1 // Copyright 2012 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_PROPERTY_DETAILS_H_ 6 #define V8_PROPERTY_DETAILS_H_ 7 8 #include "include/v8.h" 9 #include "src/allocation.h" 10 #include "src/utils.h" 11 12 namespace v8 { 13 namespace internal { 14 15 // ES6 6.1.7.1 16 enum PropertyAttributes { 17 NONE = ::v8::None, 18 READ_ONLY = ::v8::ReadOnly, 19 DONT_ENUM = ::v8::DontEnum, 20 DONT_DELETE = ::v8::DontDelete, 21 22 ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE, 23 24 SEALED = DONT_DELETE, 25 FROZEN = SEALED | READ_ONLY, 26 27 ABSENT = 64, // Used in runtime to indicate a property is absent. 28 // ABSENT can never be stored in or returned from a descriptor's attributes 29 // bitfield. It is only used as a return value meaning the attributes of 30 // a non-existent property. 31 32 // When creating a property, EVAL_DECLARED used to indicate that the property 33 // came from a sloppy-mode direct eval, and certain checks need to be done. 34 // Cannot be stored in or returned from a descriptor's attributes bitfield. 35 EVAL_DECLARED = 128 36 }; 37 38 39 enum PropertyFilter { 40 ALL_PROPERTIES = 0, 41 ONLY_WRITABLE = 1, 42 ONLY_ENUMERABLE = 2, 43 ONLY_CONFIGURABLE = 4, 44 SKIP_STRINGS = 8, 45 SKIP_SYMBOLS = 16, 46 ONLY_ALL_CAN_READ = 32, 47 ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS, 48 }; 49 // Enable fast comparisons of PropertyAttributes against PropertyFilters. 50 STATIC_ASSERT(ALL_PROPERTIES == static_cast<PropertyFilter>(NONE)); 51 STATIC_ASSERT(ONLY_WRITABLE == static_cast<PropertyFilter>(READ_ONLY)); 52 STATIC_ASSERT(ONLY_ENUMERABLE == static_cast<PropertyFilter>(DONT_ENUM)); 53 STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast<PropertyFilter>(DONT_DELETE)); 54 STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) & 55 ALL_ATTRIBUTES_MASK) == 0); 56 57 58 class Smi; 59 template<class> class TypeImpl; 60 struct ZoneTypeConfig; 61 typedef TypeImpl<ZoneTypeConfig> Type; 62 class TypeInfo; 63 64 // Type of properties. 65 // Order of kinds is significant. 66 // Must fit in the BitField PropertyDetails::KindField. 67 enum PropertyKind { kData = 0, kAccessor = 1 }; 68 69 70 // Order of modes is significant. 71 // Must fit in the BitField PropertyDetails::StoreModeField. 72 enum PropertyLocation { kField = 0, kDescriptor = 1 }; 73 74 75 // Order of properties is significant. 76 // Must fit in the BitField PropertyDetails::TypeField. 77 // A copy of this is in debug/mirrors.js. 78 enum PropertyType { 79 DATA = (kField << 1) | kData, 80 DATA_CONSTANT = (kDescriptor << 1) | kData, 81 ACCESSOR = (kField << 1) | kAccessor, 82 ACCESSOR_CONSTANT = (kDescriptor << 1) | kAccessor 83 }; 84 85 86 class Representation { 87 public: 88 enum Kind { 89 kNone, 90 kInteger8, 91 kUInteger8, 92 kInteger16, 93 kUInteger16, 94 kSmi, 95 kInteger32, 96 kDouble, 97 kHeapObject, 98 kTagged, 99 kExternal, 100 kNumRepresentations 101 }; 102 103 Representation() : kind_(kNone) { } 104 105 static Representation None() { return Representation(kNone); } 106 static Representation Tagged() { return Representation(kTagged); } 107 static Representation Integer8() { return Representation(kInteger8); } 108 static Representation UInteger8() { return Representation(kUInteger8); } 109 static Representation Integer16() { return Representation(kInteger16); } 110 static Representation UInteger16() { return Representation(kUInteger16); } 111 static Representation Smi() { return Representation(kSmi); } 112 static Representation Integer32() { return Representation(kInteger32); } 113 static Representation Double() { return Representation(kDouble); } 114 static Representation HeapObject() { return Representation(kHeapObject); } 115 static Representation External() { return Representation(kExternal); } 116 117 static Representation FromKind(Kind kind) { return Representation(kind); } 118 119 bool Equals(const Representation& other) const { 120 return kind_ == other.kind_; 121 } 122 123 bool IsCompatibleForLoad(const Representation& other) const { 124 return (IsDouble() && other.IsDouble()) || 125 (!IsDouble() && !other.IsDouble()); 126 } 127 128 bool IsCompatibleForStore(const Representation& other) const { 129 return Equals(other); 130 } 131 132 bool is_more_general_than(const Representation& other) const { 133 if (kind_ == kExternal && other.kind_ == kNone) return true; 134 if (kind_ == kExternal && other.kind_ == kExternal) return false; 135 if (kind_ == kNone && other.kind_ == kExternal) return false; 136 137 DCHECK(kind_ != kExternal); 138 DCHECK(other.kind_ != kExternal); 139 if (IsHeapObject()) return other.IsNone(); 140 if (kind_ == kUInteger8 && other.kind_ == kInteger8) return false; 141 if (kind_ == kUInteger16 && other.kind_ == kInteger16) return false; 142 return kind_ > other.kind_; 143 } 144 145 bool fits_into(const Representation& other) const { 146 return other.is_more_general_than(*this) || other.Equals(*this); 147 } 148 149 Representation generalize(Representation other) { 150 if (other.fits_into(*this)) return *this; 151 if (other.is_more_general_than(*this)) return other; 152 return Representation::Tagged(); 153 } 154 155 int size() const { 156 DCHECK(!IsNone()); 157 if (IsInteger8() || IsUInteger8()) { 158 return sizeof(uint8_t); 159 } 160 if (IsInteger16() || IsUInteger16()) { 161 return sizeof(uint16_t); 162 } 163 if (IsInteger32()) { 164 return sizeof(uint32_t); 165 } 166 return kPointerSize; 167 } 168 169 Kind kind() const { return static_cast<Kind>(kind_); } 170 bool IsNone() const { return kind_ == kNone; } 171 bool IsInteger8() const { return kind_ == kInteger8; } 172 bool IsUInteger8() const { return kind_ == kUInteger8; } 173 bool IsInteger16() const { return kind_ == kInteger16; } 174 bool IsUInteger16() const { return kind_ == kUInteger16; } 175 bool IsTagged() const { return kind_ == kTagged; } 176 bool IsSmi() const { return kind_ == kSmi; } 177 bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); } 178 bool IsInteger32() const { return kind_ == kInteger32; } 179 bool IsSmiOrInteger32() const { return IsSmi() || IsInteger32(); } 180 bool IsDouble() const { return kind_ == kDouble; } 181 bool IsHeapObject() const { return kind_ == kHeapObject; } 182 bool IsExternal() const { return kind_ == kExternal; } 183 bool IsSpecialization() const { 184 return IsInteger8() || IsUInteger8() || 185 IsInteger16() || IsUInteger16() || 186 IsSmi() || IsInteger32() || IsDouble(); 187 } 188 const char* Mnemonic() const; 189 190 private: 191 explicit Representation(Kind k) : kind_(k) { } 192 193 // Make sure kind fits in int8. 194 STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte)); 195 196 int8_t kind_; 197 }; 198 199 200 static const int kDescriptorIndexBitCount = 10; 201 // The maximum number of descriptors we want in a descriptor array (should 202 // fit in a page). 203 static const int kMaxNumberOfDescriptors = 204 (1 << kDescriptorIndexBitCount) - 2; 205 static const int kInvalidEnumCacheSentinel = 206 (1 << kDescriptorIndexBitCount) - 1; 207 208 209 enum class PropertyCellType { 210 // Meaningful when a property cell does not contain the hole. 211 kUndefined, // The PREMONOMORPHIC of property cells. 212 kConstant, // Cell has been assigned only once. 213 kConstantType, // Cell has been assigned only one type. 214 kMutable, // Cell will no longer be tracked as constant. 215 216 // Meaningful when a property cell contains the hole. 217 kUninitialized = kUndefined, // Cell has never been initialized. 218 kInvalidated = kConstant, // Cell has been deleted or invalidated. 219 220 // For dictionaries not holding cells. 221 kNoCell = kMutable, 222 }; 223 224 225 enum class PropertyCellConstantType { 226 kSmi, 227 kStableMap, 228 }; 229 230 231 // PropertyDetails captures type and attributes for a property. 232 // They are used both in property dictionaries and instance descriptors. 233 class PropertyDetails BASE_EMBEDDED { 234 public: 235 PropertyDetails(PropertyAttributes attributes, PropertyType type, int index, 236 PropertyCellType cell_type) { 237 value_ = TypeField::encode(type) | AttributesField::encode(attributes) | 238 DictionaryStorageField::encode(index) | 239 PropertyCellTypeField::encode(cell_type); 240 241 DCHECK(type == this->type()); 242 DCHECK(attributes == this->attributes()); 243 } 244 245 PropertyDetails(PropertyAttributes attributes, 246 PropertyType type, 247 Representation representation, 248 int field_index = 0) { 249 value_ = TypeField::encode(type) 250 | AttributesField::encode(attributes) 251 | RepresentationField::encode(EncodeRepresentation(representation)) 252 | FieldIndexField::encode(field_index); 253 } 254 255 PropertyDetails(PropertyAttributes attributes, PropertyKind kind, 256 PropertyLocation location, Representation representation, 257 int field_index = 0) { 258 value_ = KindField::encode(kind) | LocationField::encode(location) | 259 AttributesField::encode(attributes) | 260 RepresentationField::encode(EncodeRepresentation(representation)) | 261 FieldIndexField::encode(field_index); 262 } 263 264 static PropertyDetails Empty() { 265 return PropertyDetails(NONE, DATA, 0, PropertyCellType::kNoCell); 266 } 267 268 int pointer() const { return DescriptorPointer::decode(value_); } 269 270 PropertyDetails set_pointer(int i) const { 271 return PropertyDetails(value_, i); 272 } 273 274 PropertyDetails set_cell_type(PropertyCellType type) const { 275 PropertyDetails details = *this; 276 details.value_ = PropertyCellTypeField::update(details.value_, type); 277 return details; 278 } 279 280 PropertyDetails set_index(int index) const { 281 PropertyDetails details = *this; 282 details.value_ = DictionaryStorageField::update(details.value_, index); 283 return details; 284 } 285 286 PropertyDetails CopyWithRepresentation(Representation representation) const { 287 return PropertyDetails(value_, representation); 288 } 289 PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const { 290 new_attributes = 291 static_cast<PropertyAttributes>(attributes() | new_attributes); 292 return PropertyDetails(value_, new_attributes); 293 } 294 295 // Conversion for storing details as Object*. 296 explicit inline PropertyDetails(Smi* smi); 297 inline Smi* AsSmi() const; 298 299 static uint8_t EncodeRepresentation(Representation representation) { 300 return representation.kind(); 301 } 302 303 static Representation DecodeRepresentation(uint32_t bits) { 304 return Representation::FromKind(static_cast<Representation::Kind>(bits)); 305 } 306 307 PropertyKind kind() const { return KindField::decode(value_); } 308 PropertyLocation location() const { return LocationField::decode(value_); } 309 310 PropertyType type() const { return TypeField::decode(value_); } 311 312 PropertyAttributes attributes() const { 313 return AttributesField::decode(value_); 314 } 315 316 int dictionary_index() const { 317 return DictionaryStorageField::decode(value_); 318 } 319 320 Representation representation() const { 321 return DecodeRepresentation(RepresentationField::decode(value_)); 322 } 323 324 int field_index() const { return FieldIndexField::decode(value_); } 325 326 inline int field_width_in_words() const; 327 328 static bool IsValidIndex(int index) { 329 return DictionaryStorageField::is_valid(index); 330 } 331 332 bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; } 333 bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; } 334 bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; } 335 PropertyCellType cell_type() const { 336 return PropertyCellTypeField::decode(value_); 337 } 338 339 // Bit fields in value_ (type, shift, size). Must be public so the 340 // constants can be embedded in generated code. 341 class KindField : public BitField<PropertyKind, 0, 1> {}; 342 class LocationField : public BitField<PropertyLocation, 1, 1> {}; 343 class AttributesField : public BitField<PropertyAttributes, 2, 3> {}; 344 static const int kAttributesReadOnlyMask = 345 (READ_ONLY << AttributesField::kShift); 346 347 // Bit fields for normalized objects. 348 class PropertyCellTypeField : public BitField<PropertyCellType, 5, 2> {}; 349 class DictionaryStorageField : public BitField<uint32_t, 7, 24> {}; 350 351 // Bit fields for fast objects. 352 class RepresentationField : public BitField<uint32_t, 5, 4> {}; 353 class DescriptorPointer 354 : public BitField<uint32_t, 9, kDescriptorIndexBitCount> {}; // NOLINT 355 class FieldIndexField 356 : public BitField<uint32_t, 9 + kDescriptorIndexBitCount, 357 kDescriptorIndexBitCount> {}; // NOLINT 358 359 // NOTE: TypeField overlaps with KindField and LocationField. 360 class TypeField : public BitField<PropertyType, 0, 2> {}; 361 STATIC_ASSERT(KindField::kNext == LocationField::kShift); 362 STATIC_ASSERT(TypeField::kShift == KindField::kShift); 363 STATIC_ASSERT(TypeField::kNext == LocationField::kNext); 364 365 // All bits for both fast and slow objects must fit in a smi. 366 STATIC_ASSERT(DictionaryStorageField::kNext <= 31); 367 STATIC_ASSERT(FieldIndexField::kNext <= 31); 368 369 static const int kInitialIndex = 1; 370 371 #ifdef OBJECT_PRINT 372 // For our gdb macros, we should perhaps change these in the future. 373 void Print(bool dictionary_mode); 374 #endif 375 376 private: 377 PropertyDetails(int value, int pointer) { 378 value_ = DescriptorPointer::update(value, pointer); 379 } 380 PropertyDetails(int value, Representation representation) { 381 value_ = RepresentationField::update( 382 value, EncodeRepresentation(representation)); 383 } 384 PropertyDetails(int value, PropertyAttributes attributes) { 385 value_ = AttributesField::update(value, attributes); 386 } 387 388 uint32_t value_; 389 }; 390 391 392 std::ostream& operator<<(std::ostream& os, 393 const PropertyAttributes& attributes); 394 std::ostream& operator<<(std::ostream& os, const PropertyDetails& details); 395 } // namespace internal 396 } // namespace v8 397 398 #endif // V8_PROPERTY_DETAILS_H_ 399