Home | History | Annotate | Download | only in compiler
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      6 #define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/compiler/common-operator.h"
     10 #include "src/compiler/graph.h"
     11 #include "src/compiler/linkage.h"
     12 #include "src/compiler/machine-operator.h"
     13 #include "src/compiler/node.h"
     14 #include "src/compiler/operator.h"
     15 #include "src/factory.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 namespace compiler {
     20 
     21 class BasicBlock;
     22 class RawMachineLabel;
     23 class Schedule;
     24 
     25 
     26 // The RawMachineAssembler produces a low-level IR graph. All nodes are wired
     27 // into a graph and also placed into a schedule immediately, hence subsequent
     28 // code generation can happen without the need for scheduling.
     29 //
     30 // In order to create a schedule on-the-fly, the assembler keeps track of basic
     31 // blocks by having one current basic block being populated and by referencing
     32 // other basic blocks through the use of labels.
     33 //
     34 // Also note that the generated graph is only valid together with the generated
     35 // schedule, using one without the other is invalid as the graph is inherently
     36 // non-schedulable due to missing control and effect dependencies.
     37 class RawMachineAssembler {
     38  public:
     39   RawMachineAssembler(
     40       Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
     41       MachineRepresentation word = MachineType::PointerRepresentation(),
     42       MachineOperatorBuilder::Flags flags =
     43           MachineOperatorBuilder::Flag::kNoFlags);
     44   ~RawMachineAssembler() {}
     45 
     46   Isolate* isolate() const { return isolate_; }
     47   Graph* graph() const { return graph_; }
     48   Zone* zone() const { return graph()->zone(); }
     49   MachineOperatorBuilder* machine() { return &machine_; }
     50   CommonOperatorBuilder* common() { return &common_; }
     51   CallDescriptor* call_descriptor() const { return call_descriptor_; }
     52 
     53   // Finalizes the schedule and exports it to be used for code generation. Note
     54   // that this RawMachineAssembler becomes invalid after export.
     55   Schedule* Export();
     56 
     57   // ===========================================================================
     58   // The following utility methods create new nodes with specific operators and
     59   // place them into the current basic block. They don't perform control flow,
     60   // hence will not switch the current basic block.
     61 
     62   Node* NullConstant() {
     63     return HeapConstant(isolate()->factory()->null_value());
     64   }
     65 
     66   Node* UndefinedConstant() {
     67     return HeapConstant(isolate()->factory()->undefined_value());
     68   }
     69 
     70   // Constants.
     71   Node* PointerConstant(void* value) {
     72     return IntPtrConstant(reinterpret_cast<intptr_t>(value));
     73   }
     74   Node* IntPtrConstant(intptr_t value) {
     75     // TODO(dcarney): mark generated code as unserializable if value != 0.
     76     return kPointerSize == 8 ? Int64Constant(value)
     77                              : Int32Constant(static_cast<int>(value));
     78   }
     79   Node* Int32Constant(int32_t value) {
     80     return AddNode(common()->Int32Constant(value));
     81   }
     82   Node* Int64Constant(int64_t value) {
     83     return AddNode(common()->Int64Constant(value));
     84   }
     85   Node* NumberConstant(double value) {
     86     return AddNode(common()->NumberConstant(value));
     87   }
     88   Node* Float32Constant(float value) {
     89     return AddNode(common()->Float32Constant(value));
     90   }
     91   Node* Float64Constant(double value) {
     92     return AddNode(common()->Float64Constant(value));
     93   }
     94   Node* HeapConstant(Handle<HeapObject> object) {
     95     return AddNode(common()->HeapConstant(object));
     96   }
     97   Node* BooleanConstant(bool value) {
     98     Handle<Object> object = isolate()->factory()->ToBoolean(value);
     99     return HeapConstant(Handle<HeapObject>::cast(object));
    100   }
    101   Node* ExternalConstant(ExternalReference address) {
    102     return AddNode(common()->ExternalConstant(address));
    103   }
    104 
    105   Node* Projection(int index, Node* a) {
    106     return AddNode(common()->Projection(index), a);
    107   }
    108 
    109   // Memory Operations.
    110   Node* Load(MachineType rep, Node* base) {
    111     return Load(rep, base, IntPtrConstant(0));
    112   }
    113   Node* Load(MachineType rep, Node* base, Node* index) {
    114     return AddNode(machine()->Load(rep), base, index);
    115   }
    116   Node* Store(MachineRepresentation rep, Node* base, Node* value,
    117               WriteBarrierKind write_barrier) {
    118     return Store(rep, base, IntPtrConstant(0), value, write_barrier);
    119   }
    120   Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
    121               WriteBarrierKind write_barrier) {
    122     return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
    123                    base, index, value);
    124   }
    125 
    126   // Arithmetic Operations.
    127   Node* WordAnd(Node* a, Node* b) {
    128     return AddNode(machine()->WordAnd(), a, b);
    129   }
    130   Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
    131   Node* WordXor(Node* a, Node* b) {
    132     return AddNode(machine()->WordXor(), a, b);
    133   }
    134   Node* WordShl(Node* a, Node* b) {
    135     return AddNode(machine()->WordShl(), a, b);
    136   }
    137   Node* WordShr(Node* a, Node* b) {
    138     return AddNode(machine()->WordShr(), a, b);
    139   }
    140   Node* WordSar(Node* a, Node* b) {
    141     return AddNode(machine()->WordSar(), a, b);
    142   }
    143   Node* WordRor(Node* a, Node* b) {
    144     return AddNode(machine()->WordRor(), a, b);
    145   }
    146   Node* WordEqual(Node* a, Node* b) {
    147     return AddNode(machine()->WordEqual(), a, b);
    148   }
    149   Node* WordNotEqual(Node* a, Node* b) {
    150     return WordBinaryNot(WordEqual(a, b));
    151   }
    152   Node* WordNot(Node* a) {
    153     if (machine()->Is32()) {
    154       return Word32Not(a);
    155     } else {
    156       return Word64Not(a);
    157     }
    158   }
    159   Node* WordBinaryNot(Node* a) {
    160     if (machine()->Is32()) {
    161       return Word32BinaryNot(a);
    162     } else {
    163       return Word64BinaryNot(a);
    164     }
    165   }
    166 
    167   Node* Word32And(Node* a, Node* b) {
    168     return AddNode(machine()->Word32And(), a, b);
    169   }
    170   Node* Word32Or(Node* a, Node* b) {
    171     return AddNode(machine()->Word32Or(), a, b);
    172   }
    173   Node* Word32Xor(Node* a, Node* b) {
    174     return AddNode(machine()->Word32Xor(), a, b);
    175   }
    176   Node* Word32Shl(Node* a, Node* b) {
    177     return AddNode(machine()->Word32Shl(), a, b);
    178   }
    179   Node* Word32Shr(Node* a, Node* b) {
    180     return AddNode(machine()->Word32Shr(), a, b);
    181   }
    182   Node* Word32Sar(Node* a, Node* b) {
    183     return AddNode(machine()->Word32Sar(), a, b);
    184   }
    185   Node* Word32Ror(Node* a, Node* b) {
    186     return AddNode(machine()->Word32Ror(), a, b);
    187   }
    188   Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
    189   Node* Word32Equal(Node* a, Node* b) {
    190     return AddNode(machine()->Word32Equal(), a, b);
    191   }
    192   Node* Word32NotEqual(Node* a, Node* b) {
    193     return Word32BinaryNot(Word32Equal(a, b));
    194   }
    195   Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
    196   Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
    197 
    198   Node* Word64And(Node* a, Node* b) {
    199     return AddNode(machine()->Word64And(), a, b);
    200   }
    201   Node* Word64Or(Node* a, Node* b) {
    202     return AddNode(machine()->Word64Or(), a, b);
    203   }
    204   Node* Word64Xor(Node* a, Node* b) {
    205     return AddNode(machine()->Word64Xor(), a, b);
    206   }
    207   Node* Word64Shl(Node* a, Node* b) {
    208     return AddNode(machine()->Word64Shl(), a, b);
    209   }
    210   Node* Word64Shr(Node* a, Node* b) {
    211     return AddNode(machine()->Word64Shr(), a, b);
    212   }
    213   Node* Word64Sar(Node* a, Node* b) {
    214     return AddNode(machine()->Word64Sar(), a, b);
    215   }
    216   Node* Word64Ror(Node* a, Node* b) {
    217     return AddNode(machine()->Word64Ror(), a, b);
    218   }
    219   Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
    220   Node* Word64Equal(Node* a, Node* b) {
    221     return AddNode(machine()->Word64Equal(), a, b);
    222   }
    223   Node* Word64NotEqual(Node* a, Node* b) {
    224     return Word64BinaryNot(Word64Equal(a, b));
    225   }
    226   Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
    227   Node* Word64BinaryNot(Node* a) { return Word64Equal(a, Int64Constant(0)); }
    228 
    229   Node* Int32Add(Node* a, Node* b) {
    230     return AddNode(machine()->Int32Add(), a, b);
    231   }
    232   Node* Int32AddWithOverflow(Node* a, Node* b) {
    233     return AddNode(machine()->Int32AddWithOverflow(), a, b);
    234   }
    235   Node* Int32Sub(Node* a, Node* b) {
    236     return AddNode(machine()->Int32Sub(), a, b);
    237   }
    238   Node* Int32SubWithOverflow(Node* a, Node* b) {
    239     return AddNode(machine()->Int32SubWithOverflow(), a, b);
    240   }
    241   Node* Int32Mul(Node* a, Node* b) {
    242     return AddNode(machine()->Int32Mul(), a, b);
    243   }
    244   Node* Int32MulHigh(Node* a, Node* b) {
    245     return AddNode(machine()->Int32MulHigh(), a, b);
    246   }
    247   Node* Int32Div(Node* a, Node* b) {
    248     return AddNode(machine()->Int32Div(), a, b);
    249   }
    250   Node* Int32Mod(Node* a, Node* b) {
    251     return AddNode(machine()->Int32Mod(), a, b);
    252   }
    253   Node* Int32LessThan(Node* a, Node* b) {
    254     return AddNode(machine()->Int32LessThan(), a, b);
    255   }
    256   Node* Int32LessThanOrEqual(Node* a, Node* b) {
    257     return AddNode(machine()->Int32LessThanOrEqual(), a, b);
    258   }
    259   Node* Uint32Div(Node* a, Node* b) {
    260     return AddNode(machine()->Uint32Div(), a, b);
    261   }
    262   Node* Uint32LessThan(Node* a, Node* b) {
    263     return AddNode(machine()->Uint32LessThan(), a, b);
    264   }
    265   Node* Uint32LessThanOrEqual(Node* a, Node* b) {
    266     return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
    267   }
    268   Node* Uint32Mod(Node* a, Node* b) {
    269     return AddNode(machine()->Uint32Mod(), a, b);
    270   }
    271   Node* Uint32MulHigh(Node* a, Node* b) {
    272     return AddNode(machine()->Uint32MulHigh(), a, b);
    273   }
    274   Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
    275   Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
    276     return Int32LessThanOrEqual(b, a);
    277   }
    278   Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
    279 
    280   Node* Int64Add(Node* a, Node* b) {
    281     return AddNode(machine()->Int64Add(), a, b);
    282   }
    283   Node* Int64AddWithOverflow(Node* a, Node* b) {
    284     return AddNode(machine()->Int64AddWithOverflow(), a, b);
    285   }
    286   Node* Int64Sub(Node* a, Node* b) {
    287     return AddNode(machine()->Int64Sub(), a, b);
    288   }
    289   Node* Int64SubWithOverflow(Node* a, Node* b) {
    290     return AddNode(machine()->Int64SubWithOverflow(), a, b);
    291   }
    292   Node* Int64Mul(Node* a, Node* b) {
    293     return AddNode(machine()->Int64Mul(), a, b);
    294   }
    295   Node* Int64Div(Node* a, Node* b) {
    296     return AddNode(machine()->Int64Div(), a, b);
    297   }
    298   Node* Int64Mod(Node* a, Node* b) {
    299     return AddNode(machine()->Int64Mod(), a, b);
    300   }
    301   Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
    302   Node* Int64LessThan(Node* a, Node* b) {
    303     return AddNode(machine()->Int64LessThan(), a, b);
    304   }
    305   Node* Int64LessThanOrEqual(Node* a, Node* b) {
    306     return AddNode(machine()->Int64LessThanOrEqual(), a, b);
    307   }
    308   Node* Uint64LessThan(Node* a, Node* b) {
    309     return AddNode(machine()->Uint64LessThan(), a, b);
    310   }
    311   Node* Uint64LessThanOrEqual(Node* a, Node* b) {
    312     return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
    313   }
    314   Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
    315   Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
    316     return Int64LessThanOrEqual(b, a);
    317   }
    318   Node* Uint64Div(Node* a, Node* b) {
    319     return AddNode(machine()->Uint64Div(), a, b);
    320   }
    321   Node* Uint64Mod(Node* a, Node* b) {
    322     return AddNode(machine()->Uint64Mod(), a, b);
    323   }
    324 
    325 #define INTPTR_BINOP(prefix, name)                     \
    326   Node* IntPtr##name(Node* a, Node* b) {               \
    327     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    328                              : prefix##32##name(a, b); \
    329   }
    330 
    331   INTPTR_BINOP(Int, Add);
    332   INTPTR_BINOP(Int, Sub);
    333   INTPTR_BINOP(Int, LessThan);
    334   INTPTR_BINOP(Int, LessThanOrEqual);
    335   INTPTR_BINOP(Word, Equal);
    336   INTPTR_BINOP(Word, NotEqual);
    337   INTPTR_BINOP(Int, GreaterThanOrEqual);
    338   INTPTR_BINOP(Int, GreaterThan);
    339 
    340 #undef INTPTR_BINOP
    341 
    342   Node* Float32Add(Node* a, Node* b) {
    343     return AddNode(machine()->Float32Add(), a, b);
    344   }
    345   Node* Float32Sub(Node* a, Node* b) {
    346     return AddNode(machine()->Float32Sub(), a, b);
    347   }
    348   Node* Float32Mul(Node* a, Node* b) {
    349     return AddNode(machine()->Float32Mul(), a, b);
    350   }
    351   Node* Float32Div(Node* a, Node* b) {
    352     return AddNode(machine()->Float32Div(), a, b);
    353   }
    354   Node* Float32Max(Node* a, Node* b) {
    355     return AddNode(machine()->Float32Max().op(), a, b);
    356   }
    357   Node* Float32Min(Node* a, Node* b) {
    358     return AddNode(machine()->Float32Min().op(), a, b);
    359   }
    360   Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
    361   Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
    362   Node* Float32Equal(Node* a, Node* b) {
    363     return AddNode(machine()->Float32Equal(), a, b);
    364   }
    365   Node* Float32NotEqual(Node* a, Node* b) {
    366     return WordBinaryNot(Float32Equal(a, b));
    367   }
    368   Node* Float32LessThan(Node* a, Node* b) {
    369     return AddNode(machine()->Float32LessThan(), a, b);
    370   }
    371   Node* Float32LessThanOrEqual(Node* a, Node* b) {
    372     return AddNode(machine()->Float32LessThanOrEqual(), a, b);
    373   }
    374   Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
    375   Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
    376     return Float32LessThanOrEqual(b, a);
    377   }
    378 
    379   Node* Float64Add(Node* a, Node* b) {
    380     return AddNode(machine()->Float64Add(), a, b);
    381   }
    382   Node* Float64Sub(Node* a, Node* b) {
    383     return AddNode(machine()->Float64Sub(), a, b);
    384   }
    385   Node* Float64Mul(Node* a, Node* b) {
    386     return AddNode(machine()->Float64Mul(), a, b);
    387   }
    388   Node* Float64Div(Node* a, Node* b) {
    389     return AddNode(machine()->Float64Div(), a, b);
    390   }
    391   Node* Float64Mod(Node* a, Node* b) {
    392     return AddNode(machine()->Float64Mod(), a, b);
    393   }
    394   Node* Float64Max(Node* a, Node* b) {
    395     return AddNode(machine()->Float64Max().op(), a, b);
    396   }
    397   Node* Float64Min(Node* a, Node* b) {
    398     return AddNode(machine()->Float64Min().op(), a, b);
    399   }
    400   Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
    401   Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
    402   Node* Float64Equal(Node* a, Node* b) {
    403     return AddNode(machine()->Float64Equal(), a, b);
    404   }
    405   Node* Float64NotEqual(Node* a, Node* b) {
    406     return WordBinaryNot(Float64Equal(a, b));
    407   }
    408   Node* Float64LessThan(Node* a, Node* b) {
    409     return AddNode(machine()->Float64LessThan(), a, b);
    410   }
    411   Node* Float64LessThanOrEqual(Node* a, Node* b) {
    412     return AddNode(machine()->Float64LessThanOrEqual(), a, b);
    413   }
    414   Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
    415   Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
    416     return Float64LessThanOrEqual(b, a);
    417   }
    418 
    419   // Conversions.
    420   Node* ChangeFloat32ToFloat64(Node* a) {
    421     return AddNode(machine()->ChangeFloat32ToFloat64(), a);
    422   }
    423   Node* ChangeInt32ToFloat64(Node* a) {
    424     return AddNode(machine()->ChangeInt32ToFloat64(), a);
    425   }
    426   Node* ChangeUint32ToFloat64(Node* a) {
    427     return AddNode(machine()->ChangeUint32ToFloat64(), a);
    428   }
    429   Node* ChangeFloat64ToInt32(Node* a) {
    430     return AddNode(machine()->ChangeFloat64ToInt32(), a);
    431   }
    432   Node* ChangeFloat64ToUint32(Node* a) {
    433     return AddNode(machine()->ChangeFloat64ToUint32(), a);
    434   }
    435   Node* TruncateFloat32ToInt64(Node* a) {
    436     // TODO(ahaas): Remove this function as soon as it is not used anymore in
    437     // WebAssembly.
    438     return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
    439   }
    440   Node* TryTruncateFloat32ToInt64(Node* a) {
    441     return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
    442   }
    443   Node* TruncateFloat64ToInt64(Node* a) {
    444     // TODO(ahaas): Remove this function as soon as it is not used anymore in
    445     // WebAssembly.
    446     return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
    447   }
    448   Node* TryTruncateFloat64ToInt64(Node* a) {
    449     return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
    450   }
    451   Node* TruncateFloat32ToUint64(Node* a) {
    452     // TODO(ahaas): Remove this function as soon as it is not used anymore in
    453     // WebAssembly.
    454     return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
    455   }
    456   Node* TryTruncateFloat32ToUint64(Node* a) {
    457     return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
    458   }
    459   Node* TruncateFloat64ToUint64(Node* a) {
    460     // TODO(ahaas): Remove this function as soon as it is not used anymore in
    461     // WebAssembly.
    462     return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
    463   }
    464   Node* TryTruncateFloat64ToUint64(Node* a) {
    465     return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
    466   }
    467   Node* ChangeInt32ToInt64(Node* a) {
    468     return AddNode(machine()->ChangeInt32ToInt64(), a);
    469   }
    470   Node* ChangeUint32ToUint64(Node* a) {
    471     return AddNode(machine()->ChangeUint32ToUint64(), a);
    472   }
    473   Node* TruncateFloat64ToFloat32(Node* a) {
    474     return AddNode(machine()->TruncateFloat64ToFloat32(), a);
    475   }
    476   Node* TruncateFloat64ToInt32(TruncationMode mode, Node* a) {
    477     return AddNode(machine()->TruncateFloat64ToInt32(mode), a);
    478   }
    479   Node* TruncateInt64ToInt32(Node* a) {
    480     return AddNode(machine()->TruncateInt64ToInt32(), a);
    481   }
    482   Node* RoundInt64ToFloat32(Node* a) {
    483     return AddNode(machine()->RoundInt64ToFloat32(), a);
    484   }
    485   Node* RoundInt64ToFloat64(Node* a) {
    486     return AddNode(machine()->RoundInt64ToFloat64(), a);
    487   }
    488   Node* RoundUint64ToFloat32(Node* a) {
    489     return AddNode(machine()->RoundUint64ToFloat32(), a);
    490   }
    491   Node* RoundUint64ToFloat64(Node* a) {
    492     return AddNode(machine()->RoundUint64ToFloat64(), a);
    493   }
    494   Node* BitcastFloat32ToInt32(Node* a) {
    495     return AddNode(machine()->BitcastFloat32ToInt32(), a);
    496   }
    497   Node* BitcastFloat64ToInt64(Node* a) {
    498     return AddNode(machine()->BitcastFloat64ToInt64(), a);
    499   }
    500   Node* BitcastInt32ToFloat32(Node* a) {
    501     return AddNode(machine()->BitcastInt32ToFloat32(), a);
    502   }
    503   Node* BitcastInt64ToFloat64(Node* a) {
    504     return AddNode(machine()->BitcastInt64ToFloat64(), a);
    505   }
    506   Node* Float32RoundDown(Node* a) {
    507     return AddNode(machine()->Float32RoundDown().op(), a);
    508   }
    509   Node* Float64RoundDown(Node* a) {
    510     return AddNode(machine()->Float64RoundDown().op(), a);
    511   }
    512   Node* Float32RoundUp(Node* a) {
    513     return AddNode(machine()->Float32RoundUp().op(), a);
    514   }
    515   Node* Float64RoundUp(Node* a) {
    516     return AddNode(machine()->Float64RoundUp().op(), a);
    517   }
    518   Node* Float32RoundTruncate(Node* a) {
    519     return AddNode(machine()->Float32RoundTruncate().op(), a);
    520   }
    521   Node* Float64RoundTruncate(Node* a) {
    522     return AddNode(machine()->Float64RoundTruncate().op(), a);
    523   }
    524   Node* Float64RoundTiesAway(Node* a) {
    525     return AddNode(machine()->Float64RoundTiesAway().op(), a);
    526   }
    527   Node* Float32RoundTiesEven(Node* a) {
    528     return AddNode(machine()->Float32RoundTiesEven().op(), a);
    529   }
    530   Node* Float64RoundTiesEven(Node* a) {
    531     return AddNode(machine()->Float64RoundTiesEven().op(), a);
    532   }
    533 
    534   // Float64 bit operations.
    535   Node* Float64ExtractLowWord32(Node* a) {
    536     return AddNode(machine()->Float64ExtractLowWord32(), a);
    537   }
    538   Node* Float64ExtractHighWord32(Node* a) {
    539     return AddNode(machine()->Float64ExtractHighWord32(), a);
    540   }
    541   Node* Float64InsertLowWord32(Node* a, Node* b) {
    542     return AddNode(machine()->Float64InsertLowWord32(), a, b);
    543   }
    544   Node* Float64InsertHighWord32(Node* a, Node* b) {
    545     return AddNode(machine()->Float64InsertHighWord32(), a, b);
    546   }
    547 
    548   // Stack operations.
    549   Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); }
    550   Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
    551 
    552   // Parameters.
    553   Node* Parameter(size_t index);
    554 
    555   // Pointer utilities.
    556   Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) {
    557     return Load(rep, PointerConstant(address), Int32Constant(offset));
    558   }
    559   Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
    560     return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
    561   }
    562   Node* StringConstant(const char* string) {
    563     return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
    564   }
    565 
    566   // Call a given call descriptor and the given arguments.
    567   Node* CallN(CallDescriptor* desc, Node* function, Node** args);
    568   // Call a given call descriptor and the given arguments and frame-state.
    569   Node* CallNWithFrameState(CallDescriptor* desc, Node* function, Node** args,
    570                             Node* frame_state);
    571   // Call to a runtime function with one arguments.
    572   Node* CallRuntime1(Runtime::FunctionId function, Node* arg0, Node* context);
    573   // Call to a runtime function with two arguments.
    574   Node* CallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
    575                      Node* context);
    576   // Call to a runtime function with four arguments.
    577   Node* CallRuntime4(Runtime::FunctionId function, Node* arg1, Node* arg2,
    578                      Node* arg3, Node* arg4, Node* context);
    579   // Call to a C function with zero arguments.
    580   Node* CallCFunction0(MachineType return_type, Node* function);
    581   // Call to a C function with one parameter.
    582   Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
    583                        Node* function, Node* arg0);
    584   // Call to a C function with two arguments.
    585   Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
    586                        MachineType arg1_type, Node* function, Node* arg0,
    587                        Node* arg1);
    588   // Call to a C function with eight arguments.
    589   Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
    590                        MachineType arg1_type, MachineType arg2_type,
    591                        MachineType arg3_type, MachineType arg4_type,
    592                        MachineType arg5_type, MachineType arg6_type,
    593                        MachineType arg7_type, Node* function, Node* arg0,
    594                        Node* arg1, Node* arg2, Node* arg3, Node* arg4,
    595                        Node* arg5, Node* arg6, Node* arg7);
    596 
    597   // Tail call the given call descriptor and the given arguments.
    598   Node* TailCallN(CallDescriptor* call_descriptor, Node* function, Node** args);
    599   // Tail call to a runtime function with one argument.
    600   Node* TailCallRuntime1(Runtime::FunctionId function, Node* arg0,
    601                          Node* context);
    602   // Tail call to a runtime function with two arguments.
    603   Node* TailCallRuntime2(Runtime::FunctionId function, Node* arg1, Node* arg2,
    604                          Node* context);
    605 
    606 
    607   // ===========================================================================
    608   // The following utility methods deal with control flow, hence might switch
    609   // the current basic block or create new basic blocks for labels.
    610 
    611   // Control flow.
    612   void Goto(RawMachineLabel* label);
    613   void Branch(Node* condition, RawMachineLabel* true_val,
    614               RawMachineLabel* false_val);
    615   void Switch(Node* index, RawMachineLabel* default_label, int32_t* case_values,
    616               RawMachineLabel** case_labels, size_t case_count);
    617   void Return(Node* value);
    618   void Return(Node* v1, Node* v2);
    619   void Return(Node* v1, Node* v2, Node* v3);
    620   void Bind(RawMachineLabel* label);
    621   void Deoptimize(Node* state);
    622 
    623   // Variables.
    624   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
    625     return AddNode(common()->Phi(rep, 2), n1, n2);
    626   }
    627   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
    628     return AddNode(common()->Phi(rep, 3), n1, n2, n3);
    629   }
    630   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
    631     return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4);
    632   }
    633 
    634   // ===========================================================================
    635   // The following generic node creation methods can be used for operators that
    636   // are not covered by the above utility methods. There should rarely be a need
    637   // to do that outside of testing though.
    638 
    639   Node* AddNode(const Operator* op, int input_count, Node** inputs);
    640 
    641   Node* AddNode(const Operator* op) {
    642     return AddNode(op, 0, static_cast<Node**>(nullptr));
    643   }
    644 
    645   template <class... TArgs>
    646   Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
    647     Node* buffer[] = {n1, args...};
    648     return AddNode(op, sizeof...(args) + 1, buffer);
    649   }
    650 
    651  private:
    652   Node* MakeNode(const Operator* op, int input_count, Node** inputs);
    653   BasicBlock* Use(RawMachineLabel* label);
    654   BasicBlock* EnsureBlock(RawMachineLabel* label);
    655   BasicBlock* CurrentBlock();
    656 
    657   Schedule* schedule() { return schedule_; }
    658   size_t parameter_count() const { return machine_sig()->parameter_count(); }
    659   const MachineSignature* machine_sig() const {
    660     return call_descriptor_->GetMachineSignature();
    661   }
    662 
    663   Isolate* isolate_;
    664   Graph* graph_;
    665   Schedule* schedule_;
    666   MachineOperatorBuilder machine_;
    667   CommonOperatorBuilder common_;
    668   CallDescriptor* call_descriptor_;
    669   NodeVector parameters_;
    670   BasicBlock* current_block_;
    671 
    672   DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
    673 };
    674 
    675 
    676 class RawMachineLabel final {
    677  public:
    678   RawMachineLabel();
    679   ~RawMachineLabel();
    680 
    681  private:
    682   BasicBlock* block_;
    683   bool used_;
    684   bool bound_;
    685   friend class RawMachineAssembler;
    686   DISALLOW_COPY_AND_ASSIGN(RawMachineLabel);
    687 };
    688 
    689 }  // namespace compiler
    690 }  // namespace internal
    691 }  // namespace v8
    692 
    693 #endif  // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
    694