Home | History | Annotate | Download | only in CodeGen
      1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI.
     11 // The class in this file generates structures that follow the Microsoft
     12 // Visual C++ ABI, which is actually not very well documented at all outside
     13 // of Microsoft.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "CGCXXABI.h"
     18 #include "CGCleanup.h"
     19 #include "CGVTables.h"
     20 #include "CodeGenModule.h"
     21 #include "CodeGenTypes.h"
     22 #include "TargetInfo.h"
     23 #include "clang/AST/Decl.h"
     24 #include "clang/AST/DeclCXX.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/AST/VTableBuilder.h"
     27 #include "llvm/ADT/StringExtras.h"
     28 #include "llvm/ADT/StringSet.h"
     29 #include "llvm/IR/CallSite.h"
     30 #include "llvm/IR/Intrinsics.h"
     31 
     32 using namespace clang;
     33 using namespace CodeGen;
     34 
     35 namespace {
     36 
     37 /// Holds all the vbtable globals for a given class.
     38 struct VBTableGlobals {
     39   const VPtrInfoVector *VBTables;
     40   SmallVector<llvm::GlobalVariable *, 2> Globals;
     41 };
     42 
     43 class MicrosoftCXXABI : public CGCXXABI {
     44 public:
     45   MicrosoftCXXABI(CodeGenModule &CGM)
     46       : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
     47         ClassHierarchyDescriptorType(nullptr),
     48         CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
     49         ThrowInfoType(nullptr) {}
     50 
     51   bool HasThisReturn(GlobalDecl GD) const override;
     52   bool hasMostDerivedReturn(GlobalDecl GD) const override;
     53 
     54   bool classifyReturnType(CGFunctionInfo &FI) const override;
     55 
     56   RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
     57 
     58   bool isSRetParameterAfterThis() const override { return true; }
     59 
     60   bool isThisCompleteObject(GlobalDecl GD) const override {
     61     // The Microsoft ABI doesn't use separate complete-object vs.
     62     // base-object variants of constructors, but it does of destructors.
     63     if (isa<CXXDestructorDecl>(GD.getDecl())) {
     64       switch (GD.getDtorType()) {
     65       case Dtor_Complete:
     66       case Dtor_Deleting:
     67         return true;
     68 
     69       case Dtor_Base:
     70         return false;
     71 
     72       case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
     73       }
     74       llvm_unreachable("bad dtor kind");
     75     }
     76 
     77     // No other kinds.
     78     return false;
     79   }
     80 
     81   size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
     82                               FunctionArgList &Args) const override {
     83     assert(Args.size() >= 2 &&
     84            "expected the arglist to have at least two args!");
     85     // The 'most_derived' parameter goes second if the ctor is variadic and
     86     // has v-bases.
     87     if (CD->getParent()->getNumVBases() > 0 &&
     88         CD->getType()->castAs<FunctionProtoType>()->isVariadic())
     89       return 2;
     90     return 1;
     91   }
     92 
     93   std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
     94     std::vector<CharUnits> VBPtrOffsets;
     95     const ASTContext &Context = getContext();
     96     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
     97 
     98     const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
     99     for (const VPtrInfo *VBT : *VBGlobals.VBTables) {
    100       const ASTRecordLayout &SubobjectLayout =
    101           Context.getASTRecordLayout(VBT->BaseWithVPtr);
    102       CharUnits Offs = VBT->NonVirtualOffset;
    103       Offs += SubobjectLayout.getVBPtrOffset();
    104       if (VBT->getVBaseWithVPtr())
    105         Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
    106       VBPtrOffsets.push_back(Offs);
    107     }
    108     llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
    109     return VBPtrOffsets;
    110   }
    111 
    112   StringRef GetPureVirtualCallName() override { return "_purecall"; }
    113   StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
    114 
    115   void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
    116                                Address Ptr, QualType ElementType,
    117                                const CXXDestructorDecl *Dtor) override;
    118 
    119   void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
    120   void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
    121 
    122   void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
    123 
    124   llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
    125                                                    const VPtrInfo *Info);
    126 
    127   llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
    128   CatchTypeInfo
    129   getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
    130 
    131   /// MSVC needs an extra flag to indicate a catchall.
    132   CatchTypeInfo getCatchAllTypeInfo() override {
    133     return CatchTypeInfo{nullptr, 0x40};
    134   }
    135 
    136   bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
    137   void EmitBadTypeidCall(CodeGenFunction &CGF) override;
    138   llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
    139                           Address ThisPtr,
    140                           llvm::Type *StdTypeInfoPtrTy) override;
    141 
    142   bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
    143                                           QualType SrcRecordTy) override;
    144 
    145   llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
    146                                    QualType SrcRecordTy, QualType DestTy,
    147                                    QualType DestRecordTy,
    148                                    llvm::BasicBlock *CastEnd) override;
    149 
    150   llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
    151                                      QualType SrcRecordTy,
    152                                      QualType DestTy) override;
    153 
    154   bool EmitBadCastCall(CodeGenFunction &CGF) override;
    155   bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
    156     return false;
    157   }
    158 
    159   llvm::Value *
    160   GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
    161                             const CXXRecordDecl *ClassDecl,
    162                             const CXXRecordDecl *BaseClassDecl) override;
    163 
    164   llvm::BasicBlock *
    165   EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
    166                                 const CXXRecordDecl *RD) override;
    167 
    168   void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
    169                                               const CXXRecordDecl *RD) override;
    170 
    171   void EmitCXXConstructors(const CXXConstructorDecl *D) override;
    172 
    173   // Background on MSVC destructors
    174   // ==============================
    175   //
    176   // Both Itanium and MSVC ABIs have destructor variants.  The variant names
    177   // roughly correspond in the following way:
    178   //   Itanium       Microsoft
    179   //   Base       -> no name, just ~Class
    180   //   Complete   -> vbase destructor
    181   //   Deleting   -> scalar deleting destructor
    182   //                 vector deleting destructor
    183   //
    184   // The base and complete destructors are the same as in Itanium, although the
    185   // complete destructor does not accept a VTT parameter when there are virtual
    186   // bases.  A separate mechanism involving vtordisps is used to ensure that
    187   // virtual methods of destroyed subobjects are not called.
    188   //
    189   // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
    190   // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
    191   // pointer points to an array.  The scalar deleting destructor assumes that
    192   // bit 2 is zero, and therefore does not contain a loop.
    193   //
    194   // For virtual destructors, only one entry is reserved in the vftable, and it
    195   // always points to the vector deleting destructor.  The vector deleting
    196   // destructor is the most general, so it can be used to destroy objects in
    197   // place, delete single heap objects, or delete arrays.
    198   //
    199   // A TU defining a non-inline destructor is only guaranteed to emit a base
    200   // destructor, and all of the other variants are emitted on an as-needed basis
    201   // in COMDATs.  Because a non-base destructor can be emitted in a TU that
    202   // lacks a definition for the destructor, non-base destructors must always
    203   // delegate to or alias the base destructor.
    204 
    205   void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
    206                               SmallVectorImpl<CanQualType> &ArgTys) override;
    207 
    208   /// Non-base dtors should be emitted as delegating thunks in this ABI.
    209   bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
    210                               CXXDtorType DT) const override {
    211     return DT != Dtor_Base;
    212   }
    213 
    214   void EmitCXXDestructors(const CXXDestructorDecl *D) override;
    215 
    216   const CXXRecordDecl *
    217   getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
    218     MD = MD->getCanonicalDecl();
    219     if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
    220       MicrosoftVTableContext::MethodVFTableLocation ML =
    221           CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
    222       // The vbases might be ordered differently in the final overrider object
    223       // and the complete object, so the "this" argument may sometimes point to
    224       // memory that has no particular type (e.g. past the complete object).
    225       // In this case, we just use a generic pointer type.
    226       // FIXME: might want to have a more precise type in the non-virtual
    227       // multiple inheritance case.
    228       if (ML.VBase || !ML.VFPtrOffset.isZero())
    229         return nullptr;
    230     }
    231     return MD->getParent();
    232   }
    233 
    234   Address
    235   adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
    236                                            Address This,
    237                                            bool VirtualCall) override;
    238 
    239   void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
    240                                  FunctionArgList &Params) override;
    241 
    242   llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
    243       CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
    244 
    245   void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
    246 
    247   unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
    248                                       const CXXConstructorDecl *D,
    249                                       CXXCtorType Type, bool ForVirtualBase,
    250                                       bool Delegating,
    251                                       CallArgList &Args) override;
    252 
    253   void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
    254                           CXXDtorType Type, bool ForVirtualBase,
    255                           bool Delegating, Address This) override;
    256 
    257   void emitVTableBitSetEntries(VPtrInfo *Info, const CXXRecordDecl *RD,
    258                                llvm::GlobalVariable *VTable);
    259 
    260   void emitVTableDefinitions(CodeGenVTables &CGVT,
    261                              const CXXRecordDecl *RD) override;
    262 
    263   bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
    264                                            CodeGenFunction::VPtr Vptr) override;
    265 
    266   /// Don't initialize vptrs if dynamic class
    267   /// is marked with with the 'novtable' attribute.
    268   bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
    269     return !VTableClass->hasAttr<MSNoVTableAttr>();
    270   }
    271 
    272   llvm::Constant *
    273   getVTableAddressPoint(BaseSubobject Base,
    274                         const CXXRecordDecl *VTableClass) override;
    275 
    276   llvm::Value *getVTableAddressPointInStructor(
    277       CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
    278       BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
    279 
    280   llvm::Constant *
    281   getVTableAddressPointForConstExpr(BaseSubobject Base,
    282                                     const CXXRecordDecl *VTableClass) override;
    283 
    284   llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
    285                                         CharUnits VPtrOffset) override;
    286 
    287   llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
    288                                          Address This, llvm::Type *Ty,
    289                                          SourceLocation Loc) override;
    290 
    291   llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
    292                                          const CXXDestructorDecl *Dtor,
    293                                          CXXDtorType DtorType,
    294                                          Address This,
    295                                          const CXXMemberCallExpr *CE) override;
    296 
    297   void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
    298                                         CallArgList &CallArgs) override {
    299     assert(GD.getDtorType() == Dtor_Deleting &&
    300            "Only deleting destructor thunks are available in this ABI");
    301     CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
    302                  getContext().IntTy);
    303   }
    304 
    305   void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
    306 
    307   llvm::GlobalVariable *
    308   getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
    309                    llvm::GlobalVariable::LinkageTypes Linkage);
    310 
    311   llvm::GlobalVariable *
    312   getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
    313                                   const CXXRecordDecl *DstRD) {
    314     SmallString<256> OutName;
    315     llvm::raw_svector_ostream Out(OutName);
    316     getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
    317     StringRef MangledName = OutName.str();
    318 
    319     if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
    320       return VDispMap;
    321 
    322     MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
    323     unsigned NumEntries = 1 + SrcRD->getNumVBases();
    324     SmallVector<llvm::Constant *, 4> Map(NumEntries,
    325                                          llvm::UndefValue::get(CGM.IntTy));
    326     Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
    327     bool AnyDifferent = false;
    328     for (const auto &I : SrcRD->vbases()) {
    329       const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
    330       if (!DstRD->isVirtuallyDerivedFrom(VBase))
    331         continue;
    332 
    333       unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
    334       unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
    335       Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
    336       AnyDifferent |= SrcVBIndex != DstVBIndex;
    337     }
    338     // This map would be useless, don't use it.
    339     if (!AnyDifferent)
    340       return nullptr;
    341 
    342     llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
    343     llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
    344     llvm::GlobalValue::LinkageTypes Linkage =
    345         SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
    346             ? llvm::GlobalValue::LinkOnceODRLinkage
    347             : llvm::GlobalValue::InternalLinkage;
    348     auto *VDispMap = new llvm::GlobalVariable(
    349         CGM.getModule(), VDispMapTy, /*Constant=*/true, Linkage,
    350         /*Initializer=*/Init, MangledName);
    351     return VDispMap;
    352   }
    353 
    354   void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
    355                              llvm::GlobalVariable *GV) const;
    356 
    357   void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
    358                        GlobalDecl GD, bool ReturnAdjustment) override {
    359     // Never dllimport/dllexport thunks.
    360     Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
    361 
    362     GVALinkage Linkage =
    363         getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
    364 
    365     if (Linkage == GVA_Internal)
    366       Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
    367     else if (ReturnAdjustment)
    368       Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
    369     else
    370       Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
    371   }
    372 
    373   llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
    374                                      const ThisAdjustment &TA) override;
    375 
    376   llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
    377                                        const ReturnAdjustment &RA) override;
    378 
    379   void EmitThreadLocalInitFuncs(
    380       CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
    381       ArrayRef<llvm::Function *> CXXThreadLocalInits,
    382       ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
    383 
    384   bool usesThreadWrapperFunction() const override { return false; }
    385   LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
    386                                       QualType LValType) override;
    387 
    388   void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
    389                        llvm::GlobalVariable *DeclPtr,
    390                        bool PerformInit) override;
    391   void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
    392                           llvm::Constant *Dtor, llvm::Constant *Addr) override;
    393 
    394   // ==== Notes on array cookies =========
    395   //
    396   // MSVC seems to only use cookies when the class has a destructor; a
    397   // two-argument usual array deallocation function isn't sufficient.
    398   //
    399   // For example, this code prints "100" and "1":
    400   //   struct A {
    401   //     char x;
    402   //     void *operator new[](size_t sz) {
    403   //       printf("%u\n", sz);
    404   //       return malloc(sz);
    405   //     }
    406   //     void operator delete[](void *p, size_t sz) {
    407   //       printf("%u\n", sz);
    408   //       free(p);
    409   //     }
    410   //   };
    411   //   int main() {
    412   //     A *p = new A[100];
    413   //     delete[] p;
    414   //   }
    415   // Whereas it prints "104" and "104" if you give A a destructor.
    416 
    417   bool requiresArrayCookie(const CXXDeleteExpr *expr,
    418                            QualType elementType) override;
    419   bool requiresArrayCookie(const CXXNewExpr *expr) override;
    420   CharUnits getArrayCookieSizeImpl(QualType type) override;
    421   Address InitializeArrayCookie(CodeGenFunction &CGF,
    422                                 Address NewPtr,
    423                                 llvm::Value *NumElements,
    424                                 const CXXNewExpr *expr,
    425                                 QualType ElementType) override;
    426   llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
    427                                    Address allocPtr,
    428                                    CharUnits cookieSize) override;
    429 
    430   friend struct MSRTTIBuilder;
    431 
    432   bool isImageRelative() const {
    433     return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
    434   }
    435 
    436   // 5 routines for constructing the llvm types for MS RTTI structs.
    437   llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
    438     llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
    439     TDTypeName += llvm::utostr(TypeInfoString.size());
    440     llvm::StructType *&TypeDescriptorType =
    441         TypeDescriptorTypeMap[TypeInfoString.size()];
    442     if (TypeDescriptorType)
    443       return TypeDescriptorType;
    444     llvm::Type *FieldTypes[] = {
    445         CGM.Int8PtrPtrTy,
    446         CGM.Int8PtrTy,
    447         llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
    448     TypeDescriptorType =
    449         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
    450     return TypeDescriptorType;
    451   }
    452 
    453   llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
    454     if (!isImageRelative())
    455       return PtrType;
    456     return CGM.IntTy;
    457   }
    458 
    459   llvm::StructType *getBaseClassDescriptorType() {
    460     if (BaseClassDescriptorType)
    461       return BaseClassDescriptorType;
    462     llvm::Type *FieldTypes[] = {
    463         getImageRelativeType(CGM.Int8PtrTy),
    464         CGM.IntTy,
    465         CGM.IntTy,
    466         CGM.IntTy,
    467         CGM.IntTy,
    468         CGM.IntTy,
    469         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
    470     };
    471     BaseClassDescriptorType = llvm::StructType::create(
    472         CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
    473     return BaseClassDescriptorType;
    474   }
    475 
    476   llvm::StructType *getClassHierarchyDescriptorType() {
    477     if (ClassHierarchyDescriptorType)
    478       return ClassHierarchyDescriptorType;
    479     // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
    480     ClassHierarchyDescriptorType = llvm::StructType::create(
    481         CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
    482     llvm::Type *FieldTypes[] = {
    483         CGM.IntTy,
    484         CGM.IntTy,
    485         CGM.IntTy,
    486         getImageRelativeType(
    487             getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
    488     };
    489     ClassHierarchyDescriptorType->setBody(FieldTypes);
    490     return ClassHierarchyDescriptorType;
    491   }
    492 
    493   llvm::StructType *getCompleteObjectLocatorType() {
    494     if (CompleteObjectLocatorType)
    495       return CompleteObjectLocatorType;
    496     CompleteObjectLocatorType = llvm::StructType::create(
    497         CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
    498     llvm::Type *FieldTypes[] = {
    499         CGM.IntTy,
    500         CGM.IntTy,
    501         CGM.IntTy,
    502         getImageRelativeType(CGM.Int8PtrTy),
    503         getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
    504         getImageRelativeType(CompleteObjectLocatorType),
    505     };
    506     llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
    507     if (!isImageRelative())
    508       FieldTypesRef = FieldTypesRef.drop_back();
    509     CompleteObjectLocatorType->setBody(FieldTypesRef);
    510     return CompleteObjectLocatorType;
    511   }
    512 
    513   llvm::GlobalVariable *getImageBase() {
    514     StringRef Name = "__ImageBase";
    515     if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
    516       return GV;
    517 
    518     return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
    519                                     /*isConstant=*/true,
    520                                     llvm::GlobalValue::ExternalLinkage,
    521                                     /*Initializer=*/nullptr, Name);
    522   }
    523 
    524   llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
    525     if (!isImageRelative())
    526       return PtrVal;
    527 
    528     if (PtrVal->isNullValue())
    529       return llvm::Constant::getNullValue(CGM.IntTy);
    530 
    531     llvm::Constant *ImageBaseAsInt =
    532         llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
    533     llvm::Constant *PtrValAsInt =
    534         llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
    535     llvm::Constant *Diff =
    536         llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
    537                                    /*HasNUW=*/true, /*HasNSW=*/true);
    538     return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
    539   }
    540 
    541 private:
    542   MicrosoftMangleContext &getMangleContext() {
    543     return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
    544   }
    545 
    546   llvm::Constant *getZeroInt() {
    547     return llvm::ConstantInt::get(CGM.IntTy, 0);
    548   }
    549 
    550   llvm::Constant *getAllOnesInt() {
    551     return  llvm::Constant::getAllOnesValue(CGM.IntTy);
    552   }
    553 
    554   CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
    555 
    556   void
    557   GetNullMemberPointerFields(const MemberPointerType *MPT,
    558                              llvm::SmallVectorImpl<llvm::Constant *> &fields);
    559 
    560   /// \brief Shared code for virtual base adjustment.  Returns the offset from
    561   /// the vbptr to the virtual base.  Optionally returns the address of the
    562   /// vbptr itself.
    563   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
    564                                        Address Base,
    565                                        llvm::Value *VBPtrOffset,
    566                                        llvm::Value *VBTableOffset,
    567                                        llvm::Value **VBPtr = nullptr);
    568 
    569   llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
    570                                        Address Base,
    571                                        int32_t VBPtrOffset,
    572                                        int32_t VBTableOffset,
    573                                        llvm::Value **VBPtr = nullptr) {
    574     assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
    575     llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
    576                 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
    577     return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
    578   }
    579 
    580   std::pair<Address, llvm::Value *>
    581   performBaseAdjustment(CodeGenFunction &CGF, Address Value,
    582                         QualType SrcRecordTy);
    583 
    584   /// \brief Performs a full virtual base adjustment.  Used to dereference
    585   /// pointers to members of virtual bases.
    586   llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
    587                                  const CXXRecordDecl *RD, Address Base,
    588                                  llvm::Value *VirtualBaseAdjustmentOffset,
    589                                  llvm::Value *VBPtrOffset /* optional */);
    590 
    591   /// \brief Emits a full member pointer with the fields common to data and
    592   /// function member pointers.
    593   llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
    594                                         bool IsMemberFunction,
    595                                         const CXXRecordDecl *RD,
    596                                         CharUnits NonVirtualBaseAdjustment,
    597                                         unsigned VBTableIndex);
    598 
    599   bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
    600                                    llvm::Constant *MP);
    601 
    602   /// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
    603   void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
    604 
    605   /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
    606   const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
    607 
    608   /// \brief Generate a thunk for calling a virtual member function MD.
    609   llvm::Function *EmitVirtualMemPtrThunk(
    610       const CXXMethodDecl *MD,
    611       const MicrosoftVTableContext::MethodVFTableLocation &ML);
    612 
    613 public:
    614   llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
    615 
    616   bool isZeroInitializable(const MemberPointerType *MPT) override;
    617 
    618   bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
    619     const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
    620     return RD->hasAttr<MSInheritanceAttr>();
    621   }
    622 
    623   llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
    624 
    625   llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
    626                                         CharUnits offset) override;
    627   llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
    628   llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
    629 
    630   llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
    631                                            llvm::Value *L,
    632                                            llvm::Value *R,
    633                                            const MemberPointerType *MPT,
    634                                            bool Inequality) override;
    635 
    636   llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
    637                                           llvm::Value *MemPtr,
    638                                           const MemberPointerType *MPT) override;
    639 
    640   llvm::Value *
    641   EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
    642                                Address Base, llvm::Value *MemPtr,
    643                                const MemberPointerType *MPT) override;
    644 
    645   llvm::Value *EmitNonNullMemberPointerConversion(
    646       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
    647       CastKind CK, CastExpr::path_const_iterator PathBegin,
    648       CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
    649       CGBuilderTy &Builder);
    650 
    651   llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
    652                                            const CastExpr *E,
    653                                            llvm::Value *Src) override;
    654 
    655   llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
    656                                               llvm::Constant *Src) override;
    657 
    658   llvm::Constant *EmitMemberPointerConversion(
    659       const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
    660       CastKind CK, CastExpr::path_const_iterator PathBegin,
    661       CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
    662 
    663   llvm::Value *
    664   EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
    665                                   Address This, llvm::Value *&ThisPtrForCall,
    666                                   llvm::Value *MemPtr,
    667                                   const MemberPointerType *MPT) override;
    668 
    669   void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
    670 
    671   llvm::StructType *getCatchableTypeType() {
    672     if (CatchableTypeType)
    673       return CatchableTypeType;
    674     llvm::Type *FieldTypes[] = {
    675         CGM.IntTy,                           // Flags
    676         getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
    677         CGM.IntTy,                           // NonVirtualAdjustment
    678         CGM.IntTy,                           // OffsetToVBPtr
    679         CGM.IntTy,                           // VBTableIndex
    680         CGM.IntTy,                           // Size
    681         getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
    682     };
    683     CatchableTypeType = llvm::StructType::create(
    684         CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
    685     return CatchableTypeType;
    686   }
    687 
    688   llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
    689     llvm::StructType *&CatchableTypeArrayType =
    690         CatchableTypeArrayTypeMap[NumEntries];
    691     if (CatchableTypeArrayType)
    692       return CatchableTypeArrayType;
    693 
    694     llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
    695     CTATypeName += llvm::utostr(NumEntries);
    696     llvm::Type *CTType =
    697         getImageRelativeType(getCatchableTypeType()->getPointerTo());
    698     llvm::Type *FieldTypes[] = {
    699         CGM.IntTy,                               // NumEntries
    700         llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
    701     };
    702     CatchableTypeArrayType =
    703         llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
    704     return CatchableTypeArrayType;
    705   }
    706 
    707   llvm::StructType *getThrowInfoType() {
    708     if (ThrowInfoType)
    709       return ThrowInfoType;
    710     llvm::Type *FieldTypes[] = {
    711         CGM.IntTy,                           // Flags
    712         getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
    713         getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
    714         getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
    715     };
    716     ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
    717                                              "eh.ThrowInfo");
    718     return ThrowInfoType;
    719   }
    720 
    721   llvm::Constant *getThrowFn() {
    722     // _CxxThrowException is passed an exception object and a ThrowInfo object
    723     // which describes the exception.
    724     llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
    725     llvm::FunctionType *FTy =
    726         llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
    727     auto *Fn = cast<llvm::Function>(
    728         CGM.CreateRuntimeFunction(FTy, "_CxxThrowException"));
    729     // _CxxThrowException is stdcall on 32-bit x86 platforms.
    730     if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86)
    731       Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
    732     return Fn;
    733   }
    734 
    735   llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
    736                                           CXXCtorType CT);
    737 
    738   llvm::Constant *getCatchableType(QualType T,
    739                                    uint32_t NVOffset = 0,
    740                                    int32_t VBPtrOffset = -1,
    741                                    uint32_t VBIndex = 0);
    742 
    743   llvm::GlobalVariable *getCatchableTypeArray(QualType T);
    744 
    745   llvm::GlobalVariable *getThrowInfo(QualType T) override;
    746 
    747 private:
    748   typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
    749   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
    750   typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
    751   /// \brief All the vftables that have been referenced.
    752   VFTablesMapTy VFTablesMap;
    753   VTablesMapTy VTablesMap;
    754 
    755   /// \brief This set holds the record decls we've deferred vtable emission for.
    756   llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
    757 
    758 
    759   /// \brief All the vbtables which have been referenced.
    760   llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
    761 
    762   /// Info on the global variable used to guard initialization of static locals.
    763   /// The BitIndex field is only used for externally invisible declarations.
    764   struct GuardInfo {
    765     GuardInfo() : Guard(nullptr), BitIndex(0) {}
    766     llvm::GlobalVariable *Guard;
    767     unsigned BitIndex;
    768   };
    769 
    770   /// Map from DeclContext to the current guard variable.  We assume that the
    771   /// AST is visited in source code order.
    772   llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
    773   llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
    774   llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
    775 
    776   llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
    777   llvm::StructType *BaseClassDescriptorType;
    778   llvm::StructType *ClassHierarchyDescriptorType;
    779   llvm::StructType *CompleteObjectLocatorType;
    780 
    781   llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
    782 
    783   llvm::StructType *CatchableTypeType;
    784   llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
    785   llvm::StructType *ThrowInfoType;
    786 };
    787 
    788 }
    789 
    790 CGCXXABI::RecordArgABI
    791 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
    792   switch (CGM.getTarget().getTriple().getArch()) {
    793   default:
    794     // FIXME: Implement for other architectures.
    795     return RAA_Default;
    796 
    797   case llvm::Triple::x86:
    798     // All record arguments are passed in memory on x86.  Decide whether to
    799     // construct the object directly in argument memory, or to construct the
    800     // argument elsewhere and copy the bytes during the call.
    801 
    802     // If C++ prohibits us from making a copy, construct the arguments directly
    803     // into argument memory.
    804     if (!canCopyArgument(RD))
    805       return RAA_DirectInMemory;
    806 
    807     // Otherwise, construct the argument into a temporary and copy the bytes
    808     // into the outgoing argument memory.
    809     return RAA_Default;
    810 
    811   case llvm::Triple::x86_64:
    812     // Win64 passes objects with non-trivial copy ctors indirectly.
    813     if (RD->hasNonTrivialCopyConstructor())
    814       return RAA_Indirect;
    815 
    816     // If an object has a destructor, we'd really like to pass it indirectly
    817     // because it allows us to elide copies.  Unfortunately, MSVC makes that
    818     // impossible for small types, which it will pass in a single register or
    819     // stack slot. Most objects with dtors are large-ish, so handle that early.
    820     // We can't call out all large objects as being indirect because there are
    821     // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
    822     // how we pass large POD types.
    823     if (RD->hasNonTrivialDestructor() &&
    824         getContext().getTypeSize(RD->getTypeForDecl()) > 64)
    825       return RAA_Indirect;
    826 
    827     // We have a trivial copy constructor or no copy constructors, but we have
    828     // to make sure it isn't deleted.
    829     bool CopyDeleted = false;
    830     for (const CXXConstructorDecl *CD : RD->ctors()) {
    831       if (CD->isCopyConstructor()) {
    832         assert(CD->isTrivial());
    833         // We had at least one undeleted trivial copy ctor.  Return directly.
    834         if (!CD->isDeleted())
    835           return RAA_Default;
    836         CopyDeleted = true;
    837       }
    838     }
    839 
    840     // The trivial copy constructor was deleted.  Return indirectly.
    841     if (CopyDeleted)
    842       return RAA_Indirect;
    843 
    844     // There were no copy ctors.  Return in RAX.
    845     return RAA_Default;
    846   }
    847 
    848   llvm_unreachable("invalid enum");
    849 }
    850 
    851 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
    852                                               const CXXDeleteExpr *DE,
    853                                               Address Ptr,
    854                                               QualType ElementType,
    855                                               const CXXDestructorDecl *Dtor) {
    856   // FIXME: Provide a source location here even though there's no
    857   // CXXMemberCallExpr for dtor call.
    858   bool UseGlobalDelete = DE->isGlobalDelete();
    859   CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
    860   llvm::Value *MDThis =
    861       EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
    862   if (UseGlobalDelete)
    863     CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
    864 }
    865 
    866 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
    867   llvm::Value *Args[] = {
    868       llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
    869       llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
    870   auto *Fn = getThrowFn();
    871   if (isNoReturn)
    872     CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
    873   else
    874     CGF.EmitRuntimeCallOrInvoke(Fn, Args);
    875 }
    876 
    877 namespace {
    878 struct CatchRetScope final : EHScopeStack::Cleanup {
    879   llvm::CatchPadInst *CPI;
    880 
    881   CatchRetScope(llvm::CatchPadInst *CPI) : CPI(CPI) {}
    882 
    883   void Emit(CodeGenFunction &CGF, Flags flags) override {
    884     llvm::BasicBlock *BB = CGF.createBasicBlock("catchret.dest");
    885     CGF.Builder.CreateCatchRet(CPI, BB);
    886     CGF.EmitBlock(BB);
    887   }
    888 };
    889 }
    890 
    891 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
    892                                      const CXXCatchStmt *S) {
    893   // In the MS ABI, the runtime handles the copy, and the catch handler is
    894   // responsible for destruction.
    895   VarDecl *CatchParam = S->getExceptionDecl();
    896   llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
    897   llvm::CatchPadInst *CPI =
    898       cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
    899   CGF.CurrentFuncletPad = CPI;
    900 
    901   // If this is a catch-all or the catch parameter is unnamed, we don't need to
    902   // emit an alloca to the object.
    903   if (!CatchParam || !CatchParam->getDeclName()) {
    904     CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
    905     return;
    906   }
    907 
    908   CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
    909   CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
    910   CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
    911   CGF.EmitAutoVarCleanups(var);
    912 }
    913 
    914 /// We need to perform a generic polymorphic operation (like a typeid
    915 /// or a cast), which requires an object with a vfptr.  Adjust the
    916 /// address to point to an object with a vfptr.
    917 std::pair<Address, llvm::Value *>
    918 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
    919                                        QualType SrcRecordTy) {
    920   Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
    921   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
    922   const ASTContext &Context = getContext();
    923 
    924   // If the class itself has a vfptr, great.  This check implicitly
    925   // covers non-virtual base subobjects: a class with its own virtual
    926   // functions would be a candidate to be a primary base.
    927   if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
    928     return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
    929 
    930   // Okay, one of the vbases must have a vfptr, or else this isn't
    931   // actually a polymorphic class.
    932   const CXXRecordDecl *PolymorphicBase = nullptr;
    933   for (auto &Base : SrcDecl->vbases()) {
    934     const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
    935     if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
    936       PolymorphicBase = BaseDecl;
    937       break;
    938     }
    939   }
    940   assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
    941 
    942   llvm::Value *Offset =
    943     GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
    944   llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset);
    945   Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
    946   CharUnits VBaseAlign =
    947     CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
    948   return std::make_pair(Address(Ptr, VBaseAlign), Offset);
    949 }
    950 
    951 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
    952                                                 QualType SrcRecordTy) {
    953   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
    954   return IsDeref &&
    955          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
    956 }
    957 
    958 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
    959                                        llvm::Value *Argument) {
    960   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
    961   llvm::FunctionType *FTy =
    962       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
    963   llvm::Value *Args[] = {Argument};
    964   llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
    965   return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
    966 }
    967 
    968 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
    969   llvm::CallSite Call =
    970       emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
    971   Call.setDoesNotReturn();
    972   CGF.Builder.CreateUnreachable();
    973 }
    974 
    975 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
    976                                          QualType SrcRecordTy,
    977                                          Address ThisPtr,
    978                                          llvm::Type *StdTypeInfoPtrTy) {
    979   llvm::Value *Offset;
    980   std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
    981   auto Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()).getInstruction();
    982   return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
    983 }
    984 
    985 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
    986                                                          QualType SrcRecordTy) {
    987   const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
    988   return SrcIsPtr &&
    989          !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
    990 }
    991 
    992 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
    993     CodeGenFunction &CGF, Address This, QualType SrcRecordTy,
    994     QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
    995   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
    996 
    997   llvm::Value *SrcRTTI =
    998       CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
    999   llvm::Value *DestRTTI =
   1000       CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
   1001 
   1002   llvm::Value *Offset;
   1003   std::tie(This, Offset) = performBaseAdjustment(CGF, This, SrcRecordTy);
   1004   llvm::Value *ThisPtr = This.getPointer();
   1005 
   1006   // PVOID __RTDynamicCast(
   1007   //   PVOID inptr,
   1008   //   LONG VfDelta,
   1009   //   PVOID SrcType,
   1010   //   PVOID TargetType,
   1011   //   BOOL isReference)
   1012   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
   1013                             CGF.Int8PtrTy, CGF.Int32Ty};
   1014   llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
   1015       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
   1016       "__RTDynamicCast");
   1017   llvm::Value *Args[] = {
   1018       ThisPtr, Offset, SrcRTTI, DestRTTI,
   1019       llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
   1020   ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
   1021   return CGF.Builder.CreateBitCast(ThisPtr, DestLTy);
   1022 }
   1023 
   1024 llvm::Value *
   1025 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
   1026                                        QualType SrcRecordTy,
   1027                                        QualType DestTy) {
   1028   llvm::Value *Offset;
   1029   std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
   1030 
   1031   // PVOID __RTCastToVoid(
   1032   //   PVOID inptr)
   1033   llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
   1034   llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
   1035       llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
   1036       "__RTCastToVoid");
   1037   llvm::Value *Args[] = {Value.getPointer()};
   1038   return CGF.EmitRuntimeCall(Function, Args);
   1039 }
   1040 
   1041 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
   1042   return false;
   1043 }
   1044 
   1045 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
   1046     CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
   1047     const CXXRecordDecl *BaseClassDecl) {
   1048   const ASTContext &Context = getContext();
   1049   int64_t VBPtrChars =
   1050       Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
   1051   llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
   1052   CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
   1053   CharUnits VBTableChars =
   1054       IntSize *
   1055       CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
   1056   llvm::Value *VBTableOffset =
   1057       llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
   1058 
   1059   llvm::Value *VBPtrToNewBase =
   1060       GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
   1061   VBPtrToNewBase =
   1062       CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
   1063   return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
   1064 }
   1065 
   1066 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
   1067   return isa<CXXConstructorDecl>(GD.getDecl());
   1068 }
   1069 
   1070 static bool isDeletingDtor(GlobalDecl GD) {
   1071   return isa<CXXDestructorDecl>(GD.getDecl()) &&
   1072          GD.getDtorType() == Dtor_Deleting;
   1073 }
   1074 
   1075 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
   1076   return isDeletingDtor(GD);
   1077 }
   1078 
   1079 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
   1080   const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
   1081   if (!RD)
   1082     return false;
   1083 
   1084   CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
   1085   if (FI.isInstanceMethod()) {
   1086     // If it's an instance method, aggregates are always returned indirectly via
   1087     // the second parameter.
   1088     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
   1089     FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
   1090     return true;
   1091   } else if (!RD->isPOD()) {
   1092     // If it's a free function, non-POD types are returned indirectly.
   1093     FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
   1094     return true;
   1095   }
   1096 
   1097   // Otherwise, use the C ABI rules.
   1098   return false;
   1099 }
   1100 
   1101 llvm::BasicBlock *
   1102 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
   1103                                                const CXXRecordDecl *RD) {
   1104   llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
   1105   assert(IsMostDerivedClass &&
   1106          "ctor for a class with virtual bases must have an implicit parameter");
   1107   llvm::Value *IsCompleteObject =
   1108     CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
   1109 
   1110   llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
   1111   llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
   1112   CGF.Builder.CreateCondBr(IsCompleteObject,
   1113                            CallVbaseCtorsBB, SkipVbaseCtorsBB);
   1114 
   1115   CGF.EmitBlock(CallVbaseCtorsBB);
   1116 
   1117   // Fill in the vbtable pointers here.
   1118   EmitVBPtrStores(CGF, RD);
   1119 
   1120   // CGF will put the base ctor calls in this basic block for us later.
   1121 
   1122   return SkipVbaseCtorsBB;
   1123 }
   1124 
   1125 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
   1126     CodeGenFunction &CGF, const CXXRecordDecl *RD) {
   1127   // In most cases, an override for a vbase virtual method can adjust
   1128   // the "this" parameter by applying a constant offset.
   1129   // However, this is not enough while a constructor or a destructor of some
   1130   // class X is being executed if all the following conditions are met:
   1131   //  - X has virtual bases, (1)
   1132   //  - X overrides a virtual method M of a vbase Y, (2)
   1133   //  - X itself is a vbase of the most derived class.
   1134   //
   1135   // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
   1136   // which holds the extra amount of "this" adjustment we must do when we use
   1137   // the X vftables (i.e. during X ctor or dtor).
   1138   // Outside the ctors and dtors, the values of vtorDisps are zero.
   1139 
   1140   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
   1141   typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
   1142   const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
   1143   CGBuilderTy &Builder = CGF.Builder;
   1144 
   1145   unsigned AS = getThisAddress(CGF).getAddressSpace();
   1146   llvm::Value *Int8This = nullptr;  // Initialize lazily.
   1147 
   1148   for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
   1149         I != E; ++I) {
   1150     if (!I->second.hasVtorDisp())
   1151       continue;
   1152 
   1153     llvm::Value *VBaseOffset =
   1154         GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, I->first);
   1155     // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
   1156     // just to Trunc back immediately.
   1157     VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
   1158     uint64_t ConstantVBaseOffset =
   1159         Layout.getVBaseClassOffset(I->first).getQuantity();
   1160 
   1161     // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
   1162     llvm::Value *VtorDispValue = Builder.CreateSub(
   1163         VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
   1164         "vtordisp.value");
   1165 
   1166     if (!Int8This)
   1167       Int8This = Builder.CreateBitCast(getThisValue(CGF),
   1168                                        CGF.Int8Ty->getPointerTo(AS));
   1169     llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
   1170     // vtorDisp is always the 32-bits before the vbase in the class layout.
   1171     VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
   1172     VtorDispPtr = Builder.CreateBitCast(
   1173         VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
   1174 
   1175     Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
   1176                                CharUnits::fromQuantity(4));
   1177   }
   1178 }
   1179 
   1180 static bool hasDefaultCXXMethodCC(ASTContext &Context,
   1181                                   const CXXMethodDecl *MD) {
   1182   CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
   1183       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
   1184   CallingConv ActualCallingConv =
   1185       MD->getType()->getAs<FunctionProtoType>()->getCallConv();
   1186   return ExpectedCallingConv == ActualCallingConv;
   1187 }
   1188 
   1189 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
   1190   // There's only one constructor type in this ABI.
   1191   CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
   1192 
   1193   // Exported default constructors either have a simple call-site where they use
   1194   // the typical calling convention and have a single 'this' pointer for an
   1195   // argument -or- they get a wrapper function which appropriately thunks to the
   1196   // real default constructor.  This thunk is the default constructor closure.
   1197   if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor())
   1198     if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
   1199       llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
   1200       Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
   1201       Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
   1202     }
   1203 }
   1204 
   1205 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
   1206                                       const CXXRecordDecl *RD) {
   1207   Address This = getThisAddress(CGF);
   1208   This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8");
   1209   const ASTContext &Context = getContext();
   1210   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
   1211 
   1212   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
   1213   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
   1214     const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
   1215     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
   1216     const ASTRecordLayout &SubobjectLayout =
   1217         Context.getASTRecordLayout(VBT->BaseWithVPtr);
   1218     CharUnits Offs = VBT->NonVirtualOffset;
   1219     Offs += SubobjectLayout.getVBPtrOffset();
   1220     if (VBT->getVBaseWithVPtr())
   1221       Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
   1222     Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
   1223     llvm::Value *GVPtr =
   1224         CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
   1225     VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(),
   1226                                       "vbptr." + VBT->ReusingBase->getName());
   1227     CGF.Builder.CreateStore(GVPtr, VBPtr);
   1228   }
   1229 }
   1230 
   1231 void
   1232 MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
   1233                                         SmallVectorImpl<CanQualType> &ArgTys) {
   1234   // TODO: 'for base' flag
   1235   if (T == StructorType::Deleting) {
   1236     // The scalar deleting destructor takes an implicit int parameter.
   1237     ArgTys.push_back(getContext().IntTy);
   1238   }
   1239   auto *CD = dyn_cast<CXXConstructorDecl>(MD);
   1240   if (!CD)
   1241     return;
   1242 
   1243   // All parameters are already in place except is_most_derived, which goes
   1244   // after 'this' if it's variadic and last if it's not.
   1245 
   1246   const CXXRecordDecl *Class = CD->getParent();
   1247   const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
   1248   if (Class->getNumVBases()) {
   1249     if (FPT->isVariadic())
   1250       ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
   1251     else
   1252       ArgTys.push_back(getContext().IntTy);
   1253   }
   1254 }
   1255 
   1256 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
   1257   // The TU defining a dtor is only guaranteed to emit a base destructor.  All
   1258   // other destructor variants are delegating thunks.
   1259   CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
   1260 }
   1261 
   1262 CharUnits
   1263 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
   1264   GD = GD.getCanonicalDecl();
   1265   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
   1266 
   1267   GlobalDecl LookupGD = GD;
   1268   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   1269     // Complete destructors take a pointer to the complete object as a
   1270     // parameter, thus don't need this adjustment.
   1271     if (GD.getDtorType() == Dtor_Complete)
   1272       return CharUnits();
   1273 
   1274     // There's no Dtor_Base in vftable but it shares the this adjustment with
   1275     // the deleting one, so look it up instead.
   1276     LookupGD = GlobalDecl(DD, Dtor_Deleting);
   1277   }
   1278 
   1279   MicrosoftVTableContext::MethodVFTableLocation ML =
   1280       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
   1281   CharUnits Adjustment = ML.VFPtrOffset;
   1282 
   1283   // Normal virtual instance methods need to adjust from the vfptr that first
   1284   // defined the virtual method to the virtual base subobject, but destructors
   1285   // do not.  The vector deleting destructor thunk applies this adjustment for
   1286   // us if necessary.
   1287   if (isa<CXXDestructorDecl>(MD))
   1288     Adjustment = CharUnits::Zero();
   1289 
   1290   if (ML.VBase) {
   1291     const ASTRecordLayout &DerivedLayout =
   1292         getContext().getASTRecordLayout(MD->getParent());
   1293     Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
   1294   }
   1295 
   1296   return Adjustment;
   1297 }
   1298 
   1299 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
   1300     CodeGenFunction &CGF, GlobalDecl GD, Address This,
   1301     bool VirtualCall) {
   1302   if (!VirtualCall) {
   1303     // If the call of a virtual function is not virtual, we just have to
   1304     // compensate for the adjustment the virtual function does in its prologue.
   1305     CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
   1306     if (Adjustment.isZero())
   1307       return This;
   1308 
   1309     This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
   1310     assert(Adjustment.isPositive());
   1311     return CGF.Builder.CreateConstByteGEP(This, Adjustment);
   1312   }
   1313 
   1314   GD = GD.getCanonicalDecl();
   1315   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
   1316 
   1317   GlobalDecl LookupGD = GD;
   1318   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
   1319     // Complete dtors take a pointer to the complete object,
   1320     // thus don't need adjustment.
   1321     if (GD.getDtorType() == Dtor_Complete)
   1322       return This;
   1323 
   1324     // There's only Dtor_Deleting in vftable but it shares the this adjustment
   1325     // with the base one, so look up the deleting one instead.
   1326     LookupGD = GlobalDecl(DD, Dtor_Deleting);
   1327   }
   1328   MicrosoftVTableContext::MethodVFTableLocation ML =
   1329       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
   1330 
   1331   CharUnits StaticOffset = ML.VFPtrOffset;
   1332 
   1333   // Base destructors expect 'this' to point to the beginning of the base
   1334   // subobject, not the first vfptr that happens to contain the virtual dtor.
   1335   // However, we still need to apply the virtual base adjustment.
   1336   if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
   1337     StaticOffset = CharUnits::Zero();
   1338 
   1339   Address Result = This;
   1340   if (ML.VBase) {
   1341     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
   1342 
   1343     const CXXRecordDecl *Derived = MD->getParent();
   1344     const CXXRecordDecl *VBase = ML.VBase;
   1345     llvm::Value *VBaseOffset =
   1346       GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
   1347     llvm::Value *VBasePtr =
   1348       CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset);
   1349     CharUnits VBaseAlign =
   1350       CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
   1351     Result = Address(VBasePtr, VBaseAlign);
   1352   }
   1353   if (!StaticOffset.isZero()) {
   1354     assert(StaticOffset.isPositive());
   1355     Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty);
   1356     if (ML.VBase) {
   1357       // Non-virtual adjustment might result in a pointer outside the allocated
   1358       // object, e.g. if the final overrider class is laid out after the virtual
   1359       // base that declares a method in the most derived class.
   1360       // FIXME: Update the code that emits this adjustment in thunks prologues.
   1361       Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
   1362     } else {
   1363       Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
   1364     }
   1365   }
   1366   return Result;
   1367 }
   1368 
   1369 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
   1370                                                 QualType &ResTy,
   1371                                                 FunctionArgList &Params) {
   1372   ASTContext &Context = getContext();
   1373   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
   1374   assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
   1375   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
   1376     ImplicitParamDecl *IsMostDerived
   1377       = ImplicitParamDecl::Create(Context, nullptr,
   1378                                   CGF.CurGD.getDecl()->getLocation(),
   1379                                   &Context.Idents.get("is_most_derived"),
   1380                                   Context.IntTy);
   1381     // The 'most_derived' parameter goes second if the ctor is variadic and last
   1382     // if it's not.  Dtors can't be variadic.
   1383     const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
   1384     if (FPT->isVariadic())
   1385       Params.insert(Params.begin() + 1, IsMostDerived);
   1386     else
   1387       Params.push_back(IsMostDerived);
   1388     getStructorImplicitParamDecl(CGF) = IsMostDerived;
   1389   } else if (isDeletingDtor(CGF.CurGD)) {
   1390     ImplicitParamDecl *ShouldDelete
   1391       = ImplicitParamDecl::Create(Context, nullptr,
   1392                                   CGF.CurGD.getDecl()->getLocation(),
   1393                                   &Context.Idents.get("should_call_delete"),
   1394                                   Context.IntTy);
   1395     Params.push_back(ShouldDelete);
   1396     getStructorImplicitParamDecl(CGF) = ShouldDelete;
   1397   }
   1398 }
   1399 
   1400 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
   1401     CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
   1402   // In this ABI, every virtual function takes a pointer to one of the
   1403   // subobjects that first defines it as the 'this' parameter, rather than a
   1404   // pointer to the final overrider subobject. Thus, we need to adjust it back
   1405   // to the final overrider subobject before use.
   1406   // See comments in the MicrosoftVFTableContext implementation for the details.
   1407   CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
   1408   if (Adjustment.isZero())
   1409     return This;
   1410 
   1411   unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
   1412   llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
   1413              *thisTy = This->getType();
   1414 
   1415   This = CGF.Builder.CreateBitCast(This, charPtrTy);
   1416   assert(Adjustment.isPositive());
   1417   This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
   1418                                                 -Adjustment.getQuantity());
   1419   return CGF.Builder.CreateBitCast(This, thisTy);
   1420 }
   1421 
   1422 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
   1423   EmitThisParam(CGF);
   1424 
   1425   /// If this is a function that the ABI specifies returns 'this', initialize
   1426   /// the return slot to 'this' at the start of the function.
   1427   ///
   1428   /// Unlike the setting of return types, this is done within the ABI
   1429   /// implementation instead of by clients of CGCXXABI because:
   1430   /// 1) getThisValue is currently protected
   1431   /// 2) in theory, an ABI could implement 'this' returns some other way;
   1432   ///    HasThisReturn only specifies a contract, not the implementation
   1433   if (HasThisReturn(CGF.CurGD))
   1434     CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
   1435   else if (hasMostDerivedReturn(CGF.CurGD))
   1436     CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)),
   1437                             CGF.ReturnValue);
   1438 
   1439   const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
   1440   if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
   1441     assert(getStructorImplicitParamDecl(CGF) &&
   1442            "no implicit parameter for a constructor with virtual bases?");
   1443     getStructorImplicitParamValue(CGF)
   1444       = CGF.Builder.CreateLoad(
   1445           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
   1446           "is_most_derived");
   1447   }
   1448 
   1449   if (isDeletingDtor(CGF.CurGD)) {
   1450     assert(getStructorImplicitParamDecl(CGF) &&
   1451            "no implicit parameter for a deleting destructor?");
   1452     getStructorImplicitParamValue(CGF)
   1453       = CGF.Builder.CreateLoad(
   1454           CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
   1455           "should_call_delete");
   1456   }
   1457 }
   1458 
   1459 unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
   1460     CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
   1461     bool ForVirtualBase, bool Delegating, CallArgList &Args) {
   1462   assert(Type == Ctor_Complete || Type == Ctor_Base);
   1463 
   1464   // Check if we need a 'most_derived' parameter.
   1465   if (!D->getParent()->getNumVBases())
   1466     return 0;
   1467 
   1468   // Add the 'most_derived' argument second if we are variadic or last if not.
   1469   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
   1470   llvm::Value *MostDerivedArg =
   1471       llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
   1472   RValue RV = RValue::get(MostDerivedArg);
   1473   if (MostDerivedArg) {
   1474     if (FPT->isVariadic())
   1475       Args.insert(Args.begin() + 1,
   1476                   CallArg(RV, getContext().IntTy, /*needscopy=*/false));
   1477     else
   1478       Args.add(RV, getContext().IntTy);
   1479   }
   1480 
   1481   return 1;  // Added one arg.
   1482 }
   1483 
   1484 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
   1485                                          const CXXDestructorDecl *DD,
   1486                                          CXXDtorType Type, bool ForVirtualBase,
   1487                                          bool Delegating, Address This) {
   1488   llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
   1489 
   1490   if (DD->isVirtual()) {
   1491     assert(Type != CXXDtorType::Dtor_Deleting &&
   1492            "The deleting destructor should only be called via a virtual call");
   1493     This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
   1494                                                     This, false);
   1495   }
   1496 
   1497   CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This.getPointer(),
   1498                           /*ImplicitParam=*/nullptr,
   1499                           /*ImplicitParamTy=*/QualType(), nullptr,
   1500                           getFromDtorType(Type));
   1501 }
   1502 
   1503 void MicrosoftCXXABI::emitVTableBitSetEntries(VPtrInfo *Info,
   1504                                               const CXXRecordDecl *RD,
   1505                                               llvm::GlobalVariable *VTable) {
   1506   if (!getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIVCall) &&
   1507       !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFINVCall) &&
   1508       !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIDerivedCast) &&
   1509       !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIUnrelatedCast))
   1510     return;
   1511 
   1512   llvm::NamedMDNode *BitsetsMD =
   1513       CGM.getModule().getOrInsertNamedMetadata("llvm.bitsets");
   1514 
   1515   // The location of the first virtual function pointer in the virtual table,
   1516   // aka the "address point" on Itanium. This is at offset 0 if RTTI is
   1517   // disabled, or sizeof(void*) if RTTI is enabled.
   1518   CharUnits AddressPoint =
   1519       getContext().getLangOpts().RTTIData
   1520           ? getContext().toCharUnitsFromBits(
   1521                 getContext().getTargetInfo().getPointerWidth(0))
   1522           : CharUnits::Zero();
   1523 
   1524   if (Info->PathToBaseWithVPtr.empty()) {
   1525     if (!CGM.IsCFIBlacklistedRecord(RD))
   1526       CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD);
   1527     return;
   1528   }
   1529 
   1530   // Add a bitset entry for the least derived base belonging to this vftable.
   1531   if (!CGM.IsCFIBlacklistedRecord(Info->PathToBaseWithVPtr.back()))
   1532     CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint,
   1533                                 Info->PathToBaseWithVPtr.back());
   1534 
   1535   // Add a bitset entry for each derived class that is laid out at the same
   1536   // offset as the least derived base.
   1537   for (unsigned I = Info->PathToBaseWithVPtr.size() - 1; I != 0; --I) {
   1538     const CXXRecordDecl *DerivedRD = Info->PathToBaseWithVPtr[I - 1];
   1539     const CXXRecordDecl *BaseRD = Info->PathToBaseWithVPtr[I];
   1540 
   1541     const ASTRecordLayout &Layout =
   1542         getContext().getASTRecordLayout(DerivedRD);
   1543     CharUnits Offset;
   1544     auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
   1545     if (VBI == Layout.getVBaseOffsetsMap().end())
   1546       Offset = Layout.getBaseClassOffset(BaseRD);
   1547     else
   1548       Offset = VBI->second.VBaseOffset;
   1549     if (!Offset.isZero())
   1550       return;
   1551     if (!CGM.IsCFIBlacklistedRecord(DerivedRD))
   1552       CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, DerivedRD);
   1553   }
   1554 
   1555   // Finally do the same for the most derived class.
   1556   if (Info->FullOffsetInMDC.isZero() && !CGM.IsCFIBlacklistedRecord(RD))
   1557     CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD);
   1558 }
   1559 
   1560 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
   1561                                             const CXXRecordDecl *RD) {
   1562   MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
   1563   const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
   1564 
   1565   for (VPtrInfo *Info : VFPtrs) {
   1566     llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
   1567     if (VTable->hasInitializer())
   1568       continue;
   1569 
   1570     llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
   1571                                ? getMSCompleteObjectLocator(RD, Info)
   1572                                : nullptr;
   1573 
   1574     const VTableLayout &VTLayout =
   1575       VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
   1576     llvm::Constant *Init = CGVT.CreateVTableInitializer(
   1577         RD, VTLayout.vtable_component_begin(),
   1578         VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
   1579         VTLayout.getNumVTableThunks(), RTTI);
   1580 
   1581     VTable->setInitializer(Init);
   1582 
   1583     emitVTableBitSetEntries(Info, RD, VTable);
   1584   }
   1585 }
   1586 
   1587 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
   1588     CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
   1589   return Vptr.NearestVBase != nullptr;
   1590 }
   1591 
   1592 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
   1593     CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
   1594     const CXXRecordDecl *NearestVBase) {
   1595   llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
   1596   if (!VTableAddressPoint) {
   1597     assert(Base.getBase()->getNumVBases() &&
   1598            !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
   1599   }
   1600   return VTableAddressPoint;
   1601 }
   1602 
   1603 static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
   1604                               const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
   1605                               SmallString<256> &Name) {
   1606   llvm::raw_svector_ostream Out(Name);
   1607   MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
   1608 }
   1609 
   1610 llvm::Constant *
   1611 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
   1612                                        const CXXRecordDecl *VTableClass) {
   1613   (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
   1614   VFTableIdTy ID(VTableClass, Base.getBaseOffset());
   1615   return VFTablesMap[ID];
   1616 }
   1617 
   1618 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
   1619     BaseSubobject Base, const CXXRecordDecl *VTableClass) {
   1620   llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
   1621   assert(VFTable && "Couldn't find a vftable for the given base?");
   1622   return VFTable;
   1623 }
   1624 
   1625 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
   1626                                                        CharUnits VPtrOffset) {
   1627   // getAddrOfVTable may return 0 if asked to get an address of a vtable which
   1628   // shouldn't be used in the given record type. We want to cache this result in
   1629   // VFTablesMap, thus a simple zero check is not sufficient.
   1630 
   1631   VFTableIdTy ID(RD, VPtrOffset);
   1632   VTablesMapTy::iterator I;
   1633   bool Inserted;
   1634   std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
   1635   if (!Inserted)
   1636     return I->second;
   1637 
   1638   llvm::GlobalVariable *&VTable = I->second;
   1639 
   1640   MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
   1641   const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
   1642 
   1643   if (DeferredVFTables.insert(RD).second) {
   1644     // We haven't processed this record type before.
   1645     // Queue up this v-table for possible deferred emission.
   1646     CGM.addDeferredVTable(RD);
   1647 
   1648 #ifndef NDEBUG
   1649     // Create all the vftables at once in order to make sure each vftable has
   1650     // a unique mangled name.
   1651     llvm::StringSet<> ObservedMangledNames;
   1652     for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
   1653       SmallString<256> Name;
   1654       mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
   1655       if (!ObservedMangledNames.insert(Name.str()).second)
   1656         llvm_unreachable("Already saw this mangling before?");
   1657     }
   1658 #endif
   1659   }
   1660 
   1661   VPtrInfo *const *VFPtrI =
   1662       std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) {
   1663         return VPI->FullOffsetInMDC == VPtrOffset;
   1664       });
   1665   if (VFPtrI == VFPtrs.end()) {
   1666     VFTablesMap[ID] = nullptr;
   1667     return nullptr;
   1668   }
   1669   VPtrInfo *VFPtr = *VFPtrI;
   1670 
   1671   SmallString<256> VFTableName;
   1672   mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName);
   1673 
   1674   llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
   1675   bool VFTableComesFromAnotherTU =
   1676       llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
   1677       llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
   1678   bool VTableAliasIsRequred =
   1679       !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
   1680 
   1681   if (llvm::GlobalValue *VFTable =
   1682           CGM.getModule().getNamedGlobal(VFTableName)) {
   1683     VFTablesMap[ID] = VFTable;
   1684     VTable = VTableAliasIsRequred
   1685                  ? cast<llvm::GlobalVariable>(
   1686                        cast<llvm::GlobalAlias>(VFTable)->getBaseObject())
   1687                  : cast<llvm::GlobalVariable>(VFTable);
   1688     return VTable;
   1689   }
   1690 
   1691   uint64_t NumVTableSlots =
   1692       VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC)
   1693           .getNumVTableComponents();
   1694   llvm::GlobalValue::LinkageTypes VTableLinkage =
   1695       VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
   1696 
   1697   StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
   1698 
   1699   llvm::ArrayType *VTableType =
   1700       llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
   1701 
   1702   // Create a backing variable for the contents of VTable.  The VTable may
   1703   // or may not include space for a pointer to RTTI data.
   1704   llvm::GlobalValue *VFTable;
   1705   VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
   1706                                     /*isConstant=*/true, VTableLinkage,
   1707                                     /*Initializer=*/nullptr, VTableName);
   1708   VTable->setUnnamedAddr(true);
   1709 
   1710   llvm::Comdat *C = nullptr;
   1711   if (!VFTableComesFromAnotherTU &&
   1712       (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) ||
   1713        (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) &&
   1714         VTableAliasIsRequred)))
   1715     C = CGM.getModule().getOrInsertComdat(VFTableName.str());
   1716 
   1717   // Only insert a pointer into the VFTable for RTTI data if we are not
   1718   // importing it.  We never reference the RTTI data directly so there is no
   1719   // need to make room for it.
   1720   if (VTableAliasIsRequred) {
   1721     llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
   1722                                  llvm::ConstantInt::get(CGM.IntTy, 1)};
   1723     // Create a GEP which points just after the first entry in the VFTable,
   1724     // this should be the location of the first virtual method.
   1725     llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
   1726         VTable->getValueType(), VTable, GEPIndices);
   1727     if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
   1728       VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
   1729       if (C)
   1730         C->setSelectionKind(llvm::Comdat::Largest);
   1731     }
   1732     VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
   1733                                         /*AddressSpace=*/0, VFTableLinkage,
   1734                                         VFTableName.str(), VTableGEP,
   1735                                         &CGM.getModule());
   1736     VFTable->setUnnamedAddr(true);
   1737   } else {
   1738     // We don't need a GlobalAlias to be a symbol for the VTable if we won't
   1739     // be referencing any RTTI data.
   1740     // The GlobalVariable will end up being an appropriate definition of the
   1741     // VFTable.
   1742     VFTable = VTable;
   1743   }
   1744   if (C)
   1745     VTable->setComdat(C);
   1746 
   1747   if (RD->hasAttr<DLLImportAttr>())
   1748     VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
   1749   else if (RD->hasAttr<DLLExportAttr>())
   1750     VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
   1751 
   1752   VFTablesMap[ID] = VFTable;
   1753   return VTable;
   1754 }
   1755 
   1756 // Compute the identity of the most derived class whose virtual table is located
   1757 // at the given offset into RD.
   1758 static const CXXRecordDecl *getClassAtVTableLocation(ASTContext &Ctx,
   1759                                                      const CXXRecordDecl *RD,
   1760                                                      CharUnits Offset) {
   1761   if (Offset.isZero())
   1762     return RD;
   1763 
   1764   const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
   1765   const CXXRecordDecl *MaxBase = nullptr;
   1766   CharUnits MaxBaseOffset;
   1767   for (auto &&B : RD->bases()) {
   1768     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
   1769     CharUnits BaseOffset = Layout.getBaseClassOffset(Base);
   1770     if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
   1771       MaxBase = Base;
   1772       MaxBaseOffset = BaseOffset;
   1773     }
   1774   }
   1775   for (auto &&B : RD->vbases()) {
   1776     const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
   1777     CharUnits BaseOffset = Layout.getVBaseClassOffset(Base);
   1778     if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) {
   1779       MaxBase = Base;
   1780       MaxBaseOffset = BaseOffset;
   1781     }
   1782   }
   1783   assert(MaxBase);
   1784   return getClassAtVTableLocation(Ctx, MaxBase, Offset - MaxBaseOffset);
   1785 }
   1786 
   1787 // Compute the identity of the most derived class whose virtual table is located
   1788 // at the MethodVFTableLocation ML.
   1789 static const CXXRecordDecl *
   1790 getClassAtVTableLocation(ASTContext &Ctx, GlobalDecl GD,
   1791                          MicrosoftVTableContext::MethodVFTableLocation &ML) {
   1792   const CXXRecordDecl *RD = ML.VBase;
   1793   if (!RD)
   1794     RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
   1795 
   1796   return getClassAtVTableLocation(Ctx, RD, ML.VFPtrOffset);
   1797 }
   1798 
   1799 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
   1800                                                         GlobalDecl GD,
   1801                                                         Address This,
   1802                                                         llvm::Type *Ty,
   1803                                                         SourceLocation Loc) {
   1804   GD = GD.getCanonicalDecl();
   1805   CGBuilderTy &Builder = CGF.Builder;
   1806 
   1807   Ty = Ty->getPointerTo()->getPointerTo();
   1808   Address VPtr =
   1809       adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
   1810 
   1811   auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
   1812   llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent());
   1813 
   1814   MicrosoftVTableContext::MethodVFTableLocation ML =
   1815       CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
   1816   if (CGF.SanOpts.has(SanitizerKind::CFIVCall))
   1817     CGF.EmitVTablePtrCheck(getClassAtVTableLocation(getContext(), GD, ML),
   1818                            VTable, CodeGenFunction::CFITCK_VCall, Loc);
   1819 
   1820   llvm::Value *VFuncPtr =
   1821       Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
   1822   return Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
   1823 }
   1824 
   1825 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
   1826     CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
   1827     Address This, const CXXMemberCallExpr *CE) {
   1828   assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
   1829   assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
   1830 
   1831   // We have only one destructor in the vftable but can get both behaviors
   1832   // by passing an implicit int parameter.
   1833   GlobalDecl GD(Dtor, Dtor_Deleting);
   1834   const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
   1835       Dtor, StructorType::Deleting);
   1836   llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
   1837   llvm::Value *Callee = getVirtualFunctionPointer(
   1838       CGF, GD, This, Ty, CE ? CE->getLocStart() : SourceLocation());
   1839 
   1840   ASTContext &Context = getContext();
   1841   llvm::Value *ImplicitParam = llvm::ConstantInt::get(
   1842       llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
   1843       DtorType == Dtor_Deleting);
   1844 
   1845   This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
   1846   RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(),
   1847                                       This.getPointer(),
   1848                                       ImplicitParam, Context.IntTy, CE,
   1849                                       StructorType::Deleting);
   1850   return RV.getScalarVal();
   1851 }
   1852 
   1853 const VBTableGlobals &
   1854 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
   1855   // At this layer, we can key the cache off of a single class, which is much
   1856   // easier than caching each vbtable individually.
   1857   llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
   1858   bool Added;
   1859   std::tie(Entry, Added) =
   1860       VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
   1861   VBTableGlobals &VBGlobals = Entry->second;
   1862   if (!Added)
   1863     return VBGlobals;
   1864 
   1865   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
   1866   VBGlobals.VBTables = &Context.enumerateVBTables(RD);
   1867 
   1868   // Cache the globals for all vbtables so we don't have to recompute the
   1869   // mangled names.
   1870   llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
   1871   for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
   1872                                       E = VBGlobals.VBTables->end();
   1873        I != E; ++I) {
   1874     VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
   1875   }
   1876 
   1877   return VBGlobals;
   1878 }
   1879 
   1880 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
   1881     const CXXMethodDecl *MD,
   1882     const MicrosoftVTableContext::MethodVFTableLocation &ML) {
   1883   assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
   1884          "can't form pointers to ctors or virtual dtors");
   1885 
   1886   // Calculate the mangled name.
   1887   SmallString<256> ThunkName;
   1888   llvm::raw_svector_ostream Out(ThunkName);
   1889   getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
   1890 
   1891   // If the thunk has been generated previously, just return it.
   1892   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
   1893     return cast<llvm::Function>(GV);
   1894 
   1895   // Create the llvm::Function.
   1896   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD);
   1897   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
   1898   llvm::Function *ThunkFn =
   1899       llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
   1900                              ThunkName.str(), &CGM.getModule());
   1901   assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
   1902 
   1903   ThunkFn->setLinkage(MD->isExternallyVisible()
   1904                           ? llvm::GlobalValue::LinkOnceODRLinkage
   1905                           : llvm::GlobalValue::InternalLinkage);
   1906   if (MD->isExternallyVisible())
   1907     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
   1908 
   1909   CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
   1910   CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
   1911 
   1912   // Add the "thunk" attribute so that LLVM knows that the return type is
   1913   // meaningless. These thunks can be used to call functions with differing
   1914   // return types, and the caller is required to cast the prototype
   1915   // appropriately to extract the correct value.
   1916   ThunkFn->addFnAttr("thunk");
   1917 
   1918   // These thunks can be compared, so they are not unnamed.
   1919   ThunkFn->setUnnamedAddr(false);
   1920 
   1921   // Start codegen.
   1922   CodeGenFunction CGF(CGM);
   1923   CGF.CurGD = GlobalDecl(MD);
   1924   CGF.CurFuncIsThunk = true;
   1925 
   1926   // Build FunctionArgs, but only include the implicit 'this' parameter
   1927   // declaration.
   1928   FunctionArgList FunctionArgs;
   1929   buildThisParam(CGF, FunctionArgs);
   1930 
   1931   // Start defining the function.
   1932   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
   1933                     FunctionArgs, MD->getLocation(), SourceLocation());
   1934   EmitThisParam(CGF);
   1935 
   1936   // Load the vfptr and then callee from the vftable.  The callee should have
   1937   // adjusted 'this' so that the vfptr is at offset zero.
   1938   llvm::Value *VTable = CGF.GetVTablePtr(
   1939       getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent());
   1940 
   1941   llvm::Value *VFuncPtr =
   1942       CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
   1943   llvm::Value *Callee =
   1944     CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
   1945 
   1946   CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee);
   1947 
   1948   return ThunkFn;
   1949 }
   1950 
   1951 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
   1952   const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
   1953   for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
   1954     const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
   1955     llvm::GlobalVariable *GV = VBGlobals.Globals[I];
   1956     if (GV->isDeclaration())
   1957       emitVBTableDefinition(*VBT, RD, GV);
   1958   }
   1959 }
   1960 
   1961 llvm::GlobalVariable *
   1962 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
   1963                                   llvm::GlobalVariable::LinkageTypes Linkage) {
   1964   SmallString<256> OutName;
   1965   llvm::raw_svector_ostream Out(OutName);
   1966   getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
   1967   StringRef Name = OutName.str();
   1968 
   1969   llvm::ArrayType *VBTableType =
   1970       llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
   1971 
   1972   assert(!CGM.getModule().getNamedGlobal(Name) &&
   1973          "vbtable with this name already exists: mangling bug?");
   1974   llvm::GlobalVariable *GV =
   1975       CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
   1976   GV->setUnnamedAddr(true);
   1977 
   1978   if (RD->hasAttr<DLLImportAttr>())
   1979     GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
   1980   else if (RD->hasAttr<DLLExportAttr>())
   1981     GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
   1982 
   1983   if (!GV->hasExternalLinkage())
   1984     emitVBTableDefinition(VBT, RD, GV);
   1985 
   1986   return GV;
   1987 }
   1988 
   1989 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
   1990                                             const CXXRecordDecl *RD,
   1991                                             llvm::GlobalVariable *GV) const {
   1992   const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
   1993 
   1994   assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
   1995          "should only emit vbtables for classes with vbtables");
   1996 
   1997   const ASTRecordLayout &BaseLayout =
   1998       getContext().getASTRecordLayout(VBT.BaseWithVPtr);
   1999   const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
   2000 
   2001   SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
   2002                                            nullptr);
   2003 
   2004   // The offset from ReusingBase's vbptr to itself always leads.
   2005   CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
   2006   Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
   2007 
   2008   MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
   2009   for (const auto &I : ReusingBase->vbases()) {
   2010     const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
   2011     CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
   2012     assert(!Offset.isNegative());
   2013 
   2014     // Make it relative to the subobject vbptr.
   2015     CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
   2016     if (VBT.getVBaseWithVPtr())
   2017       CompleteVBPtrOffset +=
   2018           DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
   2019     Offset -= CompleteVBPtrOffset;
   2020 
   2021     unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
   2022     assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
   2023     Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
   2024   }
   2025 
   2026   assert(Offsets.size() ==
   2027          cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
   2028                                ->getElementType())->getNumElements());
   2029   llvm::ArrayType *VBTableType =
   2030     llvm::ArrayType::get(CGM.IntTy, Offsets.size());
   2031   llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
   2032   GV->setInitializer(Init);
   2033 }
   2034 
   2035 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
   2036                                                     Address This,
   2037                                                     const ThisAdjustment &TA) {
   2038   if (TA.isEmpty())
   2039     return This.getPointer();
   2040 
   2041   This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty);
   2042 
   2043   llvm::Value *V;
   2044   if (TA.Virtual.isEmpty()) {
   2045     V = This.getPointer();
   2046   } else {
   2047     assert(TA.Virtual.Microsoft.VtordispOffset < 0);
   2048     // Adjust the this argument based on the vtordisp value.
   2049     Address VtorDispPtr =
   2050         CGF.Builder.CreateConstInBoundsByteGEP(This,
   2051                  CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
   2052     VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty);
   2053     llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
   2054     V = CGF.Builder.CreateGEP(This.getPointer(),
   2055                               CGF.Builder.CreateNeg(VtorDisp));
   2056 
   2057     // Unfortunately, having applied the vtordisp means that we no
   2058     // longer really have a known alignment for the vbptr step.
   2059     // We'll assume the vbptr is pointer-aligned.
   2060 
   2061     if (TA.Virtual.Microsoft.VBPtrOffset) {
   2062       // If the final overrider is defined in a virtual base other than the one
   2063       // that holds the vfptr, we have to use a vtordispex thunk which looks up
   2064       // the vbtable of the derived class.
   2065       assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
   2066       assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
   2067       llvm::Value *VBPtr;
   2068       llvm::Value *VBaseOffset =
   2069           GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()),
   2070                                   -TA.Virtual.Microsoft.VBPtrOffset,
   2071                                   TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
   2072       V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
   2073     }
   2074   }
   2075 
   2076   if (TA.NonVirtual) {
   2077     // Non-virtual adjustment might result in a pointer outside the allocated
   2078     // object, e.g. if the final overrider class is laid out after the virtual
   2079     // base that declares a method in the most derived class.
   2080     V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
   2081   }
   2082 
   2083   // Don't need to bitcast back, the call CodeGen will handle this.
   2084   return V;
   2085 }
   2086 
   2087 llvm::Value *
   2088 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
   2089                                          const ReturnAdjustment &RA) {
   2090   if (RA.isEmpty())
   2091     return Ret.getPointer();
   2092 
   2093   auto OrigTy = Ret.getType();
   2094   Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty);
   2095 
   2096   llvm::Value *V = Ret.getPointer();
   2097   if (RA.Virtual.Microsoft.VBIndex) {
   2098     assert(RA.Virtual.Microsoft.VBIndex > 0);
   2099     int32_t IntSize = CGF.getIntSize().getQuantity();
   2100     llvm::Value *VBPtr;
   2101     llvm::Value *VBaseOffset =
   2102         GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
   2103                                 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
   2104     V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
   2105   }
   2106 
   2107   if (RA.NonVirtual)
   2108     V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
   2109 
   2110   // Cast back to the original type.
   2111   return CGF.Builder.CreateBitCast(V, OrigTy);
   2112 }
   2113 
   2114 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
   2115                                    QualType elementType) {
   2116   // Microsoft seems to completely ignore the possibility of a
   2117   // two-argument usual deallocation function.
   2118   return elementType.isDestructedType();
   2119 }
   2120 
   2121 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
   2122   // Microsoft seems to completely ignore the possibility of a
   2123   // two-argument usual deallocation function.
   2124   return expr->getAllocatedType().isDestructedType();
   2125 }
   2126 
   2127 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
   2128   // The array cookie is always a size_t; we then pad that out to the
   2129   // alignment of the element type.
   2130   ASTContext &Ctx = getContext();
   2131   return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
   2132                   Ctx.getTypeAlignInChars(type));
   2133 }
   2134 
   2135 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
   2136                                                   Address allocPtr,
   2137                                                   CharUnits cookieSize) {
   2138   Address numElementsPtr =
   2139     CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy);
   2140   return CGF.Builder.CreateLoad(numElementsPtr);
   2141 }
   2142 
   2143 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
   2144                                                Address newPtr,
   2145                                                llvm::Value *numElements,
   2146                                                const CXXNewExpr *expr,
   2147                                                QualType elementType) {
   2148   assert(requiresArrayCookie(expr));
   2149 
   2150   // The size of the cookie.
   2151   CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
   2152 
   2153   // Compute an offset to the cookie.
   2154   Address cookiePtr = newPtr;
   2155 
   2156   // Write the number of elements into the appropriate slot.
   2157   Address numElementsPtr
   2158     = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy);
   2159   CGF.Builder.CreateStore(numElements, numElementsPtr);
   2160 
   2161   // Finally, compute a pointer to the actual data buffer by skipping
   2162   // over the cookie completely.
   2163   return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
   2164 }
   2165 
   2166 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
   2167                                         llvm::Constant *Dtor,
   2168                                         llvm::Constant *Addr) {
   2169   // Create a function which calls the destructor.
   2170   llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
   2171 
   2172   // extern "C" int __tlregdtor(void (*f)(void));
   2173   llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
   2174       CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false);
   2175 
   2176   llvm::Constant *TLRegDtor =
   2177       CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor");
   2178   if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor))
   2179     TLRegDtorFn->setDoesNotThrow();
   2180 
   2181   CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
   2182 }
   2183 
   2184 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
   2185                                          llvm::Constant *Dtor,
   2186                                          llvm::Constant *Addr) {
   2187   if (D.getTLSKind())
   2188     return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
   2189 
   2190   // The default behavior is to use atexit.
   2191   CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
   2192 }
   2193 
   2194 void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
   2195     CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
   2196     ArrayRef<llvm::Function *> CXXThreadLocalInits,
   2197     ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
   2198   // This will create a GV in the .CRT$XDU section.  It will point to our
   2199   // initialization function.  The CRT will call all of these function
   2200   // pointers at start-up time and, eventually, at thread-creation time.
   2201   auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
   2202     llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
   2203         CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true,
   2204         llvm::GlobalVariable::InternalLinkage, InitFunc,
   2205         Twine(InitFunc->getName(), "$initializer$"));
   2206     InitFuncPtr->setSection(".CRT$XDU");
   2207     // This variable has discardable linkage, we have to add it to @llvm.used to
   2208     // ensure it won't get discarded.
   2209     CGM.addUsedGlobal(InitFuncPtr);
   2210     return InitFuncPtr;
   2211   };
   2212 
   2213   std::vector<llvm::Function *> NonComdatInits;
   2214   for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
   2215     llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
   2216         CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
   2217     llvm::Function *F = CXXThreadLocalInits[I];
   2218 
   2219     // If the GV is already in a comdat group, then we have to join it.
   2220     if (llvm::Comdat *C = GV->getComdat())
   2221       AddToXDU(F)->setComdat(C);
   2222     else
   2223       NonComdatInits.push_back(F);
   2224   }
   2225 
   2226   if (!NonComdatInits.empty()) {
   2227     llvm::FunctionType *FTy =
   2228         llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
   2229     llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction(
   2230         FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
   2231         SourceLocation(), /*TLS=*/true);
   2232     CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
   2233 
   2234     AddToXDU(InitFunc);
   2235   }
   2236 }
   2237 
   2238 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
   2239                                                      const VarDecl *VD,
   2240                                                      QualType LValType) {
   2241   CGF.CGM.ErrorUnsupported(VD, "thread wrappers");
   2242   return LValue();
   2243 }
   2244 
   2245 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
   2246   StringRef VarName("_Init_thread_epoch");
   2247   CharUnits Align = CGM.getIntAlign();
   2248   if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
   2249     return ConstantAddress(GV, Align);
   2250   auto *GV = new llvm::GlobalVariable(
   2251       CGM.getModule(), CGM.IntTy,
   2252       /*Constant=*/false, llvm::GlobalVariable::ExternalLinkage,
   2253       /*Initializer=*/nullptr, VarName,
   2254       /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
   2255   GV->setAlignment(Align.getQuantity());
   2256   return ConstantAddress(GV, Align);
   2257 }
   2258 
   2259 static llvm::Constant *getInitThreadHeaderFn(CodeGenModule &CGM) {
   2260   llvm::FunctionType *FTy =
   2261       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
   2262                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
   2263   return CGM.CreateRuntimeFunction(
   2264       FTy, "_Init_thread_header",
   2265       llvm::AttributeSet::get(CGM.getLLVMContext(),
   2266                               llvm::AttributeSet::FunctionIndex,
   2267                               llvm::Attribute::NoUnwind));
   2268 }
   2269 
   2270 static llvm::Constant *getInitThreadFooterFn(CodeGenModule &CGM) {
   2271   llvm::FunctionType *FTy =
   2272       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
   2273                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
   2274   return CGM.CreateRuntimeFunction(
   2275       FTy, "_Init_thread_footer",
   2276       llvm::AttributeSet::get(CGM.getLLVMContext(),
   2277                               llvm::AttributeSet::FunctionIndex,
   2278                               llvm::Attribute::NoUnwind));
   2279 }
   2280 
   2281 static llvm::Constant *getInitThreadAbortFn(CodeGenModule &CGM) {
   2282   llvm::FunctionType *FTy =
   2283       llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
   2284                               CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
   2285   return CGM.CreateRuntimeFunction(
   2286       FTy, "_Init_thread_abort",
   2287       llvm::AttributeSet::get(CGM.getLLVMContext(),
   2288                               llvm::AttributeSet::FunctionIndex,
   2289                               llvm::Attribute::NoUnwind));
   2290 }
   2291 
   2292 namespace {
   2293 struct ResetGuardBit final : EHScopeStack::Cleanup {
   2294   Address Guard;
   2295   unsigned GuardNum;
   2296   ResetGuardBit(Address Guard, unsigned GuardNum)
   2297       : Guard(Guard), GuardNum(GuardNum) {}
   2298 
   2299   void Emit(CodeGenFunction &CGF, Flags flags) override {
   2300     // Reset the bit in the mask so that the static variable may be
   2301     // reinitialized.
   2302     CGBuilderTy &Builder = CGF.Builder;
   2303     llvm::LoadInst *LI = Builder.CreateLoad(Guard);
   2304     llvm::ConstantInt *Mask =
   2305         llvm::ConstantInt::get(CGF.IntTy, ~(1U << GuardNum));
   2306     Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
   2307   }
   2308 };
   2309 
   2310 struct CallInitThreadAbort final : EHScopeStack::Cleanup {
   2311   llvm::Value *Guard;
   2312   CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
   2313 
   2314   void Emit(CodeGenFunction &CGF, Flags flags) override {
   2315     // Calling _Init_thread_abort will reset the guard's state.
   2316     CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
   2317   }
   2318 };
   2319 }
   2320 
   2321 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
   2322                                       llvm::GlobalVariable *GV,
   2323                                       bool PerformInit) {
   2324   // MSVC only uses guards for static locals.
   2325   if (!D.isStaticLocal()) {
   2326     assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
   2327     // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
   2328     llvm::Function *F = CGF.CurFn;
   2329     F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
   2330     F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
   2331     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
   2332     return;
   2333   }
   2334 
   2335   bool ThreadlocalStatic = D.getTLSKind();
   2336   bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
   2337 
   2338   // Thread-safe static variables which aren't thread-specific have a
   2339   // per-variable guard.
   2340   bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
   2341 
   2342   CGBuilderTy &Builder = CGF.Builder;
   2343   llvm::IntegerType *GuardTy = CGF.Int32Ty;
   2344   llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
   2345   CharUnits GuardAlign = CharUnits::fromQuantity(4);
   2346 
   2347   // Get the guard variable for this function if we have one already.
   2348   GuardInfo *GI = nullptr;
   2349   if (ThreadlocalStatic)
   2350     GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
   2351   else if (!ThreadsafeStatic)
   2352     GI = &GuardVariableMap[D.getDeclContext()];
   2353 
   2354   llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
   2355   unsigned GuardNum;
   2356   if (D.isExternallyVisible()) {
   2357     // Externally visible variables have to be numbered in Sema to properly
   2358     // handle unreachable VarDecls.
   2359     GuardNum = getContext().getStaticLocalNumber(&D);
   2360     assert(GuardNum > 0);
   2361     GuardNum--;
   2362   } else if (HasPerVariableGuard) {
   2363     GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
   2364   } else {
   2365     // Non-externally visible variables are numbered here in CodeGen.
   2366     GuardNum = GI->BitIndex++;
   2367   }
   2368 
   2369   if (!HasPerVariableGuard && GuardNum >= 32) {
   2370     if (D.isExternallyVisible())
   2371       ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
   2372     GuardNum %= 32;
   2373     GuardVar = nullptr;
   2374   }
   2375 
   2376   if (!GuardVar) {
   2377     // Mangle the name for the guard.
   2378     SmallString<256> GuardName;
   2379     {
   2380       llvm::raw_svector_ostream Out(GuardName);
   2381       if (HasPerVariableGuard)
   2382         getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
   2383                                                                Out);
   2384       else
   2385         getMangleContext().mangleStaticGuardVariable(&D, Out);
   2386     }
   2387 
   2388     // Create the guard variable with a zero-initializer. Just absorb linkage,
   2389     // visibility and dll storage class from the guarded variable.
   2390     GuardVar =
   2391         new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
   2392                                  GV->getLinkage(), Zero, GuardName.str());
   2393     GuardVar->setVisibility(GV->getVisibility());
   2394     GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
   2395     GuardVar->setAlignment(GuardAlign.getQuantity());
   2396     if (GuardVar->isWeakForLinker())
   2397       GuardVar->setComdat(
   2398           CGM.getModule().getOrInsertComdat(GuardVar->getName()));
   2399     if (D.getTLSKind())
   2400       GuardVar->setThreadLocal(true);
   2401     if (GI && !HasPerVariableGuard)
   2402       GI->Guard = GuardVar;
   2403   }
   2404 
   2405   ConstantAddress GuardAddr(GuardVar, GuardAlign);
   2406 
   2407   assert(GuardVar->getLinkage() == GV->getLinkage() &&
   2408          "static local from the same function had different linkage");
   2409 
   2410   if (!HasPerVariableGuard) {
   2411     // Pseudo code for the test:
   2412     // if (!(GuardVar & MyGuardBit)) {
   2413     //   GuardVar |= MyGuardBit;
   2414     //   ... initialize the object ...;
   2415     // }
   2416 
   2417     // Test our bit from the guard variable.
   2418     llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << GuardNum);
   2419     llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
   2420     llvm::Value *IsInitialized =
   2421         Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
   2422     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
   2423     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
   2424     Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
   2425 
   2426     // Set our bit in the guard variable and emit the initializer and add a global
   2427     // destructor if appropriate.
   2428     CGF.EmitBlock(InitBlock);
   2429     Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
   2430     CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
   2431     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
   2432     CGF.PopCleanupBlock();
   2433     Builder.CreateBr(EndBlock);
   2434 
   2435     // Continue.
   2436     CGF.EmitBlock(EndBlock);
   2437   } else {
   2438     // Pseudo code for the test:
   2439     // if (TSS > _Init_thread_epoch) {
   2440     //   _Init_thread_header(&TSS);
   2441     //   if (TSS == -1) {
   2442     //     ... initialize the object ...;
   2443     //     _Init_thread_footer(&TSS);
   2444     //   }
   2445     // }
   2446     //
   2447     // The algorithm is almost identical to what can be found in the appendix
   2448     // found in N2325.
   2449 
   2450     // This BasicBLock determines whether or not we have any work to do.
   2451     llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
   2452     FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
   2453     llvm::LoadInst *InitThreadEpoch =
   2454         Builder.CreateLoad(getInitThreadEpochPtr(CGM));
   2455     llvm::Value *IsUninitialized =
   2456         Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
   2457     llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
   2458     llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
   2459     Builder.CreateCondBr(IsUninitialized, AttemptInitBlock, EndBlock);
   2460 
   2461     // This BasicBlock attempts to determine whether or not this thread is
   2462     // responsible for doing the initialization.
   2463     CGF.EmitBlock(AttemptInitBlock);
   2464     CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
   2465                                 GuardAddr.getPointer());
   2466     llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
   2467     SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
   2468     llvm::Value *ShouldDoInit =
   2469         Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
   2470     llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
   2471     Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
   2472 
   2473     // Ok, we ended up getting selected as the initializing thread.
   2474     CGF.EmitBlock(InitBlock);
   2475     CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
   2476     CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
   2477     CGF.PopCleanupBlock();
   2478     CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
   2479                                 GuardAddr.getPointer());
   2480     Builder.CreateBr(EndBlock);
   2481 
   2482     CGF.EmitBlock(EndBlock);
   2483   }
   2484 }
   2485 
   2486 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
   2487   // Null-ness for function memptrs only depends on the first field, which is
   2488   // the function pointer.  The rest don't matter, so we can zero initialize.
   2489   if (MPT->isMemberFunctionPointer())
   2490     return true;
   2491 
   2492   // The virtual base adjustment field is always -1 for null, so if we have one
   2493   // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
   2494   // valid field offset.
   2495   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2496   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2497   return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
   2498           RD->nullFieldOffsetIsZero());
   2499 }
   2500 
   2501 llvm::Type *
   2502 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
   2503   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2504   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2505   llvm::SmallVector<llvm::Type *, 4> fields;
   2506   if (MPT->isMemberFunctionPointer())
   2507     fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
   2508   else
   2509     fields.push_back(CGM.IntTy);  // FieldOffset
   2510 
   2511   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
   2512                                           Inheritance))
   2513     fields.push_back(CGM.IntTy);
   2514   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   2515     fields.push_back(CGM.IntTy);
   2516   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   2517     fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
   2518 
   2519   if (fields.size() == 1)
   2520     return fields[0];
   2521   return llvm::StructType::get(CGM.getLLVMContext(), fields);
   2522 }
   2523 
   2524 void MicrosoftCXXABI::
   2525 GetNullMemberPointerFields(const MemberPointerType *MPT,
   2526                            llvm::SmallVectorImpl<llvm::Constant *> &fields) {
   2527   assert(fields.empty());
   2528   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2529   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2530   if (MPT->isMemberFunctionPointer()) {
   2531     // FunctionPointerOrVirtualThunk
   2532     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
   2533   } else {
   2534     if (RD->nullFieldOffsetIsZero())
   2535       fields.push_back(getZeroInt());  // FieldOffset
   2536     else
   2537       fields.push_back(getAllOnesInt());  // FieldOffset
   2538   }
   2539 
   2540   if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
   2541                                           Inheritance))
   2542     fields.push_back(getZeroInt());
   2543   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   2544     fields.push_back(getZeroInt());
   2545   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   2546     fields.push_back(getAllOnesInt());
   2547 }
   2548 
   2549 llvm::Constant *
   2550 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
   2551   llvm::SmallVector<llvm::Constant *, 4> fields;
   2552   GetNullMemberPointerFields(MPT, fields);
   2553   if (fields.size() == 1)
   2554     return fields[0];
   2555   llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
   2556   assert(Res->getType() == ConvertMemberPointerType(MPT));
   2557   return Res;
   2558 }
   2559 
   2560 llvm::Constant *
   2561 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
   2562                                        bool IsMemberFunction,
   2563                                        const CXXRecordDecl *RD,
   2564                                        CharUnits NonVirtualBaseAdjustment,
   2565                                        unsigned VBTableIndex) {
   2566   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2567 
   2568   // Single inheritance class member pointer are represented as scalars instead
   2569   // of aggregates.
   2570   if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
   2571     return FirstField;
   2572 
   2573   llvm::SmallVector<llvm::Constant *, 4> fields;
   2574   fields.push_back(FirstField);
   2575 
   2576   if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
   2577     fields.push_back(llvm::ConstantInt::get(
   2578       CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
   2579 
   2580   if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
   2581     CharUnits Offs = CharUnits::Zero();
   2582     if (VBTableIndex)
   2583       Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
   2584     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
   2585   }
   2586 
   2587   // The rest of the fields are adjusted by conversions to a more derived class.
   2588   if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   2589     fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
   2590 
   2591   return llvm::ConstantStruct::getAnon(fields);
   2592 }
   2593 
   2594 llvm::Constant *
   2595 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
   2596                                        CharUnits offset) {
   2597   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2598   if (RD->getMSInheritanceModel() ==
   2599       MSInheritanceAttr::Keyword_virtual_inheritance)
   2600     offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
   2601   llvm::Constant *FirstField =
   2602     llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
   2603   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
   2604                                CharUnits::Zero(), /*VBTableIndex=*/0);
   2605 }
   2606 
   2607 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
   2608                                                    QualType MPType) {
   2609   const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
   2610   const ValueDecl *MPD = MP.getMemberPointerDecl();
   2611   if (!MPD)
   2612     return EmitNullMemberPointer(DstTy);
   2613 
   2614   ASTContext &Ctx = getContext();
   2615   ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
   2616 
   2617   llvm::Constant *C;
   2618   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
   2619     C = EmitMemberFunctionPointer(MD);
   2620   } else {
   2621     CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
   2622     C = EmitMemberDataPointer(DstTy, FieldOffset);
   2623   }
   2624 
   2625   if (!MemberPointerPath.empty()) {
   2626     const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
   2627     const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
   2628     const MemberPointerType *SrcTy =
   2629         Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
   2630             ->castAs<MemberPointerType>();
   2631 
   2632     bool DerivedMember = MP.isMemberPointerToDerivedMember();
   2633     SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
   2634     const CXXRecordDecl *PrevRD = SrcRD;
   2635     for (const CXXRecordDecl *PathElem : MemberPointerPath) {
   2636       const CXXRecordDecl *Base = nullptr;
   2637       const CXXRecordDecl *Derived = nullptr;
   2638       if (DerivedMember) {
   2639         Base = PathElem;
   2640         Derived = PrevRD;
   2641       } else {
   2642         Base = PrevRD;
   2643         Derived = PathElem;
   2644       }
   2645       for (const CXXBaseSpecifier &BS : Derived->bases())
   2646         if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
   2647             Base->getCanonicalDecl())
   2648           DerivedToBasePath.push_back(&BS);
   2649       PrevRD = PathElem;
   2650     }
   2651     assert(DerivedToBasePath.size() == MemberPointerPath.size());
   2652 
   2653     CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
   2654                                 : CK_BaseToDerivedMemberPointer;
   2655     C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
   2656                                     DerivedToBasePath.end(), C);
   2657   }
   2658   return C;
   2659 }
   2660 
   2661 llvm::Constant *
   2662 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
   2663   assert(MD->isInstance() && "Member function must not be static!");
   2664 
   2665   MD = MD->getCanonicalDecl();
   2666   CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
   2667   const CXXRecordDecl *RD = MD->getParent()->getMostRecentDecl();
   2668   CodeGenTypes &Types = CGM.getTypes();
   2669 
   2670   unsigned VBTableIndex = 0;
   2671   llvm::Constant *FirstField;
   2672   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
   2673   if (!MD->isVirtual()) {
   2674     llvm::Type *Ty;
   2675     // Check whether the function has a computable LLVM signature.
   2676     if (Types.isFuncTypeConvertible(FPT)) {
   2677       // The function has a computable LLVM signature; use the correct type.
   2678       Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
   2679     } else {
   2680       // Use an arbitrary non-function type to tell GetAddrOfFunction that the
   2681       // function type is incomplete.
   2682       Ty = CGM.PtrDiffTy;
   2683     }
   2684     FirstField = CGM.GetAddrOfFunction(MD, Ty);
   2685   } else {
   2686     auto &VTableContext = CGM.getMicrosoftVTableContext();
   2687     MicrosoftVTableContext::MethodVFTableLocation ML =
   2688         VTableContext.getMethodVFTableLocation(MD);
   2689     FirstField = EmitVirtualMemPtrThunk(MD, ML);
   2690     // Include the vfptr adjustment if the method is in a non-primary vftable.
   2691     NonVirtualBaseAdjustment += ML.VFPtrOffset;
   2692     if (ML.VBase)
   2693       VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
   2694   }
   2695 
   2696   if (VBTableIndex == 0 &&
   2697       RD->getMSInheritanceModel() ==
   2698           MSInheritanceAttr::Keyword_virtual_inheritance)
   2699     NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
   2700 
   2701   // The rest of the fields are common with data member pointers.
   2702   FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
   2703   return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
   2704                                NonVirtualBaseAdjustment, VBTableIndex);
   2705 }
   2706 
   2707 /// Member pointers are the same if they're either bitwise identical *or* both
   2708 /// null.  Null-ness for function members is determined by the first field,
   2709 /// while for data member pointers we must compare all fields.
   2710 llvm::Value *
   2711 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
   2712                                              llvm::Value *L,
   2713                                              llvm::Value *R,
   2714                                              const MemberPointerType *MPT,
   2715                                              bool Inequality) {
   2716   CGBuilderTy &Builder = CGF.Builder;
   2717 
   2718   // Handle != comparisons by switching the sense of all boolean operations.
   2719   llvm::ICmpInst::Predicate Eq;
   2720   llvm::Instruction::BinaryOps And, Or;
   2721   if (Inequality) {
   2722     Eq = llvm::ICmpInst::ICMP_NE;
   2723     And = llvm::Instruction::Or;
   2724     Or = llvm::Instruction::And;
   2725   } else {
   2726     Eq = llvm::ICmpInst::ICMP_EQ;
   2727     And = llvm::Instruction::And;
   2728     Or = llvm::Instruction::Or;
   2729   }
   2730 
   2731   // If this is a single field member pointer (single inheritance), this is a
   2732   // single icmp.
   2733   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2734   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2735   if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
   2736                                          Inheritance))
   2737     return Builder.CreateICmp(Eq, L, R);
   2738 
   2739   // Compare the first field.
   2740   llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
   2741   llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
   2742   llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
   2743 
   2744   // Compare everything other than the first field.
   2745   llvm::Value *Res = nullptr;
   2746   llvm::StructType *LType = cast<llvm::StructType>(L->getType());
   2747   for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
   2748     llvm::Value *LF = Builder.CreateExtractValue(L, I);
   2749     llvm::Value *RF = Builder.CreateExtractValue(R, I);
   2750     llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
   2751     if (Res)
   2752       Res = Builder.CreateBinOp(And, Res, Cmp);
   2753     else
   2754       Res = Cmp;
   2755   }
   2756 
   2757   // Check if the first field is 0 if this is a function pointer.
   2758   if (MPT->isMemberFunctionPointer()) {
   2759     // (l1 == r1 && ...) || l0 == 0
   2760     llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
   2761     llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
   2762     Res = Builder.CreateBinOp(Or, Res, IsZero);
   2763   }
   2764 
   2765   // Combine the comparison of the first field, which must always be true for
   2766   // this comparison to succeeed.
   2767   return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
   2768 }
   2769 
   2770 llvm::Value *
   2771 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
   2772                                             llvm::Value *MemPtr,
   2773                                             const MemberPointerType *MPT) {
   2774   CGBuilderTy &Builder = CGF.Builder;
   2775   llvm::SmallVector<llvm::Constant *, 4> fields;
   2776   // We only need one field for member functions.
   2777   if (MPT->isMemberFunctionPointer())
   2778     fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
   2779   else
   2780     GetNullMemberPointerFields(MPT, fields);
   2781   assert(!fields.empty());
   2782   llvm::Value *FirstField = MemPtr;
   2783   if (MemPtr->getType()->isStructTy())
   2784     FirstField = Builder.CreateExtractValue(MemPtr, 0);
   2785   llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
   2786 
   2787   // For function member pointers, we only need to test the function pointer
   2788   // field.  The other fields if any can be garbage.
   2789   if (MPT->isMemberFunctionPointer())
   2790     return Res;
   2791 
   2792   // Otherwise, emit a series of compares and combine the results.
   2793   for (int I = 1, E = fields.size(); I < E; ++I) {
   2794     llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
   2795     llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
   2796     Res = Builder.CreateOr(Res, Next, "memptr.tobool");
   2797   }
   2798   return Res;
   2799 }
   2800 
   2801 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
   2802                                                   llvm::Constant *Val) {
   2803   // Function pointers are null if the pointer in the first field is null.
   2804   if (MPT->isMemberFunctionPointer()) {
   2805     llvm::Constant *FirstField = Val->getType()->isStructTy() ?
   2806       Val->getAggregateElement(0U) : Val;
   2807     return FirstField->isNullValue();
   2808   }
   2809 
   2810   // If it's not a function pointer and it's zero initializable, we can easily
   2811   // check zero.
   2812   if (isZeroInitializable(MPT) && Val->isNullValue())
   2813     return true;
   2814 
   2815   // Otherwise, break down all the fields for comparison.  Hopefully these
   2816   // little Constants are reused, while a big null struct might not be.
   2817   llvm::SmallVector<llvm::Constant *, 4> Fields;
   2818   GetNullMemberPointerFields(MPT, Fields);
   2819   if (Fields.size() == 1) {
   2820     assert(Val->getType()->isIntegerTy());
   2821     return Val == Fields[0];
   2822   }
   2823 
   2824   unsigned I, E;
   2825   for (I = 0, E = Fields.size(); I != E; ++I) {
   2826     if (Val->getAggregateElement(I) != Fields[I])
   2827       break;
   2828   }
   2829   return I == E;
   2830 }
   2831 
   2832 llvm::Value *
   2833 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
   2834                                          Address This,
   2835                                          llvm::Value *VBPtrOffset,
   2836                                          llvm::Value *VBTableOffset,
   2837                                          llvm::Value **VBPtrOut) {
   2838   CGBuilderTy &Builder = CGF.Builder;
   2839   // Load the vbtable pointer from the vbptr in the instance.
   2840   This = Builder.CreateElementBitCast(This, CGM.Int8Ty);
   2841   llvm::Value *VBPtr =
   2842     Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr");
   2843   if (VBPtrOut) *VBPtrOut = VBPtr;
   2844   VBPtr = Builder.CreateBitCast(VBPtr,
   2845             CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace()));
   2846 
   2847   CharUnits VBPtrAlign;
   2848   if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
   2849     VBPtrAlign = This.getAlignment().alignmentAtOffset(
   2850                                    CharUnits::fromQuantity(CI->getSExtValue()));
   2851   } else {
   2852     VBPtrAlign = CGF.getPointerAlign();
   2853   }
   2854 
   2855   llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable");
   2856 
   2857   // Translate from byte offset to table index. It improves analyzability.
   2858   llvm::Value *VBTableIndex = Builder.CreateAShr(
   2859       VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
   2860       "vbtindex", /*isExact=*/true);
   2861 
   2862   // Load an i32 offset from the vb-table.
   2863   llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex);
   2864   VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
   2865   return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4),
   2866                                    "vbase_offs");
   2867 }
   2868 
   2869 // Returns an adjusted base cast to i8*, since we do more address arithmetic on
   2870 // it.
   2871 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
   2872     CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
   2873     Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
   2874   CGBuilderTy &Builder = CGF.Builder;
   2875   Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty);
   2876   llvm::BasicBlock *OriginalBB = nullptr;
   2877   llvm::BasicBlock *SkipAdjustBB = nullptr;
   2878   llvm::BasicBlock *VBaseAdjustBB = nullptr;
   2879 
   2880   // In the unspecified inheritance model, there might not be a vbtable at all,
   2881   // in which case we need to skip the virtual base lookup.  If there is a
   2882   // vbtable, the first entry is a no-op entry that gives back the original
   2883   // base, so look for a virtual base adjustment offset of zero.
   2884   if (VBPtrOffset) {
   2885     OriginalBB = Builder.GetInsertBlock();
   2886     VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
   2887     SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
   2888     llvm::Value *IsVirtual =
   2889       Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
   2890                            "memptr.is_vbase");
   2891     Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
   2892     CGF.EmitBlock(VBaseAdjustBB);
   2893   }
   2894 
   2895   // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
   2896   // know the vbptr offset.
   2897   if (!VBPtrOffset) {
   2898     CharUnits offs = CharUnits::Zero();
   2899     if (!RD->hasDefinition()) {
   2900       DiagnosticsEngine &Diags = CGF.CGM.getDiags();
   2901       unsigned DiagID = Diags.getCustomDiagID(
   2902           DiagnosticsEngine::Error,
   2903           "member pointer representation requires a "
   2904           "complete class type for %0 to perform this expression");
   2905       Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
   2906     } else if (RD->getNumVBases())
   2907       offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
   2908     VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
   2909   }
   2910   llvm::Value *VBPtr = nullptr;
   2911   llvm::Value *VBaseOffs =
   2912     GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
   2913   llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
   2914 
   2915   // Merge control flow with the case where we didn't have to adjust.
   2916   if (VBaseAdjustBB) {
   2917     Builder.CreateBr(SkipAdjustBB);
   2918     CGF.EmitBlock(SkipAdjustBB);
   2919     llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
   2920     Phi->addIncoming(Base.getPointer(), OriginalBB);
   2921     Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
   2922     return Phi;
   2923   }
   2924   return AdjustedBase;
   2925 }
   2926 
   2927 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
   2928     CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
   2929     const MemberPointerType *MPT) {
   2930   assert(MPT->isMemberDataPointer());
   2931   unsigned AS = Base.getAddressSpace();
   2932   llvm::Type *PType =
   2933       CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
   2934   CGBuilderTy &Builder = CGF.Builder;
   2935   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   2936   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   2937 
   2938   // Extract the fields we need, regardless of model.  We'll apply them if we
   2939   // have them.
   2940   llvm::Value *FieldOffset = MemPtr;
   2941   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
   2942   llvm::Value *VBPtrOffset = nullptr;
   2943   if (MemPtr->getType()->isStructTy()) {
   2944     // We need to extract values.
   2945     unsigned I = 0;
   2946     FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
   2947     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   2948       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
   2949     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   2950       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
   2951   }
   2952 
   2953   llvm::Value *Addr;
   2954   if (VirtualBaseAdjustmentOffset) {
   2955     Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
   2956                              VBPtrOffset);
   2957   } else {
   2958     Addr = Base.getPointer();
   2959   }
   2960 
   2961   // Cast to char*.
   2962   Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS));
   2963 
   2964   // Apply the offset, which we assume is non-null.
   2965   Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset");
   2966 
   2967   // Cast the address to the appropriate pointer type, adopting the address
   2968   // space of the base pointer.
   2969   return Builder.CreateBitCast(Addr, PType);
   2970 }
   2971 
   2972 llvm::Value *
   2973 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
   2974                                              const CastExpr *E,
   2975                                              llvm::Value *Src) {
   2976   assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
   2977          E->getCastKind() == CK_BaseToDerivedMemberPointer ||
   2978          E->getCastKind() == CK_ReinterpretMemberPointer);
   2979 
   2980   // Use constant emission if we can.
   2981   if (isa<llvm::Constant>(Src))
   2982     return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
   2983 
   2984   // We may be adding or dropping fields from the member pointer, so we need
   2985   // both types and the inheritance models of both records.
   2986   const MemberPointerType *SrcTy =
   2987     E->getSubExpr()->getType()->castAs<MemberPointerType>();
   2988   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
   2989   bool IsFunc = SrcTy->isMemberFunctionPointer();
   2990 
   2991   // If the classes use the same null representation, reinterpret_cast is a nop.
   2992   bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
   2993   if (IsReinterpret && IsFunc)
   2994     return Src;
   2995 
   2996   CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
   2997   CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
   2998   if (IsReinterpret &&
   2999       SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
   3000     return Src;
   3001 
   3002   CGBuilderTy &Builder = CGF.Builder;
   3003 
   3004   // Branch past the conversion if Src is null.
   3005   llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
   3006   llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
   3007 
   3008   // C++ 5.2.10p9: The null member pointer value is converted to the null member
   3009   //   pointer value of the destination type.
   3010   if (IsReinterpret) {
   3011     // For reinterpret casts, sema ensures that src and dst are both functions
   3012     // or data and have the same size, which means the LLVM types should match.
   3013     assert(Src->getType() == DstNull->getType());
   3014     return Builder.CreateSelect(IsNotNull, Src, DstNull);
   3015   }
   3016 
   3017   llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
   3018   llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
   3019   llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
   3020   Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
   3021   CGF.EmitBlock(ConvertBB);
   3022 
   3023   llvm::Value *Dst = EmitNonNullMemberPointerConversion(
   3024       SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
   3025       Builder);
   3026 
   3027   Builder.CreateBr(ContinueBB);
   3028 
   3029   // In the continuation, choose between DstNull and Dst.
   3030   CGF.EmitBlock(ContinueBB);
   3031   llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
   3032   Phi->addIncoming(DstNull, OriginalBB);
   3033   Phi->addIncoming(Dst, ConvertBB);
   3034   return Phi;
   3035 }
   3036 
   3037 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
   3038     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
   3039     CastExpr::path_const_iterator PathBegin,
   3040     CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
   3041     CGBuilderTy &Builder) {
   3042   const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
   3043   const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
   3044   MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
   3045   MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
   3046   bool IsFunc = SrcTy->isMemberFunctionPointer();
   3047   bool IsConstant = isa<llvm::Constant>(Src);
   3048 
   3049   // Decompose src.
   3050   llvm::Value *FirstField = Src;
   3051   llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
   3052   llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
   3053   llvm::Value *VBPtrOffset = getZeroInt();
   3054   if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
   3055     // We need to extract values.
   3056     unsigned I = 0;
   3057     FirstField = Builder.CreateExtractValue(Src, I++);
   3058     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
   3059       NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
   3060     if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
   3061       VBPtrOffset = Builder.CreateExtractValue(Src, I++);
   3062     if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
   3063       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
   3064   }
   3065 
   3066   bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
   3067   const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
   3068   const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
   3069 
   3070   // For data pointers, we adjust the field offset directly.  For functions, we
   3071   // have a separate field.
   3072   llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
   3073 
   3074   // The virtual inheritance model has a quirk: the virtual base table is always
   3075   // referenced when dereferencing a member pointer even if the member pointer
   3076   // is non-virtual.  This is accounted for by adjusting the non-virtual offset
   3077   // to point backwards to the top of the MDC from the first VBase.  Undo this
   3078   // adjustment to normalize the member pointer.
   3079   llvm::Value *SrcVBIndexEqZero =
   3080       Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
   3081   if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
   3082     if (int64_t SrcOffsetToFirstVBase =
   3083             getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
   3084       llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
   3085           SrcVBIndexEqZero,
   3086           llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
   3087           getZeroInt());
   3088       NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
   3089     }
   3090   }
   3091 
   3092   // A non-zero vbindex implies that we are dealing with a source member in a
   3093   // floating virtual base in addition to some non-virtual offset.  If the
   3094   // vbindex is zero, we are dealing with a source that exists in a non-virtual,
   3095   // fixed, base.  The difference between these two cases is that the vbindex +
   3096   // nvoffset *always* point to the member regardless of what context they are
   3097   // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
   3098   // base requires explicit nv adjustment.
   3099   llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
   3100       CGM.IntTy,
   3101       CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
   3102           .getQuantity());
   3103 
   3104   llvm::Value *NVDisp;
   3105   if (IsDerivedToBase)
   3106     NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
   3107   else
   3108     NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
   3109 
   3110   NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
   3111 
   3112   // Update the vbindex to an appropriate value in the destination because
   3113   // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
   3114   llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
   3115   if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) &&
   3116       MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) {
   3117     if (llvm::GlobalVariable *VDispMap =
   3118             getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
   3119       llvm::Value *VBIndex = Builder.CreateExactUDiv(
   3120           VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
   3121       if (IsConstant) {
   3122         llvm::Constant *Mapping = VDispMap->getInitializer();
   3123         VirtualBaseAdjustmentOffset =
   3124             Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
   3125       } else {
   3126         llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
   3127         VirtualBaseAdjustmentOffset =
   3128             Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs),
   3129                                       CharUnits::fromQuantity(4));
   3130       }
   3131 
   3132       DstVBIndexEqZero =
   3133           Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
   3134     }
   3135   }
   3136 
   3137   // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
   3138   // it to the offset of the vbptr.
   3139   if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) {
   3140     llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
   3141         CGM.IntTy,
   3142         getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
   3143     VBPtrOffset =
   3144         Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
   3145   }
   3146 
   3147   // Likewise, apply a similar adjustment so that dereferencing the member
   3148   // pointer correctly accounts for the distance between the start of the first
   3149   // virtual base and the top of the MDC.
   3150   if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) {
   3151     if (int64_t DstOffsetToFirstVBase =
   3152             getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
   3153       llvm::Value *DoDstAdjustment = Builder.CreateSelect(
   3154           DstVBIndexEqZero,
   3155           llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
   3156           getZeroInt());
   3157       NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
   3158     }
   3159   }
   3160 
   3161   // Recompose dst from the null struct and the adjusted fields from src.
   3162   llvm::Value *Dst;
   3163   if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
   3164     Dst = FirstField;
   3165   } else {
   3166     Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
   3167     unsigned Idx = 0;
   3168     Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
   3169     if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
   3170       Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
   3171     if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
   3172       Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
   3173     if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
   3174       Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
   3175   }
   3176   return Dst;
   3177 }
   3178 
   3179 llvm::Constant *
   3180 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
   3181                                              llvm::Constant *Src) {
   3182   const MemberPointerType *SrcTy =
   3183       E->getSubExpr()->getType()->castAs<MemberPointerType>();
   3184   const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
   3185 
   3186   CastKind CK = E->getCastKind();
   3187 
   3188   return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
   3189                                      E->path_end(), Src);
   3190 }
   3191 
   3192 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
   3193     const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
   3194     CastExpr::path_const_iterator PathBegin,
   3195     CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
   3196   assert(CK == CK_DerivedToBaseMemberPointer ||
   3197          CK == CK_BaseToDerivedMemberPointer ||
   3198          CK == CK_ReinterpretMemberPointer);
   3199   // If src is null, emit a new null for dst.  We can't return src because dst
   3200   // might have a new representation.
   3201   if (MemberPointerConstantIsNull(SrcTy, Src))
   3202     return EmitNullMemberPointer(DstTy);
   3203 
   3204   // We don't need to do anything for reinterpret_casts of non-null member
   3205   // pointers.  We should only get here when the two type representations have
   3206   // the same size.
   3207   if (CK == CK_ReinterpretMemberPointer)
   3208     return Src;
   3209 
   3210   CGBuilderTy Builder(CGM, CGM.getLLVMContext());
   3211   auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
   3212       SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
   3213 
   3214   return Dst;
   3215 }
   3216 
   3217 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
   3218     CodeGenFunction &CGF, const Expr *E, Address This,
   3219     llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
   3220     const MemberPointerType *MPT) {
   3221   assert(MPT->isMemberFunctionPointer());
   3222   const FunctionProtoType *FPT =
   3223     MPT->getPointeeType()->castAs<FunctionProtoType>();
   3224   const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
   3225   llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(
   3226       CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr));
   3227   CGBuilderTy &Builder = CGF.Builder;
   3228 
   3229   MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
   3230 
   3231   // Extract the fields we need, regardless of model.  We'll apply them if we
   3232   // have them.
   3233   llvm::Value *FunctionPointer = MemPtr;
   3234   llvm::Value *NonVirtualBaseAdjustment = nullptr;
   3235   llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
   3236   llvm::Value *VBPtrOffset = nullptr;
   3237   if (MemPtr->getType()->isStructTy()) {
   3238     // We need to extract values.
   3239     unsigned I = 0;
   3240     FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
   3241     if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
   3242       NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
   3243     if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
   3244       VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
   3245     if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
   3246       VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
   3247   }
   3248 
   3249   if (VirtualBaseAdjustmentOffset) {
   3250     ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
   3251                                    VirtualBaseAdjustmentOffset, VBPtrOffset);
   3252   } else {
   3253     ThisPtrForCall = This.getPointer();
   3254   }
   3255 
   3256   if (NonVirtualBaseAdjustment) {
   3257     // Apply the adjustment and cast back to the original struct type.
   3258     llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy);
   3259     Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
   3260     ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(),
   3261                                            "this.adjusted");
   3262   }
   3263 
   3264   return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
   3265 }
   3266 
   3267 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
   3268   return new MicrosoftCXXABI(CGM);
   3269 }
   3270 
   3271 // MS RTTI Overview:
   3272 // The run time type information emitted by cl.exe contains 5 distinct types of
   3273 // structures.  Many of them reference each other.
   3274 //
   3275 // TypeInfo:  Static classes that are returned by typeid.
   3276 //
   3277 // CompleteObjectLocator:  Referenced by vftables.  They contain information
   3278 //   required for dynamic casting, including OffsetFromTop.  They also contain
   3279 //   a reference to the TypeInfo for the type and a reference to the
   3280 //   CompleteHierarchyDescriptor for the type.
   3281 //
   3282 // ClassHieararchyDescriptor: Contains information about a class hierarchy.
   3283 //   Used during dynamic_cast to walk a class hierarchy.  References a base
   3284 //   class array and the size of said array.
   3285 //
   3286 // BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
   3287 //   somewhat of a misnomer because the most derived class is also in the list
   3288 //   as well as multiple copies of virtual bases (if they occur multiple times
   3289 //   in the hiearchy.)  The BaseClassArray contains one BaseClassDescriptor for
   3290 //   every path in the hierarchy, in pre-order depth first order.  Note, we do
   3291 //   not declare a specific llvm type for BaseClassArray, it's merely an array
   3292 //   of BaseClassDescriptor pointers.
   3293 //
   3294 // BaseClassDescriptor: Contains information about a class in a class hierarchy.
   3295 //   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
   3296 //   BaseClassArray is.  It contains information about a class within a
   3297 //   hierarchy such as: is this base is ambiguous and what is its offset in the
   3298 //   vbtable.  The names of the BaseClassDescriptors have all of their fields
   3299 //   mangled into them so they can be aggressively deduplicated by the linker.
   3300 
   3301 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
   3302   StringRef MangledName("\01??_7type_info@@6B@");
   3303   if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
   3304     return VTable;
   3305   return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
   3306                                   /*Constant=*/true,
   3307                                   llvm::GlobalVariable::ExternalLinkage,
   3308                                   /*Initializer=*/nullptr, MangledName);
   3309 }
   3310 
   3311 namespace {
   3312 
   3313 /// \brief A Helper struct that stores information about a class in a class
   3314 /// hierarchy.  The information stored in these structs struct is used during
   3315 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
   3316 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with
   3317 // implicit depth first pre-order tree connectivity.  getFirstChild and
   3318 // getNextSibling allow us to walk the tree efficiently.
   3319 struct MSRTTIClass {
   3320   enum {
   3321     IsPrivateOnPath = 1 | 8,
   3322     IsAmbiguous = 2,
   3323     IsPrivate = 4,
   3324     IsVirtual = 16,
   3325     HasHierarchyDescriptor = 64
   3326   };
   3327   MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
   3328   uint32_t initialize(const MSRTTIClass *Parent,
   3329                       const CXXBaseSpecifier *Specifier);
   3330 
   3331   MSRTTIClass *getFirstChild() { return this + 1; }
   3332   static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
   3333     return Child + 1 + Child->NumBases;
   3334   }
   3335 
   3336   const CXXRecordDecl *RD, *VirtualRoot;
   3337   uint32_t Flags, NumBases, OffsetInVBase;
   3338 };
   3339 
   3340 /// \brief Recursively initialize the base class array.
   3341 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
   3342                                  const CXXBaseSpecifier *Specifier) {
   3343   Flags = HasHierarchyDescriptor;
   3344   if (!Parent) {
   3345     VirtualRoot = nullptr;
   3346     OffsetInVBase = 0;
   3347   } else {
   3348     if (Specifier->getAccessSpecifier() != AS_public)
   3349       Flags |= IsPrivate | IsPrivateOnPath;
   3350     if (Specifier->isVirtual()) {
   3351       Flags |= IsVirtual;
   3352       VirtualRoot = RD;
   3353       OffsetInVBase = 0;
   3354     } else {
   3355       if (Parent->Flags & IsPrivateOnPath)
   3356         Flags |= IsPrivateOnPath;
   3357       VirtualRoot = Parent->VirtualRoot;
   3358       OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
   3359           .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
   3360     }
   3361   }
   3362   NumBases = 0;
   3363   MSRTTIClass *Child = getFirstChild();
   3364   for (const CXXBaseSpecifier &Base : RD->bases()) {
   3365     NumBases += Child->initialize(this, &Base) + 1;
   3366     Child = getNextChild(Child);
   3367   }
   3368   return NumBases;
   3369 }
   3370 
   3371 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
   3372   switch (Ty->getLinkage()) {
   3373   case NoLinkage:
   3374   case InternalLinkage:
   3375   case UniqueExternalLinkage:
   3376     return llvm::GlobalValue::InternalLinkage;
   3377 
   3378   case VisibleNoLinkage:
   3379   case ExternalLinkage:
   3380     return llvm::GlobalValue::LinkOnceODRLinkage;
   3381   }
   3382   llvm_unreachable("Invalid linkage!");
   3383 }
   3384 
   3385 /// \brief An ephemeral helper class for building MS RTTI types.  It caches some
   3386 /// calls to the module and information about the most derived class in a
   3387 /// hierarchy.
   3388 struct MSRTTIBuilder {
   3389   enum {
   3390     HasBranchingHierarchy = 1,
   3391     HasVirtualBranchingHierarchy = 2,
   3392     HasAmbiguousBases = 4
   3393   };
   3394 
   3395   MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
   3396       : CGM(ABI.CGM), Context(CGM.getContext()),
   3397         VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
   3398         Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
   3399         ABI(ABI) {}
   3400 
   3401   llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
   3402   llvm::GlobalVariable *
   3403   getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
   3404   llvm::GlobalVariable *getClassHierarchyDescriptor();
   3405   llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
   3406 
   3407   CodeGenModule &CGM;
   3408   ASTContext &Context;
   3409   llvm::LLVMContext &VMContext;
   3410   llvm::Module &Module;
   3411   const CXXRecordDecl *RD;
   3412   llvm::GlobalVariable::LinkageTypes Linkage;
   3413   MicrosoftCXXABI &ABI;
   3414 };
   3415 
   3416 } // namespace
   3417 
   3418 /// \brief Recursively serializes a class hierarchy in pre-order depth first
   3419 /// order.
   3420 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
   3421                                     const CXXRecordDecl *RD) {
   3422   Classes.push_back(MSRTTIClass(RD));
   3423   for (const CXXBaseSpecifier &Base : RD->bases())
   3424     serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
   3425 }
   3426 
   3427 /// \brief Find ambiguity among base classes.
   3428 static void
   3429 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
   3430   llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
   3431   llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
   3432   llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
   3433   for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
   3434     if ((Class->Flags & MSRTTIClass::IsVirtual) &&
   3435         !VirtualBases.insert(Class->RD).second) {
   3436       Class = MSRTTIClass::getNextChild(Class);
   3437       continue;
   3438     }
   3439     if (!UniqueBases.insert(Class->RD).second)
   3440       AmbiguousBases.insert(Class->RD);
   3441     Class++;
   3442   }
   3443   if (AmbiguousBases.empty())
   3444     return;
   3445   for (MSRTTIClass &Class : Classes)
   3446     if (AmbiguousBases.count(Class.RD))
   3447       Class.Flags |= MSRTTIClass::IsAmbiguous;
   3448 }
   3449 
   3450 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
   3451   SmallString<256> MangledName;
   3452   {
   3453     llvm::raw_svector_ostream Out(MangledName);
   3454     ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
   3455   }
   3456 
   3457   // Check to see if we've already declared this ClassHierarchyDescriptor.
   3458   if (auto CHD = Module.getNamedGlobal(MangledName))
   3459     return CHD;
   3460 
   3461   // Serialize the class hierarchy and initialize the CHD Fields.
   3462   SmallVector<MSRTTIClass, 8> Classes;
   3463   serializeClassHierarchy(Classes, RD);
   3464   Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
   3465   detectAmbiguousBases(Classes);
   3466   int Flags = 0;
   3467   for (auto Class : Classes) {
   3468     if (Class.RD->getNumBases() > 1)
   3469       Flags |= HasBranchingHierarchy;
   3470     // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
   3471     // believe the field isn't actually used.
   3472     if (Class.Flags & MSRTTIClass::IsAmbiguous)
   3473       Flags |= HasAmbiguousBases;
   3474   }
   3475   if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
   3476     Flags |= HasVirtualBranchingHierarchy;
   3477   // These gep indices are used to get the address of the first element of the
   3478   // base class array.
   3479   llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
   3480                                llvm::ConstantInt::get(CGM.IntTy, 0)};
   3481 
   3482   // Forward-declare the class hierarchy descriptor
   3483   auto Type = ABI.getClassHierarchyDescriptorType();
   3484   auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
   3485                                       /*Initializer=*/nullptr,
   3486                                       MangledName);
   3487   if (CHD->isWeakForLinker())
   3488     CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
   3489 
   3490   auto *Bases = getBaseClassArray(Classes);
   3491 
   3492   // Initialize the base class ClassHierarchyDescriptor.
   3493   llvm::Constant *Fields[] = {
   3494       llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
   3495       llvm::ConstantInt::get(CGM.IntTy, Flags),
   3496       llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
   3497       ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
   3498           Bases->getValueType(), Bases,
   3499           llvm::ArrayRef<llvm::Value *>(GEPIndices))),
   3500   };
   3501   CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
   3502   return CHD;
   3503 }
   3504 
   3505 llvm::GlobalVariable *
   3506 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
   3507   SmallString<256> MangledName;
   3508   {
   3509     llvm::raw_svector_ostream Out(MangledName);
   3510     ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
   3511   }
   3512 
   3513   // Forward-declare the base class array.
   3514   // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
   3515   // mode) bytes of padding.  We provide a pointer sized amount of padding by
   3516   // adding +1 to Classes.size().  The sections have pointer alignment and are
   3517   // marked pick-any so it shouldn't matter.
   3518   llvm::Type *PtrType = ABI.getImageRelativeType(
   3519       ABI.getBaseClassDescriptorType()->getPointerTo());
   3520   auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
   3521   auto *BCA =
   3522       new llvm::GlobalVariable(Module, ArrType,
   3523                                /*Constant=*/true, Linkage,
   3524                                /*Initializer=*/nullptr, MangledName);
   3525   if (BCA->isWeakForLinker())
   3526     BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
   3527 
   3528   // Initialize the BaseClassArray.
   3529   SmallVector<llvm::Constant *, 8> BaseClassArrayData;
   3530   for (MSRTTIClass &Class : Classes)
   3531     BaseClassArrayData.push_back(
   3532         ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
   3533   BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
   3534   BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
   3535   return BCA;
   3536 }
   3537 
   3538 llvm::GlobalVariable *
   3539 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
   3540   // Compute the fields for the BaseClassDescriptor.  They are computed up front
   3541   // because they are mangled into the name of the object.
   3542   uint32_t OffsetInVBTable = 0;
   3543   int32_t VBPtrOffset = -1;
   3544   if (Class.VirtualRoot) {
   3545     auto &VTableContext = CGM.getMicrosoftVTableContext();
   3546     OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
   3547     VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
   3548   }
   3549 
   3550   SmallString<256> MangledName;
   3551   {
   3552     llvm::raw_svector_ostream Out(MangledName);
   3553     ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
   3554         Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
   3555         Class.Flags, Out);
   3556   }
   3557 
   3558   // Check to see if we've already declared this object.
   3559   if (auto BCD = Module.getNamedGlobal(MangledName))
   3560     return BCD;
   3561 
   3562   // Forward-declare the base class descriptor.
   3563   auto Type = ABI.getBaseClassDescriptorType();
   3564   auto BCD =
   3565       new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
   3566                                /*Initializer=*/nullptr, MangledName);
   3567   if (BCD->isWeakForLinker())
   3568     BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
   3569 
   3570   // Initialize the BaseClassDescriptor.
   3571   llvm::Constant *Fields[] = {
   3572       ABI.getImageRelativeConstant(
   3573           ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
   3574       llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
   3575       llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
   3576       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
   3577       llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
   3578       llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
   3579       ABI.getImageRelativeConstant(
   3580           MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
   3581   };
   3582   BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
   3583   return BCD;
   3584 }
   3585 
   3586 llvm::GlobalVariable *
   3587 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
   3588   SmallString<256> MangledName;
   3589   {
   3590     llvm::raw_svector_ostream Out(MangledName);
   3591     ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
   3592   }
   3593 
   3594   // Check to see if we've already computed this complete object locator.
   3595   if (auto COL = Module.getNamedGlobal(MangledName))
   3596     return COL;
   3597 
   3598   // Compute the fields of the complete object locator.
   3599   int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
   3600   int VFPtrOffset = 0;
   3601   // The offset includes the vtordisp if one exists.
   3602   if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
   3603     if (Context.getASTRecordLayout(RD)
   3604       .getVBaseOffsetsMap()
   3605       .find(VBase)
   3606       ->second.hasVtorDisp())
   3607       VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
   3608 
   3609   // Forward-declare the complete object locator.
   3610   llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
   3611   auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
   3612     /*Initializer=*/nullptr, MangledName);
   3613 
   3614   // Initialize the CompleteObjectLocator.
   3615   llvm::Constant *Fields[] = {
   3616       llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
   3617       llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
   3618       llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
   3619       ABI.getImageRelativeConstant(
   3620           CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
   3621       ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
   3622       ABI.getImageRelativeConstant(COL),
   3623   };
   3624   llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
   3625   if (!ABI.isImageRelative())
   3626     FieldsRef = FieldsRef.drop_back();
   3627   COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
   3628   if (COL->isWeakForLinker())
   3629     COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
   3630   return COL;
   3631 }
   3632 
   3633 static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
   3634                                    bool &IsConst, bool &IsVolatile) {
   3635   T = Context.getExceptionObjectType(T);
   3636 
   3637   // C++14 [except.handle]p3:
   3638   //   A handler is a match for an exception object of type E if [...]
   3639   //     - the handler is of type cv T or const T& where T is a pointer type and
   3640   //       E is a pointer type that can be converted to T by [...]
   3641   //         - a qualification conversion
   3642   IsConst = false;
   3643   IsVolatile = false;
   3644   QualType PointeeType = T->getPointeeType();
   3645   if (!PointeeType.isNull()) {
   3646     IsConst = PointeeType.isConstQualified();
   3647     IsVolatile = PointeeType.isVolatileQualified();
   3648   }
   3649 
   3650   // Member pointer types like "const int A::*" are represented by having RTTI
   3651   // for "int A::*" and separately storing the const qualifier.
   3652   if (const auto *MPTy = T->getAs<MemberPointerType>())
   3653     T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
   3654                                      MPTy->getClass());
   3655 
   3656   // Pointer types like "const int * const *" are represented by having RTTI
   3657   // for "const int **" and separately storing the const qualifier.
   3658   if (T->isPointerType())
   3659     T = Context.getPointerType(PointeeType.getUnqualifiedType());
   3660 
   3661   return T;
   3662 }
   3663 
   3664 CatchTypeInfo
   3665 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
   3666                                               QualType CatchHandlerType) {
   3667   // TypeDescriptors for exceptions never have qualified pointer types,
   3668   // qualifiers are stored seperately in order to support qualification
   3669   // conversions.
   3670   bool IsConst, IsVolatile;
   3671   Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile);
   3672 
   3673   bool IsReference = CatchHandlerType->isReferenceType();
   3674 
   3675   uint32_t Flags = 0;
   3676   if (IsConst)
   3677     Flags |= 1;
   3678   if (IsVolatile)
   3679     Flags |= 2;
   3680   if (IsReference)
   3681     Flags |= 8;
   3682 
   3683   return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
   3684                        Flags};
   3685 }
   3686 
   3687 /// \brief Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
   3688 /// llvm::GlobalVariable * because different type descriptors have different
   3689 /// types, and need to be abstracted.  They are abstracting by casting the
   3690 /// address to an Int8PtrTy.
   3691 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
   3692   SmallString<256> MangledName;
   3693   {
   3694     llvm::raw_svector_ostream Out(MangledName);
   3695     getMangleContext().mangleCXXRTTI(Type, Out);
   3696   }
   3697 
   3698   // Check to see if we've already declared this TypeDescriptor.
   3699   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
   3700     return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
   3701 
   3702   // Compute the fields for the TypeDescriptor.
   3703   SmallString<256> TypeInfoString;
   3704   {
   3705     llvm::raw_svector_ostream Out(TypeInfoString);
   3706     getMangleContext().mangleCXXRTTIName(Type, Out);
   3707   }
   3708 
   3709   // Declare and initialize the TypeDescriptor.
   3710   llvm::Constant *Fields[] = {
   3711     getTypeInfoVTable(CGM),                        // VFPtr
   3712     llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
   3713     llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
   3714   llvm::StructType *TypeDescriptorType =
   3715       getTypeDescriptorType(TypeInfoString);
   3716   auto *Var = new llvm::GlobalVariable(
   3717       CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
   3718       getLinkageForRTTI(Type),
   3719       llvm::ConstantStruct::get(TypeDescriptorType, Fields),
   3720       MangledName);
   3721   if (Var->isWeakForLinker())
   3722     Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
   3723   return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy);
   3724 }
   3725 
   3726 /// \brief Gets or a creates a Microsoft CompleteObjectLocator.
   3727 llvm::GlobalVariable *
   3728 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
   3729                                             const VPtrInfo *Info) {
   3730   return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
   3731 }
   3732 
   3733 static void emitCXXConstructor(CodeGenModule &CGM,
   3734                                const CXXConstructorDecl *ctor,
   3735                                StructorType ctorType) {
   3736   // There are no constructor variants, always emit the complete destructor.
   3737   llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete);
   3738   CGM.maybeSetTrivialComdat(*ctor, *Fn);
   3739 }
   3740 
   3741 static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor,
   3742                               StructorType dtorType) {
   3743   // The complete destructor is equivalent to the base destructor for
   3744   // classes with no virtual bases, so try to emit it as an alias.
   3745   if (!dtor->getParent()->getNumVBases() &&
   3746       (dtorType == StructorType::Complete || dtorType == StructorType::Base)) {
   3747     bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias(
   3748         GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true);
   3749     if (ProducedAlias) {
   3750       if (dtorType == StructorType::Complete)
   3751         return;
   3752       if (dtor->isVirtual())
   3753         CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete));
   3754     }
   3755   }
   3756 
   3757   // The base destructor is equivalent to the base destructor of its
   3758   // base class if there is exactly one non-virtual base class with a
   3759   // non-trivial destructor, there are no fields with a non-trivial
   3760   // destructor, and the body of the destructor is trivial.
   3761   if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
   3762     return;
   3763 
   3764   llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType);
   3765   if (Fn->isWeakForLinker())
   3766     Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
   3767 }
   3768 
   3769 void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
   3770                                       StructorType Type) {
   3771   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
   3772     emitCXXConstructor(CGM, CD, Type);
   3773     return;
   3774   }
   3775   emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type);
   3776 }
   3777 
   3778 llvm::Function *
   3779 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
   3780                                          CXXCtorType CT) {
   3781   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
   3782 
   3783   // Calculate the mangled name.
   3784   SmallString<256> ThunkName;
   3785   llvm::raw_svector_ostream Out(ThunkName);
   3786   getMangleContext().mangleCXXCtor(CD, CT, Out);
   3787 
   3788   // If the thunk has been generated previously, just return it.
   3789   if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
   3790     return cast<llvm::Function>(GV);
   3791 
   3792   // Create the llvm::Function.
   3793   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
   3794   llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
   3795   const CXXRecordDecl *RD = CD->getParent();
   3796   QualType RecordTy = getContext().getRecordType(RD);
   3797   llvm::Function *ThunkFn = llvm::Function::Create(
   3798       ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
   3799   ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
   3800       FnInfo.getEffectiveCallingConvention()));
   3801   if (ThunkFn->isWeakForLinker())
   3802     ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
   3803   bool IsCopy = CT == Ctor_CopyingClosure;
   3804 
   3805   // Start codegen.
   3806   CodeGenFunction CGF(CGM);
   3807   CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
   3808 
   3809   // Build FunctionArgs.
   3810   FunctionArgList FunctionArgs;
   3811 
   3812   // A constructor always starts with a 'this' pointer as its first argument.
   3813   buildThisParam(CGF, FunctionArgs);
   3814 
   3815   // Following the 'this' pointer is a reference to the source object that we
   3816   // are copying from.
   3817   ImplicitParamDecl SrcParam(
   3818       getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"),
   3819       getContext().getLValueReferenceType(RecordTy,
   3820                                           /*SpelledAsLValue=*/true));
   3821   if (IsCopy)
   3822     FunctionArgs.push_back(&SrcParam);
   3823 
   3824   // Constructors for classes which utilize virtual bases have an additional
   3825   // parameter which indicates whether or not it is being delegated to by a more
   3826   // derived constructor.
   3827   ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(),
   3828                                   &getContext().Idents.get("is_most_derived"),
   3829                                   getContext().IntTy);
   3830   // Only add the parameter to the list if thie class has virtual bases.
   3831   if (RD->getNumVBases() > 0)
   3832     FunctionArgs.push_back(&IsMostDerived);
   3833 
   3834   // Start defining the function.
   3835   CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
   3836                     FunctionArgs, CD->getLocation(), SourceLocation());
   3837   EmitThisParam(CGF);
   3838   llvm::Value *This = getThisValue(CGF);
   3839 
   3840   llvm::Value *SrcVal =
   3841       IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
   3842              : nullptr;
   3843 
   3844   CallArgList Args;
   3845 
   3846   // Push the this ptr.
   3847   Args.add(RValue::get(This), CD->getThisType(getContext()));
   3848 
   3849   // Push the src ptr.
   3850   if (SrcVal)
   3851     Args.add(RValue::get(SrcVal), SrcParam.getType());
   3852 
   3853   // Add the rest of the default arguments.
   3854   std::vector<Stmt *> ArgVec;
   3855   for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) {
   3856     Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I);
   3857     assert(DefaultArg && "sema forgot to instantiate default args");
   3858     ArgVec.push_back(DefaultArg);
   3859   }
   3860 
   3861   CodeGenFunction::RunCleanupsScope Cleanups(CGF);
   3862 
   3863   const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
   3864   CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
   3865 
   3866   // Insert any ABI-specific implicit constructor arguments.
   3867   unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
   3868                                                   /*ForVirtualBase=*/false,
   3869                                                   /*Delegating=*/false, Args);
   3870 
   3871   // Call the destructor with our arguments.
   3872   llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
   3873   const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
   3874       Args, CD, Ctor_Complete, ExtraArgs);
   3875   CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD);
   3876 
   3877   Cleanups.ForceCleanup();
   3878 
   3879   // Emit the ret instruction, remove any temporary instructions created for the
   3880   // aid of CodeGen.
   3881   CGF.FinishFunction(SourceLocation());
   3882 
   3883   return ThunkFn;
   3884 }
   3885 
   3886 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
   3887                                                   uint32_t NVOffset,
   3888                                                   int32_t VBPtrOffset,
   3889                                                   uint32_t VBIndex) {
   3890   assert(!T->isReferenceType());
   3891 
   3892   CXXRecordDecl *RD = T->getAsCXXRecordDecl();
   3893   const CXXConstructorDecl *CD =
   3894       RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
   3895   CXXCtorType CT = Ctor_Complete;
   3896   if (CD)
   3897     if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
   3898       CT = Ctor_CopyingClosure;
   3899 
   3900   uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
   3901   SmallString<256> MangledName;
   3902   {
   3903     llvm::raw_svector_ostream Out(MangledName);
   3904     getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
   3905                                               VBPtrOffset, VBIndex, Out);
   3906   }
   3907   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
   3908     return getImageRelativeConstant(GV);
   3909 
   3910   // The TypeDescriptor is used by the runtime to determine if a catch handler
   3911   // is appropriate for the exception object.
   3912   llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
   3913 
   3914   // The runtime is responsible for calling the copy constructor if the
   3915   // exception is caught by value.
   3916   llvm::Constant *CopyCtor;
   3917   if (CD) {
   3918     if (CT == Ctor_CopyingClosure)
   3919       CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
   3920     else
   3921       CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete);
   3922 
   3923     CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy);
   3924   } else {
   3925     CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
   3926   }
   3927   CopyCtor = getImageRelativeConstant(CopyCtor);
   3928 
   3929   bool IsScalar = !RD;
   3930   bool HasVirtualBases = false;
   3931   bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
   3932   QualType PointeeType = T;
   3933   if (T->isPointerType())
   3934     PointeeType = T->getPointeeType();
   3935   if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
   3936     HasVirtualBases = RD->getNumVBases() > 0;
   3937     if (IdentifierInfo *II = RD->getIdentifier())
   3938       IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
   3939   }
   3940 
   3941   // Encode the relevant CatchableType properties into the Flags bitfield.
   3942   // FIXME: Figure out how bits 2 or 8 can get set.
   3943   uint32_t Flags = 0;
   3944   if (IsScalar)
   3945     Flags |= 1;
   3946   if (HasVirtualBases)
   3947     Flags |= 4;
   3948   if (IsStdBadAlloc)
   3949     Flags |= 16;
   3950 
   3951   llvm::Constant *Fields[] = {
   3952       llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
   3953       TD,                                             // TypeDescriptor
   3954       llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
   3955       llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
   3956       llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
   3957       llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
   3958       CopyCtor                                        // CopyCtor
   3959   };
   3960   llvm::StructType *CTType = getCatchableTypeType();
   3961   auto *GV = new llvm::GlobalVariable(
   3962       CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T),
   3963       llvm::ConstantStruct::get(CTType, Fields), MangledName);
   3964   GV->setUnnamedAddr(true);
   3965   GV->setSection(".xdata");
   3966   if (GV->isWeakForLinker())
   3967     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
   3968   return getImageRelativeConstant(GV);
   3969 }
   3970 
   3971 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
   3972   assert(!T->isReferenceType());
   3973 
   3974   // See if we've already generated a CatchableTypeArray for this type before.
   3975   llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
   3976   if (CTA)
   3977     return CTA;
   3978 
   3979   // Ensure that we don't have duplicate entries in our CatchableTypeArray by
   3980   // using a SmallSetVector.  Duplicates may arise due to virtual bases
   3981   // occurring more than once in the hierarchy.
   3982   llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
   3983 
   3984   // C++14 [except.handle]p3:
   3985   //   A handler is a match for an exception object of type E if [...]
   3986   //     - the handler is of type cv T or cv T& and T is an unambiguous public
   3987   //       base class of E, or
   3988   //     - the handler is of type cv T or const T& where T is a pointer type and
   3989   //       E is a pointer type that can be converted to T by [...]
   3990   //         - a standard pointer conversion (4.10) not involving conversions to
   3991   //           pointers to private or protected or ambiguous classes
   3992   const CXXRecordDecl *MostDerivedClass = nullptr;
   3993   bool IsPointer = T->isPointerType();
   3994   if (IsPointer)
   3995     MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
   3996   else
   3997     MostDerivedClass = T->getAsCXXRecordDecl();
   3998 
   3999   // Collect all the unambiguous public bases of the MostDerivedClass.
   4000   if (MostDerivedClass) {
   4001     const ASTContext &Context = getContext();
   4002     const ASTRecordLayout &MostDerivedLayout =
   4003         Context.getASTRecordLayout(MostDerivedClass);
   4004     MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
   4005     SmallVector<MSRTTIClass, 8> Classes;
   4006     serializeClassHierarchy(Classes, MostDerivedClass);
   4007     Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
   4008     detectAmbiguousBases(Classes);
   4009     for (const MSRTTIClass &Class : Classes) {
   4010       // Skip any ambiguous or private bases.
   4011       if (Class.Flags &
   4012           (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
   4013         continue;
   4014       // Write down how to convert from a derived pointer to a base pointer.
   4015       uint32_t OffsetInVBTable = 0;
   4016       int32_t VBPtrOffset = -1;
   4017       if (Class.VirtualRoot) {
   4018         OffsetInVBTable =
   4019           VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
   4020         VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
   4021       }
   4022 
   4023       // Turn our record back into a pointer if the exception object is a
   4024       // pointer.
   4025       QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
   4026       if (IsPointer)
   4027         RTTITy = Context.getPointerType(RTTITy);
   4028       CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
   4029                                              VBPtrOffset, OffsetInVBTable));
   4030     }
   4031   }
   4032 
   4033   // C++14 [except.handle]p3:
   4034   //   A handler is a match for an exception object of type E if
   4035   //     - The handler is of type cv T or cv T& and E and T are the same type
   4036   //       (ignoring the top-level cv-qualifiers)
   4037   CatchableTypes.insert(getCatchableType(T));
   4038 
   4039   // C++14 [except.handle]p3:
   4040   //   A handler is a match for an exception object of type E if
   4041   //     - the handler is of type cv T or const T& where T is a pointer type and
   4042   //       E is a pointer type that can be converted to T by [...]
   4043   //         - a standard pointer conversion (4.10) not involving conversions to
   4044   //           pointers to private or protected or ambiguous classes
   4045   //
   4046   // C++14 [conv.ptr]p2:
   4047   //   A prvalue of type "pointer to cv T," where T is an object type, can be
   4048   //   converted to a prvalue of type "pointer to cv void".
   4049   if (IsPointer && T->getPointeeType()->isObjectType())
   4050     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
   4051 
   4052   // C++14 [except.handle]p3:
   4053   //   A handler is a match for an exception object of type E if [...]
   4054   //     - the handler is of type cv T or const T& where T is a pointer or
   4055   //       pointer to member type and E is std::nullptr_t.
   4056   //
   4057   // We cannot possibly list all possible pointer types here, making this
   4058   // implementation incompatible with the standard.  However, MSVC includes an
   4059   // entry for pointer-to-void in this case.  Let's do the same.
   4060   if (T->isNullPtrType())
   4061     CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
   4062 
   4063   uint32_t NumEntries = CatchableTypes.size();
   4064   llvm::Type *CTType =
   4065       getImageRelativeType(getCatchableTypeType()->getPointerTo());
   4066   llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
   4067   llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
   4068   llvm::Constant *Fields[] = {
   4069       llvm::ConstantInt::get(CGM.IntTy, NumEntries),    // NumEntries
   4070       llvm::ConstantArray::get(
   4071           AT, llvm::makeArrayRef(CatchableTypes.begin(),
   4072                                  CatchableTypes.end())) // CatchableTypes
   4073   };
   4074   SmallString<256> MangledName;
   4075   {
   4076     llvm::raw_svector_ostream Out(MangledName);
   4077     getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
   4078   }
   4079   CTA = new llvm::GlobalVariable(
   4080       CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T),
   4081       llvm::ConstantStruct::get(CTAType, Fields), MangledName);
   4082   CTA->setUnnamedAddr(true);
   4083   CTA->setSection(".xdata");
   4084   if (CTA->isWeakForLinker())
   4085     CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
   4086   return CTA;
   4087 }
   4088 
   4089 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
   4090   bool IsConst, IsVolatile;
   4091   T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile);
   4092 
   4093   // The CatchableTypeArray enumerates the various (CV-unqualified) types that
   4094   // the exception object may be caught as.
   4095   llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
   4096   // The first field in a CatchableTypeArray is the number of CatchableTypes.
   4097   // This is used as a component of the mangled name which means that we need to
   4098   // know what it is in order to see if we have previously generated the
   4099   // ThrowInfo.
   4100   uint32_t NumEntries =
   4101       cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
   4102           ->getLimitedValue();
   4103 
   4104   SmallString<256> MangledName;
   4105   {
   4106     llvm::raw_svector_ostream Out(MangledName);
   4107     getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, NumEntries,
   4108                                           Out);
   4109   }
   4110 
   4111   // Reuse a previously generated ThrowInfo if we have generated an appropriate
   4112   // one before.
   4113   if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
   4114     return GV;
   4115 
   4116   // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
   4117   // be at least as CV qualified.  Encode this requirement into the Flags
   4118   // bitfield.
   4119   uint32_t Flags = 0;
   4120   if (IsConst)
   4121     Flags |= 1;
   4122   if (IsVolatile)
   4123     Flags |= 2;
   4124 
   4125   // The cleanup-function (a destructor) must be called when the exception
   4126   // object's lifetime ends.
   4127   llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
   4128   if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
   4129     if (CXXDestructorDecl *DtorD = RD->getDestructor())
   4130       if (!DtorD->isTrivial())
   4131         CleanupFn = llvm::ConstantExpr::getBitCast(
   4132             CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete),
   4133             CGM.Int8PtrTy);
   4134   // This is unused as far as we can tell, initialize it to null.
   4135   llvm::Constant *ForwardCompat =
   4136       getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
   4137   llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(
   4138       llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy));
   4139   llvm::StructType *TIType = getThrowInfoType();
   4140   llvm::Constant *Fields[] = {
   4141       llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
   4142       getImageRelativeConstant(CleanupFn),      // CleanupFn
   4143       ForwardCompat,                            // ForwardCompat
   4144       PointerToCatchableTypes                   // CatchableTypeArray
   4145   };
   4146   auto *GV = new llvm::GlobalVariable(
   4147       CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T),
   4148       llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName));
   4149   GV->setUnnamedAddr(true);
   4150   GV->setSection(".xdata");
   4151   if (GV->isWeakForLinker())
   4152     GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
   4153   return GV;
   4154 }
   4155 
   4156 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
   4157   const Expr *SubExpr = E->getSubExpr();
   4158   QualType ThrowType = SubExpr->getType();
   4159   // The exception object lives on the stack and it's address is passed to the
   4160   // runtime function.
   4161   Address AI = CGF.CreateMemTemp(ThrowType);
   4162   CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
   4163                        /*IsInit=*/true);
   4164 
   4165   // The so-called ThrowInfo is used to describe how the exception object may be
   4166   // caught.
   4167   llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
   4168 
   4169   // Call into the runtime to throw the exception.
   4170   llvm::Value *Args[] = {
   4171     CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy),
   4172     TI
   4173   };
   4174   CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
   4175 }
   4176