGF.EmitBlock(callDeleteBB); 1645 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl); 1646 const CXXRecordDecl *ClassDecl = Dtor->getParent(); 1647 CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(), 1648 CGF.getContext().getTagDeclType(ClassDecl)); 1649 CGF.Builder.CreateBr(continueBB); 1650 1651 CGF.EmitBlock(continueBB); 1652 } 1653 }; 1654 1655 class DestroyField final : public EHScopeStack::Cleanup { 1656 const FieldDecl *field; 1657 CodeGenFunction::Destroyer *destroyer; 1658 bool useEHCleanupForArray; 1659 1660 public: 1661 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer, 1662 bool useEHCleanupForArray) 1663 : field(field), destroyer(destroyer), 1664 useEHCleanupForArray(useEHCleanupForArray) {} 1665 1666 void Emit(CodeGenFunction &CGF, Flags flags) override { 1667 // Find the address of the field. 1668 Address thisValue = CGF.LoadCXXThisAddress(); 1669 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent()); 1670 LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy); 1671 LValue LV = CGF.EmitLValueForField(ThisLV, field); 1672 assert(LV.isSimple()); 1673 1674 CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer, 1675 flags.isForNormalCleanup() && useEHCleanupForArray); 1676 } 1677 }; 1678 1679 static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr, 1680 CharUnits::QuantityType PoisonSize) { 1681 // Pass in void pointer and size of region as arguments to runtime 1682 // function 1683 llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy), 1684 llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)}; 1685 1686 llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy}; 1687 1688 llvm::FunctionType *FnType = 1689 llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false); 1690 llvm::Value *Fn = 1691 CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback"); 1692 CGF.EmitNounwindRuntimeCall(Fn, Args); 1693 } 1694 1695 class SanitizeDtorMembers final : public EHScopeStack::Cleanup { 1696 const CXXDestructorDecl *Dtor; 1697 1698 public: 1699 SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1700 1701 // Generate function call for handling object poisoning. 1702 // Disables tail call elimination, to prevent the current stack frame 1703 // from disappearing from the stack trace. 1704 void Emit(CodeGenFunction &CGF, Flags flags) override { 1705 const ASTRecordLayout &Layout = 1706 CGF.getContext().getASTRecordLayout(Dtor->getParent()); 1707 1708 // Nothing to poison. 1709 if (Layout.getFieldCount() == 0) 1710 return; 1711 1712 // Prevent the current stack frame from disappearing from the stack trace. 1713 CGF.CurFn->addFnAttr("disable-tail-calls", "true"); 1714 1715 // Construct pointer to region to begin poisoning, and calculate poison 1716 // size, so that only members declared in this class are poisoned. 1717 ASTContext &Context = CGF.getContext(); 1718 unsigned fieldIndex = 0; 1719 int startIndex = -1; 1720 // RecordDecl::field_iterator Field; 1721 for (const FieldDecl *Field : Dtor->getParent()->fields()) { 1722 // Poison field if it is trivial 1723 if (FieldHasTrivialDestructorBody(Context, Field)) { 1724 // Start sanitizing at this field 1725 if (startIndex < 0) 1726 startIndex = fieldIndex; 1727 1728 // Currently on the last field, and it must be poisoned with the 1729 // current block. 1730 if (fieldIndex == Layout.getFieldCount() - 1) { 1731 PoisonMembers(CGF, startIndex, Layout.getFieldCount()); 1732 } 1733 } else if (startIndex >= 0) { 1734 // No longer within a block of memory to poison, so poison the block 1735 PoisonMembers(CGF, startIndex, fieldIndex); 1736 // Re-set the start index 1737 startIndex = -1; 1738 } 1739 fieldIndex += 1; 1740 } 1741 } 1742 1743 private: 1744 /// \param layoutStartOffset index of the ASTRecordLayout field to 1745 /// start poisoning (inclusive) 1746 /// \param layoutEndOffset index of the ASTRecordLayout field to 1747 /// end poisoning (exclusive) 1748 void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset, 1749 unsigned layoutEndOffset) { 1750 ASTContext &Context = CGF.getContext(); 1751 const ASTRecordLayout &Layout = 1752 Context.getASTRecordLayout(Dtor->getParent()); 1753 1754 llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get( 1755 CGF.SizeTy, 1756 Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset)) 1757 .getQuantity()); 1758 1759 llvm::Value *OffsetPtr = CGF.Builder.CreateGEP( 1760 CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy), 1761 OffsetSizePtr); 1762 1763 CharUnits::QuantityType PoisonSize; 1764 if (layoutEndOffset >= Layout.getFieldCount()) { 1765 PoisonSize = Layout.getNonVirtualSize().getQuantity() - 1766 Context.toCharUnitsFromBits( 1767 Layout.getFieldOffset(layoutStartOffset)) 1768 .getQuantity(); 1769 } else { 1770 PoisonSize = Context.toCharUnitsFromBits( 1771 Layout.getFieldOffset(layoutEndOffset) - 1772 Layout.getFieldOffset(layoutStartOffset)) 1773 .getQuantity(); 1774 } 1775 1776 if (PoisonSize == 0) 1777 return; 1778 1779 EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize); 1780 } 1781 }; 1782 1783 class SanitizeDtorVTable final : public EHScopeStack::Cleanup { 1784 const CXXDestructorDecl *Dtor; 1785 1786 public: 1787 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {} 1788 1789 // Generate function call for handling vtable pointer poisoning. 1790 void Emit(CodeGenFunction &CGF, Flags flags) override { 1791 assert(Dtor->getParent()->isDynamicClass()); 1792 (void)Dtor; 1793 ASTContext &Context = CGF.getContext(); 1794 // Poison vtable and vtable ptr if they exist for this class. 1795 llvm::Value *VTablePtr = CGF.LoadCXXThis(); 1796 1797 CharUnits::QuantityType PoisonSize = 1798 Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity(); 1799 // Pass in void pointer and size of region as arguments to runtime 1800 // function 1801 EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize); 1802 } 1803 }; 1804 } // end anonymous namespace 1805 1806 /// \brief Emit all code that comes at the end of class's 1807 /// destructor. This is to call destructors on members and base classes 1808 /// in reverse order of their construction. 1809 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD, 1810 CXXDtorType DtorType) { 1811 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) && 1812 "Should not emit dtor epilogue for non-exported trivial dtor!"); 1813 1814 // The deleting-destructor phase just needs to call the appropriate 1815 // operator delete that Sema picked up. 1816 if (DtorType == Dtor_Deleting) { 1817 assert(DD->getOperatorDelete() && 1818 "operator delete missing - EnterDtorCleanups"); 1819 if (CXXStructorImplicitParamValue) { 1820 // If there is an implicit param to the deleting dtor, it's a boolean 1821 // telling whether we should call delete at the end of the dtor. 1822 EHStack.pushCleanup<CallDtorDeleteConditional>( 1823 NormalAndEHCleanup, CXXStructorImplicitParamValue); 1824 } else { 1825 EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup); 1826 } 1827 return; 1828 } 1829 1830 const CXXRecordDecl *ClassDecl = DD->getParent(); 1831 1832 // Unions have no bases and do not call field destructors. 1833 if (ClassDecl->isUnion()) 1834 return; 1835 1836 // The complete-destructor phase just destructs all the virtual bases. 1837 if (DtorType == Dtor_Complete) { 1838 // Poison the vtable pointer such that access after the base 1839 // and member destructors are invoked is invalid. 1840 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1841 SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() && 1842 ClassDecl->isPolymorphic()) 1843 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1844 1845 // We push them in the forward order so that they'll be popped in 1846 // the reverse order. 1847 for (const auto &Base : ClassDecl->vbases()) { 1848 CXXRecordDecl *BaseClassDecl 1849 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl()); 1850 1851 // Ignore trivial destructors. 1852 if (BaseClassDecl->hasTrivialDestructor()) 1853 continue; 1854 1855 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1856 BaseClassDecl, 1857 /*BaseIsVirtual*/ true); 1858 } 1859 1860 return; 1861 } 1862 1863 assert(DtorType == Dtor_Base); 1864 // Poison the vtable pointer if it has no virtual bases, but inherits 1865 // virtual functions. 1866 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1867 SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() && 1868 ClassDecl->isPolymorphic()) 1869 EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD); 1870 1871 // Destroy non-virtual bases. 1872 for (const auto &Base : ClassDecl->bases()) { 1873 // Ignore virtual bases. 1874 if (Base.isVirtual()) 1875 continue; 1876 1877 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); 1878 1879 // Ignore trivial destructors. 1880 if (BaseClassDecl->hasTrivialDestructor()) 1881 continue; 1882 1883 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, 1884 BaseClassDecl, 1885 /*BaseIsVirtual*/ false); 1886 } 1887 1888 // Poison fields such that access after their destructors are 1889 // invoked, and before the base class destructor runs, is invalid. 1890 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor && 1891 SanOpts.has(SanitizerKind::Memory)) 1892 EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD); 1893 1894 // Destroy direct fields. 1895 for (const auto *Field : ClassDecl->fields()) { 1896 QualType type = Field->getType(); 1897 QualType::DestructionKind dtorKind = type.isDestructedType(); 1898 if (!dtorKind) continue; 1899 1900 // Anonymous union members do not have their destructors called. 1901 const RecordType *RT = type->getAsUnionType(); 1902 if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue; 1903 1904 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1905 EHStack.pushCleanup<DestroyField>(cleanupKind, Field, 1906 getDestroyer(dtorKind), 1907 cleanupKind & EHCleanup); 1908 } 1909 } 1910 1911 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1912 /// constructor for each of several members of an array. 1913 /// 1914 /// \param ctor the constructor to call for each element 1915 /// \param arrayType the type of the array to initialize 1916 /// \param arrayBegin an arrayType* 1917 /// \param zeroInitialize true if each element should be 1918 /// zero-initialized before it is constructed 1919 void CodeGenFunction::EmitCXXAggrConstructorCall( 1920 const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType, 1921 Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) { 1922 QualType elementType; 1923 llvm::Value *numElements = 1924 emitArrayLength(arrayType, elementType, arrayBegin); 1925 1926 EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize); 1927 } 1928 1929 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular 1930 /// constructor for each of several members of an array. 1931 /// 1932 /// \param ctor the constructor to call for each element 1933 /// \param numElements the number of elements in the array; 1934 /// may be zero 1935 /// \param arrayBase a T*, where T is the type constructed by ctor 1936 /// \param zeroInitialize true if each element should be 1937 /// zero-initialized before it is constructed 1938 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor, 1939 llvm::Value *numElements, 1940 Address arrayBase, 1941 const CXXConstructExpr *E, 1942 bool zeroInitialize) { 1943 // It's legal for numElements to be zero. This can happen both 1944 // dynamically, because x can be zero in 'new A[x]', and statically, 1945 // because of GCC extensions that permit zero-length arrays. There 1946 // are probably legitimate places where we could assume that this 1947 // doesn't happen, but it's not clear that it's worth it. 1948 llvm::BranchInst *zeroCheckBranch = nullptr; 1949 1950 // Optimize for a constant count. 1951 llvm::ConstantInt *constantCount 1952 = dyn_cast<llvm::ConstantInt>(numElements); 1953 if (constantCount) { 1954 // Just skip out if the constant count is zero. 1955 if (constantCount->isZero()) return; 1956 1957 // Otherwise, emit the check. 1958 } else { 1959 llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop"); 1960 llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty"); 1961 zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB); 1962 EmitBlock(loopBB); 1963 } 1964 1965 // Find the end of the array. 1966 llvm::Value *arrayBegin = arrayBase.getPointer(); 1967 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements, 1968 "arrayctor.end"); 1969 1970 // Enter the loop, setting up a phi for the current location to initialize. 1971 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1972 llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop"); 1973 EmitBlock(loopBB); 1974 llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2, 1975 "arrayctor.cur"); 1976 cur->addIncoming(arrayBegin, entryBB); 1977 1978 // Inside the loop body, emit the constructor call on the array element. 1979 1980 // The alignment of the base, adjusted by the size of a single element, 1981 // provides a conservative estimate of the alignment of every element. 1982 // (This assumes we never start tracking offsetted alignments.) 1983 // 1984 // Note that these are complete objects and so we don't need to 1985 // use the non-virtual size or alignment. 1986 QualType type = getContext().getTypeDeclType(ctor->getParent()); 1987 CharUnits eltAlignment = 1988 arrayBase.getAlignment() 1989 .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); 1990 Address curAddr = Address(cur, eltAlignment); 1991 1992 // Zero initialize the storage, if requested. 1993 if (zeroInitialize) 1994 EmitNullInitialization(curAddr, type); 1995 1996 // C++ [class.temporary]p4: 1997 // There are two contexts in which temporaries are destroyed at a different 1998 // point than the end of the full-expression. The first context is when a 1999 // default constructor is called to initialize an element of an array. 2000 // If the constructor has one or more default arguments, the destruction of 2001 // every temporary created in a default argument expression is sequenced 2002 // before the construction of the next array element, if any. 2003 2004 { 2005 RunCleanupsScope Scope(*this); 2006 2007 // Evaluate the constructor and its arguments in a regular 2008 // partial-destroy cleanup. 2009 if (getLangOpts().Exceptions && 2010 !ctor->getParent()->hasTrivialDestructor()) { 2011 Destroyer *destroyer = destroyCXXObject; 2012 pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment, 2013 *destroyer); 2014 } 2015 2016 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false, 2017 /*Delegating=*/false, curAddr, E); 2018 } 2019 2020 // Go to the next element. 2021 llvm::Value *next = 2022 Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1), 2023 "arrayctor.next"); 2024 cur->addIncoming(next, Builder.GetInsertBlock()); 2025 2026 // Check whether that's the end of the loop. 2027 llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done"); 2028 llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont"); 2029 Builder.CreateCondBr(done, contBB, loopBB); 2030 2031 // Patch the earlier check to skip over the loop. 2032 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB); 2033 2034 EmitBlock(contBB); 2035 } 2036 2037 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF, 2038 Address addr, 2039 QualType type) { 2040 const RecordType *rtype = type->castAs<RecordType>(); 2041 const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl()); 2042 const CXXDestructorDecl *dtor = record->getDestructor(); 2043 assert(!dtor->isTrivial()); 2044 CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false, 2045 /*Delegating=*/false, addr); 2046 } 2047 2048 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D, 2049 CXXCtorType Type, 2050 bool ForVirtualBase, 2051 bool Delegating, Address This, 2052 const CXXConstructExpr *E) { 2053 const CXXRecordDecl *ClassDecl = D->getParent(); 2054 2055 // C++11 [class.mfct.non-static]p2: 2056 // If a non-static member function of a class X is called for an object that 2057 // is not of type X, or of a type derived from X, the behavior is undefined. 2058 // FIXME: Provide a source location here. 2059 EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(), 2060 This.getPointer(), getContext().getRecordType(ClassDecl)); 2061 2062 if (D->isTrivial() && D->isDefaultConstructor()) { 2063 assert(E->getNumArgs() == 0 && "trivial default ctor with args"); 2064 return; 2065 } 2066 2067 // If this is a trivial constructor, just emit what's needed. If this is a 2068 // union copy constructor, we must emit a memcpy, because the AST does not 2069 // model that copy. 2070 if (isMemcpyEquivalentSpecialMember(D)) { 2071 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2072 2073 const Expr *Arg = E->getArg(0); 2074 QualType SrcTy = Arg->getType(); 2075 Address Src = EmitLValue(Arg).getAddress(); 2076 QualType DestTy = getContext().getTypeDeclType(ClassDecl); 2077 EmitAggregateCopyCtor(This, Src, DestTy, SrcTy); 2078 return; 2079 } 2080 2081 CallArgList Args; 2082 2083 // Push the this ptr. 2084 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2085 2086 // Add the rest of the user-supplied arguments. 2087 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2088 EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor()); 2089 2090 // Insert any ABI-specific implicit constructor arguments. 2091 unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs( 2092 *this, D, Type, ForVirtualBase, Delegating, Args); 2093 2094 // Emit the call. 2095 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type)); 2096 const CGFunctionInfo &Info = 2097 CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs); 2098 EmitCall(Info, Callee, ReturnValueSlot(), Args, D); 2099 2100 // Generate vtable assumptions if we're constructing a complete object 2101 // with a vtable. We don't do this for base subobjects for two reasons: 2102 // first, it's incorrect for classes with virtual bases, and second, we're 2103 // about to overwrite the vptrs anyway. 2104 // We also have to make sure if we can refer to vtable: 2105 // - Otherwise we can refer to vtable if it's safe to speculatively emit. 2106 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are 2107 // sure that definition of vtable is not hidden, 2108 // then we are always safe to refer to it. 2109 // FIXME: It looks like InstCombine is very inefficient on dealing with 2110 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily. 2111 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2112 ClassDecl->isDynamicClass() && Type != Ctor_Base && 2113 CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) && 2114 CGM.getCodeGenOpts().StrictVTablePointers) 2115 EmitVTableAssumptionLoads(ClassDecl, This); 2116 } 2117 2118 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) { 2119 llvm::Value *VTableGlobal = 2120 CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass); 2121 if (!VTableGlobal) 2122 return; 2123 2124 // We can just use the base offset in the complete class. 2125 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset(); 2126 2127 if (!NonVirtualOffset.isZero()) 2128 This = 2129 ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr, 2130 Vptr.VTableClass, Vptr.NearestVBase); 2131 2132 llvm::Value *VPtrValue = 2133 GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass); 2134 llvm::Value *Cmp = 2135 Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables"); 2136 Builder.CreateAssumption(Cmp); 2137 } 2138 2139 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, 2140 Address This) { 2141 if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl)) 2142 for (const VPtr &Vptr : getVTablePointers(ClassDecl)) 2143 EmitVTableAssumptionLoad(Vptr, This); 2144 } 2145 2146 void 2147 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 2148 Address This, Address Src, 2149 const CXXConstructExpr *E) { 2150 if (isMemcpyEquivalentSpecialMember(D)) { 2151 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor"); 2152 assert(D->isCopyOrMoveConstructor() && 2153 "trivial 1-arg ctor not a copy/move ctor"); 2154 EmitAggregateCopyCtor(This, Src, 2155 getContext().getTypeDeclType(D->getParent()), 2156 (*E->arg_begin())->getType()); 2157 return; 2158 } 2159 llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete); 2160 assert(D->isInstance() && 2161 "Trying to emit a member call expr on a static method!"); 2162 2163 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 2164 2165 CallArgList Args; 2166 2167 // Push the this ptr. 2168 Args.add(RValue::get(This.getPointer()), D->getThisType(getContext())); 2169 2170 // Push the src ptr. 2171 QualType QT = *(FPT->param_type_begin()); 2172 llvm::Type *t = CGM.getTypes().ConvertType(QT); 2173 Src = Builder.CreateBitCast(Src, t); 2174 Args.add(RValue::get(Src.getPointer()), QT); 2175 2176 // Skip over first argument (Src). 2177 EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(), 2178 /*ParamsToSkip*/ 1); 2179 2180 EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All), 2181 Callee, ReturnValueSlot(), Args, D); 2182 } 2183 2184 void 2185 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 2186 CXXCtorType CtorType, 2187 const FunctionArgList &Args, 2188 SourceLocation Loc) { 2189 CallArgList DelegateArgs; 2190 2191 FunctionArgList::const_iterator I = Args.begin(), E = Args.end(); 2192 assert(I != E && "no parameters to constructor"); 2193 2194 // this 2195 DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType()); 2196 ++I; 2197 2198 // vtt 2199 if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType), 2200 /*ForVirtualBase=*/false, 2201 /*Delegating=*/true)) { 2202 QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy); 2203 DelegateArgs.add(RValue::get(VTT), VoidPP); 2204 2205 if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) { 2206 assert(I != E && "cannot skip vtt parameter, already done with args"); 2207 assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type"); 2208 ++I; 2209 } 2210 } 2211 2212 // Explicit arguments. 2213 for (; I != E; ++I) { 2214 const VarDecl *param = *I; 2215 // FIXME: per-argument source location 2216 EmitDelegateCallArg(DelegateArgs, param, Loc); 2217 } 2218 2219 llvm::Value *Callee = 2220 CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType)); 2221 EmitCall(CGM.getTypes() 2222 .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)), 2223 Callee, ReturnValueSlot(), DelegateArgs, Ctor); 2224 } 2225 2226 namespace { 2227 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup { 2228 const CXXDestructorDecl *Dtor; 2229 Address Addr; 2230 CXXDtorType Type; 2231 2232 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr, 2233 CXXDtorType Type) 2234 : Dtor(D), Addr(Addr), Type(Type) {} 2235 2236 void Emit(CodeGenFunction &CGF, Flags flags) override { 2237 CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false, 2238 /*Delegating=*/true, Addr); 2239 } 2240 }; 2241 } // end anonymous namespace 2242 2243 void 2244 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 2245 const FunctionArgList &Args) { 2246 assert(Ctor->isDelegatingConstructor()); 2247 2248 Address ThisPtr = LoadCXXThisAddress(); 2249 2250 AggValueSlot AggSlot = 2251 AggValueSlot::forAddr(ThisPtr, Qualifiers(), 2252 AggValueSlot::IsDestructed, 2253 AggValueSlot::DoesNotNeedGCBarriers, 2254 AggValueSlot::IsNotAliased); 2255 2256 EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot); 2257 2258 const CXXRecordDecl *ClassDecl = Ctor->getParent(); 2259 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) { 2260 CXXDtorType Type = 2261 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base; 2262 2263 EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup, 2264 ClassDecl->getDestructor(), 2265 ThisPtr, Type); 2266 } 2267 } 2268 2269 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD, 2270 CXXDtorType Type, 2271 bool ForVirtualBase, 2272 bool Delegating, 2273 Address This) { 2274 CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase, 2275 Delegating, This); 2276 } 2277 2278 namespace { 2279 struct CallLocalDtor final : EHScopeStack::Cleanup { 2280 const CXXDestructorDecl *Dtor; 2281 Address Addr; 2282 2283 CallLocalDtor(const CXXDestructorDecl *D, Address Addr) 2284 : Dtor(D), Addr(Addr) {} 2285 2286 void Emit(CodeGenFunction &CGF, Flags flags) override { 2287 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 2288 /*ForVirtualBase=*/false, 2289 /*Delegating=*/false, Addr); 2290 } 2291 }; 2292 } 2293 2294 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D, 2295 Address Addr) { 2296 EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr); 2297 } 2298 2299 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) { 2300 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl(); 2301 if (!ClassDecl) return; 2302 if (ClassDecl->hasTrivialDestructor()) return; 2303 2304 const CXXDestructorDecl *D = ClassDecl->getDestructor(); 2305 assert(D && D->isUsed() && "destructor not marked as used!"); 2306 PushDestructorCleanup(D, Addr); 2307 } 2308 2309 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) { 2310 // Compute the address point. 2311 llvm::Value *VTableAddressPoint = 2312 CGM.getCXXABI().getVTableAddressPointInStructor( 2313 *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase); 2314 2315 if (!VTableAddressPoint) 2316 return; 2317 2318 // Compute where to store the address point. 2319 llvm::Value *VirtualOffset = nullptr; 2320 CharUnits NonVirtualOffset = CharUnits::Zero(); 2321 2322 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) { 2323 // We need to use the virtual base offset offset because the virtual base 2324 // might have a different offset in the most derived class. 2325 2326 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset( 2327 *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase); 2328 NonVirtualOffset = Vptr.OffsetFromNearestVBase; 2329 } else { 2330 // We can just use the base offset in the complete class. 2331 NonVirtualOffset = Vptr.Base.getBaseOffset(); 2332 } 2333 2334 // Apply the offsets. 2335 Address VTableField = LoadCXXThisAddress(); 2336 2337 if (!NonVirtualOffset.isZero() || VirtualOffset) 2338 VTableField = ApplyNonVirtualAndVirtualOffset( 2339 *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass, 2340 Vptr.NearestVBase); 2341 2342 // Finally, store the address point. Use the same LLVM types as the field to 2343 // support optimization. 2344 llvm::Type *VTablePtrTy = 2345 llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true) 2346 ->getPointerTo() 2347 ->getPointerTo(); 2348 VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo()); 2349 VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy); 2350 2351 llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField); 2352 CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr()); 2353 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2354 CGM.getCodeGenOpts().StrictVTablePointers) 2355 CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass); 2356 } 2357 2358 CodeGenFunction::VPtrsVector 2359 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) { 2360 CodeGenFunction::VPtrsVector VPtrsResult; 2361 VisitedVirtualBasesSetTy VBases; 2362 getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()), 2363 /*NearestVBase=*/nullptr, 2364 /*OffsetFromNearestVBase=*/CharUnits::Zero(), 2365 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases, 2366 VPtrsResult); 2367 return VPtrsResult; 2368 } 2369 2370 void CodeGenFunction::getVTablePointers(BaseSubobject Base, 2371 const CXXRecordDecl *NearestVBase, 2372 CharUnits OffsetFromNearestVBase, 2373 bool BaseIsNonVirtualPrimaryBase, 2374 const CXXRecordDecl *VTableClass, 2375 VisitedVirtualBasesSetTy &VBases, 2376 VPtrsVector &Vptrs) { 2377 // If this base is a non-virtual primary base the address point has already 2378 // been set. 2379 if (!BaseIsNonVirtualPrimaryBase) { 2380 // Initialize the vtable pointer for this base. 2381 VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass}; 2382 Vptrs.push_back(Vptr); 2383 } 2384 2385 const CXXRecordDecl *RD = Base.getBase(); 2386 2387 // Traverse bases. 2388 for (const auto &I : RD->bases()) { 2389 CXXRecordDecl *BaseDecl 2390 = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl()); 2391 2392 // Ignore classes without a vtable. 2393 if (!BaseDecl->isDynamicClass()) 2394 continue; 2395 2396 CharUnits BaseOffset; 2397 CharUnits BaseOffsetFromNearestVBase; 2398 bool BaseDeclIsNonVirtualPrimaryBase; 2399 2400 if (I.isVirtual()) { 2401 // Check if we've visited this virtual base before. 2402 if (!VBases.insert(BaseDecl).second) 2403 continue; 2404 2405 const ASTRecordLayout &Layout = 2406 getContext().getASTRecordLayout(VTableClass); 2407 2408 BaseOffset = Layout.getVBaseClassOffset(BaseDecl); 2409 BaseOffsetFromNearestVBase = CharUnits::Zero(); 2410 BaseDeclIsNonVirtualPrimaryBase = false; 2411 } else { 2412 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2413 2414 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl); 2415 BaseOffsetFromNearestVBase = 2416 OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl); 2417 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl; 2418 } 2419 2420 getVTablePointers( 2421 BaseSubobject(BaseDecl, BaseOffset), 2422 I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase, 2423 BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs); 2424 } 2425 } 2426 2427 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) { 2428 // Ignore classes without a vtable. 2429 if (!RD->isDynamicClass()) 2430 return; 2431 2432 // Initialize the vtable pointers for this class and all of its bases. 2433 if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD)) 2434 for (const VPtr &Vptr : getVTablePointers(RD)) 2435 InitializeVTablePointer(Vptr); 2436 2437 if (RD->getNumVBases()) 2438 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD); 2439 } 2440 2441 llvm::Value *CodeGenFunction::GetVTablePtr(Address This, 2442 llvm::Type *VTableTy, 2443 const CXXRecordDecl *RD) { 2444 Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy); 2445 llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable"); 2446 CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr()); 2447 2448 if (CGM.getCodeGenOpts().OptimizationLevel > 0 && 2449 CGM.getCodeGenOpts().StrictVTablePointers) 2450 CGM.DecorateInstructionWithInvariantGroup(VTable, RD); 2451 2452 return VTable; 2453 } 2454 2455 // If a class has a single non-virtual base and does not introduce or override 2456 // virtual member functions or fields, it will have the same layout as its base. 2457 // This function returns the least derived such class. 2458 // 2459 // Casting an instance of a base class to such a derived class is technically 2460 // undefined behavior, but it is a relatively common hack for introducing member 2461 // functions on class instances with specific properties (e.g. llvm::Operator) 2462 // that works under most compilers and should not have security implications, so 2463 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict. 2464 static const CXXRecordDecl * 2465 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) { 2466 if (!RD->field_empty()) 2467 return RD; 2468 2469 if (RD->getNumVBases() != 0) 2470 return RD; 2471 2472 if (RD->getNumBases() != 1) 2473 return RD; 2474 2475 for (const CXXMethodDecl *MD : RD->methods()) { 2476 if (MD->isVirtual()) { 2477 // Virtual member functions are only ok if they are implicit destructors 2478 // because the implicit destructor will have the same semantics as the 2479 // base class's destructor if no fields are added. 2480 if (isa<CXXDestructorDecl>(MD) && MD->isImplicit()) 2481 continue; 2482 return RD; 2483 } 2484 } 2485 2486 return LeastDerivedClassWithSameLayout( 2487 RD->bases_begin()->getType()->getAsCXXRecordDecl()); 2488 } 2489 2490 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, 2491 llvm::Value *VTable, 2492 CFITypeCheckKind TCK, 2493 SourceLocation Loc) { 2494 const CXXRecordDecl *ClassDecl = MD->getParent(); 2495 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2496 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2497 2498 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2499 } 2500 2501 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, 2502 llvm::Value *Derived, 2503 bool MayBeNull, 2504 CFITypeCheckKind TCK, 2505 SourceLocation Loc) { 2506 if (!getLangOpts().CPlusPlus) 2507 return; 2508 2509 auto *ClassTy = T->getAs<RecordType>(); 2510 if (!ClassTy) 2511 return; 2512 2513 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl()); 2514 2515 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass()) 2516 return; 2517 2518 if (!SanOpts.has(SanitizerKind::CFICastStrict)) 2519 ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl); 2520 2521 llvm::BasicBlock *ContBlock = nullptr; 2522 2523 if (MayBeNull) { 2524 llvm::Value *DerivedNotNull = 2525 Builder.CreateIsNotNull(Derived, "cast.nonnull"); 2526 2527 llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check"); 2528 ContBlock = createBasicBlock("cast.cont"); 2529 2530 Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock); 2531 2532 EmitBlock(CheckBlock); 2533 } 2534 2535 llvm::Value *VTable = 2536 GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl); 2537 2538 EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc); 2539 2540 if (MayBeNull) { 2541 Builder.CreateBr(ContBlock); 2542 EmitBlock(ContBlock); 2543 } 2544 } 2545 2546 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD, 2547 llvm::Value *VTable, 2548 CFITypeCheckKind TCK, 2549 SourceLocation Loc) { 2550 if (CGM.IsCFIBlacklistedRecord(RD)) 2551 return; 2552 2553 SanitizerScope SanScope(this); 2554 2555 llvm::Metadata *MD = 2556 CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 2557 llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD); 2558 2559 llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy); 2560 llvm::Value *BitSetTest = 2561 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test), 2562 {CastedVTable, BitSetName}); 2563 2564 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso) { 2565 if (auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD)) { 2566 EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedVTable); 2567 return; 2568 } 2569 } 2570 2571 SanitizerMask M; 2572 switch (TCK) { 2573 case CFITCK_VCall: 2574 M = SanitizerKind::CFIVCall; 2575 break; 2576 case CFITCK_NVCall: 2577 M = SanitizerKind::CFINVCall; 2578 break; 2579 case CFITCK_DerivedCast: 2580 M = SanitizerKind::CFIDerivedCast; 2581 break; 2582 case CFITCK_UnrelatedCast: 2583 M = SanitizerKind::CFIUnrelatedCast; 2584 break; 2585 } 2586 2587 llvm::Constant *StaticData[] = { 2588 EmitCheckSourceLocation(Loc), 2589 EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)), 2590 llvm::ConstantInt::get(Int8Ty, TCK), 2591 }; 2592 EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData, 2593 CastedVTable); 2594 } 2595 2596 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do 2597 // quite what we want. 2598 static const Expr *skipNoOpCastsAndParens(const Expr *E) { 2599 while (true) { 2600 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 2601 E = PE->getSubExpr(); 2602 continue; 2603 } 2604 2605 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) { 2606 if (CE->getCastKind() == CK_NoOp) { 2607 E = CE->getSubExpr(); 2608 continue; 2609 } 2610 } 2611 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { 2612 if (UO->getOpcode() == UO_Extension) { 2613 E = UO->getSubExpr(); 2614 continue; 2615 } 2616 } 2617 return E; 2618 } 2619 } 2620 2621 bool 2622 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base, 2623 const CXXMethodDecl *MD) { 2624 // When building with -fapple-kext, all calls must go through the vtable since 2625 // the kernel linker can do runtime patching of vtables. 2626 if (getLangOpts().AppleKext) 2627 return false; 2628 2629 // If the most derived class is marked final, we know that no subclass can 2630 // override this member function and so we can devirtualize it. For example: 2631 // 2632 // struct A { virtual void f(); } 2633 // struct B final : A { }; 2634 // 2635 // void f(B *b) { 2636 // b->f(); 2637 // } 2638 // 2639 const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType(); 2640 if (MostDerivedClassDecl->hasAttr<FinalAttr>()) 2641 return true; 2642 2643 // If the member function is marked 'final', we know that it can't be 2644 // overridden and can therefore devirtualize it. 2645 if (MD->hasAttr<FinalAttr>()) 2646 return true; 2647 2648 // Similarly, if the class itself is marked 'final' it can't be overridden 2649 // and we can therefore devirtualize the member function call. 2650 if (MD->getParent()->hasAttr<FinalAttr>()) 2651 return true; 2652 2653 Base = skipNoOpCastsAndParens(Base); 2654 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { 2655 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) { 2656 // This is a record decl. We know the type and can devirtualize it. 2657 return VD->getType()->isRecordType(); 2658 } 2659 2660 return false; 2661 } 2662 2663 // We can devirtualize calls on an object accessed by a class member access 2664 // expression, since by C++11 [basic.life]p6 we know that it can't refer to 2665 // a derived class object constructed in the same location. 2666 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base)) 2667 if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl())) 2668 return VD->getType()->isRecordType(); 2669 2670 // We can always devirtualize calls on temporary object expressions. 2671 if (isa<CXXConstructExpr>(Base)) 2672 return true; 2673 2674 // And calls on bound temporaries. 2675 if (isa<CXXBindTemporaryExpr>(Base)) 2676 return true; 2677 2678 // Check if this is a call expr that returns a record type. 2679 if (const CallExpr *CE = dyn_cast<CallExpr>(Base)) 2680 return CE->getCallReturnType(getContext())->isRecordType(); 2681 2682 // We can't devirtualize the call. 2683 return false; 2684 } 2685 2686 void CodeGenFunction::EmitForwardingCallToLambda( 2687 const CXXMethodDecl *callOperator, 2688 CallArgList &callArgs) { 2689 // Get the address of the call operator. 2690 const CGFunctionInfo &calleeFnInfo = 2691 CGM.getTypes().arrangeCXXMethodDeclaration(callOperator); 2692 llvm::Value *callee = 2693 CGM.GetAddrOfFunction(GlobalDecl(callOperator), 2694 CGM.getTypes().GetFunctionType(calleeFnInfo)); 2695 2696 // Prepare the return slot. 2697 const FunctionProtoType *FPT = 2698 callOperator->getType()->castAs<FunctionProtoType>(); 2699 QualType resultType = FPT->getReturnType(); 2700 ReturnValueSlot returnSlot; 2701 if (!resultType->isVoidType() && 2702 calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect && 2703 !hasScalarEvaluationKind(calleeFnInfo.getReturnType())) 2704 returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified()); 2705 2706 // We don't need to separately arrange the call arguments because 2707 // the call can't be variadic anyway --- it's impossible to forward 2708 // variadic arguments. 2709 2710 // Now emit our call. 2711 RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, 2712 callArgs, callOperator); 2713 2714 // If necessary, copy the returned value into the slot. 2715 if (!resultType->isVoidType() && returnSlot.isNull()) 2716 EmitReturnOfRValue(RV, resultType); 2717 else 2718 EmitBranchThroughCleanup(ReturnBlock); 2719 } 2720 2721 void CodeGenFunction::EmitLambdaBlockInvokeBody() { 2722 const BlockDecl *BD = BlockInfo->getBlockDecl(); 2723 const VarDecl *variable = BD->capture_begin()->getVariable(); 2724 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl(); 2725 2726 // Start building arguments for forwarding call 2727 CallArgList CallArgs; 2728 2729 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2730 Address ThisPtr = GetAddrOfBlockDecl(variable, false); 2731 CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType); 2732 2733 // Add the rest of the parameters. 2734 for (auto param : BD->params()) 2735 EmitDelegateCallArg(CallArgs, param, param->getLocStart()); 2736 2737 assert(!Lambda->isGenericLambda() && 2738 "generic lambda interconversion to block not implemented"); 2739 EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs); 2740 } 2741 2742 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) { 2743 if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) { 2744 // FIXME: Making this work correctly is nasty because it requires either 2745 // cloning the body of the call operator or making the call operator forward. 2746 CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function"); 2747 return; 2748 } 2749 2750 EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody()); 2751 } 2752 2753 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) { 2754 const CXXRecordDecl *Lambda = MD->getParent(); 2755 2756 // Start building arguments for forwarding call 2757 CallArgList CallArgs; 2758 2759 QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda)); 2760 llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType)); 2761 CallArgs.add(RValue::get(ThisPtr), ThisType); 2762 2763 // Add the rest of the parameters. 2764 for (auto Param : MD->params()) 2765 EmitDelegateCallArg(CallArgs, Param, Param->getLocStart()); 2766 2767 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator(); 2768 // For a generic lambda, find the corresponding call operator specialization 2769 // to which the call to the static-invoker shall be forwarded. 2770 if (Lambda->isGenericLambda()) { 2771 assert(MD->isFunctionTemplateSpecialization()); 2772 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); 2773 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate(); 2774 void *InsertPos = nullptr; 2775 FunctionDecl *CorrespondingCallOpSpecialization = 2776 CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); 2777 assert(CorrespondingCallOpSpecialization); 2778 CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); 2779 } 2780 EmitForwardingCallToLambda(CallOp, CallArgs); 2781 } 2782 2783 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) { 2784 if (MD->isVariadic()) { 2785 // FIXME: Making this work correctly is nasty because it requires either 2786 // cloning the body of the call operator or making the call operator forward. 2787 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function"); 2788 return; 2789 } 2790 2791 EmitLambdaDelegatingInvokeBody(MD); 2792 } 2793