1 //===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This provides C++ code generation targeting the Microsoft Visual C++ ABI. 11 // The class in this file generates structures that follow the Microsoft 12 // Visual C++ ABI, which is actually not very well documented at all outside 13 // of Microsoft. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGVTables.h" 20 #include "CodeGenModule.h" 21 #include "CodeGenTypes.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/AST/VTableBuilder.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSet.h" 29 #include "llvm/IR/CallSite.h" 30 #include "llvm/IR/Intrinsics.h" 31 32 using namespace clang; 33 using namespace CodeGen; 34 35 namespace { 36 37 /// Holds all the vbtable globals for a given class. 38 struct VBTableGlobals { 39 const VPtrInfoVector *VBTables; 40 SmallVector<llvm::GlobalVariable *, 2> Globals; 41 }; 42 43 class MicrosoftCXXABI : public CGCXXABI { 44 public: 45 MicrosoftCXXABI(CodeGenModule &CGM) 46 : CGCXXABI(CGM), BaseClassDescriptorType(nullptr), 47 ClassHierarchyDescriptorType(nullptr), 48 CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr), 49 ThrowInfoType(nullptr) {} 50 51 bool HasThisReturn(GlobalDecl GD) const override; 52 bool hasMostDerivedReturn(GlobalDecl GD) const override; 53 54 bool classifyReturnType(CGFunctionInfo &FI) const override; 55 56 RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override; 57 58 bool isSRetParameterAfterThis() const override { return true; } 59 60 bool isThisCompleteObject(GlobalDecl GD) const override { 61 // The Microsoft ABI doesn't use separate complete-object vs. 62 // base-object variants of constructors, but it does of destructors. 63 if (isa<CXXDestructorDecl>(GD.getDecl())) { 64 switch (GD.getDtorType()) { 65 case Dtor_Complete: 66 case Dtor_Deleting: 67 return true; 68 69 case Dtor_Base: 70 return false; 71 72 case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); 73 } 74 llvm_unreachable("bad dtor kind"); 75 } 76 77 // No other kinds. 78 return false; 79 } 80 81 size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD, 82 FunctionArgList &Args) const override { 83 assert(Args.size() >= 2 && 84 "expected the arglist to have at least two args!"); 85 // The 'most_derived' parameter goes second if the ctor is variadic and 86 // has v-bases. 87 if (CD->getParent()->getNumVBases() > 0 && 88 CD->getType()->castAs<FunctionProtoType>()->isVariadic()) 89 return 2; 90 return 1; 91 } 92 93 std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override { 94 std::vector<CharUnits> VBPtrOffsets; 95 const ASTContext &Context = getContext(); 96 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 97 98 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 99 for (const VPtrInfo *VBT : *VBGlobals.VBTables) { 100 const ASTRecordLayout &SubobjectLayout = 101 Context.getASTRecordLayout(VBT->BaseWithVPtr); 102 CharUnits Offs = VBT->NonVirtualOffset; 103 Offs += SubobjectLayout.getVBPtrOffset(); 104 if (VBT->getVBaseWithVPtr()) 105 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 106 VBPtrOffsets.push_back(Offs); 107 } 108 llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end()); 109 return VBPtrOffsets; 110 } 111 112 StringRef GetPureVirtualCallName() override { return "_purecall"; } 113 StringRef GetDeletedVirtualCallName() override { return "_purecall"; } 114 115 void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, 116 Address Ptr, QualType ElementType, 117 const CXXDestructorDecl *Dtor) override; 118 119 void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; 120 void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; 121 122 void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; 123 124 llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD, 125 const VPtrInfo *Info); 126 127 llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; 128 CatchTypeInfo 129 getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override; 130 131 /// MSVC needs an extra flag to indicate a catchall. 132 CatchTypeInfo getCatchAllTypeInfo() override { 133 return CatchTypeInfo{nullptr, 0x40}; 134 } 135 136 bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; 137 void EmitBadTypeidCall(CodeGenFunction &CGF) override; 138 llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, 139 Address ThisPtr, 140 llvm::Type *StdTypeInfoPtrTy) override; 141 142 bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 143 QualType SrcRecordTy) override; 144 145 llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, 146 QualType SrcRecordTy, QualType DestTy, 147 QualType DestRecordTy, 148 llvm::BasicBlock *CastEnd) override; 149 150 llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 151 QualType SrcRecordTy, 152 QualType DestTy) override; 153 154 bool EmitBadCastCall(CodeGenFunction &CGF) override; 155 bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override { 156 return false; 157 } 158 159 llvm::Value * 160 GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, 161 const CXXRecordDecl *ClassDecl, 162 const CXXRecordDecl *BaseClassDecl) override; 163 164 llvm::BasicBlock * 165 EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 166 const CXXRecordDecl *RD) override; 167 168 void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF, 169 const CXXRecordDecl *RD) override; 170 171 void EmitCXXConstructors(const CXXConstructorDecl *D) override; 172 173 // Background on MSVC destructors 174 // ============================== 175 // 176 // Both Itanium and MSVC ABIs have destructor variants. The variant names 177 // roughly correspond in the following way: 178 // Itanium Microsoft 179 // Base -> no name, just ~Class 180 // Complete -> vbase destructor 181 // Deleting -> scalar deleting destructor 182 // vector deleting destructor 183 // 184 // The base and complete destructors are the same as in Itanium, although the 185 // complete destructor does not accept a VTT parameter when there are virtual 186 // bases. A separate mechanism involving vtordisps is used to ensure that 187 // virtual methods of destroyed subobjects are not called. 188 // 189 // The deleting destructors accept an i32 bitfield as a second parameter. Bit 190 // 1 indicates if the memory should be deleted. Bit 2 indicates if the this 191 // pointer points to an array. The scalar deleting destructor assumes that 192 // bit 2 is zero, and therefore does not contain a loop. 193 // 194 // For virtual destructors, only one entry is reserved in the vftable, and it 195 // always points to the vector deleting destructor. The vector deleting 196 // destructor is the most general, so it can be used to destroy objects in 197 // place, delete single heap objects, or delete arrays. 198 // 199 // A TU defining a non-inline destructor is only guaranteed to emit a base 200 // destructor, and all of the other variants are emitted on an as-needed basis 201 // in COMDATs. Because a non-base destructor can be emitted in a TU that 202 // lacks a definition for the destructor, non-base destructors must always 203 // delegate to or alias the base destructor. 204 205 void buildStructorSignature(const CXXMethodDecl *MD, StructorType T, 206 SmallVectorImpl<CanQualType> &ArgTys) override; 207 208 /// Non-base dtors should be emitted as delegating thunks in this ABI. 209 bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, 210 CXXDtorType DT) const override { 211 return DT != Dtor_Base; 212 } 213 214 void EmitCXXDestructors(const CXXDestructorDecl *D) override; 215 216 const CXXRecordDecl * 217 getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override { 218 MD = MD->getCanonicalDecl(); 219 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) { 220 MicrosoftVTableContext::MethodVFTableLocation ML = 221 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD); 222 // The vbases might be ordered differently in the final overrider object 223 // and the complete object, so the "this" argument may sometimes point to 224 // memory that has no particular type (e.g. past the complete object). 225 // In this case, we just use a generic pointer type. 226 // FIXME: might want to have a more precise type in the non-virtual 227 // multiple inheritance case. 228 if (ML.VBase || !ML.VFPtrOffset.isZero()) 229 return nullptr; 230 } 231 return MD->getParent(); 232 } 233 234 Address 235 adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD, 236 Address This, 237 bool VirtualCall) override; 238 239 void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, 240 FunctionArgList &Params) override; 241 242 llvm::Value *adjustThisParameterInVirtualFunctionPrologue( 243 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override; 244 245 void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; 246 247 unsigned addImplicitConstructorArgs(CodeGenFunction &CGF, 248 const CXXConstructorDecl *D, 249 CXXCtorType Type, bool ForVirtualBase, 250 bool Delegating, 251 CallArgList &Args) override; 252 253 void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, 254 CXXDtorType Type, bool ForVirtualBase, 255 bool Delegating, Address This) override; 256 257 void emitVTableBitSetEntries(VPtrInfo *Info, const CXXRecordDecl *RD, 258 llvm::GlobalVariable *VTable); 259 260 void emitVTableDefinitions(CodeGenVTables &CGVT, 261 const CXXRecordDecl *RD) override; 262 263 bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, 264 CodeGenFunction::VPtr Vptr) override; 265 266 /// Don't initialize vptrs if dynamic class 267 /// is marked with with the 'novtable' attribute. 268 bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { 269 return !VTableClass->hasAttr<MSNoVTableAttr>(); 270 } 271 272 llvm::Constant * 273 getVTableAddressPoint(BaseSubobject Base, 274 const CXXRecordDecl *VTableClass) override; 275 276 llvm::Value *getVTableAddressPointInStructor( 277 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, 278 BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; 279 280 llvm::Constant * 281 getVTableAddressPointForConstExpr(BaseSubobject Base, 282 const CXXRecordDecl *VTableClass) override; 283 284 llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, 285 CharUnits VPtrOffset) override; 286 287 llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, 288 Address This, llvm::Type *Ty, 289 SourceLocation Loc) override; 290 291 llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, 292 const CXXDestructorDecl *Dtor, 293 CXXDtorType DtorType, 294 Address This, 295 const CXXMemberCallExpr *CE) override; 296 297 void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD, 298 CallArgList &CallArgs) override { 299 assert(GD.getDtorType() == Dtor_Deleting && 300 "Only deleting destructor thunks are available in this ABI"); 301 CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)), 302 getContext().IntTy); 303 } 304 305 void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; 306 307 llvm::GlobalVariable * 308 getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 309 llvm::GlobalVariable::LinkageTypes Linkage); 310 311 llvm::GlobalVariable * 312 getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD, 313 const CXXRecordDecl *DstRD) { 314 SmallString<256> OutName; 315 llvm::raw_svector_ostream Out(OutName); 316 getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out); 317 StringRef MangledName = OutName.str(); 318 319 if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName)) 320 return VDispMap; 321 322 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 323 unsigned NumEntries = 1 + SrcRD->getNumVBases(); 324 SmallVector<llvm::Constant *, 4> Map(NumEntries, 325 llvm::UndefValue::get(CGM.IntTy)); 326 Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0); 327 bool AnyDifferent = false; 328 for (const auto &I : SrcRD->vbases()) { 329 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 330 if (!DstRD->isVirtuallyDerivedFrom(VBase)) 331 continue; 332 333 unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase); 334 unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase); 335 Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4); 336 AnyDifferent |= SrcVBIndex != DstVBIndex; 337 } 338 // This map would be useless, don't use it. 339 if (!AnyDifferent) 340 return nullptr; 341 342 llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size()); 343 llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map); 344 llvm::GlobalValue::LinkageTypes Linkage = 345 SrcRD->isExternallyVisible() && DstRD->isExternallyVisible() 346 ? llvm::GlobalValue::LinkOnceODRLinkage 347 : llvm::GlobalValue::InternalLinkage; 348 auto *VDispMap = new llvm::GlobalVariable( 349 CGM.getModule(), VDispMapTy, /*Constant=*/true, Linkage, 350 /*Initializer=*/Init, MangledName); 351 return VDispMap; 352 } 353 354 void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD, 355 llvm::GlobalVariable *GV) const; 356 357 void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, 358 GlobalDecl GD, bool ReturnAdjustment) override { 359 // Never dllimport/dllexport thunks. 360 Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 361 362 GVALinkage Linkage = 363 getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl())); 364 365 if (Linkage == GVA_Internal) 366 Thunk->setLinkage(llvm::GlobalValue::InternalLinkage); 367 else if (ReturnAdjustment) 368 Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage); 369 else 370 Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 371 } 372 373 llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, 374 const ThisAdjustment &TA) override; 375 376 llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 377 const ReturnAdjustment &RA) override; 378 379 void EmitThreadLocalInitFuncs( 380 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 381 ArrayRef<llvm::Function *> CXXThreadLocalInits, 382 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; 383 384 bool usesThreadWrapperFunction() const override { return false; } 385 LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, 386 QualType LValType) override; 387 388 void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 389 llvm::GlobalVariable *DeclPtr, 390 bool PerformInit) override; 391 void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 392 llvm::Constant *Dtor, llvm::Constant *Addr) override; 393 394 // ==== Notes on array cookies ========= 395 // 396 // MSVC seems to only use cookies when the class has a destructor; a 397 // two-argument usual array deallocation function isn't sufficient. 398 // 399 // For example, this code prints "100" and "1": 400 // struct A { 401 // char x; 402 // void *operator new[](size_t sz) { 403 // printf("%u\n", sz); 404 // return malloc(sz); 405 // } 406 // void operator delete[](void *p, size_t sz) { 407 // printf("%u\n", sz); 408 // free(p); 409 // } 410 // }; 411 // int main() { 412 // A *p = new A[100]; 413 // delete[] p; 414 // } 415 // Whereas it prints "104" and "104" if you give A a destructor. 416 417 bool requiresArrayCookie(const CXXDeleteExpr *expr, 418 QualType elementType) override; 419 bool requiresArrayCookie(const CXXNewExpr *expr) override; 420 CharUnits getArrayCookieSizeImpl(QualType type) override; 421 Address InitializeArrayCookie(CodeGenFunction &CGF, 422 Address NewPtr, 423 llvm::Value *NumElements, 424 const CXXNewExpr *expr, 425 QualType ElementType) override; 426 llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, 427 Address allocPtr, 428 CharUnits cookieSize) override; 429 430 friend struct MSRTTIBuilder; 431 432 bool isImageRelative() const { 433 return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64; 434 } 435 436 // 5 routines for constructing the llvm types for MS RTTI structs. 437 llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) { 438 llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor"); 439 TDTypeName += llvm::utostr(TypeInfoString.size()); 440 llvm::StructType *&TypeDescriptorType = 441 TypeDescriptorTypeMap[TypeInfoString.size()]; 442 if (TypeDescriptorType) 443 return TypeDescriptorType; 444 llvm::Type *FieldTypes[] = { 445 CGM.Int8PtrPtrTy, 446 CGM.Int8PtrTy, 447 llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)}; 448 TypeDescriptorType = 449 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName); 450 return TypeDescriptorType; 451 } 452 453 llvm::Type *getImageRelativeType(llvm::Type *PtrType) { 454 if (!isImageRelative()) 455 return PtrType; 456 return CGM.IntTy; 457 } 458 459 llvm::StructType *getBaseClassDescriptorType() { 460 if (BaseClassDescriptorType) 461 return BaseClassDescriptorType; 462 llvm::Type *FieldTypes[] = { 463 getImageRelativeType(CGM.Int8PtrTy), 464 CGM.IntTy, 465 CGM.IntTy, 466 CGM.IntTy, 467 CGM.IntTy, 468 CGM.IntTy, 469 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 470 }; 471 BaseClassDescriptorType = llvm::StructType::create( 472 CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor"); 473 return BaseClassDescriptorType; 474 } 475 476 llvm::StructType *getClassHierarchyDescriptorType() { 477 if (ClassHierarchyDescriptorType) 478 return ClassHierarchyDescriptorType; 479 // Forward-declare RTTIClassHierarchyDescriptor to break a cycle. 480 ClassHierarchyDescriptorType = llvm::StructType::create( 481 CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor"); 482 llvm::Type *FieldTypes[] = { 483 CGM.IntTy, 484 CGM.IntTy, 485 CGM.IntTy, 486 getImageRelativeType( 487 getBaseClassDescriptorType()->getPointerTo()->getPointerTo()), 488 }; 489 ClassHierarchyDescriptorType->setBody(FieldTypes); 490 return ClassHierarchyDescriptorType; 491 } 492 493 llvm::StructType *getCompleteObjectLocatorType() { 494 if (CompleteObjectLocatorType) 495 return CompleteObjectLocatorType; 496 CompleteObjectLocatorType = llvm::StructType::create( 497 CGM.getLLVMContext(), "rtti.CompleteObjectLocator"); 498 llvm::Type *FieldTypes[] = { 499 CGM.IntTy, 500 CGM.IntTy, 501 CGM.IntTy, 502 getImageRelativeType(CGM.Int8PtrTy), 503 getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()), 504 getImageRelativeType(CompleteObjectLocatorType), 505 }; 506 llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes); 507 if (!isImageRelative()) 508 FieldTypesRef = FieldTypesRef.drop_back(); 509 CompleteObjectLocatorType->setBody(FieldTypesRef); 510 return CompleteObjectLocatorType; 511 } 512 513 llvm::GlobalVariable *getImageBase() { 514 StringRef Name = "__ImageBase"; 515 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name)) 516 return GV; 517 518 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, 519 /*isConstant=*/true, 520 llvm::GlobalValue::ExternalLinkage, 521 /*Initializer=*/nullptr, Name); 522 } 523 524 llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) { 525 if (!isImageRelative()) 526 return PtrVal; 527 528 if (PtrVal->isNullValue()) 529 return llvm::Constant::getNullValue(CGM.IntTy); 530 531 llvm::Constant *ImageBaseAsInt = 532 llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy); 533 llvm::Constant *PtrValAsInt = 534 llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy); 535 llvm::Constant *Diff = 536 llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt, 537 /*HasNUW=*/true, /*HasNSW=*/true); 538 return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy); 539 } 540 541 private: 542 MicrosoftMangleContext &getMangleContext() { 543 return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext()); 544 } 545 546 llvm::Constant *getZeroInt() { 547 return llvm::ConstantInt::get(CGM.IntTy, 0); 548 } 549 550 llvm::Constant *getAllOnesInt() { 551 return llvm::Constant::getAllOnesValue(CGM.IntTy); 552 } 553 554 CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD); 555 556 void 557 GetNullMemberPointerFields(const MemberPointerType *MPT, 558 llvm::SmallVectorImpl<llvm::Constant *> &fields); 559 560 /// \brief Shared code for virtual base adjustment. Returns the offset from 561 /// the vbptr to the virtual base. Optionally returns the address of the 562 /// vbptr itself. 563 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 564 Address Base, 565 llvm::Value *VBPtrOffset, 566 llvm::Value *VBTableOffset, 567 llvm::Value **VBPtr = nullptr); 568 569 llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 570 Address Base, 571 int32_t VBPtrOffset, 572 int32_t VBTableOffset, 573 llvm::Value **VBPtr = nullptr) { 574 assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s"); 575 llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 576 *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset); 577 return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr); 578 } 579 580 std::pair<Address, llvm::Value *> 581 performBaseAdjustment(CodeGenFunction &CGF, Address Value, 582 QualType SrcRecordTy); 583 584 /// \brief Performs a full virtual base adjustment. Used to dereference 585 /// pointers to members of virtual bases. 586 llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E, 587 const CXXRecordDecl *RD, Address Base, 588 llvm::Value *VirtualBaseAdjustmentOffset, 589 llvm::Value *VBPtrOffset /* optional */); 590 591 /// \brief Emits a full member pointer with the fields common to data and 592 /// function member pointers. 593 llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField, 594 bool IsMemberFunction, 595 const CXXRecordDecl *RD, 596 CharUnits NonVirtualBaseAdjustment, 597 unsigned VBTableIndex); 598 599 bool MemberPointerConstantIsNull(const MemberPointerType *MPT, 600 llvm::Constant *MP); 601 602 /// \brief - Initialize all vbptrs of 'this' with RD as the complete type. 603 void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD); 604 605 /// \brief Caching wrapper around VBTableBuilder::enumerateVBTables(). 606 const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD); 607 608 /// \brief Generate a thunk for calling a virtual member function MD. 609 llvm::Function *EmitVirtualMemPtrThunk( 610 const CXXMethodDecl *MD, 611 const MicrosoftVTableContext::MethodVFTableLocation &ML); 612 613 public: 614 llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; 615 616 bool isZeroInitializable(const MemberPointerType *MPT) override; 617 618 bool isMemberPointerConvertible(const MemberPointerType *MPT) const override { 619 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 620 return RD->hasAttr<MSInheritanceAttr>(); 621 } 622 623 llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; 624 625 llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, 626 CharUnits offset) override; 627 llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; 628 llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; 629 630 llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, 631 llvm::Value *L, 632 llvm::Value *R, 633 const MemberPointerType *MPT, 634 bool Inequality) override; 635 636 llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 637 llvm::Value *MemPtr, 638 const MemberPointerType *MPT) override; 639 640 llvm::Value * 641 EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, 642 Address Base, llvm::Value *MemPtr, 643 const MemberPointerType *MPT) override; 644 645 llvm::Value *EmitNonNullMemberPointerConversion( 646 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 647 CastKind CK, CastExpr::path_const_iterator PathBegin, 648 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 649 CGBuilderTy &Builder); 650 651 llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, 652 const CastExpr *E, 653 llvm::Value *Src) override; 654 655 llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, 656 llvm::Constant *Src) override; 657 658 llvm::Constant *EmitMemberPointerConversion( 659 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, 660 CastKind CK, CastExpr::path_const_iterator PathBegin, 661 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src); 662 663 llvm::Value * 664 EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, 665 Address This, llvm::Value *&ThisPtrForCall, 666 llvm::Value *MemPtr, 667 const MemberPointerType *MPT) override; 668 669 void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override; 670 671 llvm::StructType *getCatchableTypeType() { 672 if (CatchableTypeType) 673 return CatchableTypeType; 674 llvm::Type *FieldTypes[] = { 675 CGM.IntTy, // Flags 676 getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor 677 CGM.IntTy, // NonVirtualAdjustment 678 CGM.IntTy, // OffsetToVBPtr 679 CGM.IntTy, // VBTableIndex 680 CGM.IntTy, // Size 681 getImageRelativeType(CGM.Int8PtrTy) // CopyCtor 682 }; 683 CatchableTypeType = llvm::StructType::create( 684 CGM.getLLVMContext(), FieldTypes, "eh.CatchableType"); 685 return CatchableTypeType; 686 } 687 688 llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) { 689 llvm::StructType *&CatchableTypeArrayType = 690 CatchableTypeArrayTypeMap[NumEntries]; 691 if (CatchableTypeArrayType) 692 return CatchableTypeArrayType; 693 694 llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray."); 695 CTATypeName += llvm::utostr(NumEntries); 696 llvm::Type *CTType = 697 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 698 llvm::Type *FieldTypes[] = { 699 CGM.IntTy, // NumEntries 700 llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes 701 }; 702 CatchableTypeArrayType = 703 llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName); 704 return CatchableTypeArrayType; 705 } 706 707 llvm::StructType *getThrowInfoType() { 708 if (ThrowInfoType) 709 return ThrowInfoType; 710 llvm::Type *FieldTypes[] = { 711 CGM.IntTy, // Flags 712 getImageRelativeType(CGM.Int8PtrTy), // CleanupFn 713 getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat 714 getImageRelativeType(CGM.Int8PtrTy) // CatchableTypeArray 715 }; 716 ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, 717 "eh.ThrowInfo"); 718 return ThrowInfoType; 719 } 720 721 llvm::Constant *getThrowFn() { 722 // _CxxThrowException is passed an exception object and a ThrowInfo object 723 // which describes the exception. 724 llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()}; 725 llvm::FunctionType *FTy = 726 llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false); 727 auto *Fn = cast<llvm::Function>( 728 CGM.CreateRuntimeFunction(FTy, "_CxxThrowException")); 729 // _CxxThrowException is stdcall on 32-bit x86 platforms. 730 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) 731 Fn->setCallingConv(llvm::CallingConv::X86_StdCall); 732 return Fn; 733 } 734 735 llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 736 CXXCtorType CT); 737 738 llvm::Constant *getCatchableType(QualType T, 739 uint32_t NVOffset = 0, 740 int32_t VBPtrOffset = -1, 741 uint32_t VBIndex = 0); 742 743 llvm::GlobalVariable *getCatchableTypeArray(QualType T); 744 745 llvm::GlobalVariable *getThrowInfo(QualType T) override; 746 747 private: 748 typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy; 749 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy; 750 typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy; 751 /// \brief All the vftables that have been referenced. 752 VFTablesMapTy VFTablesMap; 753 VTablesMapTy VTablesMap; 754 755 /// \brief This set holds the record decls we've deferred vtable emission for. 756 llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables; 757 758 759 /// \brief All the vbtables which have been referenced. 760 llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap; 761 762 /// Info on the global variable used to guard initialization of static locals. 763 /// The BitIndex field is only used for externally invisible declarations. 764 struct GuardInfo { 765 GuardInfo() : Guard(nullptr), BitIndex(0) {} 766 llvm::GlobalVariable *Guard; 767 unsigned BitIndex; 768 }; 769 770 /// Map from DeclContext to the current guard variable. We assume that the 771 /// AST is visited in source code order. 772 llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap; 773 llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap; 774 llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap; 775 776 llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap; 777 llvm::StructType *BaseClassDescriptorType; 778 llvm::StructType *ClassHierarchyDescriptorType; 779 llvm::StructType *CompleteObjectLocatorType; 780 781 llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays; 782 783 llvm::StructType *CatchableTypeType; 784 llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap; 785 llvm::StructType *ThrowInfoType; 786 }; 787 788 } 789 790 CGCXXABI::RecordArgABI 791 MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const { 792 switch (CGM.getTarget().getTriple().getArch()) { 793 default: 794 // FIXME: Implement for other architectures. 795 return RAA_Default; 796 797 case llvm::Triple::x86: 798 // All record arguments are passed in memory on x86. Decide whether to 799 // construct the object directly in argument memory, or to construct the 800 // argument elsewhere and copy the bytes during the call. 801 802 // If C++ prohibits us from making a copy, construct the arguments directly 803 // into argument memory. 804 if (!canCopyArgument(RD)) 805 return RAA_DirectInMemory; 806 807 // Otherwise, construct the argument into a temporary and copy the bytes 808 // into the outgoing argument memory. 809 return RAA_Default; 810 811 case llvm::Triple::x86_64: 812 // Win64 passes objects with non-trivial copy ctors indirectly. 813 if (RD->hasNonTrivialCopyConstructor()) 814 return RAA_Indirect; 815 816 // If an object has a destructor, we'd really like to pass it indirectly 817 // because it allows us to elide copies. Unfortunately, MSVC makes that 818 // impossible for small types, which it will pass in a single register or 819 // stack slot. Most objects with dtors are large-ish, so handle that early. 820 // We can't call out all large objects as being indirect because there are 821 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate 822 // how we pass large POD types. 823 if (RD->hasNonTrivialDestructor() && 824 getContext().getTypeSize(RD->getTypeForDecl()) > 64) 825 return RAA_Indirect; 826 827 // We have a trivial copy constructor or no copy constructors, but we have 828 // to make sure it isn't deleted. 829 bool CopyDeleted = false; 830 for (const CXXConstructorDecl *CD : RD->ctors()) { 831 if (CD->isCopyConstructor()) { 832 assert(CD->isTrivial()); 833 // We had at least one undeleted trivial copy ctor. Return directly. 834 if (!CD->isDeleted()) 835 return RAA_Default; 836 CopyDeleted = true; 837 } 838 } 839 840 // The trivial copy constructor was deleted. Return indirectly. 841 if (CopyDeleted) 842 return RAA_Indirect; 843 844 // There were no copy ctors. Return in RAX. 845 return RAA_Default; 846 } 847 848 llvm_unreachable("invalid enum"); 849 } 850 851 void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, 852 const CXXDeleteExpr *DE, 853 Address Ptr, 854 QualType ElementType, 855 const CXXDestructorDecl *Dtor) { 856 // FIXME: Provide a source location here even though there's no 857 // CXXMemberCallExpr for dtor call. 858 bool UseGlobalDelete = DE->isGlobalDelete(); 859 CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; 860 llvm::Value *MDThis = 861 EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr); 862 if (UseGlobalDelete) 863 CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType); 864 } 865 866 void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { 867 llvm::Value *Args[] = { 868 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), 869 llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())}; 870 auto *Fn = getThrowFn(); 871 if (isNoReturn) 872 CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args); 873 else 874 CGF.EmitRuntimeCallOrInvoke(Fn, Args); 875 } 876 877 namespace { 878 struct CatchRetScope final : EHScopeStack::Cleanup { 879 llvm::CatchPadInst *CPI; 880 881 CatchRetScope(llvm::CatchPadInst *CPI) : CPI(CPI) {} 882 883 void Emit(CodeGenFunction &CGF, Flags flags) override { 884 llvm::BasicBlock *BB = CGF.createBasicBlock("catchret.dest"); 885 CGF.Builder.CreateCatchRet(CPI, BB); 886 CGF.EmitBlock(BB); 887 } 888 }; 889 } 890 891 void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF, 892 const CXXCatchStmt *S) { 893 // In the MS ABI, the runtime handles the copy, and the catch handler is 894 // responsible for destruction. 895 VarDecl *CatchParam = S->getExceptionDecl(); 896 llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock(); 897 llvm::CatchPadInst *CPI = 898 cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI()); 899 CGF.CurrentFuncletPad = CPI; 900 901 // If this is a catch-all or the catch parameter is unnamed, we don't need to 902 // emit an alloca to the object. 903 if (!CatchParam || !CatchParam->getDeclName()) { 904 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 905 return; 906 } 907 908 CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); 909 CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer()); 910 CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI); 911 CGF.EmitAutoVarCleanups(var); 912 } 913 914 /// We need to perform a generic polymorphic operation (like a typeid 915 /// or a cast), which requires an object with a vfptr. Adjust the 916 /// address to point to an object with a vfptr. 917 std::pair<Address, llvm::Value *> 918 MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value, 919 QualType SrcRecordTy) { 920 Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy); 921 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 922 const ASTContext &Context = getContext(); 923 924 // If the class itself has a vfptr, great. This check implicitly 925 // covers non-virtual base subobjects: a class with its own virtual 926 // functions would be a candidate to be a primary base. 927 if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr()) 928 return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 929 930 // Okay, one of the vbases must have a vfptr, or else this isn't 931 // actually a polymorphic class. 932 const CXXRecordDecl *PolymorphicBase = nullptr; 933 for (auto &Base : SrcDecl->vbases()) { 934 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl(); 935 if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) { 936 PolymorphicBase = BaseDecl; 937 break; 938 } 939 } 940 assert(PolymorphicBase && "polymorphic class has no apparent vfptr?"); 941 942 llvm::Value *Offset = 943 GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase); 944 llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(Value.getPointer(), Offset); 945 Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty); 946 CharUnits VBaseAlign = 947 CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase); 948 return std::make_pair(Address(Ptr, VBaseAlign), Offset); 949 } 950 951 bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref, 952 QualType SrcRecordTy) { 953 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 954 return IsDeref && 955 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 956 } 957 958 static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF, 959 llvm::Value *Argument) { 960 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 961 llvm::FunctionType *FTy = 962 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false); 963 llvm::Value *Args[] = {Argument}; 964 llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid"); 965 return CGF.EmitRuntimeCallOrInvoke(Fn, Args); 966 } 967 968 void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { 969 llvm::CallSite Call = 970 emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy)); 971 Call.setDoesNotReturn(); 972 CGF.Builder.CreateUnreachable(); 973 } 974 975 llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF, 976 QualType SrcRecordTy, 977 Address ThisPtr, 978 llvm::Type *StdTypeInfoPtrTy) { 979 llvm::Value *Offset; 980 std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy); 981 auto Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer()).getInstruction(); 982 return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy); 983 } 984 985 bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, 986 QualType SrcRecordTy) { 987 const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); 988 return SrcIsPtr && 989 !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr(); 990 } 991 992 llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall( 993 CodeGenFunction &CGF, Address This, QualType SrcRecordTy, 994 QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { 995 llvm::Type *DestLTy = CGF.ConvertType(DestTy); 996 997 llvm::Value *SrcRTTI = 998 CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); 999 llvm::Value *DestRTTI = 1000 CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); 1001 1002 llvm::Value *Offset; 1003 std::tie(This, Offset) = performBaseAdjustment(CGF, This, SrcRecordTy); 1004 llvm::Value *ThisPtr = This.getPointer(); 1005 1006 // PVOID __RTDynamicCast( 1007 // PVOID inptr, 1008 // LONG VfDelta, 1009 // PVOID SrcType, 1010 // PVOID TargetType, 1011 // BOOL isReference) 1012 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy, 1013 CGF.Int8PtrTy, CGF.Int32Ty}; 1014 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction( 1015 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1016 "__RTDynamicCast"); 1017 llvm::Value *Args[] = { 1018 ThisPtr, Offset, SrcRTTI, DestRTTI, 1019 llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())}; 1020 ThisPtr = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction(); 1021 return CGF.Builder.CreateBitCast(ThisPtr, DestLTy); 1022 } 1023 1024 llvm::Value * 1025 MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, 1026 QualType SrcRecordTy, 1027 QualType DestTy) { 1028 llvm::Value *Offset; 1029 std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy); 1030 1031 // PVOID __RTCastToVoid( 1032 // PVOID inptr) 1033 llvm::Type *ArgTypes[] = {CGF.Int8PtrTy}; 1034 llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction( 1035 llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false), 1036 "__RTCastToVoid"); 1037 llvm::Value *Args[] = {Value.getPointer()}; 1038 return CGF.EmitRuntimeCall(Function, Args); 1039 } 1040 1041 bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { 1042 return false; 1043 } 1044 1045 llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset( 1046 CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, 1047 const CXXRecordDecl *BaseClassDecl) { 1048 const ASTContext &Context = getContext(); 1049 int64_t VBPtrChars = 1050 Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity(); 1051 llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars); 1052 CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy); 1053 CharUnits VBTableChars = 1054 IntSize * 1055 CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl); 1056 llvm::Value *VBTableOffset = 1057 llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity()); 1058 1059 llvm::Value *VBPtrToNewBase = 1060 GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset); 1061 VBPtrToNewBase = 1062 CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy); 1063 return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase); 1064 } 1065 1066 bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const { 1067 return isa<CXXConstructorDecl>(GD.getDecl()); 1068 } 1069 1070 static bool isDeletingDtor(GlobalDecl GD) { 1071 return isa<CXXDestructorDecl>(GD.getDecl()) && 1072 GD.getDtorType() == Dtor_Deleting; 1073 } 1074 1075 bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const { 1076 return isDeletingDtor(GD); 1077 } 1078 1079 bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const { 1080 const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); 1081 if (!RD) 1082 return false; 1083 1084 CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); 1085 if (FI.isInstanceMethod()) { 1086 // If it's an instance method, aggregates are always returned indirectly via 1087 // the second parameter. 1088 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1089 FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod()); 1090 return true; 1091 } else if (!RD->isPOD()) { 1092 // If it's a free function, non-POD types are returned indirectly. 1093 FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 1094 return true; 1095 } 1096 1097 // Otherwise, use the C ABI rules. 1098 return false; 1099 } 1100 1101 llvm::BasicBlock * 1102 MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF, 1103 const CXXRecordDecl *RD) { 1104 llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF); 1105 assert(IsMostDerivedClass && 1106 "ctor for a class with virtual bases must have an implicit parameter"); 1107 llvm::Value *IsCompleteObject = 1108 CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object"); 1109 1110 llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases"); 1111 llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases"); 1112 CGF.Builder.CreateCondBr(IsCompleteObject, 1113 CallVbaseCtorsBB, SkipVbaseCtorsBB); 1114 1115 CGF.EmitBlock(CallVbaseCtorsBB); 1116 1117 // Fill in the vbtable pointers here. 1118 EmitVBPtrStores(CGF, RD); 1119 1120 // CGF will put the base ctor calls in this basic block for us later. 1121 1122 return SkipVbaseCtorsBB; 1123 } 1124 1125 void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers( 1126 CodeGenFunction &CGF, const CXXRecordDecl *RD) { 1127 // In most cases, an override for a vbase virtual method can adjust 1128 // the "this" parameter by applying a constant offset. 1129 // However, this is not enough while a constructor or a destructor of some 1130 // class X is being executed if all the following conditions are met: 1131 // - X has virtual bases, (1) 1132 // - X overrides a virtual method M of a vbase Y, (2) 1133 // - X itself is a vbase of the most derived class. 1134 // 1135 // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X 1136 // which holds the extra amount of "this" adjustment we must do when we use 1137 // the X vftables (i.e. during X ctor or dtor). 1138 // Outside the ctors and dtors, the values of vtorDisps are zero. 1139 1140 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 1141 typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets; 1142 const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap(); 1143 CGBuilderTy &Builder = CGF.Builder; 1144 1145 unsigned AS = getThisAddress(CGF).getAddressSpace(); 1146 llvm::Value *Int8This = nullptr; // Initialize lazily. 1147 1148 for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end(); 1149 I != E; ++I) { 1150 if (!I->second.hasVtorDisp()) 1151 continue; 1152 1153 llvm::Value *VBaseOffset = 1154 GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, I->first); 1155 // FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset() 1156 // just to Trunc back immediately. 1157 VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty); 1158 uint64_t ConstantVBaseOffset = 1159 Layout.getVBaseClassOffset(I->first).getQuantity(); 1160 1161 // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase). 1162 llvm::Value *VtorDispValue = Builder.CreateSub( 1163 VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset), 1164 "vtordisp.value"); 1165 1166 if (!Int8This) 1167 Int8This = Builder.CreateBitCast(getThisValue(CGF), 1168 CGF.Int8Ty->getPointerTo(AS)); 1169 llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset); 1170 // vtorDisp is always the 32-bits before the vbase in the class layout. 1171 VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4); 1172 VtorDispPtr = Builder.CreateBitCast( 1173 VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr"); 1174 1175 Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr, 1176 CharUnits::fromQuantity(4)); 1177 } 1178 } 1179 1180 static bool hasDefaultCXXMethodCC(ASTContext &Context, 1181 const CXXMethodDecl *MD) { 1182 CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention( 1183 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 1184 CallingConv ActualCallingConv = 1185 MD->getType()->getAs<FunctionProtoType>()->getCallConv(); 1186 return ExpectedCallingConv == ActualCallingConv; 1187 } 1188 1189 void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { 1190 // There's only one constructor type in this ABI. 1191 CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); 1192 1193 // Exported default constructors either have a simple call-site where they use 1194 // the typical calling convention and have a single 'this' pointer for an 1195 // argument -or- they get a wrapper function which appropriately thunks to the 1196 // real default constructor. This thunk is the default constructor closure. 1197 if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor()) 1198 if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) { 1199 llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure); 1200 Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage); 1201 Fn->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1202 } 1203 } 1204 1205 void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF, 1206 const CXXRecordDecl *RD) { 1207 Address This = getThisAddress(CGF); 1208 This = CGF.Builder.CreateElementBitCast(This, CGM.Int8Ty, "this.int8"); 1209 const ASTContext &Context = getContext(); 1210 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1211 1212 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1213 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1214 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I]; 1215 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1216 const ASTRecordLayout &SubobjectLayout = 1217 Context.getASTRecordLayout(VBT->BaseWithVPtr); 1218 CharUnits Offs = VBT->NonVirtualOffset; 1219 Offs += SubobjectLayout.getVBPtrOffset(); 1220 if (VBT->getVBaseWithVPtr()) 1221 Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr()); 1222 Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs); 1223 llvm::Value *GVPtr = 1224 CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0); 1225 VBPtr = CGF.Builder.CreateElementBitCast(VBPtr, GVPtr->getType(), 1226 "vbptr." + VBT->ReusingBase->getName()); 1227 CGF.Builder.CreateStore(GVPtr, VBPtr); 1228 } 1229 } 1230 1231 void 1232 MicrosoftCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T, 1233 SmallVectorImpl<CanQualType> &ArgTys) { 1234 // TODO: 'for base' flag 1235 if (T == StructorType::Deleting) { 1236 // The scalar deleting destructor takes an implicit int parameter. 1237 ArgTys.push_back(getContext().IntTy); 1238 } 1239 auto *CD = dyn_cast<CXXConstructorDecl>(MD); 1240 if (!CD) 1241 return; 1242 1243 // All parameters are already in place except is_most_derived, which goes 1244 // after 'this' if it's variadic and last if it's not. 1245 1246 const CXXRecordDecl *Class = CD->getParent(); 1247 const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>(); 1248 if (Class->getNumVBases()) { 1249 if (FPT->isVariadic()) 1250 ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy); 1251 else 1252 ArgTys.push_back(getContext().IntTy); 1253 } 1254 } 1255 1256 void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { 1257 // The TU defining a dtor is only guaranteed to emit a base destructor. All 1258 // other destructor variants are delegating thunks. 1259 CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); 1260 } 1261 1262 CharUnits 1263 MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) { 1264 GD = GD.getCanonicalDecl(); 1265 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1266 1267 GlobalDecl LookupGD = GD; 1268 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1269 // Complete destructors take a pointer to the complete object as a 1270 // parameter, thus don't need this adjustment. 1271 if (GD.getDtorType() == Dtor_Complete) 1272 return CharUnits(); 1273 1274 // There's no Dtor_Base in vftable but it shares the this adjustment with 1275 // the deleting one, so look it up instead. 1276 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1277 } 1278 1279 MicrosoftVTableContext::MethodVFTableLocation ML = 1280 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1281 CharUnits Adjustment = ML.VFPtrOffset; 1282 1283 // Normal virtual instance methods need to adjust from the vfptr that first 1284 // defined the virtual method to the virtual base subobject, but destructors 1285 // do not. The vector deleting destructor thunk applies this adjustment for 1286 // us if necessary. 1287 if (isa<CXXDestructorDecl>(MD)) 1288 Adjustment = CharUnits::Zero(); 1289 1290 if (ML.VBase) { 1291 const ASTRecordLayout &DerivedLayout = 1292 getContext().getASTRecordLayout(MD->getParent()); 1293 Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase); 1294 } 1295 1296 return Adjustment; 1297 } 1298 1299 Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall( 1300 CodeGenFunction &CGF, GlobalDecl GD, Address This, 1301 bool VirtualCall) { 1302 if (!VirtualCall) { 1303 // If the call of a virtual function is not virtual, we just have to 1304 // compensate for the adjustment the virtual function does in its prologue. 1305 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1306 if (Adjustment.isZero()) 1307 return This; 1308 1309 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 1310 assert(Adjustment.isPositive()); 1311 return CGF.Builder.CreateConstByteGEP(This, Adjustment); 1312 } 1313 1314 GD = GD.getCanonicalDecl(); 1315 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1316 1317 GlobalDecl LookupGD = GD; 1318 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1319 // Complete dtors take a pointer to the complete object, 1320 // thus don't need adjustment. 1321 if (GD.getDtorType() == Dtor_Complete) 1322 return This; 1323 1324 // There's only Dtor_Deleting in vftable but it shares the this adjustment 1325 // with the base one, so look up the deleting one instead. 1326 LookupGD = GlobalDecl(DD, Dtor_Deleting); 1327 } 1328 MicrosoftVTableContext::MethodVFTableLocation ML = 1329 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD); 1330 1331 CharUnits StaticOffset = ML.VFPtrOffset; 1332 1333 // Base destructors expect 'this' to point to the beginning of the base 1334 // subobject, not the first vfptr that happens to contain the virtual dtor. 1335 // However, we still need to apply the virtual base adjustment. 1336 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 1337 StaticOffset = CharUnits::Zero(); 1338 1339 Address Result = This; 1340 if (ML.VBase) { 1341 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1342 1343 const CXXRecordDecl *Derived = MD->getParent(); 1344 const CXXRecordDecl *VBase = ML.VBase; 1345 llvm::Value *VBaseOffset = 1346 GetVirtualBaseClassOffset(CGF, Result, Derived, VBase); 1347 llvm::Value *VBasePtr = 1348 CGF.Builder.CreateInBoundsGEP(Result.getPointer(), VBaseOffset); 1349 CharUnits VBaseAlign = 1350 CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase); 1351 Result = Address(VBasePtr, VBaseAlign); 1352 } 1353 if (!StaticOffset.isZero()) { 1354 assert(StaticOffset.isPositive()); 1355 Result = CGF.Builder.CreateElementBitCast(Result, CGF.Int8Ty); 1356 if (ML.VBase) { 1357 // Non-virtual adjustment might result in a pointer outside the allocated 1358 // object, e.g. if the final overrider class is laid out after the virtual 1359 // base that declares a method in the most derived class. 1360 // FIXME: Update the code that emits this adjustment in thunks prologues. 1361 Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset); 1362 } else { 1363 Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset); 1364 } 1365 } 1366 return Result; 1367 } 1368 1369 void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, 1370 QualType &ResTy, 1371 FunctionArgList &Params) { 1372 ASTContext &Context = getContext(); 1373 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1374 assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); 1375 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1376 ImplicitParamDecl *IsMostDerived 1377 = ImplicitParamDecl::Create(Context, nullptr, 1378 CGF.CurGD.getDecl()->getLocation(), 1379 &Context.Idents.get("is_most_derived"), 1380 Context.IntTy); 1381 // The 'most_derived' parameter goes second if the ctor is variadic and last 1382 // if it's not. Dtors can't be variadic. 1383 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 1384 if (FPT->isVariadic()) 1385 Params.insert(Params.begin() + 1, IsMostDerived); 1386 else 1387 Params.push_back(IsMostDerived); 1388 getStructorImplicitParamDecl(CGF) = IsMostDerived; 1389 } else if (isDeletingDtor(CGF.CurGD)) { 1390 ImplicitParamDecl *ShouldDelete 1391 = ImplicitParamDecl::Create(Context, nullptr, 1392 CGF.CurGD.getDecl()->getLocation(), 1393 &Context.Idents.get("should_call_delete"), 1394 Context.IntTy); 1395 Params.push_back(ShouldDelete); 1396 getStructorImplicitParamDecl(CGF) = ShouldDelete; 1397 } 1398 } 1399 1400 llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue( 1401 CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) { 1402 // In this ABI, every virtual function takes a pointer to one of the 1403 // subobjects that first defines it as the 'this' parameter, rather than a 1404 // pointer to the final overrider subobject. Thus, we need to adjust it back 1405 // to the final overrider subobject before use. 1406 // See comments in the MicrosoftVFTableContext implementation for the details. 1407 CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD); 1408 if (Adjustment.isZero()) 1409 return This; 1410 1411 unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace(); 1412 llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS), 1413 *thisTy = This->getType(); 1414 1415 This = CGF.Builder.CreateBitCast(This, charPtrTy); 1416 assert(Adjustment.isPositive()); 1417 This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This, 1418 -Adjustment.getQuantity()); 1419 return CGF.Builder.CreateBitCast(This, thisTy); 1420 } 1421 1422 void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { 1423 EmitThisParam(CGF); 1424 1425 /// If this is a function that the ABI specifies returns 'this', initialize 1426 /// the return slot to 'this' at the start of the function. 1427 /// 1428 /// Unlike the setting of return types, this is done within the ABI 1429 /// implementation instead of by clients of CGCXXABI because: 1430 /// 1) getThisValue is currently protected 1431 /// 2) in theory, an ABI could implement 'this' returns some other way; 1432 /// HasThisReturn only specifies a contract, not the implementation 1433 if (HasThisReturn(CGF.CurGD)) 1434 CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); 1435 else if (hasMostDerivedReturn(CGF.CurGD)) 1436 CGF.Builder.CreateStore(CGF.EmitCastToVoidPtr(getThisValue(CGF)), 1437 CGF.ReturnValue); 1438 1439 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); 1440 if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) { 1441 assert(getStructorImplicitParamDecl(CGF) && 1442 "no implicit parameter for a constructor with virtual bases?"); 1443 getStructorImplicitParamValue(CGF) 1444 = CGF.Builder.CreateLoad( 1445 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1446 "is_most_derived"); 1447 } 1448 1449 if (isDeletingDtor(CGF.CurGD)) { 1450 assert(getStructorImplicitParamDecl(CGF) && 1451 "no implicit parameter for a deleting destructor?"); 1452 getStructorImplicitParamValue(CGF) 1453 = CGF.Builder.CreateLoad( 1454 CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), 1455 "should_call_delete"); 1456 } 1457 } 1458 1459 unsigned MicrosoftCXXABI::addImplicitConstructorArgs( 1460 CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, 1461 bool ForVirtualBase, bool Delegating, CallArgList &Args) { 1462 assert(Type == Ctor_Complete || Type == Ctor_Base); 1463 1464 // Check if we need a 'most_derived' parameter. 1465 if (!D->getParent()->getNumVBases()) 1466 return 0; 1467 1468 // Add the 'most_derived' argument second if we are variadic or last if not. 1469 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>(); 1470 llvm::Value *MostDerivedArg = 1471 llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete); 1472 RValue RV = RValue::get(MostDerivedArg); 1473 if (MostDerivedArg) { 1474 if (FPT->isVariadic()) 1475 Args.insert(Args.begin() + 1, 1476 CallArg(RV, getContext().IntTy, /*needscopy=*/false)); 1477 else 1478 Args.add(RV, getContext().IntTy); 1479 } 1480 1481 return 1; // Added one arg. 1482 } 1483 1484 void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF, 1485 const CXXDestructorDecl *DD, 1486 CXXDtorType Type, bool ForVirtualBase, 1487 bool Delegating, Address This) { 1488 llvm::Value *Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type)); 1489 1490 if (DD->isVirtual()) { 1491 assert(Type != CXXDtorType::Dtor_Deleting && 1492 "The deleting destructor should only be called via a virtual call"); 1493 This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type), 1494 This, false); 1495 } 1496 1497 CGF.EmitCXXStructorCall(DD, Callee, ReturnValueSlot(), This.getPointer(), 1498 /*ImplicitParam=*/nullptr, 1499 /*ImplicitParamTy=*/QualType(), nullptr, 1500 getFromDtorType(Type)); 1501 } 1502 1503 void MicrosoftCXXABI::emitVTableBitSetEntries(VPtrInfo *Info, 1504 const CXXRecordDecl *RD, 1505 llvm::GlobalVariable *VTable) { 1506 if (!getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIVCall) && 1507 !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFINVCall) && 1508 !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIDerivedCast) && 1509 !getContext().getLangOpts().Sanitize.has(SanitizerKind::CFIUnrelatedCast)) 1510 return; 1511 1512 llvm::NamedMDNode *BitsetsMD = 1513 CGM.getModule().getOrInsertNamedMetadata("llvm.bitsets"); 1514 1515 // The location of the first virtual function pointer in the virtual table, 1516 // aka the "address point" on Itanium. This is at offset 0 if RTTI is 1517 // disabled, or sizeof(void*) if RTTI is enabled. 1518 CharUnits AddressPoint = 1519 getContext().getLangOpts().RTTIData 1520 ? getContext().toCharUnitsFromBits( 1521 getContext().getTargetInfo().getPointerWidth(0)) 1522 : CharUnits::Zero(); 1523 1524 if (Info->PathToBaseWithVPtr.empty()) { 1525 if (!CGM.IsCFIBlacklistedRecord(RD)) 1526 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD); 1527 return; 1528 } 1529 1530 // Add a bitset entry for the least derived base belonging to this vftable. 1531 if (!CGM.IsCFIBlacklistedRecord(Info->PathToBaseWithVPtr.back())) 1532 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, 1533 Info->PathToBaseWithVPtr.back()); 1534 1535 // Add a bitset entry for each derived class that is laid out at the same 1536 // offset as the least derived base. 1537 for (unsigned I = Info->PathToBaseWithVPtr.size() - 1; I != 0; --I) { 1538 const CXXRecordDecl *DerivedRD = Info->PathToBaseWithVPtr[I - 1]; 1539 const CXXRecordDecl *BaseRD = Info->PathToBaseWithVPtr[I]; 1540 1541 const ASTRecordLayout &Layout = 1542 getContext().getASTRecordLayout(DerivedRD); 1543 CharUnits Offset; 1544 auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD); 1545 if (VBI == Layout.getVBaseOffsetsMap().end()) 1546 Offset = Layout.getBaseClassOffset(BaseRD); 1547 else 1548 Offset = VBI->second.VBaseOffset; 1549 if (!Offset.isZero()) 1550 return; 1551 if (!CGM.IsCFIBlacklistedRecord(DerivedRD)) 1552 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, DerivedRD); 1553 } 1554 1555 // Finally do the same for the most derived class. 1556 if (Info->FullOffsetInMDC.isZero() && !CGM.IsCFIBlacklistedRecord(RD)) 1557 CGM.CreateVTableBitSetEntry(BitsetsMD, VTable, AddressPoint, RD); 1558 } 1559 1560 void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, 1561 const CXXRecordDecl *RD) { 1562 MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext(); 1563 const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD); 1564 1565 for (VPtrInfo *Info : VFPtrs) { 1566 llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC); 1567 if (VTable->hasInitializer()) 1568 continue; 1569 1570 llvm::Constant *RTTI = getContext().getLangOpts().RTTIData 1571 ? getMSCompleteObjectLocator(RD, Info) 1572 : nullptr; 1573 1574 const VTableLayout &VTLayout = 1575 VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC); 1576 llvm::Constant *Init = CGVT.CreateVTableInitializer( 1577 RD, VTLayout.vtable_component_begin(), 1578 VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(), 1579 VTLayout.getNumVTableThunks(), RTTI); 1580 1581 VTable->setInitializer(Init); 1582 1583 emitVTableBitSetEntries(Info, RD, VTable); 1584 } 1585 } 1586 1587 bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField( 1588 CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { 1589 return Vptr.NearestVBase != nullptr; 1590 } 1591 1592 llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor( 1593 CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, 1594 const CXXRecordDecl *NearestVBase) { 1595 llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass); 1596 if (!VTableAddressPoint) { 1597 assert(Base.getBase()->getNumVBases() && 1598 !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr()); 1599 } 1600 return VTableAddressPoint; 1601 } 1602 1603 static void mangleVFTableName(MicrosoftMangleContext &MangleContext, 1604 const CXXRecordDecl *RD, const VPtrInfo *VFPtr, 1605 SmallString<256> &Name) { 1606 llvm::raw_svector_ostream Out(Name); 1607 MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out); 1608 } 1609 1610 llvm::Constant * 1611 MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base, 1612 const CXXRecordDecl *VTableClass) { 1613 (void)getAddrOfVTable(VTableClass, Base.getBaseOffset()); 1614 VFTableIdTy ID(VTableClass, Base.getBaseOffset()); 1615 return VFTablesMap[ID]; 1616 } 1617 1618 llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr( 1619 BaseSubobject Base, const CXXRecordDecl *VTableClass) { 1620 llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass); 1621 assert(VFTable && "Couldn't find a vftable for the given base?"); 1622 return VFTable; 1623 } 1624 1625 llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, 1626 CharUnits VPtrOffset) { 1627 // getAddrOfVTable may return 0 if asked to get an address of a vtable which 1628 // shouldn't be used in the given record type. We want to cache this result in 1629 // VFTablesMap, thus a simple zero check is not sufficient. 1630 1631 VFTableIdTy ID(RD, VPtrOffset); 1632 VTablesMapTy::iterator I; 1633 bool Inserted; 1634 std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr)); 1635 if (!Inserted) 1636 return I->second; 1637 1638 llvm::GlobalVariable *&VTable = I->second; 1639 1640 MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext(); 1641 const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD); 1642 1643 if (DeferredVFTables.insert(RD).second) { 1644 // We haven't processed this record type before. 1645 // Queue up this v-table for possible deferred emission. 1646 CGM.addDeferredVTable(RD); 1647 1648 #ifndef NDEBUG 1649 // Create all the vftables at once in order to make sure each vftable has 1650 // a unique mangled name. 1651 llvm::StringSet<> ObservedMangledNames; 1652 for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) { 1653 SmallString<256> Name; 1654 mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name); 1655 if (!ObservedMangledNames.insert(Name.str()).second) 1656 llvm_unreachable("Already saw this mangling before?"); 1657 } 1658 #endif 1659 } 1660 1661 VPtrInfo *const *VFPtrI = 1662 std::find_if(VFPtrs.begin(), VFPtrs.end(), [&](VPtrInfo *VPI) { 1663 return VPI->FullOffsetInMDC == VPtrOffset; 1664 }); 1665 if (VFPtrI == VFPtrs.end()) { 1666 VFTablesMap[ID] = nullptr; 1667 return nullptr; 1668 } 1669 VPtrInfo *VFPtr = *VFPtrI; 1670 1671 SmallString<256> VFTableName; 1672 mangleVFTableName(getMangleContext(), RD, VFPtr, VFTableName); 1673 1674 llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD); 1675 bool VFTableComesFromAnotherTU = 1676 llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) || 1677 llvm::GlobalValue::isExternalLinkage(VFTableLinkage); 1678 bool VTableAliasIsRequred = 1679 !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData; 1680 1681 if (llvm::GlobalValue *VFTable = 1682 CGM.getModule().getNamedGlobal(VFTableName)) { 1683 VFTablesMap[ID] = VFTable; 1684 VTable = VTableAliasIsRequred 1685 ? cast<llvm::GlobalVariable>( 1686 cast<llvm::GlobalAlias>(VFTable)->getBaseObject()) 1687 : cast<llvm::GlobalVariable>(VFTable); 1688 return VTable; 1689 } 1690 1691 uint64_t NumVTableSlots = 1692 VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC) 1693 .getNumVTableComponents(); 1694 llvm::GlobalValue::LinkageTypes VTableLinkage = 1695 VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage; 1696 1697 StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str(); 1698 1699 llvm::ArrayType *VTableType = 1700 llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots); 1701 1702 // Create a backing variable for the contents of VTable. The VTable may 1703 // or may not include space for a pointer to RTTI data. 1704 llvm::GlobalValue *VFTable; 1705 VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType, 1706 /*isConstant=*/true, VTableLinkage, 1707 /*Initializer=*/nullptr, VTableName); 1708 VTable->setUnnamedAddr(true); 1709 1710 llvm::Comdat *C = nullptr; 1711 if (!VFTableComesFromAnotherTU && 1712 (llvm::GlobalValue::isWeakForLinker(VFTableLinkage) || 1713 (llvm::GlobalValue::isLocalLinkage(VFTableLinkage) && 1714 VTableAliasIsRequred))) 1715 C = CGM.getModule().getOrInsertComdat(VFTableName.str()); 1716 1717 // Only insert a pointer into the VFTable for RTTI data if we are not 1718 // importing it. We never reference the RTTI data directly so there is no 1719 // need to make room for it. 1720 if (VTableAliasIsRequred) { 1721 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 1722 llvm::ConstantInt::get(CGM.IntTy, 1)}; 1723 // Create a GEP which points just after the first entry in the VFTable, 1724 // this should be the location of the first virtual method. 1725 llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr( 1726 VTable->getValueType(), VTable, GEPIndices); 1727 if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) { 1728 VFTableLinkage = llvm::GlobalValue::ExternalLinkage; 1729 if (C) 1730 C->setSelectionKind(llvm::Comdat::Largest); 1731 } 1732 VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy, 1733 /*AddressSpace=*/0, VFTableLinkage, 1734 VFTableName.str(), VTableGEP, 1735 &CGM.getModule()); 1736 VFTable->setUnnamedAddr(true); 1737 } else { 1738 // We don't need a GlobalAlias to be a symbol for the VTable if we won't 1739 // be referencing any RTTI data. 1740 // The GlobalVariable will end up being an appropriate definition of the 1741 // VFTable. 1742 VFTable = VTable; 1743 } 1744 if (C) 1745 VTable->setComdat(C); 1746 1747 if (RD->hasAttr<DLLImportAttr>()) 1748 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1749 else if (RD->hasAttr<DLLExportAttr>()) 1750 VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1751 1752 VFTablesMap[ID] = VFTable; 1753 return VTable; 1754 } 1755 1756 // Compute the identity of the most derived class whose virtual table is located 1757 // at the given offset into RD. 1758 static const CXXRecordDecl *getClassAtVTableLocation(ASTContext &Ctx, 1759 const CXXRecordDecl *RD, 1760 CharUnits Offset) { 1761 if (Offset.isZero()) 1762 return RD; 1763 1764 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD); 1765 const CXXRecordDecl *MaxBase = nullptr; 1766 CharUnits MaxBaseOffset; 1767 for (auto &&B : RD->bases()) { 1768 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 1769 CharUnits BaseOffset = Layout.getBaseClassOffset(Base); 1770 if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) { 1771 MaxBase = Base; 1772 MaxBaseOffset = BaseOffset; 1773 } 1774 } 1775 for (auto &&B : RD->vbases()) { 1776 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 1777 CharUnits BaseOffset = Layout.getVBaseClassOffset(Base); 1778 if (BaseOffset <= Offset && BaseOffset >= MaxBaseOffset) { 1779 MaxBase = Base; 1780 MaxBaseOffset = BaseOffset; 1781 } 1782 } 1783 assert(MaxBase); 1784 return getClassAtVTableLocation(Ctx, MaxBase, Offset - MaxBaseOffset); 1785 } 1786 1787 // Compute the identity of the most derived class whose virtual table is located 1788 // at the MethodVFTableLocation ML. 1789 static const CXXRecordDecl * 1790 getClassAtVTableLocation(ASTContext &Ctx, GlobalDecl GD, 1791 MicrosoftVTableContext::MethodVFTableLocation &ML) { 1792 const CXXRecordDecl *RD = ML.VBase; 1793 if (!RD) 1794 RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 1795 1796 return getClassAtVTableLocation(Ctx, RD, ML.VFPtrOffset); 1797 } 1798 1799 llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, 1800 GlobalDecl GD, 1801 Address This, 1802 llvm::Type *Ty, 1803 SourceLocation Loc) { 1804 GD = GD.getCanonicalDecl(); 1805 CGBuilderTy &Builder = CGF.Builder; 1806 1807 Ty = Ty->getPointerTo()->getPointerTo(); 1808 Address VPtr = 1809 adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1810 1811 auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); 1812 llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty, MethodDecl->getParent()); 1813 1814 MicrosoftVTableContext::MethodVFTableLocation ML = 1815 CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); 1816 if (CGF.SanOpts.has(SanitizerKind::CFIVCall)) 1817 CGF.EmitVTablePtrCheck(getClassAtVTableLocation(getContext(), GD, ML), 1818 VTable, CodeGenFunction::CFITCK_VCall, Loc); 1819 1820 llvm::Value *VFuncPtr = 1821 Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1822 return Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 1823 } 1824 1825 llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall( 1826 CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, 1827 Address This, const CXXMemberCallExpr *CE) { 1828 assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); 1829 assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); 1830 1831 // We have only one destructor in the vftable but can get both behaviors 1832 // by passing an implicit int parameter. 1833 GlobalDecl GD(Dtor, Dtor_Deleting); 1834 const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration( 1835 Dtor, StructorType::Deleting); 1836 llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); 1837 llvm::Value *Callee = getVirtualFunctionPointer( 1838 CGF, GD, This, Ty, CE ? CE->getLocStart() : SourceLocation()); 1839 1840 ASTContext &Context = getContext(); 1841 llvm::Value *ImplicitParam = llvm::ConstantInt::get( 1842 llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()), 1843 DtorType == Dtor_Deleting); 1844 1845 This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true); 1846 RValue RV = CGF.EmitCXXStructorCall(Dtor, Callee, ReturnValueSlot(), 1847 This.getPointer(), 1848 ImplicitParam, Context.IntTy, CE, 1849 StructorType::Deleting); 1850 return RV.getScalarVal(); 1851 } 1852 1853 const VBTableGlobals & 1854 MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) { 1855 // At this layer, we can key the cache off of a single class, which is much 1856 // easier than caching each vbtable individually. 1857 llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry; 1858 bool Added; 1859 std::tie(Entry, Added) = 1860 VBTablesMap.insert(std::make_pair(RD, VBTableGlobals())); 1861 VBTableGlobals &VBGlobals = Entry->second; 1862 if (!Added) 1863 return VBGlobals; 1864 1865 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 1866 VBGlobals.VBTables = &Context.enumerateVBTables(RD); 1867 1868 // Cache the globals for all vbtables so we don't have to recompute the 1869 // mangled names. 1870 llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); 1871 for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(), 1872 E = VBGlobals.VBTables->end(); 1873 I != E; ++I) { 1874 VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage)); 1875 } 1876 1877 return VBGlobals; 1878 } 1879 1880 llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk( 1881 const CXXMethodDecl *MD, 1882 const MicrosoftVTableContext::MethodVFTableLocation &ML) { 1883 assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) && 1884 "can't form pointers to ctors or virtual dtors"); 1885 1886 // Calculate the mangled name. 1887 SmallString<256> ThunkName; 1888 llvm::raw_svector_ostream Out(ThunkName); 1889 getMangleContext().mangleVirtualMemPtrThunk(MD, Out); 1890 1891 // If the thunk has been generated previously, just return it. 1892 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 1893 return cast<llvm::Function>(GV); 1894 1895 // Create the llvm::Function. 1896 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSMemberPointerThunk(MD); 1897 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 1898 llvm::Function *ThunkFn = 1899 llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage, 1900 ThunkName.str(), &CGM.getModule()); 1901 assert(ThunkFn->getName() == ThunkName && "name was uniqued!"); 1902 1903 ThunkFn->setLinkage(MD->isExternallyVisible() 1904 ? llvm::GlobalValue::LinkOnceODRLinkage 1905 : llvm::GlobalValue::InternalLinkage); 1906 if (MD->isExternallyVisible()) 1907 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 1908 1909 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 1910 CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn); 1911 1912 // Add the "thunk" attribute so that LLVM knows that the return type is 1913 // meaningless. These thunks can be used to call functions with differing 1914 // return types, and the caller is required to cast the prototype 1915 // appropriately to extract the correct value. 1916 ThunkFn->addFnAttr("thunk"); 1917 1918 // These thunks can be compared, so they are not unnamed. 1919 ThunkFn->setUnnamedAddr(false); 1920 1921 // Start codegen. 1922 CodeGenFunction CGF(CGM); 1923 CGF.CurGD = GlobalDecl(MD); 1924 CGF.CurFuncIsThunk = true; 1925 1926 // Build FunctionArgs, but only include the implicit 'this' parameter 1927 // declaration. 1928 FunctionArgList FunctionArgs; 1929 buildThisParam(CGF, FunctionArgs); 1930 1931 // Start defining the function. 1932 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 1933 FunctionArgs, MD->getLocation(), SourceLocation()); 1934 EmitThisParam(CGF); 1935 1936 // Load the vfptr and then callee from the vftable. The callee should have 1937 // adjusted 'this' so that the vfptr is at offset zero. 1938 llvm::Value *VTable = CGF.GetVTablePtr( 1939 getThisAddress(CGF), ThunkTy->getPointerTo()->getPointerTo(), MD->getParent()); 1940 1941 llvm::Value *VFuncPtr = 1942 CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn"); 1943 llvm::Value *Callee = 1944 CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); 1945 1946 CGF.EmitMustTailThunk(MD, getThisValue(CGF), Callee); 1947 1948 return ThunkFn; 1949 } 1950 1951 void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { 1952 const VBTableGlobals &VBGlobals = enumerateVBTables(RD); 1953 for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) { 1954 const VPtrInfo *VBT = (*VBGlobals.VBTables)[I]; 1955 llvm::GlobalVariable *GV = VBGlobals.Globals[I]; 1956 if (GV->isDeclaration()) 1957 emitVBTableDefinition(*VBT, RD, GV); 1958 } 1959 } 1960 1961 llvm::GlobalVariable * 1962 MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD, 1963 llvm::GlobalVariable::LinkageTypes Linkage) { 1964 SmallString<256> OutName; 1965 llvm::raw_svector_ostream Out(OutName); 1966 getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out); 1967 StringRef Name = OutName.str(); 1968 1969 llvm::ArrayType *VBTableType = 1970 llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases()); 1971 1972 assert(!CGM.getModule().getNamedGlobal(Name) && 1973 "vbtable with this name already exists: mangling bug?"); 1974 llvm::GlobalVariable *GV = 1975 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage); 1976 GV->setUnnamedAddr(true); 1977 1978 if (RD->hasAttr<DLLImportAttr>()) 1979 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1980 else if (RD->hasAttr<DLLExportAttr>()) 1981 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1982 1983 if (!GV->hasExternalLinkage()) 1984 emitVBTableDefinition(VBT, RD, GV); 1985 1986 return GV; 1987 } 1988 1989 void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT, 1990 const CXXRecordDecl *RD, 1991 llvm::GlobalVariable *GV) const { 1992 const CXXRecordDecl *ReusingBase = VBT.ReusingBase; 1993 1994 assert(RD->getNumVBases() && ReusingBase->getNumVBases() && 1995 "should only emit vbtables for classes with vbtables"); 1996 1997 const ASTRecordLayout &BaseLayout = 1998 getContext().getASTRecordLayout(VBT.BaseWithVPtr); 1999 const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD); 2000 2001 SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(), 2002 nullptr); 2003 2004 // The offset from ReusingBase's vbptr to itself always leads. 2005 CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset(); 2006 Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity()); 2007 2008 MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext(); 2009 for (const auto &I : ReusingBase->vbases()) { 2010 const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl(); 2011 CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase); 2012 assert(!Offset.isNegative()); 2013 2014 // Make it relative to the subobject vbptr. 2015 CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset; 2016 if (VBT.getVBaseWithVPtr()) 2017 CompleteVBPtrOffset += 2018 DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr()); 2019 Offset -= CompleteVBPtrOffset; 2020 2021 unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase); 2022 assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?"); 2023 Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity()); 2024 } 2025 2026 assert(Offsets.size() == 2027 cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType()) 2028 ->getElementType())->getNumElements()); 2029 llvm::ArrayType *VBTableType = 2030 llvm::ArrayType::get(CGM.IntTy, Offsets.size()); 2031 llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets); 2032 GV->setInitializer(Init); 2033 } 2034 2035 llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF, 2036 Address This, 2037 const ThisAdjustment &TA) { 2038 if (TA.isEmpty()) 2039 return This.getPointer(); 2040 2041 This = CGF.Builder.CreateElementBitCast(This, CGF.Int8Ty); 2042 2043 llvm::Value *V; 2044 if (TA.Virtual.isEmpty()) { 2045 V = This.getPointer(); 2046 } else { 2047 assert(TA.Virtual.Microsoft.VtordispOffset < 0); 2048 // Adjust the this argument based on the vtordisp value. 2049 Address VtorDispPtr = 2050 CGF.Builder.CreateConstInBoundsByteGEP(This, 2051 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset)); 2052 VtorDispPtr = CGF.Builder.CreateElementBitCast(VtorDispPtr, CGF.Int32Ty); 2053 llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp"); 2054 V = CGF.Builder.CreateGEP(This.getPointer(), 2055 CGF.Builder.CreateNeg(VtorDisp)); 2056 2057 // Unfortunately, having applied the vtordisp means that we no 2058 // longer really have a known alignment for the vbptr step. 2059 // We'll assume the vbptr is pointer-aligned. 2060 2061 if (TA.Virtual.Microsoft.VBPtrOffset) { 2062 // If the final overrider is defined in a virtual base other than the one 2063 // that holds the vfptr, we have to use a vtordispex thunk which looks up 2064 // the vbtable of the derived class. 2065 assert(TA.Virtual.Microsoft.VBPtrOffset > 0); 2066 assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0); 2067 llvm::Value *VBPtr; 2068 llvm::Value *VBaseOffset = 2069 GetVBaseOffsetFromVBPtr(CGF, Address(V, CGF.getPointerAlign()), 2070 -TA.Virtual.Microsoft.VBPtrOffset, 2071 TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr); 2072 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2073 } 2074 } 2075 2076 if (TA.NonVirtual) { 2077 // Non-virtual adjustment might result in a pointer outside the allocated 2078 // object, e.g. if the final overrider class is laid out after the virtual 2079 // base that declares a method in the most derived class. 2080 V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual); 2081 } 2082 2083 // Don't need to bitcast back, the call CodeGen will handle this. 2084 return V; 2085 } 2086 2087 llvm::Value * 2088 MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, 2089 const ReturnAdjustment &RA) { 2090 if (RA.isEmpty()) 2091 return Ret.getPointer(); 2092 2093 auto OrigTy = Ret.getType(); 2094 Ret = CGF.Builder.CreateElementBitCast(Ret, CGF.Int8Ty); 2095 2096 llvm::Value *V = Ret.getPointer(); 2097 if (RA.Virtual.Microsoft.VBIndex) { 2098 assert(RA.Virtual.Microsoft.VBIndex > 0); 2099 int32_t IntSize = CGF.getIntSize().getQuantity(); 2100 llvm::Value *VBPtr; 2101 llvm::Value *VBaseOffset = 2102 GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset, 2103 IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr); 2104 V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset); 2105 } 2106 2107 if (RA.NonVirtual) 2108 V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual); 2109 2110 // Cast back to the original type. 2111 return CGF.Builder.CreateBitCast(V, OrigTy); 2112 } 2113 2114 bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr, 2115 QualType elementType) { 2116 // Microsoft seems to completely ignore the possibility of a 2117 // two-argument usual deallocation function. 2118 return elementType.isDestructedType(); 2119 } 2120 2121 bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) { 2122 // Microsoft seems to completely ignore the possibility of a 2123 // two-argument usual deallocation function. 2124 return expr->getAllocatedType().isDestructedType(); 2125 } 2126 2127 CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) { 2128 // The array cookie is always a size_t; we then pad that out to the 2129 // alignment of the element type. 2130 ASTContext &Ctx = getContext(); 2131 return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()), 2132 Ctx.getTypeAlignInChars(type)); 2133 } 2134 2135 llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, 2136 Address allocPtr, 2137 CharUnits cookieSize) { 2138 Address numElementsPtr = 2139 CGF.Builder.CreateElementBitCast(allocPtr, CGF.SizeTy); 2140 return CGF.Builder.CreateLoad(numElementsPtr); 2141 } 2142 2143 Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, 2144 Address newPtr, 2145 llvm::Value *numElements, 2146 const CXXNewExpr *expr, 2147 QualType elementType) { 2148 assert(requiresArrayCookie(expr)); 2149 2150 // The size of the cookie. 2151 CharUnits cookieSize = getArrayCookieSizeImpl(elementType); 2152 2153 // Compute an offset to the cookie. 2154 Address cookiePtr = newPtr; 2155 2156 // Write the number of elements into the appropriate slot. 2157 Address numElementsPtr 2158 = CGF.Builder.CreateElementBitCast(cookiePtr, CGF.SizeTy); 2159 CGF.Builder.CreateStore(numElements, numElementsPtr); 2160 2161 // Finally, compute a pointer to the actual data buffer by skipping 2162 // over the cookie completely. 2163 return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); 2164 } 2165 2166 static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD, 2167 llvm::Constant *Dtor, 2168 llvm::Constant *Addr) { 2169 // Create a function which calls the destructor. 2170 llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr); 2171 2172 // extern "C" int __tlregdtor(void (*f)(void)); 2173 llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get( 2174 CGF.IntTy, DtorStub->getType(), /*IsVarArg=*/false); 2175 2176 llvm::Constant *TLRegDtor = 2177 CGF.CGM.CreateRuntimeFunction(TLRegDtorTy, "__tlregdtor"); 2178 if (llvm::Function *TLRegDtorFn = dyn_cast<llvm::Function>(TLRegDtor)) 2179 TLRegDtorFn->setDoesNotThrow(); 2180 2181 CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub); 2182 } 2183 2184 void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, 2185 llvm::Constant *Dtor, 2186 llvm::Constant *Addr) { 2187 if (D.getTLSKind()) 2188 return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr); 2189 2190 // The default behavior is to use atexit. 2191 CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr); 2192 } 2193 2194 void MicrosoftCXXABI::EmitThreadLocalInitFuncs( 2195 CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, 2196 ArrayRef<llvm::Function *> CXXThreadLocalInits, 2197 ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { 2198 // This will create a GV in the .CRT$XDU section. It will point to our 2199 // initialization function. The CRT will call all of these function 2200 // pointers at start-up time and, eventually, at thread-creation time. 2201 auto AddToXDU = [&CGM](llvm::Function *InitFunc) { 2202 llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable( 2203 CGM.getModule(), InitFunc->getType(), /*IsConstant=*/true, 2204 llvm::GlobalVariable::InternalLinkage, InitFunc, 2205 Twine(InitFunc->getName(), "$initializer$")); 2206 InitFuncPtr->setSection(".CRT$XDU"); 2207 // This variable has discardable linkage, we have to add it to @llvm.used to 2208 // ensure it won't get discarded. 2209 CGM.addUsedGlobal(InitFuncPtr); 2210 return InitFuncPtr; 2211 }; 2212 2213 std::vector<llvm::Function *> NonComdatInits; 2214 for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) { 2215 llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>( 2216 CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I]))); 2217 llvm::Function *F = CXXThreadLocalInits[I]; 2218 2219 // If the GV is already in a comdat group, then we have to join it. 2220 if (llvm::Comdat *C = GV->getComdat()) 2221 AddToXDU(F)->setComdat(C); 2222 else 2223 NonComdatInits.push_back(F); 2224 } 2225 2226 if (!NonComdatInits.empty()) { 2227 llvm::FunctionType *FTy = 2228 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 2229 llvm::Function *InitFunc = CGM.CreateGlobalInitOrDestructFunction( 2230 FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(), 2231 SourceLocation(), /*TLS=*/true); 2232 CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits); 2233 2234 AddToXDU(InitFunc); 2235 } 2236 } 2237 2238 LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, 2239 const VarDecl *VD, 2240 QualType LValType) { 2241 CGF.CGM.ErrorUnsupported(VD, "thread wrappers"); 2242 return LValue(); 2243 } 2244 2245 static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) { 2246 StringRef VarName("_Init_thread_epoch"); 2247 CharUnits Align = CGM.getIntAlign(); 2248 if (auto *GV = CGM.getModule().getNamedGlobal(VarName)) 2249 return ConstantAddress(GV, Align); 2250 auto *GV = new llvm::GlobalVariable( 2251 CGM.getModule(), CGM.IntTy, 2252 /*Constant=*/false, llvm::GlobalVariable::ExternalLinkage, 2253 /*Initializer=*/nullptr, VarName, 2254 /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel); 2255 GV->setAlignment(Align.getQuantity()); 2256 return ConstantAddress(GV, Align); 2257 } 2258 2259 static llvm::Constant *getInitThreadHeaderFn(CodeGenModule &CGM) { 2260 llvm::FunctionType *FTy = 2261 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2262 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2263 return CGM.CreateRuntimeFunction( 2264 FTy, "_Init_thread_header", 2265 llvm::AttributeSet::get(CGM.getLLVMContext(), 2266 llvm::AttributeSet::FunctionIndex, 2267 llvm::Attribute::NoUnwind)); 2268 } 2269 2270 static llvm::Constant *getInitThreadFooterFn(CodeGenModule &CGM) { 2271 llvm::FunctionType *FTy = 2272 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2273 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2274 return CGM.CreateRuntimeFunction( 2275 FTy, "_Init_thread_footer", 2276 llvm::AttributeSet::get(CGM.getLLVMContext(), 2277 llvm::AttributeSet::FunctionIndex, 2278 llvm::Attribute::NoUnwind)); 2279 } 2280 2281 static llvm::Constant *getInitThreadAbortFn(CodeGenModule &CGM) { 2282 llvm::FunctionType *FTy = 2283 llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), 2284 CGM.IntTy->getPointerTo(), /*isVarArg=*/false); 2285 return CGM.CreateRuntimeFunction( 2286 FTy, "_Init_thread_abort", 2287 llvm::AttributeSet::get(CGM.getLLVMContext(), 2288 llvm::AttributeSet::FunctionIndex, 2289 llvm::Attribute::NoUnwind)); 2290 } 2291 2292 namespace { 2293 struct ResetGuardBit final : EHScopeStack::Cleanup { 2294 Address Guard; 2295 unsigned GuardNum; 2296 ResetGuardBit(Address Guard, unsigned GuardNum) 2297 : Guard(Guard), GuardNum(GuardNum) {} 2298 2299 void Emit(CodeGenFunction &CGF, Flags flags) override { 2300 // Reset the bit in the mask so that the static variable may be 2301 // reinitialized. 2302 CGBuilderTy &Builder = CGF.Builder; 2303 llvm::LoadInst *LI = Builder.CreateLoad(Guard); 2304 llvm::ConstantInt *Mask = 2305 llvm::ConstantInt::get(CGF.IntTy, ~(1U << GuardNum)); 2306 Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard); 2307 } 2308 }; 2309 2310 struct CallInitThreadAbort final : EHScopeStack::Cleanup { 2311 llvm::Value *Guard; 2312 CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {} 2313 2314 void Emit(CodeGenFunction &CGF, Flags flags) override { 2315 // Calling _Init_thread_abort will reset the guard's state. 2316 CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard); 2317 } 2318 }; 2319 } 2320 2321 void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, 2322 llvm::GlobalVariable *GV, 2323 bool PerformInit) { 2324 // MSVC only uses guards for static locals. 2325 if (!D.isStaticLocal()) { 2326 assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage()); 2327 // GlobalOpt is allowed to discard the initializer, so use linkonce_odr. 2328 llvm::Function *F = CGF.CurFn; 2329 F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage); 2330 F->setComdat(CGM.getModule().getOrInsertComdat(F->getName())); 2331 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2332 return; 2333 } 2334 2335 bool ThreadlocalStatic = D.getTLSKind(); 2336 bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics; 2337 2338 // Thread-safe static variables which aren't thread-specific have a 2339 // per-variable guard. 2340 bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic; 2341 2342 CGBuilderTy &Builder = CGF.Builder; 2343 llvm::IntegerType *GuardTy = CGF.Int32Ty; 2344 llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0); 2345 CharUnits GuardAlign = CharUnits::fromQuantity(4); 2346 2347 // Get the guard variable for this function if we have one already. 2348 GuardInfo *GI = nullptr; 2349 if (ThreadlocalStatic) 2350 GI = &ThreadLocalGuardVariableMap[D.getDeclContext()]; 2351 else if (!ThreadsafeStatic) 2352 GI = &GuardVariableMap[D.getDeclContext()]; 2353 2354 llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr; 2355 unsigned GuardNum; 2356 if (D.isExternallyVisible()) { 2357 // Externally visible variables have to be numbered in Sema to properly 2358 // handle unreachable VarDecls. 2359 GuardNum = getContext().getStaticLocalNumber(&D); 2360 assert(GuardNum > 0); 2361 GuardNum--; 2362 } else if (HasPerVariableGuard) { 2363 GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++; 2364 } else { 2365 // Non-externally visible variables are numbered here in CodeGen. 2366 GuardNum = GI->BitIndex++; 2367 } 2368 2369 if (!HasPerVariableGuard && GuardNum >= 32) { 2370 if (D.isExternallyVisible()) 2371 ErrorUnsupportedABI(CGF, "more than 32 guarded initializations"); 2372 GuardNum %= 32; 2373 GuardVar = nullptr; 2374 } 2375 2376 if (!GuardVar) { 2377 // Mangle the name for the guard. 2378 SmallString<256> GuardName; 2379 { 2380 llvm::raw_svector_ostream Out(GuardName); 2381 if (HasPerVariableGuard) 2382 getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum, 2383 Out); 2384 else 2385 getMangleContext().mangleStaticGuardVariable(&D, Out); 2386 } 2387 2388 // Create the guard variable with a zero-initializer. Just absorb linkage, 2389 // visibility and dll storage class from the guarded variable. 2390 GuardVar = 2391 new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false, 2392 GV->getLinkage(), Zero, GuardName.str()); 2393 GuardVar->setVisibility(GV->getVisibility()); 2394 GuardVar->setDLLStorageClass(GV->getDLLStorageClass()); 2395 GuardVar->setAlignment(GuardAlign.getQuantity()); 2396 if (GuardVar->isWeakForLinker()) 2397 GuardVar->setComdat( 2398 CGM.getModule().getOrInsertComdat(GuardVar->getName())); 2399 if (D.getTLSKind()) 2400 GuardVar->setThreadLocal(true); 2401 if (GI && !HasPerVariableGuard) 2402 GI->Guard = GuardVar; 2403 } 2404 2405 ConstantAddress GuardAddr(GuardVar, GuardAlign); 2406 2407 assert(GuardVar->getLinkage() == GV->getLinkage() && 2408 "static local from the same function had different linkage"); 2409 2410 if (!HasPerVariableGuard) { 2411 // Pseudo code for the test: 2412 // if (!(GuardVar & MyGuardBit)) { 2413 // GuardVar |= MyGuardBit; 2414 // ... initialize the object ...; 2415 // } 2416 2417 // Test our bit from the guard variable. 2418 llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << GuardNum); 2419 llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr); 2420 llvm::Value *IsInitialized = 2421 Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero); 2422 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2423 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2424 Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock); 2425 2426 // Set our bit in the guard variable and emit the initializer and add a global 2427 // destructor if appropriate. 2428 CGF.EmitBlock(InitBlock); 2429 Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr); 2430 CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum); 2431 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2432 CGF.PopCleanupBlock(); 2433 Builder.CreateBr(EndBlock); 2434 2435 // Continue. 2436 CGF.EmitBlock(EndBlock); 2437 } else { 2438 // Pseudo code for the test: 2439 // if (TSS > _Init_thread_epoch) { 2440 // _Init_thread_header(&TSS); 2441 // if (TSS == -1) { 2442 // ... initialize the object ...; 2443 // _Init_thread_footer(&TSS); 2444 // } 2445 // } 2446 // 2447 // The algorithm is almost identical to what can be found in the appendix 2448 // found in N2325. 2449 2450 // This BasicBLock determines whether or not we have any work to do. 2451 llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr); 2452 FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2453 llvm::LoadInst *InitThreadEpoch = 2454 Builder.CreateLoad(getInitThreadEpochPtr(CGM)); 2455 llvm::Value *IsUninitialized = 2456 Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch); 2457 llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt"); 2458 llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); 2459 Builder.CreateCondBr(IsUninitialized, AttemptInitBlock, EndBlock); 2460 2461 // This BasicBlock attempts to determine whether or not this thread is 2462 // responsible for doing the initialization. 2463 CGF.EmitBlock(AttemptInitBlock); 2464 CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM), 2465 GuardAddr.getPointer()); 2466 llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr); 2467 SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered); 2468 llvm::Value *ShouldDoInit = 2469 Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt()); 2470 llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); 2471 Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock); 2472 2473 // Ok, we ended up getting selected as the initializing thread. 2474 CGF.EmitBlock(InitBlock); 2475 CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr); 2476 CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit); 2477 CGF.PopCleanupBlock(); 2478 CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM), 2479 GuardAddr.getPointer()); 2480 Builder.CreateBr(EndBlock); 2481 2482 CGF.EmitBlock(EndBlock); 2483 } 2484 } 2485 2486 bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) { 2487 // Null-ness for function memptrs only depends on the first field, which is 2488 // the function pointer. The rest don't matter, so we can zero initialize. 2489 if (MPT->isMemberFunctionPointer()) 2490 return true; 2491 2492 // The virtual base adjustment field is always -1 for null, so if we have one 2493 // we can't zero initialize. The field offset is sometimes also -1 if 0 is a 2494 // valid field offset. 2495 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2496 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2497 return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) && 2498 RD->nullFieldOffsetIsZero()); 2499 } 2500 2501 llvm::Type * 2502 MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { 2503 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2504 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2505 llvm::SmallVector<llvm::Type *, 4> fields; 2506 if (MPT->isMemberFunctionPointer()) 2507 fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk 2508 else 2509 fields.push_back(CGM.IntTy); // FieldOffset 2510 2511 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), 2512 Inheritance)) 2513 fields.push_back(CGM.IntTy); 2514 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2515 fields.push_back(CGM.IntTy); 2516 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2517 fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset 2518 2519 if (fields.size() == 1) 2520 return fields[0]; 2521 return llvm::StructType::get(CGM.getLLVMContext(), fields); 2522 } 2523 2524 void MicrosoftCXXABI:: 2525 GetNullMemberPointerFields(const MemberPointerType *MPT, 2526 llvm::SmallVectorImpl<llvm::Constant *> &fields) { 2527 assert(fields.empty()); 2528 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2529 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2530 if (MPT->isMemberFunctionPointer()) { 2531 // FunctionPointerOrVirtualThunk 2532 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2533 } else { 2534 if (RD->nullFieldOffsetIsZero()) 2535 fields.push_back(getZeroInt()); // FieldOffset 2536 else 2537 fields.push_back(getAllOnesInt()); // FieldOffset 2538 } 2539 2540 if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(), 2541 Inheritance)) 2542 fields.push_back(getZeroInt()); 2543 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2544 fields.push_back(getZeroInt()); 2545 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2546 fields.push_back(getAllOnesInt()); 2547 } 2548 2549 llvm::Constant * 2550 MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { 2551 llvm::SmallVector<llvm::Constant *, 4> fields; 2552 GetNullMemberPointerFields(MPT, fields); 2553 if (fields.size() == 1) 2554 return fields[0]; 2555 llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields); 2556 assert(Res->getType() == ConvertMemberPointerType(MPT)); 2557 return Res; 2558 } 2559 2560 llvm::Constant * 2561 MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField, 2562 bool IsMemberFunction, 2563 const CXXRecordDecl *RD, 2564 CharUnits NonVirtualBaseAdjustment, 2565 unsigned VBTableIndex) { 2566 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2567 2568 // Single inheritance class member pointer are represented as scalars instead 2569 // of aggregates. 2570 if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance)) 2571 return FirstField; 2572 2573 llvm::SmallVector<llvm::Constant *, 4> fields; 2574 fields.push_back(FirstField); 2575 2576 if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance)) 2577 fields.push_back(llvm::ConstantInt::get( 2578 CGM.IntTy, NonVirtualBaseAdjustment.getQuantity())); 2579 2580 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) { 2581 CharUnits Offs = CharUnits::Zero(); 2582 if (VBTableIndex) 2583 Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2584 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity())); 2585 } 2586 2587 // The rest of the fields are adjusted by conversions to a more derived class. 2588 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2589 fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex)); 2590 2591 return llvm::ConstantStruct::getAnon(fields); 2592 } 2593 2594 llvm::Constant * 2595 MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, 2596 CharUnits offset) { 2597 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2598 if (RD->getMSInheritanceModel() == 2599 MSInheritanceAttr::Keyword_virtual_inheritance) 2600 offset -= getContext().getOffsetOfBaseWithVBPtr(RD); 2601 llvm::Constant *FirstField = 2602 llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity()); 2603 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD, 2604 CharUnits::Zero(), /*VBTableIndex=*/0); 2605 } 2606 2607 llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP, 2608 QualType MPType) { 2609 const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>(); 2610 const ValueDecl *MPD = MP.getMemberPointerDecl(); 2611 if (!MPD) 2612 return EmitNullMemberPointer(DstTy); 2613 2614 ASTContext &Ctx = getContext(); 2615 ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath(); 2616 2617 llvm::Constant *C; 2618 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) { 2619 C = EmitMemberFunctionPointer(MD); 2620 } else { 2621 CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD)); 2622 C = EmitMemberDataPointer(DstTy, FieldOffset); 2623 } 2624 2625 if (!MemberPointerPath.empty()) { 2626 const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext()); 2627 const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr(); 2628 const MemberPointerType *SrcTy = 2629 Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy) 2630 ->castAs<MemberPointerType>(); 2631 2632 bool DerivedMember = MP.isMemberPointerToDerivedMember(); 2633 SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath; 2634 const CXXRecordDecl *PrevRD = SrcRD; 2635 for (const CXXRecordDecl *PathElem : MemberPointerPath) { 2636 const CXXRecordDecl *Base = nullptr; 2637 const CXXRecordDecl *Derived = nullptr; 2638 if (DerivedMember) { 2639 Base = PathElem; 2640 Derived = PrevRD; 2641 } else { 2642 Base = PrevRD; 2643 Derived = PathElem; 2644 } 2645 for (const CXXBaseSpecifier &BS : Derived->bases()) 2646 if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() == 2647 Base->getCanonicalDecl()) 2648 DerivedToBasePath.push_back(&BS); 2649 PrevRD = PathElem; 2650 } 2651 assert(DerivedToBasePath.size() == MemberPointerPath.size()); 2652 2653 CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer 2654 : CK_BaseToDerivedMemberPointer; 2655 C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(), 2656 DerivedToBasePath.end(), C); 2657 } 2658 return C; 2659 } 2660 2661 llvm::Constant * 2662 MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { 2663 assert(MD->isInstance() && "Member function must not be static!"); 2664 2665 MD = MD->getCanonicalDecl(); 2666 CharUnits NonVirtualBaseAdjustment = CharUnits::Zero(); 2667 const CXXRecordDecl *RD = MD->getParent()->getMostRecentDecl(); 2668 CodeGenTypes &Types = CGM.getTypes(); 2669 2670 unsigned VBTableIndex = 0; 2671 llvm::Constant *FirstField; 2672 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); 2673 if (!MD->isVirtual()) { 2674 llvm::Type *Ty; 2675 // Check whether the function has a computable LLVM signature. 2676 if (Types.isFuncTypeConvertible(FPT)) { 2677 // The function has a computable LLVM signature; use the correct type. 2678 Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); 2679 } else { 2680 // Use an arbitrary non-function type to tell GetAddrOfFunction that the 2681 // function type is incomplete. 2682 Ty = CGM.PtrDiffTy; 2683 } 2684 FirstField = CGM.GetAddrOfFunction(MD, Ty); 2685 } else { 2686 auto &VTableContext = CGM.getMicrosoftVTableContext(); 2687 MicrosoftVTableContext::MethodVFTableLocation ML = 2688 VTableContext.getMethodVFTableLocation(MD); 2689 FirstField = EmitVirtualMemPtrThunk(MD, ML); 2690 // Include the vfptr adjustment if the method is in a non-primary vftable. 2691 NonVirtualBaseAdjustment += ML.VFPtrOffset; 2692 if (ML.VBase) 2693 VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4; 2694 } 2695 2696 if (VBTableIndex == 0 && 2697 RD->getMSInheritanceModel() == 2698 MSInheritanceAttr::Keyword_virtual_inheritance) 2699 NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD); 2700 2701 // The rest of the fields are common with data member pointers. 2702 FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy); 2703 return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD, 2704 NonVirtualBaseAdjustment, VBTableIndex); 2705 } 2706 2707 /// Member pointers are the same if they're either bitwise identical *or* both 2708 /// null. Null-ness for function members is determined by the first field, 2709 /// while for data member pointers we must compare all fields. 2710 llvm::Value * 2711 MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, 2712 llvm::Value *L, 2713 llvm::Value *R, 2714 const MemberPointerType *MPT, 2715 bool Inequality) { 2716 CGBuilderTy &Builder = CGF.Builder; 2717 2718 // Handle != comparisons by switching the sense of all boolean operations. 2719 llvm::ICmpInst::Predicate Eq; 2720 llvm::Instruction::BinaryOps And, Or; 2721 if (Inequality) { 2722 Eq = llvm::ICmpInst::ICMP_NE; 2723 And = llvm::Instruction::Or; 2724 Or = llvm::Instruction::And; 2725 } else { 2726 Eq = llvm::ICmpInst::ICMP_EQ; 2727 And = llvm::Instruction::And; 2728 Or = llvm::Instruction::Or; 2729 } 2730 2731 // If this is a single field member pointer (single inheritance), this is a 2732 // single icmp. 2733 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2734 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2735 if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(), 2736 Inheritance)) 2737 return Builder.CreateICmp(Eq, L, R); 2738 2739 // Compare the first field. 2740 llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0"); 2741 llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0"); 2742 llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first"); 2743 2744 // Compare everything other than the first field. 2745 llvm::Value *Res = nullptr; 2746 llvm::StructType *LType = cast<llvm::StructType>(L->getType()); 2747 for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) { 2748 llvm::Value *LF = Builder.CreateExtractValue(L, I); 2749 llvm::Value *RF = Builder.CreateExtractValue(R, I); 2750 llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest"); 2751 if (Res) 2752 Res = Builder.CreateBinOp(And, Res, Cmp); 2753 else 2754 Res = Cmp; 2755 } 2756 2757 // Check if the first field is 0 if this is a function pointer. 2758 if (MPT->isMemberFunctionPointer()) { 2759 // (l1 == r1 && ...) || l0 == 0 2760 llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType()); 2761 llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero"); 2762 Res = Builder.CreateBinOp(Or, Res, IsZero); 2763 } 2764 2765 // Combine the comparison of the first field, which must always be true for 2766 // this comparison to succeeed. 2767 return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp"); 2768 } 2769 2770 llvm::Value * 2771 MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, 2772 llvm::Value *MemPtr, 2773 const MemberPointerType *MPT) { 2774 CGBuilderTy &Builder = CGF.Builder; 2775 llvm::SmallVector<llvm::Constant *, 4> fields; 2776 // We only need one field for member functions. 2777 if (MPT->isMemberFunctionPointer()) 2778 fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy)); 2779 else 2780 GetNullMemberPointerFields(MPT, fields); 2781 assert(!fields.empty()); 2782 llvm::Value *FirstField = MemPtr; 2783 if (MemPtr->getType()->isStructTy()) 2784 FirstField = Builder.CreateExtractValue(MemPtr, 0); 2785 llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0"); 2786 2787 // For function member pointers, we only need to test the function pointer 2788 // field. The other fields if any can be garbage. 2789 if (MPT->isMemberFunctionPointer()) 2790 return Res; 2791 2792 // Otherwise, emit a series of compares and combine the results. 2793 for (int I = 1, E = fields.size(); I < E; ++I) { 2794 llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I); 2795 llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp"); 2796 Res = Builder.CreateOr(Res, Next, "memptr.tobool"); 2797 } 2798 return Res; 2799 } 2800 2801 bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT, 2802 llvm::Constant *Val) { 2803 // Function pointers are null if the pointer in the first field is null. 2804 if (MPT->isMemberFunctionPointer()) { 2805 llvm::Constant *FirstField = Val->getType()->isStructTy() ? 2806 Val->getAggregateElement(0U) : Val; 2807 return FirstField->isNullValue(); 2808 } 2809 2810 // If it's not a function pointer and it's zero initializable, we can easily 2811 // check zero. 2812 if (isZeroInitializable(MPT) && Val->isNullValue()) 2813 return true; 2814 2815 // Otherwise, break down all the fields for comparison. Hopefully these 2816 // little Constants are reused, while a big null struct might not be. 2817 llvm::SmallVector<llvm::Constant *, 4> Fields; 2818 GetNullMemberPointerFields(MPT, Fields); 2819 if (Fields.size() == 1) { 2820 assert(Val->getType()->isIntegerTy()); 2821 return Val == Fields[0]; 2822 } 2823 2824 unsigned I, E; 2825 for (I = 0, E = Fields.size(); I != E; ++I) { 2826 if (Val->getAggregateElement(I) != Fields[I]) 2827 break; 2828 } 2829 return I == E; 2830 } 2831 2832 llvm::Value * 2833 MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF, 2834 Address This, 2835 llvm::Value *VBPtrOffset, 2836 llvm::Value *VBTableOffset, 2837 llvm::Value **VBPtrOut) { 2838 CGBuilderTy &Builder = CGF.Builder; 2839 // Load the vbtable pointer from the vbptr in the instance. 2840 This = Builder.CreateElementBitCast(This, CGM.Int8Ty); 2841 llvm::Value *VBPtr = 2842 Builder.CreateInBoundsGEP(This.getPointer(), VBPtrOffset, "vbptr"); 2843 if (VBPtrOut) *VBPtrOut = VBPtr; 2844 VBPtr = Builder.CreateBitCast(VBPtr, 2845 CGM.Int32Ty->getPointerTo(0)->getPointerTo(This.getAddressSpace())); 2846 2847 CharUnits VBPtrAlign; 2848 if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) { 2849 VBPtrAlign = This.getAlignment().alignmentAtOffset( 2850 CharUnits::fromQuantity(CI->getSExtValue())); 2851 } else { 2852 VBPtrAlign = CGF.getPointerAlign(); 2853 } 2854 2855 llvm::Value *VBTable = Builder.CreateAlignedLoad(VBPtr, VBPtrAlign, "vbtable"); 2856 2857 // Translate from byte offset to table index. It improves analyzability. 2858 llvm::Value *VBTableIndex = Builder.CreateAShr( 2859 VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2), 2860 "vbtindex", /*isExact=*/true); 2861 2862 // Load an i32 offset from the vb-table. 2863 llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableIndex); 2864 VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0)); 2865 return Builder.CreateAlignedLoad(VBaseOffs, CharUnits::fromQuantity(4), 2866 "vbase_offs"); 2867 } 2868 2869 // Returns an adjusted base cast to i8*, since we do more address arithmetic on 2870 // it. 2871 llvm::Value *MicrosoftCXXABI::AdjustVirtualBase( 2872 CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD, 2873 Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) { 2874 CGBuilderTy &Builder = CGF.Builder; 2875 Base = Builder.CreateElementBitCast(Base, CGM.Int8Ty); 2876 llvm::BasicBlock *OriginalBB = nullptr; 2877 llvm::BasicBlock *SkipAdjustBB = nullptr; 2878 llvm::BasicBlock *VBaseAdjustBB = nullptr; 2879 2880 // In the unspecified inheritance model, there might not be a vbtable at all, 2881 // in which case we need to skip the virtual base lookup. If there is a 2882 // vbtable, the first entry is a no-op entry that gives back the original 2883 // base, so look for a virtual base adjustment offset of zero. 2884 if (VBPtrOffset) { 2885 OriginalBB = Builder.GetInsertBlock(); 2886 VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust"); 2887 SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust"); 2888 llvm::Value *IsVirtual = 2889 Builder.CreateICmpNE(VBTableOffset, getZeroInt(), 2890 "memptr.is_vbase"); 2891 Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB); 2892 CGF.EmitBlock(VBaseAdjustBB); 2893 } 2894 2895 // If we weren't given a dynamic vbptr offset, RD should be complete and we'll 2896 // know the vbptr offset. 2897 if (!VBPtrOffset) { 2898 CharUnits offs = CharUnits::Zero(); 2899 if (!RD->hasDefinition()) { 2900 DiagnosticsEngine &Diags = CGF.CGM.getDiags(); 2901 unsigned DiagID = Diags.getCustomDiagID( 2902 DiagnosticsEngine::Error, 2903 "member pointer representation requires a " 2904 "complete class type for %0 to perform this expression"); 2905 Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange(); 2906 } else if (RD->getNumVBases()) 2907 offs = getContext().getASTRecordLayout(RD).getVBPtrOffset(); 2908 VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity()); 2909 } 2910 llvm::Value *VBPtr = nullptr; 2911 llvm::Value *VBaseOffs = 2912 GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr); 2913 llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs); 2914 2915 // Merge control flow with the case where we didn't have to adjust. 2916 if (VBaseAdjustBB) { 2917 Builder.CreateBr(SkipAdjustBB); 2918 CGF.EmitBlock(SkipAdjustBB); 2919 llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base"); 2920 Phi->addIncoming(Base.getPointer(), OriginalBB); 2921 Phi->addIncoming(AdjustedBase, VBaseAdjustBB); 2922 return Phi; 2923 } 2924 return AdjustedBase; 2925 } 2926 2927 llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress( 2928 CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, 2929 const MemberPointerType *MPT) { 2930 assert(MPT->isMemberDataPointer()); 2931 unsigned AS = Base.getAddressSpace(); 2932 llvm::Type *PType = 2933 CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS); 2934 CGBuilderTy &Builder = CGF.Builder; 2935 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 2936 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 2937 2938 // Extract the fields we need, regardless of model. We'll apply them if we 2939 // have them. 2940 llvm::Value *FieldOffset = MemPtr; 2941 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 2942 llvm::Value *VBPtrOffset = nullptr; 2943 if (MemPtr->getType()->isStructTy()) { 2944 // We need to extract values. 2945 unsigned I = 0; 2946 FieldOffset = Builder.CreateExtractValue(MemPtr, I++); 2947 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 2948 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 2949 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 2950 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 2951 } 2952 2953 llvm::Value *Addr; 2954 if (VirtualBaseAdjustmentOffset) { 2955 Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset, 2956 VBPtrOffset); 2957 } else { 2958 Addr = Base.getPointer(); 2959 } 2960 2961 // Cast to char*. 2962 Addr = Builder.CreateBitCast(Addr, CGF.Int8Ty->getPointerTo(AS)); 2963 2964 // Apply the offset, which we assume is non-null. 2965 Addr = Builder.CreateInBoundsGEP(Addr, FieldOffset, "memptr.offset"); 2966 2967 // Cast the address to the appropriate pointer type, adopting the address 2968 // space of the base pointer. 2969 return Builder.CreateBitCast(Addr, PType); 2970 } 2971 2972 llvm::Value * 2973 MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, 2974 const CastExpr *E, 2975 llvm::Value *Src) { 2976 assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || 2977 E->getCastKind() == CK_BaseToDerivedMemberPointer || 2978 E->getCastKind() == CK_ReinterpretMemberPointer); 2979 2980 // Use constant emission if we can. 2981 if (isa<llvm::Constant>(Src)) 2982 return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src)); 2983 2984 // We may be adding or dropping fields from the member pointer, so we need 2985 // both types and the inheritance models of both records. 2986 const MemberPointerType *SrcTy = 2987 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 2988 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 2989 bool IsFunc = SrcTy->isMemberFunctionPointer(); 2990 2991 // If the classes use the same null representation, reinterpret_cast is a nop. 2992 bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer; 2993 if (IsReinterpret && IsFunc) 2994 return Src; 2995 2996 CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 2997 CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 2998 if (IsReinterpret && 2999 SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero()) 3000 return Src; 3001 3002 CGBuilderTy &Builder = CGF.Builder; 3003 3004 // Branch past the conversion if Src is null. 3005 llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy); 3006 llvm::Constant *DstNull = EmitNullMemberPointer(DstTy); 3007 3008 // C++ 5.2.10p9: The null member pointer value is converted to the null member 3009 // pointer value of the destination type. 3010 if (IsReinterpret) { 3011 // For reinterpret casts, sema ensures that src and dst are both functions 3012 // or data and have the same size, which means the LLVM types should match. 3013 assert(Src->getType() == DstNull->getType()); 3014 return Builder.CreateSelect(IsNotNull, Src, DstNull); 3015 } 3016 3017 llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock(); 3018 llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert"); 3019 llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted"); 3020 Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB); 3021 CGF.EmitBlock(ConvertBB); 3022 3023 llvm::Value *Dst = EmitNonNullMemberPointerConversion( 3024 SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src, 3025 Builder); 3026 3027 Builder.CreateBr(ContinueBB); 3028 3029 // In the continuation, choose between DstNull and Dst. 3030 CGF.EmitBlock(ContinueBB); 3031 llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted"); 3032 Phi->addIncoming(DstNull, OriginalBB); 3033 Phi->addIncoming(Dst, ConvertBB); 3034 return Phi; 3035 } 3036 3037 llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion( 3038 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3039 CastExpr::path_const_iterator PathBegin, 3040 CastExpr::path_const_iterator PathEnd, llvm::Value *Src, 3041 CGBuilderTy &Builder) { 3042 const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl(); 3043 const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl(); 3044 MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel(); 3045 MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel(); 3046 bool IsFunc = SrcTy->isMemberFunctionPointer(); 3047 bool IsConstant = isa<llvm::Constant>(Src); 3048 3049 // Decompose src. 3050 llvm::Value *FirstField = Src; 3051 llvm::Value *NonVirtualBaseAdjustment = getZeroInt(); 3052 llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt(); 3053 llvm::Value *VBPtrOffset = getZeroInt(); 3054 if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) { 3055 // We need to extract values. 3056 unsigned I = 0; 3057 FirstField = Builder.CreateExtractValue(Src, I++); 3058 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance)) 3059 NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++); 3060 if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance)) 3061 VBPtrOffset = Builder.CreateExtractValue(Src, I++); 3062 if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) 3063 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++); 3064 } 3065 3066 bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer); 3067 const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy; 3068 const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl(); 3069 3070 // For data pointers, we adjust the field offset directly. For functions, we 3071 // have a separate field. 3072 llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField; 3073 3074 // The virtual inheritance model has a quirk: the virtual base table is always 3075 // referenced when dereferencing a member pointer even if the member pointer 3076 // is non-virtual. This is accounted for by adjusting the non-virtual offset 3077 // to point backwards to the top of the MDC from the first VBase. Undo this 3078 // adjustment to normalize the member pointer. 3079 llvm::Value *SrcVBIndexEqZero = 3080 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3081 if (SrcInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) { 3082 if (int64_t SrcOffsetToFirstVBase = 3083 getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) { 3084 llvm::Value *UndoSrcAdjustment = Builder.CreateSelect( 3085 SrcVBIndexEqZero, 3086 llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase), 3087 getZeroInt()); 3088 NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment); 3089 } 3090 } 3091 3092 // A non-zero vbindex implies that we are dealing with a source member in a 3093 // floating virtual base in addition to some non-virtual offset. If the 3094 // vbindex is zero, we are dealing with a source that exists in a non-virtual, 3095 // fixed, base. The difference between these two cases is that the vbindex + 3096 // nvoffset *always* point to the member regardless of what context they are 3097 // evaluated in so long as the vbindex is adjusted. A member inside a fixed 3098 // base requires explicit nv adjustment. 3099 llvm::Constant *BaseClassOffset = llvm::ConstantInt::get( 3100 CGM.IntTy, 3101 CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd) 3102 .getQuantity()); 3103 3104 llvm::Value *NVDisp; 3105 if (IsDerivedToBase) 3106 NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj"); 3107 else 3108 NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj"); 3109 3110 NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt()); 3111 3112 // Update the vbindex to an appropriate value in the destination because 3113 // SrcRD's vbtable might not be a strict prefix of the one in DstRD. 3114 llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero; 3115 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance) && 3116 MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance)) { 3117 if (llvm::GlobalVariable *VDispMap = 3118 getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) { 3119 llvm::Value *VBIndex = Builder.CreateExactUDiv( 3120 VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4)); 3121 if (IsConstant) { 3122 llvm::Constant *Mapping = VDispMap->getInitializer(); 3123 VirtualBaseAdjustmentOffset = 3124 Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex)); 3125 } else { 3126 llvm::Value *Idxs[] = {getZeroInt(), VBIndex}; 3127 VirtualBaseAdjustmentOffset = 3128 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(VDispMap, Idxs), 3129 CharUnits::fromQuantity(4)); 3130 } 3131 3132 DstVBIndexEqZero = 3133 Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt()); 3134 } 3135 } 3136 3137 // Set the VBPtrOffset to zero if the vbindex is zero. Otherwise, initialize 3138 // it to the offset of the vbptr. 3139 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) { 3140 llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get( 3141 CGM.IntTy, 3142 getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity()); 3143 VBPtrOffset = 3144 Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset); 3145 } 3146 3147 // Likewise, apply a similar adjustment so that dereferencing the member 3148 // pointer correctly accounts for the distance between the start of the first 3149 // virtual base and the top of the MDC. 3150 if (DstInheritance == MSInheritanceAttr::Keyword_virtual_inheritance) { 3151 if (int64_t DstOffsetToFirstVBase = 3152 getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) { 3153 llvm::Value *DoDstAdjustment = Builder.CreateSelect( 3154 DstVBIndexEqZero, 3155 llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase), 3156 getZeroInt()); 3157 NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment); 3158 } 3159 } 3160 3161 // Recompose dst from the null struct and the adjusted fields from src. 3162 llvm::Value *Dst; 3163 if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) { 3164 Dst = FirstField; 3165 } else { 3166 Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy)); 3167 unsigned Idx = 0; 3168 Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++); 3169 if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance)) 3170 Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++); 3171 if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance)) 3172 Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++); 3173 if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance)) 3174 Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++); 3175 } 3176 return Dst; 3177 } 3178 3179 llvm::Constant * 3180 MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E, 3181 llvm::Constant *Src) { 3182 const MemberPointerType *SrcTy = 3183 E->getSubExpr()->getType()->castAs<MemberPointerType>(); 3184 const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>(); 3185 3186 CastKind CK = E->getCastKind(); 3187 3188 return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(), 3189 E->path_end(), Src); 3190 } 3191 3192 llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion( 3193 const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK, 3194 CastExpr::path_const_iterator PathBegin, 3195 CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) { 3196 assert(CK == CK_DerivedToBaseMemberPointer || 3197 CK == CK_BaseToDerivedMemberPointer || 3198 CK == CK_ReinterpretMemberPointer); 3199 // If src is null, emit a new null for dst. We can't return src because dst 3200 // might have a new representation. 3201 if (MemberPointerConstantIsNull(SrcTy, Src)) 3202 return EmitNullMemberPointer(DstTy); 3203 3204 // We don't need to do anything for reinterpret_casts of non-null member 3205 // pointers. We should only get here when the two type representations have 3206 // the same size. 3207 if (CK == CK_ReinterpretMemberPointer) 3208 return Src; 3209 3210 CGBuilderTy Builder(CGM, CGM.getLLVMContext()); 3211 auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion( 3212 SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder)); 3213 3214 return Dst; 3215 } 3216 3217 llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer( 3218 CodeGenFunction &CGF, const Expr *E, Address This, 3219 llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr, 3220 const MemberPointerType *MPT) { 3221 assert(MPT->isMemberFunctionPointer()); 3222 const FunctionProtoType *FPT = 3223 MPT->getPointeeType()->castAs<FunctionProtoType>(); 3224 const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl(); 3225 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( 3226 CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); 3227 CGBuilderTy &Builder = CGF.Builder; 3228 3229 MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel(); 3230 3231 // Extract the fields we need, regardless of model. We'll apply them if we 3232 // have them. 3233 llvm::Value *FunctionPointer = MemPtr; 3234 llvm::Value *NonVirtualBaseAdjustment = nullptr; 3235 llvm::Value *VirtualBaseAdjustmentOffset = nullptr; 3236 llvm::Value *VBPtrOffset = nullptr; 3237 if (MemPtr->getType()->isStructTy()) { 3238 // We need to extract values. 3239 unsigned I = 0; 3240 FunctionPointer = Builder.CreateExtractValue(MemPtr, I++); 3241 if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance)) 3242 NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++); 3243 if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) 3244 VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++); 3245 if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance)) 3246 VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++); 3247 } 3248 3249 if (VirtualBaseAdjustmentOffset) { 3250 ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This, 3251 VirtualBaseAdjustmentOffset, VBPtrOffset); 3252 } else { 3253 ThisPtrForCall = This.getPointer(); 3254 } 3255 3256 if (NonVirtualBaseAdjustment) { 3257 // Apply the adjustment and cast back to the original struct type. 3258 llvm::Value *Ptr = Builder.CreateBitCast(ThisPtrForCall, CGF.Int8PtrTy); 3259 Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment); 3260 ThisPtrForCall = Builder.CreateBitCast(Ptr, ThisPtrForCall->getType(), 3261 "this.adjusted"); 3262 } 3263 3264 return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo()); 3265 } 3266 3267 CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) { 3268 return new MicrosoftCXXABI(CGM); 3269 } 3270 3271 // MS RTTI Overview: 3272 // The run time type information emitted by cl.exe contains 5 distinct types of 3273 // structures. Many of them reference each other. 3274 // 3275 // TypeInfo: Static classes that are returned by typeid. 3276 // 3277 // CompleteObjectLocator: Referenced by vftables. They contain information 3278 // required for dynamic casting, including OffsetFromTop. They also contain 3279 // a reference to the TypeInfo for the type and a reference to the 3280 // CompleteHierarchyDescriptor for the type. 3281 // 3282 // ClassHieararchyDescriptor: Contains information about a class hierarchy. 3283 // Used during dynamic_cast to walk a class hierarchy. References a base 3284 // class array and the size of said array. 3285 // 3286 // BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is 3287 // somewhat of a misnomer because the most derived class is also in the list 3288 // as well as multiple copies of virtual bases (if they occur multiple times 3289 // in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for 3290 // every path in the hierarchy, in pre-order depth first order. Note, we do 3291 // not declare a specific llvm type for BaseClassArray, it's merely an array 3292 // of BaseClassDescriptor pointers. 3293 // 3294 // BaseClassDescriptor: Contains information about a class in a class hierarchy. 3295 // BaseClassDescriptor is also somewhat of a misnomer for the same reason that 3296 // BaseClassArray is. It contains information about a class within a 3297 // hierarchy such as: is this base is ambiguous and what is its offset in the 3298 // vbtable. The names of the BaseClassDescriptors have all of their fields 3299 // mangled into them so they can be aggressively deduplicated by the linker. 3300 3301 static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) { 3302 StringRef MangledName("\01??_7type_info@@6B@"); 3303 if (auto VTable = CGM.getModule().getNamedGlobal(MangledName)) 3304 return VTable; 3305 return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, 3306 /*Constant=*/true, 3307 llvm::GlobalVariable::ExternalLinkage, 3308 /*Initializer=*/nullptr, MangledName); 3309 } 3310 3311 namespace { 3312 3313 /// \brief A Helper struct that stores information about a class in a class 3314 /// hierarchy. The information stored in these structs struct is used during 3315 /// the generation of ClassHierarchyDescriptors and BaseClassDescriptors. 3316 // During RTTI creation, MSRTTIClasses are stored in a contiguous array with 3317 // implicit depth first pre-order tree connectivity. getFirstChild and 3318 // getNextSibling allow us to walk the tree efficiently. 3319 struct MSRTTIClass { 3320 enum { 3321 IsPrivateOnPath = 1 | 8, 3322 IsAmbiguous = 2, 3323 IsPrivate = 4, 3324 IsVirtual = 16, 3325 HasHierarchyDescriptor = 64 3326 }; 3327 MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {} 3328 uint32_t initialize(const MSRTTIClass *Parent, 3329 const CXXBaseSpecifier *Specifier); 3330 3331 MSRTTIClass *getFirstChild() { return this + 1; } 3332 static MSRTTIClass *getNextChild(MSRTTIClass *Child) { 3333 return Child + 1 + Child->NumBases; 3334 } 3335 3336 const CXXRecordDecl *RD, *VirtualRoot; 3337 uint32_t Flags, NumBases, OffsetInVBase; 3338 }; 3339 3340 /// \brief Recursively initialize the base class array. 3341 uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent, 3342 const CXXBaseSpecifier *Specifier) { 3343 Flags = HasHierarchyDescriptor; 3344 if (!Parent) { 3345 VirtualRoot = nullptr; 3346 OffsetInVBase = 0; 3347 } else { 3348 if (Specifier->getAccessSpecifier() != AS_public) 3349 Flags |= IsPrivate | IsPrivateOnPath; 3350 if (Specifier->isVirtual()) { 3351 Flags |= IsVirtual; 3352 VirtualRoot = RD; 3353 OffsetInVBase = 0; 3354 } else { 3355 if (Parent->Flags & IsPrivateOnPath) 3356 Flags |= IsPrivateOnPath; 3357 VirtualRoot = Parent->VirtualRoot; 3358 OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext() 3359 .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity(); 3360 } 3361 } 3362 NumBases = 0; 3363 MSRTTIClass *Child = getFirstChild(); 3364 for (const CXXBaseSpecifier &Base : RD->bases()) { 3365 NumBases += Child->initialize(this, &Base) + 1; 3366 Child = getNextChild(Child); 3367 } 3368 return NumBases; 3369 } 3370 3371 static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) { 3372 switch (Ty->getLinkage()) { 3373 case NoLinkage: 3374 case InternalLinkage: 3375 case UniqueExternalLinkage: 3376 return llvm::GlobalValue::InternalLinkage; 3377 3378 case VisibleNoLinkage: 3379 case ExternalLinkage: 3380 return llvm::GlobalValue::LinkOnceODRLinkage; 3381 } 3382 llvm_unreachable("Invalid linkage!"); 3383 } 3384 3385 /// \brief An ephemeral helper class for building MS RTTI types. It caches some 3386 /// calls to the module and information about the most derived class in a 3387 /// hierarchy. 3388 struct MSRTTIBuilder { 3389 enum { 3390 HasBranchingHierarchy = 1, 3391 HasVirtualBranchingHierarchy = 2, 3392 HasAmbiguousBases = 4 3393 }; 3394 3395 MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD) 3396 : CGM(ABI.CGM), Context(CGM.getContext()), 3397 VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD), 3398 Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))), 3399 ABI(ABI) {} 3400 3401 llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes); 3402 llvm::GlobalVariable * 3403 getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes); 3404 llvm::GlobalVariable *getClassHierarchyDescriptor(); 3405 llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info); 3406 3407 CodeGenModule &CGM; 3408 ASTContext &Context; 3409 llvm::LLVMContext &VMContext; 3410 llvm::Module &Module; 3411 const CXXRecordDecl *RD; 3412 llvm::GlobalVariable::LinkageTypes Linkage; 3413 MicrosoftCXXABI &ABI; 3414 }; 3415 3416 } // namespace 3417 3418 /// \brief Recursively serializes a class hierarchy in pre-order depth first 3419 /// order. 3420 static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes, 3421 const CXXRecordDecl *RD) { 3422 Classes.push_back(MSRTTIClass(RD)); 3423 for (const CXXBaseSpecifier &Base : RD->bases()) 3424 serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl()); 3425 } 3426 3427 /// \brief Find ambiguity among base classes. 3428 static void 3429 detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) { 3430 llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases; 3431 llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases; 3432 llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases; 3433 for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) { 3434 if ((Class->Flags & MSRTTIClass::IsVirtual) && 3435 !VirtualBases.insert(Class->RD).second) { 3436 Class = MSRTTIClass::getNextChild(Class); 3437 continue; 3438 } 3439 if (!UniqueBases.insert(Class->RD).second) 3440 AmbiguousBases.insert(Class->RD); 3441 Class++; 3442 } 3443 if (AmbiguousBases.empty()) 3444 return; 3445 for (MSRTTIClass &Class : Classes) 3446 if (AmbiguousBases.count(Class.RD)) 3447 Class.Flags |= MSRTTIClass::IsAmbiguous; 3448 } 3449 3450 llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() { 3451 SmallString<256> MangledName; 3452 { 3453 llvm::raw_svector_ostream Out(MangledName); 3454 ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out); 3455 } 3456 3457 // Check to see if we've already declared this ClassHierarchyDescriptor. 3458 if (auto CHD = Module.getNamedGlobal(MangledName)) 3459 return CHD; 3460 3461 // Serialize the class hierarchy and initialize the CHD Fields. 3462 SmallVector<MSRTTIClass, 8> Classes; 3463 serializeClassHierarchy(Classes, RD); 3464 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 3465 detectAmbiguousBases(Classes); 3466 int Flags = 0; 3467 for (auto Class : Classes) { 3468 if (Class.RD->getNumBases() > 1) 3469 Flags |= HasBranchingHierarchy; 3470 // Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We 3471 // believe the field isn't actually used. 3472 if (Class.Flags & MSRTTIClass::IsAmbiguous) 3473 Flags |= HasAmbiguousBases; 3474 } 3475 if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0) 3476 Flags |= HasVirtualBranchingHierarchy; 3477 // These gep indices are used to get the address of the first element of the 3478 // base class array. 3479 llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0), 3480 llvm::ConstantInt::get(CGM.IntTy, 0)}; 3481 3482 // Forward-declare the class hierarchy descriptor 3483 auto Type = ABI.getClassHierarchyDescriptorType(); 3484 auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, 3485 /*Initializer=*/nullptr, 3486 MangledName); 3487 if (CHD->isWeakForLinker()) 3488 CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName())); 3489 3490 auto *Bases = getBaseClassArray(Classes); 3491 3492 // Initialize the base class ClassHierarchyDescriptor. 3493 llvm::Constant *Fields[] = { 3494 llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown 3495 llvm::ConstantInt::get(CGM.IntTy, Flags), 3496 llvm::ConstantInt::get(CGM.IntTy, Classes.size()), 3497 ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr( 3498 Bases->getValueType(), Bases, 3499 llvm::ArrayRef<llvm::Value *>(GEPIndices))), 3500 }; 3501 CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3502 return CHD; 3503 } 3504 3505 llvm::GlobalVariable * 3506 MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) { 3507 SmallString<256> MangledName; 3508 { 3509 llvm::raw_svector_ostream Out(MangledName); 3510 ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out); 3511 } 3512 3513 // Forward-declare the base class array. 3514 // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit 3515 // mode) bytes of padding. We provide a pointer sized amount of padding by 3516 // adding +1 to Classes.size(). The sections have pointer alignment and are 3517 // marked pick-any so it shouldn't matter. 3518 llvm::Type *PtrType = ABI.getImageRelativeType( 3519 ABI.getBaseClassDescriptorType()->getPointerTo()); 3520 auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1); 3521 auto *BCA = 3522 new llvm::GlobalVariable(Module, ArrType, 3523 /*Constant=*/true, Linkage, 3524 /*Initializer=*/nullptr, MangledName); 3525 if (BCA->isWeakForLinker()) 3526 BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName())); 3527 3528 // Initialize the BaseClassArray. 3529 SmallVector<llvm::Constant *, 8> BaseClassArrayData; 3530 for (MSRTTIClass &Class : Classes) 3531 BaseClassArrayData.push_back( 3532 ABI.getImageRelativeConstant(getBaseClassDescriptor(Class))); 3533 BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType)); 3534 BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData)); 3535 return BCA; 3536 } 3537 3538 llvm::GlobalVariable * 3539 MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) { 3540 // Compute the fields for the BaseClassDescriptor. They are computed up front 3541 // because they are mangled into the name of the object. 3542 uint32_t OffsetInVBTable = 0; 3543 int32_t VBPtrOffset = -1; 3544 if (Class.VirtualRoot) { 3545 auto &VTableContext = CGM.getMicrosoftVTableContext(); 3546 OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4; 3547 VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity(); 3548 } 3549 3550 SmallString<256> MangledName; 3551 { 3552 llvm::raw_svector_ostream Out(MangledName); 3553 ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor( 3554 Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable, 3555 Class.Flags, Out); 3556 } 3557 3558 // Check to see if we've already declared this object. 3559 if (auto BCD = Module.getNamedGlobal(MangledName)) 3560 return BCD; 3561 3562 // Forward-declare the base class descriptor. 3563 auto Type = ABI.getBaseClassDescriptorType(); 3564 auto BCD = 3565 new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, 3566 /*Initializer=*/nullptr, MangledName); 3567 if (BCD->isWeakForLinker()) 3568 BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName())); 3569 3570 // Initialize the BaseClassDescriptor. 3571 llvm::Constant *Fields[] = { 3572 ABI.getImageRelativeConstant( 3573 ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))), 3574 llvm::ConstantInt::get(CGM.IntTy, Class.NumBases), 3575 llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase), 3576 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), 3577 llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable), 3578 llvm::ConstantInt::get(CGM.IntTy, Class.Flags), 3579 ABI.getImageRelativeConstant( 3580 MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()), 3581 }; 3582 BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields)); 3583 return BCD; 3584 } 3585 3586 llvm::GlobalVariable * 3587 MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) { 3588 SmallString<256> MangledName; 3589 { 3590 llvm::raw_svector_ostream Out(MangledName); 3591 ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out); 3592 } 3593 3594 // Check to see if we've already computed this complete object locator. 3595 if (auto COL = Module.getNamedGlobal(MangledName)) 3596 return COL; 3597 3598 // Compute the fields of the complete object locator. 3599 int OffsetToTop = Info->FullOffsetInMDC.getQuantity(); 3600 int VFPtrOffset = 0; 3601 // The offset includes the vtordisp if one exists. 3602 if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr()) 3603 if (Context.getASTRecordLayout(RD) 3604 .getVBaseOffsetsMap() 3605 .find(VBase) 3606 ->second.hasVtorDisp()) 3607 VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4; 3608 3609 // Forward-declare the complete object locator. 3610 llvm::StructType *Type = ABI.getCompleteObjectLocatorType(); 3611 auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage, 3612 /*Initializer=*/nullptr, MangledName); 3613 3614 // Initialize the CompleteObjectLocator. 3615 llvm::Constant *Fields[] = { 3616 llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()), 3617 llvm::ConstantInt::get(CGM.IntTy, OffsetToTop), 3618 llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset), 3619 ABI.getImageRelativeConstant( 3620 CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))), 3621 ABI.getImageRelativeConstant(getClassHierarchyDescriptor()), 3622 ABI.getImageRelativeConstant(COL), 3623 }; 3624 llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields); 3625 if (!ABI.isImageRelative()) 3626 FieldsRef = FieldsRef.drop_back(); 3627 COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef)); 3628 if (COL->isWeakForLinker()) 3629 COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName())); 3630 return COL; 3631 } 3632 3633 static QualType decomposeTypeForEH(ASTContext &Context, QualType T, 3634 bool &IsConst, bool &IsVolatile) { 3635 T = Context.getExceptionObjectType(T); 3636 3637 // C++14 [except.handle]p3: 3638 // A handler is a match for an exception object of type E if [...] 3639 // - the handler is of type cv T or const T& where T is a pointer type and 3640 // E is a pointer type that can be converted to T by [...] 3641 // - a qualification conversion 3642 IsConst = false; 3643 IsVolatile = false; 3644 QualType PointeeType = T->getPointeeType(); 3645 if (!PointeeType.isNull()) { 3646 IsConst = PointeeType.isConstQualified(); 3647 IsVolatile = PointeeType.isVolatileQualified(); 3648 } 3649 3650 // Member pointer types like "const int A::*" are represented by having RTTI 3651 // for "int A::*" and separately storing the const qualifier. 3652 if (const auto *MPTy = T->getAs<MemberPointerType>()) 3653 T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(), 3654 MPTy->getClass()); 3655 3656 // Pointer types like "const int * const *" are represented by having RTTI 3657 // for "const int **" and separately storing the const qualifier. 3658 if (T->isPointerType()) 3659 T = Context.getPointerType(PointeeType.getUnqualifiedType()); 3660 3661 return T; 3662 } 3663 3664 CatchTypeInfo 3665 MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type, 3666 QualType CatchHandlerType) { 3667 // TypeDescriptors for exceptions never have qualified pointer types, 3668 // qualifiers are stored seperately in order to support qualification 3669 // conversions. 3670 bool IsConst, IsVolatile; 3671 Type = decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile); 3672 3673 bool IsReference = CatchHandlerType->isReferenceType(); 3674 3675 uint32_t Flags = 0; 3676 if (IsConst) 3677 Flags |= 1; 3678 if (IsVolatile) 3679 Flags |= 2; 3680 if (IsReference) 3681 Flags |= 8; 3682 3683 return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(), 3684 Flags}; 3685 } 3686 3687 /// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a 3688 /// llvm::GlobalVariable * because different type descriptors have different 3689 /// types, and need to be abstracted. They are abstracting by casting the 3690 /// address to an Int8PtrTy. 3691 llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) { 3692 SmallString<256> MangledName; 3693 { 3694 llvm::raw_svector_ostream Out(MangledName); 3695 getMangleContext().mangleCXXRTTI(Type, Out); 3696 } 3697 3698 // Check to see if we've already declared this TypeDescriptor. 3699 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3700 return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); 3701 3702 // Compute the fields for the TypeDescriptor. 3703 SmallString<256> TypeInfoString; 3704 { 3705 llvm::raw_svector_ostream Out(TypeInfoString); 3706 getMangleContext().mangleCXXRTTIName(Type, Out); 3707 } 3708 3709 // Declare and initialize the TypeDescriptor. 3710 llvm::Constant *Fields[] = { 3711 getTypeInfoVTable(CGM), // VFPtr 3712 llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data 3713 llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)}; 3714 llvm::StructType *TypeDescriptorType = 3715 getTypeDescriptorType(TypeInfoString); 3716 auto *Var = new llvm::GlobalVariable( 3717 CGM.getModule(), TypeDescriptorType, /*Constant=*/false, 3718 getLinkageForRTTI(Type), 3719 llvm::ConstantStruct::get(TypeDescriptorType, Fields), 3720 MangledName); 3721 if (Var->isWeakForLinker()) 3722 Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName())); 3723 return llvm::ConstantExpr::getBitCast(Var, CGM.Int8PtrTy); 3724 } 3725 3726 /// \brief Gets or a creates a Microsoft CompleteObjectLocator. 3727 llvm::GlobalVariable * 3728 MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD, 3729 const VPtrInfo *Info) { 3730 return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info); 3731 } 3732 3733 static void emitCXXConstructor(CodeGenModule &CGM, 3734 const CXXConstructorDecl *ctor, 3735 StructorType ctorType) { 3736 // There are no constructor variants, always emit the complete destructor. 3737 llvm::Function *Fn = CGM.codegenCXXStructor(ctor, StructorType::Complete); 3738 CGM.maybeSetTrivialComdat(*ctor, *Fn); 3739 } 3740 3741 static void emitCXXDestructor(CodeGenModule &CGM, const CXXDestructorDecl *dtor, 3742 StructorType dtorType) { 3743 // The complete destructor is equivalent to the base destructor for 3744 // classes with no virtual bases, so try to emit it as an alias. 3745 if (!dtor->getParent()->getNumVBases() && 3746 (dtorType == StructorType::Complete || dtorType == StructorType::Base)) { 3747 bool ProducedAlias = !CGM.TryEmitDefinitionAsAlias( 3748 GlobalDecl(dtor, Dtor_Complete), GlobalDecl(dtor, Dtor_Base), true); 3749 if (ProducedAlias) { 3750 if (dtorType == StructorType::Complete) 3751 return; 3752 if (dtor->isVirtual()) 3753 CGM.getVTables().EmitThunks(GlobalDecl(dtor, Dtor_Complete)); 3754 } 3755 } 3756 3757 // The base destructor is equivalent to the base destructor of its 3758 // base class if there is exactly one non-virtual base class with a 3759 // non-trivial destructor, there are no fields with a non-trivial 3760 // destructor, and the body of the destructor is trivial. 3761 if (dtorType == StructorType::Base && !CGM.TryEmitBaseDestructorAsAlias(dtor)) 3762 return; 3763 3764 llvm::Function *Fn = CGM.codegenCXXStructor(dtor, dtorType); 3765 if (Fn->isWeakForLinker()) 3766 Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName())); 3767 } 3768 3769 void MicrosoftCXXABI::emitCXXStructor(const CXXMethodDecl *MD, 3770 StructorType Type) { 3771 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 3772 emitCXXConstructor(CGM, CD, Type); 3773 return; 3774 } 3775 emitCXXDestructor(CGM, cast<CXXDestructorDecl>(MD), Type); 3776 } 3777 3778 llvm::Function * 3779 MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD, 3780 CXXCtorType CT) { 3781 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 3782 3783 // Calculate the mangled name. 3784 SmallString<256> ThunkName; 3785 llvm::raw_svector_ostream Out(ThunkName); 3786 getMangleContext().mangleCXXCtor(CD, CT, Out); 3787 3788 // If the thunk has been generated previously, just return it. 3789 if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName)) 3790 return cast<llvm::Function>(GV); 3791 3792 // Create the llvm::Function. 3793 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT); 3794 llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo); 3795 const CXXRecordDecl *RD = CD->getParent(); 3796 QualType RecordTy = getContext().getRecordType(RD); 3797 llvm::Function *ThunkFn = llvm::Function::Create( 3798 ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule()); 3799 ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>( 3800 FnInfo.getEffectiveCallingConvention())); 3801 if (ThunkFn->isWeakForLinker()) 3802 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 3803 bool IsCopy = CT == Ctor_CopyingClosure; 3804 3805 // Start codegen. 3806 CodeGenFunction CGF(CGM); 3807 CGF.CurGD = GlobalDecl(CD, Ctor_Complete); 3808 3809 // Build FunctionArgs. 3810 FunctionArgList FunctionArgs; 3811 3812 // A constructor always starts with a 'this' pointer as its first argument. 3813 buildThisParam(CGF, FunctionArgs); 3814 3815 // Following the 'this' pointer is a reference to the source object that we 3816 // are copying from. 3817 ImplicitParamDecl SrcParam( 3818 getContext(), nullptr, SourceLocation(), &getContext().Idents.get("src"), 3819 getContext().getLValueReferenceType(RecordTy, 3820 /*SpelledAsLValue=*/true)); 3821 if (IsCopy) 3822 FunctionArgs.push_back(&SrcParam); 3823 3824 // Constructors for classes which utilize virtual bases have an additional 3825 // parameter which indicates whether or not it is being delegated to by a more 3826 // derived constructor. 3827 ImplicitParamDecl IsMostDerived(getContext(), nullptr, SourceLocation(), 3828 &getContext().Idents.get("is_most_derived"), 3829 getContext().IntTy); 3830 // Only add the parameter to the list if thie class has virtual bases. 3831 if (RD->getNumVBases() > 0) 3832 FunctionArgs.push_back(&IsMostDerived); 3833 3834 // Start defining the function. 3835 CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo, 3836 FunctionArgs, CD->getLocation(), SourceLocation()); 3837 EmitThisParam(CGF); 3838 llvm::Value *This = getThisValue(CGF); 3839 3840 llvm::Value *SrcVal = 3841 IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src") 3842 : nullptr; 3843 3844 CallArgList Args; 3845 3846 // Push the this ptr. 3847 Args.add(RValue::get(This), CD->getThisType(getContext())); 3848 3849 // Push the src ptr. 3850 if (SrcVal) 3851 Args.add(RValue::get(SrcVal), SrcParam.getType()); 3852 3853 // Add the rest of the default arguments. 3854 std::vector<Stmt *> ArgVec; 3855 for (unsigned I = IsCopy ? 1 : 0, E = CD->getNumParams(); I != E; ++I) { 3856 Stmt *DefaultArg = getContext().getDefaultArgExprForConstructor(CD, I); 3857 assert(DefaultArg && "sema forgot to instantiate default args"); 3858 ArgVec.push_back(DefaultArg); 3859 } 3860 3861 CodeGenFunction::RunCleanupsScope Cleanups(CGF); 3862 3863 const auto *FPT = CD->getType()->castAs<FunctionProtoType>(); 3864 CGF.EmitCallArgs(Args, FPT, llvm::makeArrayRef(ArgVec), CD, IsCopy ? 1 : 0); 3865 3866 // Insert any ABI-specific implicit constructor arguments. 3867 unsigned ExtraArgs = addImplicitConstructorArgs(CGF, CD, Ctor_Complete, 3868 /*ForVirtualBase=*/false, 3869 /*Delegating=*/false, Args); 3870 3871 // Call the destructor with our arguments. 3872 llvm::Value *CalleeFn = CGM.getAddrOfCXXStructor(CD, StructorType::Complete); 3873 const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall( 3874 Args, CD, Ctor_Complete, ExtraArgs); 3875 CGF.EmitCall(CalleeInfo, CalleeFn, ReturnValueSlot(), Args, CD); 3876 3877 Cleanups.ForceCleanup(); 3878 3879 // Emit the ret instruction, remove any temporary instructions created for the 3880 // aid of CodeGen. 3881 CGF.FinishFunction(SourceLocation()); 3882 3883 return ThunkFn; 3884 } 3885 3886 llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T, 3887 uint32_t NVOffset, 3888 int32_t VBPtrOffset, 3889 uint32_t VBIndex) { 3890 assert(!T->isReferenceType()); 3891 3892 CXXRecordDecl *RD = T->getAsCXXRecordDecl(); 3893 const CXXConstructorDecl *CD = 3894 RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr; 3895 CXXCtorType CT = Ctor_Complete; 3896 if (CD) 3897 if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1) 3898 CT = Ctor_CopyingClosure; 3899 3900 uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity(); 3901 SmallString<256> MangledName; 3902 { 3903 llvm::raw_svector_ostream Out(MangledName); 3904 getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset, 3905 VBPtrOffset, VBIndex, Out); 3906 } 3907 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 3908 return getImageRelativeConstant(GV); 3909 3910 // The TypeDescriptor is used by the runtime to determine if a catch handler 3911 // is appropriate for the exception object. 3912 llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T)); 3913 3914 // The runtime is responsible for calling the copy constructor if the 3915 // exception is caught by value. 3916 llvm::Constant *CopyCtor; 3917 if (CD) { 3918 if (CT == Ctor_CopyingClosure) 3919 CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure); 3920 else 3921 CopyCtor = CGM.getAddrOfCXXStructor(CD, StructorType::Complete); 3922 3923 CopyCtor = llvm::ConstantExpr::getBitCast(CopyCtor, CGM.Int8PtrTy); 3924 } else { 3925 CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); 3926 } 3927 CopyCtor = getImageRelativeConstant(CopyCtor); 3928 3929 bool IsScalar = !RD; 3930 bool HasVirtualBases = false; 3931 bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason. 3932 QualType PointeeType = T; 3933 if (T->isPointerType()) 3934 PointeeType = T->getPointeeType(); 3935 if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) { 3936 HasVirtualBases = RD->getNumVBases() > 0; 3937 if (IdentifierInfo *II = RD->getIdentifier()) 3938 IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace(); 3939 } 3940 3941 // Encode the relevant CatchableType properties into the Flags bitfield. 3942 // FIXME: Figure out how bits 2 or 8 can get set. 3943 uint32_t Flags = 0; 3944 if (IsScalar) 3945 Flags |= 1; 3946 if (HasVirtualBases) 3947 Flags |= 4; 3948 if (IsStdBadAlloc) 3949 Flags |= 16; 3950 3951 llvm::Constant *Fields[] = { 3952 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 3953 TD, // TypeDescriptor 3954 llvm::ConstantInt::get(CGM.IntTy, NVOffset), // NonVirtualAdjustment 3955 llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr 3956 llvm::ConstantInt::get(CGM.IntTy, VBIndex), // VBTableIndex 3957 llvm::ConstantInt::get(CGM.IntTy, Size), // Size 3958 CopyCtor // CopyCtor 3959 }; 3960 llvm::StructType *CTType = getCatchableTypeType(); 3961 auto *GV = new llvm::GlobalVariable( 3962 CGM.getModule(), CTType, /*Constant=*/true, getLinkageForRTTI(T), 3963 llvm::ConstantStruct::get(CTType, Fields), MangledName); 3964 GV->setUnnamedAddr(true); 3965 GV->setSection(".xdata"); 3966 if (GV->isWeakForLinker()) 3967 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 3968 return getImageRelativeConstant(GV); 3969 } 3970 3971 llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) { 3972 assert(!T->isReferenceType()); 3973 3974 // See if we've already generated a CatchableTypeArray for this type before. 3975 llvm::GlobalVariable *&CTA = CatchableTypeArrays[T]; 3976 if (CTA) 3977 return CTA; 3978 3979 // Ensure that we don't have duplicate entries in our CatchableTypeArray by 3980 // using a SmallSetVector. Duplicates may arise due to virtual bases 3981 // occurring more than once in the hierarchy. 3982 llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes; 3983 3984 // C++14 [except.handle]p3: 3985 // A handler is a match for an exception object of type E if [...] 3986 // - the handler is of type cv T or cv T& and T is an unambiguous public 3987 // base class of E, or 3988 // - the handler is of type cv T or const T& where T is a pointer type and 3989 // E is a pointer type that can be converted to T by [...] 3990 // - a standard pointer conversion (4.10) not involving conversions to 3991 // pointers to private or protected or ambiguous classes 3992 const CXXRecordDecl *MostDerivedClass = nullptr; 3993 bool IsPointer = T->isPointerType(); 3994 if (IsPointer) 3995 MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl(); 3996 else 3997 MostDerivedClass = T->getAsCXXRecordDecl(); 3998 3999 // Collect all the unambiguous public bases of the MostDerivedClass. 4000 if (MostDerivedClass) { 4001 const ASTContext &Context = getContext(); 4002 const ASTRecordLayout &MostDerivedLayout = 4003 Context.getASTRecordLayout(MostDerivedClass); 4004 MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext(); 4005 SmallVector<MSRTTIClass, 8> Classes; 4006 serializeClassHierarchy(Classes, MostDerivedClass); 4007 Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr); 4008 detectAmbiguousBases(Classes); 4009 for (const MSRTTIClass &Class : Classes) { 4010 // Skip any ambiguous or private bases. 4011 if (Class.Flags & 4012 (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous)) 4013 continue; 4014 // Write down how to convert from a derived pointer to a base pointer. 4015 uint32_t OffsetInVBTable = 0; 4016 int32_t VBPtrOffset = -1; 4017 if (Class.VirtualRoot) { 4018 OffsetInVBTable = 4019 VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4; 4020 VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity(); 4021 } 4022 4023 // Turn our record back into a pointer if the exception object is a 4024 // pointer. 4025 QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0); 4026 if (IsPointer) 4027 RTTITy = Context.getPointerType(RTTITy); 4028 CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase, 4029 VBPtrOffset, OffsetInVBTable)); 4030 } 4031 } 4032 4033 // C++14 [except.handle]p3: 4034 // A handler is a match for an exception object of type E if 4035 // - The handler is of type cv T or cv T& and E and T are the same type 4036 // (ignoring the top-level cv-qualifiers) 4037 CatchableTypes.insert(getCatchableType(T)); 4038 4039 // C++14 [except.handle]p3: 4040 // A handler is a match for an exception object of type E if 4041 // - the handler is of type cv T or const T& where T is a pointer type and 4042 // E is a pointer type that can be converted to T by [...] 4043 // - a standard pointer conversion (4.10) not involving conversions to 4044 // pointers to private or protected or ambiguous classes 4045 // 4046 // C++14 [conv.ptr]p2: 4047 // A prvalue of type "pointer to cv T," where T is an object type, can be 4048 // converted to a prvalue of type "pointer to cv void". 4049 if (IsPointer && T->getPointeeType()->isObjectType()) 4050 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4051 4052 // C++14 [except.handle]p3: 4053 // A handler is a match for an exception object of type E if [...] 4054 // - the handler is of type cv T or const T& where T is a pointer or 4055 // pointer to member type and E is std::nullptr_t. 4056 // 4057 // We cannot possibly list all possible pointer types here, making this 4058 // implementation incompatible with the standard. However, MSVC includes an 4059 // entry for pointer-to-void in this case. Let's do the same. 4060 if (T->isNullPtrType()) 4061 CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy)); 4062 4063 uint32_t NumEntries = CatchableTypes.size(); 4064 llvm::Type *CTType = 4065 getImageRelativeType(getCatchableTypeType()->getPointerTo()); 4066 llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries); 4067 llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries); 4068 llvm::Constant *Fields[] = { 4069 llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries 4070 llvm::ConstantArray::get( 4071 AT, llvm::makeArrayRef(CatchableTypes.begin(), 4072 CatchableTypes.end())) // CatchableTypes 4073 }; 4074 SmallString<256> MangledName; 4075 { 4076 llvm::raw_svector_ostream Out(MangledName); 4077 getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out); 4078 } 4079 CTA = new llvm::GlobalVariable( 4080 CGM.getModule(), CTAType, /*Constant=*/true, getLinkageForRTTI(T), 4081 llvm::ConstantStruct::get(CTAType, Fields), MangledName); 4082 CTA->setUnnamedAddr(true); 4083 CTA->setSection(".xdata"); 4084 if (CTA->isWeakForLinker()) 4085 CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName())); 4086 return CTA; 4087 } 4088 4089 llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) { 4090 bool IsConst, IsVolatile; 4091 T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile); 4092 4093 // The CatchableTypeArray enumerates the various (CV-unqualified) types that 4094 // the exception object may be caught as. 4095 llvm::GlobalVariable *CTA = getCatchableTypeArray(T); 4096 // The first field in a CatchableTypeArray is the number of CatchableTypes. 4097 // This is used as a component of the mangled name which means that we need to 4098 // know what it is in order to see if we have previously generated the 4099 // ThrowInfo. 4100 uint32_t NumEntries = 4101 cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U)) 4102 ->getLimitedValue(); 4103 4104 SmallString<256> MangledName; 4105 { 4106 llvm::raw_svector_ostream Out(MangledName); 4107 getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, NumEntries, 4108 Out); 4109 } 4110 4111 // Reuse a previously generated ThrowInfo if we have generated an appropriate 4112 // one before. 4113 if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName)) 4114 return GV; 4115 4116 // The RTTI TypeDescriptor uses an unqualified type but catch clauses must 4117 // be at least as CV qualified. Encode this requirement into the Flags 4118 // bitfield. 4119 uint32_t Flags = 0; 4120 if (IsConst) 4121 Flags |= 1; 4122 if (IsVolatile) 4123 Flags |= 2; 4124 4125 // The cleanup-function (a destructor) must be called when the exception 4126 // object's lifetime ends. 4127 llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy); 4128 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 4129 if (CXXDestructorDecl *DtorD = RD->getDestructor()) 4130 if (!DtorD->isTrivial()) 4131 CleanupFn = llvm::ConstantExpr::getBitCast( 4132 CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete), 4133 CGM.Int8PtrTy); 4134 // This is unused as far as we can tell, initialize it to null. 4135 llvm::Constant *ForwardCompat = 4136 getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy)); 4137 llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant( 4138 llvm::ConstantExpr::getBitCast(CTA, CGM.Int8PtrTy)); 4139 llvm::StructType *TIType = getThrowInfoType(); 4140 llvm::Constant *Fields[] = { 4141 llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags 4142 getImageRelativeConstant(CleanupFn), // CleanupFn 4143 ForwardCompat, // ForwardCompat 4144 PointerToCatchableTypes // CatchableTypeArray 4145 }; 4146 auto *GV = new llvm::GlobalVariable( 4147 CGM.getModule(), TIType, /*Constant=*/true, getLinkageForRTTI(T), 4148 llvm::ConstantStruct::get(TIType, Fields), StringRef(MangledName)); 4149 GV->setUnnamedAddr(true); 4150 GV->setSection(".xdata"); 4151 if (GV->isWeakForLinker()) 4152 GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName())); 4153 return GV; 4154 } 4155 4156 void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { 4157 const Expr *SubExpr = E->getSubExpr(); 4158 QualType ThrowType = SubExpr->getType(); 4159 // The exception object lives on the stack and it's address is passed to the 4160 // runtime function. 4161 Address AI = CGF.CreateMemTemp(ThrowType); 4162 CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(), 4163 /*IsInit=*/true); 4164 4165 // The so-called ThrowInfo is used to describe how the exception object may be 4166 // caught. 4167 llvm::GlobalVariable *TI = getThrowInfo(ThrowType); 4168 4169 // Call into the runtime to throw the exception. 4170 llvm::Value *Args[] = { 4171 CGF.Builder.CreateBitCast(AI.getPointer(), CGM.Int8PtrTy), 4172 TI 4173 }; 4174 CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args); 4175 } 4176