Home | History | Annotate | Download | only in test
      1 /* Copyright (c) 2014, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 #if !defined(__STDC_FORMAT_MACROS)
     16 #define __STDC_FORMAT_MACROS
     17 #endif
     18 
     19 #include <openssl/base.h>
     20 
     21 #if !defined(OPENSSL_WINDOWS)
     22 #include <arpa/inet.h>
     23 #include <netinet/in.h>
     24 #include <netinet/tcp.h>
     25 #include <signal.h>
     26 #include <sys/socket.h>
     27 #include <sys/time.h>
     28 #include <unistd.h>
     29 #else
     30 #include <io.h>
     31 #pragma warning(push, 3)
     32 #include <winsock2.h>
     33 #include <ws2tcpip.h>
     34 #pragma warning(pop)
     35 
     36 #pragma comment(lib, "Ws2_32.lib")
     37 #endif
     38 
     39 #include <inttypes.h>
     40 #include <string.h>
     41 
     42 #include <openssl/bio.h>
     43 #include <openssl/buf.h>
     44 #include <openssl/bytestring.h>
     45 #include <openssl/cipher.h>
     46 #include <openssl/crypto.h>
     47 #include <openssl/err.h>
     48 #include <openssl/hmac.h>
     49 #include <openssl/obj.h>
     50 #include <openssl/rand.h>
     51 #include <openssl/ssl.h>
     52 
     53 #include <memory>
     54 #include <string>
     55 #include <vector>
     56 
     57 #include "../../crypto/test/scoped_types.h"
     58 #include "async_bio.h"
     59 #include "packeted_bio.h"
     60 #include "scoped_types.h"
     61 #include "test_config.h"
     62 
     63 
     64 #if !defined(OPENSSL_WINDOWS)
     65 static int closesocket(int sock) {
     66   return close(sock);
     67 }
     68 
     69 static void PrintSocketError(const char *func) {
     70   perror(func);
     71 }
     72 #else
     73 static void PrintSocketError(const char *func) {
     74   fprintf(stderr, "%s: %d\n", func, WSAGetLastError());
     75 }
     76 #endif
     77 
     78 static int Usage(const char *program) {
     79   fprintf(stderr, "Usage: %s [flags...]\n", program);
     80   return 1;
     81 }
     82 
     83 struct TestState {
     84   TestState() {
     85     // MSVC cannot initialize these inline.
     86     memset(&clock, 0, sizeof(clock));
     87     memset(&clock_delta, 0, sizeof(clock_delta));
     88   }
     89 
     90   // async_bio is async BIO which pauses reads and writes.
     91   BIO *async_bio = nullptr;
     92   // clock is the current time for the SSL connection.
     93   timeval clock;
     94   // clock_delta is how far the clock advanced in the most recent failed
     95   // |BIO_read|.
     96   timeval clock_delta;
     97   ScopedEVP_PKEY channel_id;
     98   bool cert_ready = false;
     99   ScopedSSL_SESSION session;
    100   ScopedSSL_SESSION pending_session;
    101   bool early_callback_called = false;
    102   bool handshake_done = false;
    103   // private_key is the underlying private key used when testing custom keys.
    104   ScopedEVP_PKEY private_key;
    105   std::vector<uint8_t> private_key_result;
    106   // private_key_retries is the number of times an asynchronous private key
    107   // operation has been retried.
    108   unsigned private_key_retries = 0;
    109   bool got_new_session = false;
    110 };
    111 
    112 static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad,
    113                             int index, long argl, void *argp) {
    114   delete ((TestState *)ptr);
    115 }
    116 
    117 static int g_config_index = 0;
    118 static int g_state_index = 0;
    119 
    120 static bool SetConfigPtr(SSL *ssl, const TestConfig *config) {
    121   return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
    122 }
    123 
    124 static const TestConfig *GetConfigPtr(const SSL *ssl) {
    125   return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
    126 }
    127 
    128 static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> state) {
    129   // |SSL_set_ex_data| takes ownership of |state| only on success.
    130   if (SSL_set_ex_data(ssl, g_state_index, state.get()) == 1) {
    131     state.release();
    132     return true;
    133   }
    134   return false;
    135 }
    136 
    137 static TestState *GetTestState(const SSL *ssl) {
    138   return (TestState *)SSL_get_ex_data(ssl, g_state_index);
    139 }
    140 
    141 static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) {
    142   ScopedBIO bio(BIO_new(BIO_s_file()));
    143   if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
    144     return nullptr;
    145   }
    146   ScopedEVP_PKEY pkey(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
    147   return pkey;
    148 }
    149 
    150 static int AsyncPrivateKeyType(SSL *ssl) {
    151   return EVP_PKEY_id(GetTestState(ssl)->private_key.get());
    152 }
    153 
    154 static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) {
    155   return EVP_PKEY_size(GetTestState(ssl)->private_key.get());
    156 }
    157 
    158 static ssl_private_key_result_t AsyncPrivateKeySign(
    159     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
    160     const EVP_MD *md, const uint8_t *in, size_t in_len) {
    161   TestState *test_state = GetTestState(ssl);
    162   if (!test_state->private_key_result.empty()) {
    163     fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n");
    164     abort();
    165   }
    166 
    167   ScopedEVP_PKEY_CTX ctx(EVP_PKEY_CTX_new(test_state->private_key.get(),
    168                                           nullptr));
    169   if (!ctx) {
    170     return ssl_private_key_failure;
    171   }
    172 
    173   // Write the signature into |test_state|.
    174   size_t len = 0;
    175   if (!EVP_PKEY_sign_init(ctx.get()) ||
    176       !EVP_PKEY_CTX_set_signature_md(ctx.get(), md) ||
    177       !EVP_PKEY_sign(ctx.get(), nullptr, &len, in, in_len)) {
    178     return ssl_private_key_failure;
    179   }
    180   test_state->private_key_result.resize(len);
    181   if (!EVP_PKEY_sign(ctx.get(), test_state->private_key_result.data(), &len, in,
    182                      in_len)) {
    183     return ssl_private_key_failure;
    184   }
    185   test_state->private_key_result.resize(len);
    186 
    187   // The signature will be released asynchronously in
    188   // |AsyncPrivateKeySignComplete|.
    189   return ssl_private_key_retry;
    190 }
    191 
    192 static ssl_private_key_result_t AsyncPrivateKeySignComplete(
    193     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
    194   TestState *test_state = GetTestState(ssl);
    195   if (test_state->private_key_result.empty()) {
    196     fprintf(stderr,
    197             "AsyncPrivateKeySignComplete called without operation pending.\n");
    198     abort();
    199   }
    200 
    201   if (test_state->private_key_retries < 2) {
    202     // Only return the signature on the second attempt, to test both incomplete
    203     // |sign| and |sign_complete|.
    204     return ssl_private_key_retry;
    205   }
    206 
    207   if (max_out < test_state->private_key_result.size()) {
    208     fprintf(stderr, "Output buffer too small.\n");
    209     return ssl_private_key_failure;
    210   }
    211   memcpy(out, test_state->private_key_result.data(),
    212          test_state->private_key_result.size());
    213   *out_len = test_state->private_key_result.size();
    214 
    215   test_state->private_key_result.clear();
    216   test_state->private_key_retries = 0;
    217   return ssl_private_key_success;
    218 }
    219 
    220 static ssl_private_key_result_t AsyncPrivateKeyDecrypt(
    221     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
    222     const uint8_t *in, size_t in_len) {
    223   TestState *test_state = GetTestState(ssl);
    224   if (!test_state->private_key_result.empty()) {
    225     fprintf(stderr,
    226             "AsyncPrivateKeyDecrypt called with operation pending.\n");
    227     abort();
    228   }
    229 
    230   RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get());
    231   if (rsa == NULL) {
    232     fprintf(stderr,
    233             "AsyncPrivateKeyDecrypt called with incorrect key type.\n");
    234     abort();
    235   }
    236   test_state->private_key_result.resize(RSA_size(rsa));
    237   if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(),
    238                    RSA_size(rsa), in, in_len, RSA_NO_PADDING)) {
    239     return ssl_private_key_failure;
    240   }
    241 
    242   test_state->private_key_result.resize(*out_len);
    243 
    244   // The decryption will be released asynchronously in
    245   // |AsyncPrivateKeyDecryptComplete|.
    246   return ssl_private_key_retry;
    247 }
    248 
    249 static ssl_private_key_result_t AsyncPrivateKeyDecryptComplete(
    250     SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) {
    251   TestState *test_state = GetTestState(ssl);
    252   if (test_state->private_key_result.empty()) {
    253     fprintf(stderr,
    254             "AsyncPrivateKeyDecryptComplete called without operation "
    255             "pending.\n");
    256     abort();
    257   }
    258 
    259   if (test_state->private_key_retries < 2) {
    260     // Only return the decryption on the second attempt, to test both incomplete
    261     // |decrypt| and |decrypt_complete|.
    262     return ssl_private_key_retry;
    263   }
    264 
    265   if (max_out < test_state->private_key_result.size()) {
    266     fprintf(stderr, "Output buffer too small.\n");
    267     return ssl_private_key_failure;
    268   }
    269   memcpy(out, test_state->private_key_result.data(),
    270          test_state->private_key_result.size());
    271   *out_len = test_state->private_key_result.size();
    272 
    273   test_state->private_key_result.clear();
    274   test_state->private_key_retries = 0;
    275   return ssl_private_key_success;
    276 }
    277 
    278 static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = {
    279     AsyncPrivateKeyType,
    280     AsyncPrivateKeyMaxSignatureLen,
    281     AsyncPrivateKeySign,
    282     AsyncPrivateKeySignComplete,
    283     AsyncPrivateKeyDecrypt,
    284     AsyncPrivateKeyDecryptComplete
    285 };
    286 
    287 template<typename T>
    288 struct Free {
    289   void operator()(T *buf) {
    290     free(buf);
    291   }
    292 };
    293 
    294 static bool InstallCertificate(SSL *ssl) {
    295   const TestConfig *config = GetConfigPtr(ssl);
    296   TestState *test_state = GetTestState(ssl);
    297 
    298   if (!config->digest_prefs.empty()) {
    299     std::unique_ptr<char, Free<char>> digest_prefs(
    300         strdup(config->digest_prefs.c_str()));
    301     std::vector<int> digest_list;
    302 
    303     for (;;) {
    304       char *token =
    305           strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ",");
    306       if (token == nullptr) {
    307         break;
    308       }
    309 
    310       digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token)));
    311     }
    312 
    313     if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(),
    314                                           digest_list.size())) {
    315       return false;
    316     }
    317   }
    318 
    319   if (!config->key_file.empty()) {
    320     if (config->async) {
    321       test_state->private_key = LoadPrivateKey(config->key_file.c_str());
    322       if (!test_state->private_key) {
    323         return false;
    324       }
    325       SSL_set_private_key_method(ssl, &g_async_private_key_method);
    326     } else if (!SSL_use_PrivateKey_file(ssl, config->key_file.c_str(),
    327                                         SSL_FILETYPE_PEM)) {
    328       return false;
    329     }
    330   }
    331   if (!config->cert_file.empty() &&
    332       !SSL_use_certificate_file(ssl, config->cert_file.c_str(),
    333                                 SSL_FILETYPE_PEM)) {
    334     return false;
    335   }
    336   if (!config->ocsp_response.empty() &&
    337       !SSL_CTX_set_ocsp_response(ssl->ctx,
    338                                  (const uint8_t *)config->ocsp_response.data(),
    339                                  config->ocsp_response.size())) {
    340     return false;
    341   }
    342   return true;
    343 }
    344 
    345 static int SelectCertificateCallback(const struct ssl_early_callback_ctx *ctx) {
    346   const TestConfig *config = GetConfigPtr(ctx->ssl);
    347   GetTestState(ctx->ssl)->early_callback_called = true;
    348 
    349   if (!config->expected_server_name.empty()) {
    350     const uint8_t *extension_data;
    351     size_t extension_len;
    352     CBS extension, server_name_list, host_name;
    353     uint8_t name_type;
    354 
    355     if (!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name,
    356                                               &extension_data,
    357                                               &extension_len)) {
    358       fprintf(stderr, "Could not find server_name extension.\n");
    359       return -1;
    360     }
    361 
    362     CBS_init(&extension, extension_data, extension_len);
    363     if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
    364         CBS_len(&extension) != 0 ||
    365         !CBS_get_u8(&server_name_list, &name_type) ||
    366         name_type != TLSEXT_NAMETYPE_host_name ||
    367         !CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
    368         CBS_len(&server_name_list) != 0) {
    369       fprintf(stderr, "Could not decode server_name extension.\n");
    370       return -1;
    371     }
    372 
    373     if (!CBS_mem_equal(&host_name,
    374                        (const uint8_t*)config->expected_server_name.data(),
    375                        config->expected_server_name.size())) {
    376       fprintf(stderr, "Server name mismatch.\n");
    377     }
    378   }
    379 
    380   if (config->fail_early_callback) {
    381     return -1;
    382   }
    383 
    384   // Install the certificate in the early callback.
    385   if (config->use_early_callback) {
    386     if (config->async) {
    387       // Install the certificate asynchronously.
    388       return 0;
    389     }
    390     if (!InstallCertificate(ctx->ssl)) {
    391       return -1;
    392     }
    393   }
    394   return 1;
    395 }
    396 
    397 static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) {
    398   SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx,
    399       SSL_get_ex_data_X509_STORE_CTX_idx());
    400   const TestConfig *config = GetConfigPtr(ssl);
    401 
    402   if (!config->expected_ocsp_response.empty()) {
    403     const uint8_t *data;
    404     size_t len;
    405     SSL_get0_ocsp_response(ssl, &data, &len);
    406     if (len == 0) {
    407       fprintf(stderr, "OCSP response not available in verify callback\n");
    408       return 0;
    409     }
    410   }
    411 
    412   return 1;
    413 }
    414 
    415 static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) {
    416   store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION;
    417   return 0;
    418 }
    419 
    420 static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
    421                                         unsigned int *out_len, void *arg) {
    422   const TestConfig *config = GetConfigPtr(ssl);
    423   if (config->advertise_npn.empty()) {
    424     return SSL_TLSEXT_ERR_NOACK;
    425   }
    426 
    427   *out = (const uint8_t*)config->advertise_npn.data();
    428   *out_len = config->advertise_npn.size();
    429   return SSL_TLSEXT_ERR_OK;
    430 }
    431 
    432 static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen,
    433                                    const uint8_t* in, unsigned inlen, void* arg) {
    434   const TestConfig *config = GetConfigPtr(ssl);
    435   if (config->select_next_proto.empty()) {
    436     return SSL_TLSEXT_ERR_NOACK;
    437   }
    438 
    439   *out = (uint8_t*)config->select_next_proto.data();
    440   *outlen = config->select_next_proto.size();
    441   return SSL_TLSEXT_ERR_OK;
    442 }
    443 
    444 static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen,
    445                               const uint8_t* in, unsigned inlen, void* arg) {
    446   const TestConfig *config = GetConfigPtr(ssl);
    447   if (config->select_alpn.empty()) {
    448     return SSL_TLSEXT_ERR_NOACK;
    449   }
    450 
    451   if (!config->expected_advertised_alpn.empty() &&
    452       (config->expected_advertised_alpn.size() != inlen ||
    453        memcmp(config->expected_advertised_alpn.data(),
    454               in, inlen) != 0)) {
    455     fprintf(stderr, "bad ALPN select callback inputs\n");
    456     exit(1);
    457   }
    458 
    459   *out = (const uint8_t*)config->select_alpn.data();
    460   *outlen = config->select_alpn.size();
    461   return SSL_TLSEXT_ERR_OK;
    462 }
    463 
    464 static unsigned PskClientCallback(SSL *ssl, const char *hint,
    465                                   char *out_identity,
    466                                   unsigned max_identity_len,
    467                                   uint8_t *out_psk, unsigned max_psk_len) {
    468   const TestConfig *config = GetConfigPtr(ssl);
    469 
    470   if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) {
    471     fprintf(stderr, "Server PSK hint did not match.\n");
    472     return 0;
    473   }
    474 
    475   // Account for the trailing '\0' for the identity.
    476   if (config->psk_identity.size() >= max_identity_len ||
    477       config->psk.size() > max_psk_len) {
    478     fprintf(stderr, "PSK buffers too small\n");
    479     return 0;
    480   }
    481 
    482   BUF_strlcpy(out_identity, config->psk_identity.c_str(),
    483               max_identity_len);
    484   memcpy(out_psk, config->psk.data(), config->psk.size());
    485   return config->psk.size();
    486 }
    487 
    488 static unsigned PskServerCallback(SSL *ssl, const char *identity,
    489                                   uint8_t *out_psk, unsigned max_psk_len) {
    490   const TestConfig *config = GetConfigPtr(ssl);
    491 
    492   if (strcmp(identity, config->psk_identity.c_str()) != 0) {
    493     fprintf(stderr, "Client PSK identity did not match.\n");
    494     return 0;
    495   }
    496 
    497   if (config->psk.size() > max_psk_len) {
    498     fprintf(stderr, "PSK buffers too small\n");
    499     return 0;
    500   }
    501 
    502   memcpy(out_psk, config->psk.data(), config->psk.size());
    503   return config->psk.size();
    504 }
    505 
    506 static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
    507   *out_clock = GetTestState(ssl)->clock;
    508 }
    509 
    510 static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) {
    511   *out_pkey = GetTestState(ssl)->channel_id.release();
    512 }
    513 
    514 static int CertCallback(SSL *ssl, void *arg) {
    515   if (!GetTestState(ssl)->cert_ready) {
    516     return -1;
    517   }
    518   if (!InstallCertificate(ssl)) {
    519     return 0;
    520   }
    521   return 1;
    522 }
    523 
    524 static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len,
    525                                        int *copy) {
    526   TestState *async_state = GetTestState(ssl);
    527   if (async_state->session) {
    528     *copy = 0;
    529     return async_state->session.release();
    530   } else if (async_state->pending_session) {
    531     return SSL_magic_pending_session_ptr();
    532   } else {
    533     return NULL;
    534   }
    535 }
    536 
    537 static int DDoSCallback(const struct ssl_early_callback_ctx *early_context) {
    538   const TestConfig *config = GetConfigPtr(early_context->ssl);
    539   static int callback_num = 0;
    540 
    541   callback_num++;
    542   if (config->fail_ddos_callback ||
    543       (config->fail_second_ddos_callback && callback_num == 2)) {
    544     return 0;
    545   }
    546   return 1;
    547 }
    548 
    549 static void InfoCallback(const SSL *ssl, int type, int val) {
    550   if (type == SSL_CB_HANDSHAKE_DONE) {
    551     if (GetConfigPtr(ssl)->handshake_never_done) {
    552       fprintf(stderr, "handshake completed\n");
    553       // Abort before any expected error code is printed, to ensure the overall
    554       // test fails.
    555       abort();
    556     }
    557     GetTestState(ssl)->handshake_done = true;
    558   }
    559 }
    560 
    561 static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
    562   GetTestState(ssl)->got_new_session = true;
    563   // BoringSSL passes a reference to |session|.
    564   SSL_SESSION_free(session);
    565   return 1;
    566 }
    567 
    568 static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
    569                              EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
    570                              int encrypt) {
    571   // This is just test code, so use the all-zeros key.
    572   static const uint8_t kZeros[16] = {0};
    573 
    574   if (encrypt) {
    575     memcpy(key_name, kZeros, sizeof(kZeros));
    576     RAND_bytes(iv, 16);
    577   } else if (memcmp(key_name, kZeros, 16) != 0) {
    578     return 0;
    579   }
    580 
    581   if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
    582       !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
    583     return -1;
    584   }
    585 
    586   if (!encrypt) {
    587     return GetConfigPtr(ssl)->renew_ticket ? 2 : 1;
    588   }
    589   return 1;
    590 }
    591 
    592 // kCustomExtensionValue is the extension value that the custom extension
    593 // callbacks will add.
    594 static const uint16_t kCustomExtensionValue = 1234;
    595 static void *const kCustomExtensionAddArg =
    596     reinterpret_cast<void *>(kCustomExtensionValue);
    597 static void *const kCustomExtensionParseArg =
    598     reinterpret_cast<void *>(kCustomExtensionValue + 1);
    599 static const char kCustomExtensionContents[] = "custom extension";
    600 
    601 static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value,
    602                                       const uint8_t **out, size_t *out_len,
    603                                       int *out_alert_value, void *add_arg) {
    604   if (extension_value != kCustomExtensionValue ||
    605       add_arg != kCustomExtensionAddArg) {
    606     abort();
    607   }
    608 
    609   if (GetConfigPtr(ssl)->custom_extension_skip) {
    610     return 0;
    611   }
    612   if (GetConfigPtr(ssl)->custom_extension_fail_add) {
    613     return -1;
    614   }
    615 
    616   *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents);
    617   *out_len = sizeof(kCustomExtensionContents) - 1;
    618 
    619   return 1;
    620 }
    621 
    622 static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value,
    623                                         const uint8_t *out, void *add_arg) {
    624   if (extension_value != kCustomExtensionValue ||
    625       add_arg != kCustomExtensionAddArg ||
    626       out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) {
    627     abort();
    628   }
    629 }
    630 
    631 static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value,
    632                                         const uint8_t *contents,
    633                                         size_t contents_len,
    634                                         int *out_alert_value, void *parse_arg) {
    635   if (extension_value != kCustomExtensionValue ||
    636       parse_arg != kCustomExtensionParseArg) {
    637     abort();
    638   }
    639 
    640   if (contents_len != sizeof(kCustomExtensionContents) - 1 ||
    641       memcmp(contents, kCustomExtensionContents, contents_len) != 0) {
    642     *out_alert_value = SSL_AD_DECODE_ERROR;
    643     return 0;
    644   }
    645 
    646   return 1;
    647 }
    648 
    649 // Connect returns a new socket connected to localhost on |port| or -1 on
    650 // error.
    651 static int Connect(uint16_t port) {
    652   int sock = socket(AF_INET, SOCK_STREAM, 0);
    653   if (sock == -1) {
    654     PrintSocketError("socket");
    655     return -1;
    656   }
    657   int nodelay = 1;
    658   if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY,
    659           reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) {
    660     PrintSocketError("setsockopt");
    661     closesocket(sock);
    662     return -1;
    663   }
    664   sockaddr_in sin;
    665   memset(&sin, 0, sizeof(sin));
    666   sin.sin_family = AF_INET;
    667   sin.sin_port = htons(port);
    668   if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) {
    669     PrintSocketError("inet_pton");
    670     closesocket(sock);
    671     return -1;
    672   }
    673   if (connect(sock, reinterpret_cast<const sockaddr*>(&sin),
    674               sizeof(sin)) != 0) {
    675     PrintSocketError("connect");
    676     closesocket(sock);
    677     return -1;
    678   }
    679   return sock;
    680 }
    681 
    682 class SocketCloser {
    683  public:
    684   explicit SocketCloser(int sock) : sock_(sock) {}
    685   ~SocketCloser() {
    686     // Half-close and drain the socket before releasing it. This seems to be
    687     // necessary for graceful shutdown on Windows. It will also avoid write
    688     // failures in the test runner.
    689 #if defined(OPENSSL_WINDOWS)
    690     shutdown(sock_, SD_SEND);
    691 #else
    692     shutdown(sock_, SHUT_WR);
    693 #endif
    694     while (true) {
    695       char buf[1024];
    696       if (recv(sock_, buf, sizeof(buf), 0) <= 0) {
    697         break;
    698       }
    699     }
    700     closesocket(sock_);
    701   }
    702 
    703  private:
    704   const int sock_;
    705 };
    706 
    707 static ScopedSSL_CTX SetupCtx(const TestConfig *config) {
    708   ScopedSSL_CTX ssl_ctx(SSL_CTX_new(
    709       config->is_dtls ? DTLS_method() : TLS_method()));
    710   if (!ssl_ctx) {
    711     return nullptr;
    712   }
    713 
    714   std::string cipher_list = "ALL";
    715   if (!config->cipher.empty()) {
    716     cipher_list = config->cipher;
    717     SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
    718   }
    719   if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
    720     return nullptr;
    721   }
    722 
    723   if (!config->cipher_tls10.empty() &&
    724       !SSL_CTX_set_cipher_list_tls10(ssl_ctx.get(),
    725                                      config->cipher_tls10.c_str())) {
    726     return nullptr;
    727   }
    728   if (!config->cipher_tls11.empty() &&
    729       !SSL_CTX_set_cipher_list_tls11(ssl_ctx.get(),
    730                                      config->cipher_tls11.c_str())) {
    731     return nullptr;
    732   }
    733 
    734   ScopedDH dh(DH_get_2048_256(NULL));
    735 
    736   if (config->use_sparse_dh_prime) {
    737     // This prime number is 2^1024 + 643  a value just above a power of two.
    738     // Because of its form, values modulo it are essentially certain to be one
    739     // byte shorter. This is used to test padding of these values.
    740     if (BN_hex2bn(
    741             &dh->p,
    742             "1000000000000000000000000000000000000000000000000000000000000000"
    743             "0000000000000000000000000000000000000000000000000000000000000000"
    744             "0000000000000000000000000000000000000000000000000000000000000000"
    745             "0000000000000000000000000000000000000000000000000000000000000028"
    746             "3") == 0 ||
    747         !BN_set_word(dh->g, 2)) {
    748       return nullptr;
    749     }
    750     dh->priv_length = 0;
    751   }
    752 
    753   if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) {
    754     return nullptr;
    755   }
    756 
    757   if (config->async && config->is_server) {
    758     // Disable the internal session cache. To test asynchronous session lookup,
    759     // we use an external session cache.
    760     SSL_CTX_set_session_cache_mode(
    761         ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
    762     SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
    763   } else {
    764     SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
    765   }
    766 
    767   SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback);
    768 
    769   SSL_CTX_set_next_protos_advertised_cb(
    770       ssl_ctx.get(), NextProtosAdvertisedCallback, NULL);
    771   if (!config->select_next_proto.empty()) {
    772     SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
    773                                      NULL);
    774   }
    775 
    776   if (!config->select_alpn.empty()) {
    777     SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
    778   }
    779 
    780   SSL_CTX_enable_tls_channel_id(ssl_ctx.get());
    781   SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback);
    782 
    783   ssl_ctx->current_time_cb = CurrentTimeCallback;
    784 
    785   SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
    786   SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);
    787 
    788   if (config->use_ticket_callback) {
    789     SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
    790   }
    791 
    792   if (config->enable_client_custom_extension &&
    793       !SSL_CTX_add_client_custom_ext(
    794           ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
    795           CustomExtensionFreeCallback, kCustomExtensionAddArg,
    796           CustomExtensionParseCallback, kCustomExtensionParseArg)) {
    797     return nullptr;
    798   }
    799 
    800   if (config->enable_server_custom_extension &&
    801       !SSL_CTX_add_server_custom_ext(
    802           ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback,
    803           CustomExtensionFreeCallback, kCustomExtensionAddArg,
    804           CustomExtensionParseCallback, kCustomExtensionParseArg)) {
    805     return nullptr;
    806   }
    807 
    808   if (config->verify_fail) {
    809     SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL);
    810   } else {
    811     SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL);
    812   }
    813 
    814   if (!config->signed_cert_timestamps.empty() &&
    815       !SSL_CTX_set_signed_cert_timestamp_list(
    816           ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(),
    817           config->signed_cert_timestamps.size())) {
    818     return nullptr;
    819   }
    820 
    821   return ssl_ctx;
    822 }
    823 
    824 // RetryAsync is called after a failed operation on |ssl| with return code
    825 // |ret|. If the operation should be retried, it simulates one asynchronous
    826 // event and returns true. Otherwise it returns false.
    827 static bool RetryAsync(SSL *ssl, int ret) {
    828   // No error; don't retry.
    829   if (ret >= 0) {
    830     return false;
    831   }
    832 
    833   const TestConfig *config = GetConfigPtr(ssl);
    834   TestState *test_state = GetTestState(ssl);
    835   if (test_state->clock_delta.tv_usec != 0 ||
    836       test_state->clock_delta.tv_sec != 0) {
    837     // Process the timeout and retry.
    838     test_state->clock.tv_usec += test_state->clock_delta.tv_usec;
    839     test_state->clock.tv_sec += test_state->clock.tv_usec / 1000000;
    840     test_state->clock.tv_usec %= 1000000;
    841     test_state->clock.tv_sec += test_state->clock_delta.tv_sec;
    842     memset(&test_state->clock_delta, 0, sizeof(test_state->clock_delta));
    843 
    844     // The DTLS retransmit logic silently ignores write failures. So the test
    845     // may progress, allow writes through synchronously.
    846     if (config->async) {
    847       AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    848     }
    849     int timeout_ret = DTLSv1_handle_timeout(ssl);
    850     if (config->async) {
    851       AsyncBioEnforceWriteQuota(test_state->async_bio, true);
    852     }
    853 
    854     if (timeout_ret < 0) {
    855       fprintf(stderr, "Error retransmitting.\n");
    856       return false;
    857     }
    858     return true;
    859   }
    860 
    861   // See if we needed to read or write more. If so, allow one byte through on
    862   // the appropriate end to maximally stress the state machine.
    863   switch (SSL_get_error(ssl, ret)) {
    864     case SSL_ERROR_WANT_READ:
    865       AsyncBioAllowRead(test_state->async_bio, 1);
    866       return true;
    867     case SSL_ERROR_WANT_WRITE:
    868       AsyncBioAllowWrite(test_state->async_bio, 1);
    869       return true;
    870     case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: {
    871       ScopedEVP_PKEY pkey = LoadPrivateKey(GetConfigPtr(ssl)->send_channel_id);
    872       if (!pkey) {
    873         return false;
    874       }
    875       test_state->channel_id = std::move(pkey);
    876       return true;
    877     }
    878     case SSL_ERROR_WANT_X509_LOOKUP:
    879       test_state->cert_ready = true;
    880       return true;
    881     case SSL_ERROR_PENDING_SESSION:
    882       test_state->session = std::move(test_state->pending_session);
    883       return true;
    884     case SSL_ERROR_PENDING_CERTIFICATE:
    885       // The handshake will resume without a second call to the early callback.
    886       return InstallCertificate(ssl);
    887     case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION:
    888       test_state->private_key_retries++;
    889       return true;
    890     default:
    891       return false;
    892   }
    893 }
    894 
    895 // DoRead reads from |ssl|, resolving any asynchronous operations. It returns
    896 // the result value of the final |SSL_read| call.
    897 static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) {
    898   const TestConfig *config = GetConfigPtr(ssl);
    899   TestState *test_state = GetTestState(ssl);
    900   int ret;
    901   do {
    902     if (config->async) {
    903       // The DTLS retransmit logic silently ignores write failures. So the test
    904       // may progress, allow writes through synchronously. |SSL_read| may
    905       // trigger a retransmit, so disconnect the write quota.
    906       AsyncBioEnforceWriteQuota(test_state->async_bio, false);
    907     }
    908     ret = SSL_read(ssl, out, max_out);
    909     if (config->async) {
    910       AsyncBioEnforceWriteQuota(test_state->async_bio, true);
    911     }
    912   } while (config->async && RetryAsync(ssl, ret));
    913   return ret;
    914 }
    915 
    916 // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous
    917 // operations. It returns the result of the final |SSL_write| call.
    918 static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) {
    919   const TestConfig *config = GetConfigPtr(ssl);
    920   int ret;
    921   do {
    922     ret = SSL_write(ssl, in, in_len);
    923     if (ret > 0) {
    924       in += ret;
    925       in_len -= ret;
    926     }
    927   } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0));
    928   return ret;
    929 }
    930 
    931 // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It
    932 // returns the result of the final |SSL_shutdown| call.
    933 static int DoShutdown(SSL *ssl) {
    934   const TestConfig *config = GetConfigPtr(ssl);
    935   int ret;
    936   do {
    937     ret = SSL_shutdown(ssl);
    938   } while (config->async && RetryAsync(ssl, ret));
    939   return ret;
    940 }
    941 
    942 // CheckHandshakeProperties checks, immediately after |ssl| completes its
    943 // initial handshake (or False Starts), whether all the properties are
    944 // consistent with the test configuration and invariants.
    945 static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) {
    946   const TestConfig *config = GetConfigPtr(ssl);
    947 
    948   if (SSL_get_current_cipher(ssl) == nullptr) {
    949     fprintf(stderr, "null cipher after handshake\n");
    950     return false;
    951   }
    952 
    953   if (is_resume &&
    954       (!!SSL_session_reused(ssl) == config->expect_session_miss)) {
    955     fprintf(stderr, "session was%s reused\n",
    956             SSL_session_reused(ssl) ? "" : " not");
    957     return false;
    958   }
    959 
    960   bool expect_handshake_done = is_resume || !config->false_start;
    961   if (expect_handshake_done != GetTestState(ssl)->handshake_done) {
    962     fprintf(stderr, "handshake was%s completed\n",
    963             GetTestState(ssl)->handshake_done ? "" : " not");
    964     return false;
    965   }
    966 
    967   if (expect_handshake_done && !config->is_server) {
    968     bool expect_new_session =
    969         !config->expect_no_session &&
    970         (!SSL_session_reused(ssl) || config->expect_ticket_renewal);
    971     if (expect_new_session != GetTestState(ssl)->got_new_session) {
    972       fprintf(stderr,
    973               "new session was%s cached, but we expected the opposite\n",
    974               GetTestState(ssl)->got_new_session ? "" : " not");
    975       return false;
    976     }
    977   }
    978 
    979   if (config->is_server && !GetTestState(ssl)->early_callback_called) {
    980     fprintf(stderr, "early callback not called\n");
    981     return false;
    982   }
    983 
    984   if (!config->expected_server_name.empty()) {
    985     const char *server_name =
    986         SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
    987     if (server_name != config->expected_server_name) {
    988       fprintf(stderr, "servername mismatch (got %s; want %s)\n",
    989               server_name, config->expected_server_name.c_str());
    990       return false;
    991     }
    992   }
    993 
    994   if (!config->expected_certificate_types.empty()) {
    995     const uint8_t *certificate_types;
    996     size_t certificate_types_len =
    997         SSL_get0_certificate_types(ssl, &certificate_types);
    998     if (certificate_types_len != config->expected_certificate_types.size() ||
    999         memcmp(certificate_types,
   1000                config->expected_certificate_types.data(),
   1001                certificate_types_len) != 0) {
   1002       fprintf(stderr, "certificate types mismatch\n");
   1003       return false;
   1004     }
   1005   }
   1006 
   1007   if (!config->expected_next_proto.empty()) {
   1008     const uint8_t *next_proto;
   1009     unsigned next_proto_len;
   1010     SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len);
   1011     if (next_proto_len != config->expected_next_proto.size() ||
   1012         memcmp(next_proto, config->expected_next_proto.data(),
   1013                next_proto_len) != 0) {
   1014       fprintf(stderr, "negotiated next proto mismatch\n");
   1015       return false;
   1016     }
   1017   }
   1018 
   1019   if (!config->expected_alpn.empty()) {
   1020     const uint8_t *alpn_proto;
   1021     unsigned alpn_proto_len;
   1022     SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len);
   1023     if (alpn_proto_len != config->expected_alpn.size() ||
   1024         memcmp(alpn_proto, config->expected_alpn.data(),
   1025                alpn_proto_len) != 0) {
   1026       fprintf(stderr, "negotiated alpn proto mismatch\n");
   1027       return false;
   1028     }
   1029   }
   1030 
   1031   if (!config->expected_channel_id.empty()) {
   1032     uint8_t channel_id[64];
   1033     if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) {
   1034       fprintf(stderr, "no channel id negotiated\n");
   1035       return false;
   1036     }
   1037     if (config->expected_channel_id.size() != 64 ||
   1038         memcmp(config->expected_channel_id.data(),
   1039                channel_id, 64) != 0) {
   1040       fprintf(stderr, "channel id mismatch\n");
   1041       return false;
   1042     }
   1043   }
   1044 
   1045   if (config->expect_extended_master_secret) {
   1046     if (!ssl->session->extended_master_secret) {
   1047       fprintf(stderr, "No EMS for session when expected");
   1048       return false;
   1049     }
   1050   }
   1051 
   1052   if (!config->expected_ocsp_response.empty()) {
   1053     const uint8_t *data;
   1054     size_t len;
   1055     SSL_get0_ocsp_response(ssl, &data, &len);
   1056     if (config->expected_ocsp_response.size() != len ||
   1057         memcmp(config->expected_ocsp_response.data(), data, len) != 0) {
   1058       fprintf(stderr, "OCSP response mismatch\n");
   1059       return false;
   1060     }
   1061   }
   1062 
   1063   if (!config->expected_signed_cert_timestamps.empty()) {
   1064     const uint8_t *data;
   1065     size_t len;
   1066     SSL_get0_signed_cert_timestamp_list(ssl, &data, &len);
   1067     if (config->expected_signed_cert_timestamps.size() != len ||
   1068         memcmp(config->expected_signed_cert_timestamps.data(),
   1069                data, len) != 0) {
   1070       fprintf(stderr, "SCT list mismatch\n");
   1071       return false;
   1072     }
   1073   }
   1074 
   1075   if (config->expect_verify_result) {
   1076     int expected_verify_result = config->verify_fail ?
   1077       X509_V_ERR_APPLICATION_VERIFICATION :
   1078       X509_V_OK;
   1079 
   1080     if (SSL_get_verify_result(ssl) != expected_verify_result) {
   1081       fprintf(stderr, "Wrong certificate verification result\n");
   1082       return false;
   1083     }
   1084   }
   1085 
   1086   if (config->expect_server_key_exchange_hash != 0 &&
   1087       config->expect_server_key_exchange_hash !=
   1088           SSL_get_server_key_exchange_hash(ssl)) {
   1089     fprintf(stderr, "ServerKeyExchange hash was %d, wanted %d.\n",
   1090             SSL_get_server_key_exchange_hash(ssl),
   1091             config->expect_server_key_exchange_hash);
   1092     return false;
   1093   }
   1094 
   1095   if (config->expect_key_exchange_info != 0) {
   1096     uint32_t info = SSL_SESSION_get_key_exchange_info(SSL_get_session(ssl));
   1097     if (static_cast<uint32_t>(config->expect_key_exchange_info) != info) {
   1098       fprintf(stderr, "key_exchange_info was %" PRIu32 ", wanted %" PRIu32 "\n",
   1099               info, static_cast<uint32_t>(config->expect_key_exchange_info));
   1100       return false;
   1101     }
   1102   }
   1103 
   1104   if (!config->is_server) {
   1105     /* Clients should expect a peer certificate chain iff this was not a PSK
   1106      * cipher suite. */
   1107     if (config->psk.empty()) {
   1108       if (SSL_get_peer_cert_chain(ssl) == nullptr) {
   1109         fprintf(stderr, "Missing peer certificate chain!\n");
   1110         return false;
   1111       }
   1112     } else if (SSL_get_peer_cert_chain(ssl) != nullptr) {
   1113       fprintf(stderr, "Unexpected peer certificate chain!\n");
   1114       return false;
   1115     }
   1116   }
   1117   return true;
   1118 }
   1119 
   1120 // DoExchange runs a test SSL exchange against the peer. On success, it returns
   1121 // true and sets |*out_session| to the negotiated SSL session. If the test is a
   1122 // resumption attempt, |is_resume| is true and |session| is the session from the
   1123 // previous exchange.
   1124 static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx,
   1125                        const TestConfig *config, bool is_resume,
   1126                        SSL_SESSION *session) {
   1127   ScopedSSL ssl(SSL_new(ssl_ctx));
   1128   if (!ssl) {
   1129     return false;
   1130   }
   1131 
   1132   if (!SetConfigPtr(ssl.get(), config) ||
   1133       !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) {
   1134     return false;
   1135   }
   1136 
   1137   if (config->fallback_scsv &&
   1138       !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
   1139     return false;
   1140   }
   1141   if (!config->use_early_callback) {
   1142     if (config->async) {
   1143       // TODO(davidben): Also test |s->ctx->client_cert_cb| on the client.
   1144       SSL_set_cert_cb(ssl.get(), CertCallback, NULL);
   1145     } else if (!InstallCertificate(ssl.get())) {
   1146       return false;
   1147     }
   1148   }
   1149   if (config->require_any_client_certificate) {
   1150     SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
   1151                    NULL);
   1152   }
   1153   if (config->verify_peer) {
   1154     SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL);
   1155   }
   1156   if (config->false_start) {
   1157     SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
   1158   }
   1159   if (config->cbc_record_splitting) {
   1160     SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
   1161   }
   1162   if (config->partial_write) {
   1163     SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
   1164   }
   1165   if (config->no_tls12) {
   1166     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
   1167   }
   1168   if (config->no_tls11) {
   1169     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
   1170   }
   1171   if (config->no_tls1) {
   1172     SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
   1173   }
   1174   if (config->no_ssl3) {
   1175     SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3);
   1176   }
   1177   if (!config->expected_channel_id.empty()) {
   1178     SSL_enable_tls_channel_id(ssl.get());
   1179   }
   1180   if (!config->send_channel_id.empty()) {
   1181     SSL_enable_tls_channel_id(ssl.get());
   1182     if (!config->async) {
   1183       // The async case will be supplied by |ChannelIdCallback|.
   1184       ScopedEVP_PKEY pkey = LoadPrivateKey(config->send_channel_id);
   1185       if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
   1186         return false;
   1187       }
   1188     }
   1189   }
   1190   if (!config->host_name.empty() &&
   1191       !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) {
   1192     return false;
   1193   }
   1194   if (!config->advertise_alpn.empty() &&
   1195       SSL_set_alpn_protos(ssl.get(),
   1196                           (const uint8_t *)config->advertise_alpn.data(),
   1197                           config->advertise_alpn.size()) != 0) {
   1198     return false;
   1199   }
   1200   if (!config->psk.empty()) {
   1201     SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
   1202     SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
   1203   }
   1204   if (!config->psk_identity.empty() &&
   1205       !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) {
   1206     return false;
   1207   }
   1208   if (!config->srtp_profiles.empty() &&
   1209       !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) {
   1210     return false;
   1211   }
   1212   if (config->enable_ocsp_stapling &&
   1213       !SSL_enable_ocsp_stapling(ssl.get())) {
   1214     return false;
   1215   }
   1216   if (config->enable_signed_cert_timestamps &&
   1217       !SSL_enable_signed_cert_timestamps(ssl.get())) {
   1218     return false;
   1219   }
   1220   if (config->min_version != 0) {
   1221     SSL_set_min_version(ssl.get(), (uint16_t)config->min_version);
   1222   }
   1223   if (config->max_version != 0) {
   1224     SSL_set_max_version(ssl.get(), (uint16_t)config->max_version);
   1225   }
   1226   if (config->mtu != 0) {
   1227     SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
   1228     SSL_set_mtu(ssl.get(), config->mtu);
   1229   }
   1230   if (config->install_ddos_callback) {
   1231     SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback);
   1232   }
   1233   if (config->renegotiate_once) {
   1234     SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once);
   1235   }
   1236   if (config->renegotiate_freely) {
   1237     SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
   1238   }
   1239   if (config->renegotiate_ignore) {
   1240     SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore);
   1241   }
   1242   if (!config->check_close_notify) {
   1243     SSL_set_quiet_shutdown(ssl.get(), 1);
   1244   }
   1245   if (config->disable_npn) {
   1246     SSL_set_options(ssl.get(), SSL_OP_DISABLE_NPN);
   1247   }
   1248   if (config->p384_only) {
   1249     int nid = NID_secp384r1;
   1250     if (!SSL_set1_curves(ssl.get(), &nid, 1)) {
   1251       return false;
   1252     }
   1253   }
   1254   if (config->enable_all_curves) {
   1255     static const int kAllCurves[] = {
   1256         NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1, NID_x25519,
   1257     };
   1258     if (!SSL_set1_curves(ssl.get(), kAllCurves,
   1259                          sizeof(kAllCurves) / sizeof(kAllCurves[0]))) {
   1260       return false;
   1261     }
   1262   }
   1263 
   1264   int sock = Connect(config->port);
   1265   if (sock == -1) {
   1266     return false;
   1267   }
   1268   SocketCloser closer(sock);
   1269 
   1270   ScopedBIO bio(BIO_new_socket(sock, BIO_NOCLOSE));
   1271   if (!bio) {
   1272     return false;
   1273   }
   1274   if (config->is_dtls) {
   1275     ScopedBIO packeted =
   1276         PacketedBioCreate(&GetTestState(ssl.get())->clock_delta);
   1277     BIO_push(packeted.get(), bio.release());
   1278     bio = std::move(packeted);
   1279   }
   1280   if (config->async) {
   1281     ScopedBIO async_scoped =
   1282         config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate();
   1283     BIO_push(async_scoped.get(), bio.release());
   1284     GetTestState(ssl.get())->async_bio = async_scoped.get();
   1285     bio = std::move(async_scoped);
   1286   }
   1287   SSL_set_bio(ssl.get(), bio.get(), bio.get());
   1288   bio.release();  // SSL_set_bio takes ownership.
   1289 
   1290   if (session != NULL) {
   1291     if (!config->is_server) {
   1292       if (SSL_set_session(ssl.get(), session) != 1) {
   1293         return false;
   1294       }
   1295     } else if (config->async) {
   1296       // The internal session cache is disabled, so install the session
   1297       // manually.
   1298       GetTestState(ssl.get())->pending_session.reset(
   1299           SSL_SESSION_up_ref(session));
   1300     }
   1301   }
   1302 
   1303   if (SSL_get_current_cipher(ssl.get()) != nullptr) {
   1304     fprintf(stderr, "non-null cipher before handshake\n");
   1305     return false;
   1306   }
   1307 
   1308   int ret;
   1309   if (config->implicit_handshake) {
   1310     if (config->is_server) {
   1311       SSL_set_accept_state(ssl.get());
   1312     } else {
   1313       SSL_set_connect_state(ssl.get());
   1314     }
   1315   } else {
   1316     do {
   1317       if (config->is_server) {
   1318         ret = SSL_accept(ssl.get());
   1319       } else {
   1320         ret = SSL_connect(ssl.get());
   1321       }
   1322     } while (config->async && RetryAsync(ssl.get(), ret));
   1323     if (ret != 1 ||
   1324         !CheckHandshakeProperties(ssl.get(), is_resume)) {
   1325       return false;
   1326     }
   1327 
   1328     // Reset the state to assert later that the callback isn't called in
   1329     // renegotations.
   1330     GetTestState(ssl.get())->got_new_session = false;
   1331   }
   1332 
   1333   if (config->export_keying_material > 0) {
   1334     std::vector<uint8_t> result(
   1335         static_cast<size_t>(config->export_keying_material));
   1336     if (!SSL_export_keying_material(
   1337             ssl.get(), result.data(), result.size(),
   1338             config->export_label.data(), config->export_label.size(),
   1339             reinterpret_cast<const uint8_t*>(config->export_context.data()),
   1340             config->export_context.size(), config->use_export_context)) {
   1341       fprintf(stderr, "failed to export keying material\n");
   1342       return false;
   1343     }
   1344     if (WriteAll(ssl.get(), result.data(), result.size()) < 0) {
   1345       return false;
   1346     }
   1347   }
   1348 
   1349   if (config->tls_unique) {
   1350     uint8_t tls_unique[16];
   1351     size_t tls_unique_len;
   1352     if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len,
   1353                             sizeof(tls_unique))) {
   1354       fprintf(stderr, "failed to get tls-unique\n");
   1355       return false;
   1356     }
   1357 
   1358     if (tls_unique_len != 12) {
   1359       fprintf(stderr, "expected 12 bytes of tls-unique but got %u",
   1360               static_cast<unsigned>(tls_unique_len));
   1361       return false;
   1362     }
   1363 
   1364     if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) {
   1365       return false;
   1366     }
   1367   }
   1368 
   1369   if (config->write_different_record_sizes) {
   1370     if (config->is_dtls) {
   1371       fprintf(stderr, "write_different_record_sizes not supported for DTLS\n");
   1372       return false;
   1373     }
   1374     // This mode writes a number of different record sizes in an attempt to
   1375     // trip up the CBC record splitting code.
   1376     static const size_t kBufLen = 32769;
   1377     std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
   1378     memset(buf.get(), 0x42, kBufLen);
   1379     static const size_t kRecordSizes[] = {
   1380         0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769};
   1381     for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]);
   1382          i++) {
   1383       const size_t len = kRecordSizes[i];
   1384       if (len > kBufLen) {
   1385         fprintf(stderr, "Bad kRecordSizes value.\n");
   1386         return false;
   1387       }
   1388       if (WriteAll(ssl.get(), buf.get(), len) < 0) {
   1389         return false;
   1390       }
   1391     }
   1392   } else {
   1393     if (config->shim_writes_first) {
   1394       if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"),
   1395                    5) < 0) {
   1396         return false;
   1397       }
   1398     }
   1399     if (!config->shim_shuts_down) {
   1400       for (;;) {
   1401         static const size_t kBufLen = 16384;
   1402         std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]);
   1403 
   1404         // Read only 512 bytes at a time in TLS to ensure records may be
   1405         // returned in multiple reads.
   1406         int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512);
   1407         int err = SSL_get_error(ssl.get(), n);
   1408         if (err == SSL_ERROR_ZERO_RETURN ||
   1409             (n == 0 && err == SSL_ERROR_SYSCALL)) {
   1410           if (n != 0) {
   1411             fprintf(stderr, "Invalid SSL_get_error output\n");
   1412             return false;
   1413           }
   1414           // Stop on either clean or unclean shutdown.
   1415           break;
   1416         } else if (err != SSL_ERROR_NONE) {
   1417           if (n > 0) {
   1418             fprintf(stderr, "Invalid SSL_get_error output\n");
   1419             return false;
   1420           }
   1421           return false;
   1422         }
   1423         // Successfully read data.
   1424         if (n <= 0) {
   1425           fprintf(stderr, "Invalid SSL_get_error output\n");
   1426           return false;
   1427         }
   1428 
   1429         // After a successful read, with or without False Start, the handshake
   1430         // must be complete.
   1431         if (!GetTestState(ssl.get())->handshake_done) {
   1432           fprintf(stderr, "handshake was not completed after SSL_read\n");
   1433           return false;
   1434         }
   1435 
   1436         for (int i = 0; i < n; i++) {
   1437           buf[i] ^= 0xff;
   1438         }
   1439         if (WriteAll(ssl.get(), buf.get(), n) < 0) {
   1440           return false;
   1441         }
   1442       }
   1443     }
   1444   }
   1445 
   1446   if (!config->is_server && !config->false_start &&
   1447       !config->implicit_handshake &&
   1448       GetTestState(ssl.get())->got_new_session) {
   1449     fprintf(stderr, "new session was established after the handshake\n");
   1450     return false;
   1451   }
   1452 
   1453   if (out_session) {
   1454     out_session->reset(SSL_get1_session(ssl.get()));
   1455   }
   1456 
   1457   ret = DoShutdown(ssl.get());
   1458 
   1459   if (config->shim_shuts_down && config->check_close_notify) {
   1460     // We initiate shutdown, so |SSL_shutdown| will return in two stages. First
   1461     // it returns zero when our close_notify is sent, then one when the peer's
   1462     // is received.
   1463     if (ret != 0) {
   1464       fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret);
   1465       return false;
   1466     }
   1467     ret = DoShutdown(ssl.get());
   1468   }
   1469 
   1470   if (ret != 1) {
   1471     fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret);
   1472     return false;
   1473   }
   1474 
   1475   if (SSL_total_renegotiations(ssl.get()) !=
   1476       config->expect_total_renegotiations) {
   1477     fprintf(stderr, "Expected %d renegotiations, got %d\n",
   1478             config->expect_total_renegotiations,
   1479             SSL_total_renegotiations(ssl.get()));
   1480     return false;
   1481   }
   1482 
   1483   return true;
   1484 }
   1485 
   1486 int main(int argc, char **argv) {
   1487 #if defined(OPENSSL_WINDOWS)
   1488   /* Initialize Winsock. */
   1489   WORD wsa_version = MAKEWORD(2, 2);
   1490   WSADATA wsa_data;
   1491   int wsa_err = WSAStartup(wsa_version, &wsa_data);
   1492   if (wsa_err != 0) {
   1493     fprintf(stderr, "WSAStartup failed: %d\n", wsa_err);
   1494     return 1;
   1495   }
   1496   if (wsa_data.wVersion != wsa_version) {
   1497     fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion);
   1498     return 1;
   1499   }
   1500 #else
   1501   signal(SIGPIPE, SIG_IGN);
   1502 #endif
   1503 
   1504   CRYPTO_library_init();
   1505   g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
   1506   g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree);
   1507   if (g_config_index < 0 || g_state_index < 0) {
   1508     return 1;
   1509   }
   1510 
   1511   TestConfig config;
   1512   if (!ParseConfig(argc - 1, argv + 1, &config)) {
   1513     return Usage(argv[0]);
   1514   }
   1515 
   1516   ScopedSSL_CTX ssl_ctx = SetupCtx(&config);
   1517   if (!ssl_ctx) {
   1518     ERR_print_errors_fp(stderr);
   1519     return 1;
   1520   }
   1521 
   1522   ScopedSSL_SESSION session;
   1523   if (!DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */,
   1524                   NULL /* session */)) {
   1525     ERR_print_errors_fp(stderr);
   1526     return 1;
   1527   }
   1528 
   1529   if (config.resume &&
   1530       !DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */,
   1531                   session.get())) {
   1532     ERR_print_errors_fp(stderr);
   1533     return 1;
   1534   }
   1535 
   1536   return 0;
   1537 }
   1538