1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines ExprEngine's support for C expressions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/ExprCXX.h" 15 #include "clang/StaticAnalyzer/Core/CheckerManager.h" 16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" 17 18 using namespace clang; 19 using namespace ento; 20 using llvm::APSInt; 21 22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B, 23 ExplodedNode *Pred, 24 ExplodedNodeSet &Dst) { 25 26 Expr *LHS = B->getLHS()->IgnoreParens(); 27 Expr *RHS = B->getRHS()->IgnoreParens(); 28 29 // FIXME: Prechecks eventually go in ::Visit(). 30 ExplodedNodeSet CheckedSet; 31 ExplodedNodeSet Tmp2; 32 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this); 33 34 // With both the LHS and RHS evaluated, process the operation itself. 35 for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end(); 36 it != ei; ++it) { 37 38 ProgramStateRef state = (*it)->getState(); 39 const LocationContext *LCtx = (*it)->getLocationContext(); 40 SVal LeftV = state->getSVal(LHS, LCtx); 41 SVal RightV = state->getSVal(RHS, LCtx); 42 43 BinaryOperator::Opcode Op = B->getOpcode(); 44 45 if (Op == BO_Assign) { 46 // EXPERIMENTAL: "Conjured" symbols. 47 // FIXME: Handle structs. 48 if (RightV.isUnknown()) { 49 unsigned Count = currBldrCtx->blockCount(); 50 RightV = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, 51 Count); 52 } 53 // Simulate the effects of a "store": bind the value of the RHS 54 // to the L-Value represented by the LHS. 55 SVal ExprVal = B->isGLValue() ? LeftV : RightV; 56 evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal), 57 LeftV, RightV); 58 continue; 59 } 60 61 if (!B->isAssignmentOp()) { 62 StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx); 63 64 if (B->isAdditiveOp()) { 65 // If one of the operands is a location, conjure a symbol for the other 66 // one (offset) if it's unknown so that memory arithmetic always 67 // results in an ElementRegion. 68 // TODO: This can be removed after we enable history tracking with 69 // SymSymExpr. 70 unsigned Count = currBldrCtx->blockCount(); 71 if (LeftV.getAs<Loc>() && 72 RHS->getType()->isIntegralOrEnumerationType() && 73 RightV.isUnknown()) { 74 RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(), 75 Count); 76 } 77 if (RightV.getAs<Loc>() && 78 LHS->getType()->isIntegralOrEnumerationType() && 79 LeftV.isUnknown()) { 80 LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(), 81 Count); 82 } 83 } 84 85 // Although we don't yet model pointers-to-members, we do need to make 86 // sure that the members of temporaries have a valid 'this' pointer for 87 // other checks. 88 if (B->getOpcode() == BO_PtrMemD) 89 state = createTemporaryRegionIfNeeded(state, LCtx, LHS); 90 91 // Process non-assignments except commas or short-circuited 92 // logical expressions (LAnd and LOr). 93 SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType()); 94 if (Result.isUnknown()) { 95 Bldr.generateNode(B, *it, state); 96 continue; 97 } 98 99 state = state->BindExpr(B, LCtx, Result); 100 Bldr.generateNode(B, *it, state); 101 continue; 102 } 103 104 assert (B->isCompoundAssignmentOp()); 105 106 switch (Op) { 107 default: 108 llvm_unreachable("Invalid opcode for compound assignment."); 109 case BO_MulAssign: Op = BO_Mul; break; 110 case BO_DivAssign: Op = BO_Div; break; 111 case BO_RemAssign: Op = BO_Rem; break; 112 case BO_AddAssign: Op = BO_Add; break; 113 case BO_SubAssign: Op = BO_Sub; break; 114 case BO_ShlAssign: Op = BO_Shl; break; 115 case BO_ShrAssign: Op = BO_Shr; break; 116 case BO_AndAssign: Op = BO_And; break; 117 case BO_XorAssign: Op = BO_Xor; break; 118 case BO_OrAssign: Op = BO_Or; break; 119 } 120 121 // Perform a load (the LHS). This performs the checks for 122 // null dereferences, and so on. 123 ExplodedNodeSet Tmp; 124 SVal location = LeftV; 125 evalLoad(Tmp, B, LHS, *it, state, location); 126 127 for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; 128 ++I) { 129 130 state = (*I)->getState(); 131 const LocationContext *LCtx = (*I)->getLocationContext(); 132 SVal V = state->getSVal(LHS, LCtx); 133 134 // Get the computation type. 135 QualType CTy = 136 cast<CompoundAssignOperator>(B)->getComputationResultType(); 137 CTy = getContext().getCanonicalType(CTy); 138 139 QualType CLHSTy = 140 cast<CompoundAssignOperator>(B)->getComputationLHSType(); 141 CLHSTy = getContext().getCanonicalType(CLHSTy); 142 143 QualType LTy = getContext().getCanonicalType(LHS->getType()); 144 145 // Promote LHS. 146 V = svalBuilder.evalCast(V, CLHSTy, LTy); 147 148 // Compute the result of the operation. 149 SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy), 150 B->getType(), CTy); 151 152 // EXPERIMENTAL: "Conjured" symbols. 153 // FIXME: Handle structs. 154 155 SVal LHSVal; 156 157 if (Result.isUnknown()) { 158 // The symbolic value is actually for the type of the left-hand side 159 // expression, not the computation type, as this is the value the 160 // LValue on the LHS will bind to. 161 LHSVal = svalBuilder.conjureSymbolVal(nullptr, B->getRHS(), LCtx, LTy, 162 currBldrCtx->blockCount()); 163 // However, we need to convert the symbol to the computation type. 164 Result = svalBuilder.evalCast(LHSVal, CTy, LTy); 165 } 166 else { 167 // The left-hand side may bind to a different value then the 168 // computation type. 169 LHSVal = svalBuilder.evalCast(Result, LTy, CTy); 170 } 171 172 // In C++, assignment and compound assignment operators return an 173 // lvalue. 174 if (B->isGLValue()) 175 state = state->BindExpr(B, LCtx, location); 176 else 177 state = state->BindExpr(B, LCtx, Result); 178 179 evalStore(Tmp2, B, LHS, *I, state, location, LHSVal); 180 } 181 } 182 183 // FIXME: postvisits eventually go in ::Visit() 184 getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this); 185 } 186 187 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred, 188 ExplodedNodeSet &Dst) { 189 190 CanQualType T = getContext().getCanonicalType(BE->getType()); 191 192 const BlockDecl *BD = BE->getBlockDecl(); 193 // Get the value of the block itself. 194 SVal V = svalBuilder.getBlockPointer(BD, T, 195 Pred->getLocationContext(), 196 currBldrCtx->blockCount()); 197 198 ProgramStateRef State = Pred->getState(); 199 200 // If we created a new MemRegion for the block, we should explicitly bind 201 // the captured variables. 202 if (const BlockDataRegion *BDR = 203 dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) { 204 205 BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(), 206 E = BDR->referenced_vars_end(); 207 208 auto CI = BD->capture_begin(); 209 auto CE = BD->capture_end(); 210 for (; I != E; ++I) { 211 const VarRegion *capturedR = I.getCapturedRegion(); 212 const VarRegion *originalR = I.getOriginalRegion(); 213 214 // If the capture had a copy expression, use the result of evaluating 215 // that expression, otherwise use the original value. 216 // We rely on the invariant that the block declaration's capture variables 217 // are a prefix of the BlockDataRegion's referenced vars (which may include 218 // referenced globals, etc.) to enable fast lookup of the capture for a 219 // given referenced var. 220 const Expr *copyExpr = nullptr; 221 if (CI != CE) { 222 assert(CI->getVariable() == capturedR->getDecl()); 223 copyExpr = CI->getCopyExpr(); 224 CI++; 225 } 226 227 if (capturedR != originalR) { 228 SVal originalV; 229 if (copyExpr) { 230 originalV = State->getSVal(copyExpr, Pred->getLocationContext()); 231 } else { 232 originalV = State->getSVal(loc::MemRegionVal(originalR)); 233 } 234 State = State->bindLoc(loc::MemRegionVal(capturedR), originalV); 235 } 236 } 237 } 238 239 ExplodedNodeSet Tmp; 240 StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx); 241 Bldr.generateNode(BE, Pred, 242 State->BindExpr(BE, Pred->getLocationContext(), V), 243 nullptr, ProgramPoint::PostLValueKind); 244 245 // FIXME: Move all post/pre visits to ::Visit(). 246 getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this); 247 } 248 249 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex, 250 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 251 252 ExplodedNodeSet dstPreStmt; 253 getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this); 254 255 if (CastE->getCastKind() == CK_LValueToRValue) { 256 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 257 I!=E; ++I) { 258 ExplodedNode *subExprNode = *I; 259 ProgramStateRef state = subExprNode->getState(); 260 const LocationContext *LCtx = subExprNode->getLocationContext(); 261 evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx)); 262 } 263 return; 264 } 265 266 // All other casts. 267 QualType T = CastE->getType(); 268 QualType ExTy = Ex->getType(); 269 270 if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE)) 271 T = ExCast->getTypeAsWritten(); 272 273 StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx); 274 for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end(); 275 I != E; ++I) { 276 277 Pred = *I; 278 ProgramStateRef state = Pred->getState(); 279 const LocationContext *LCtx = Pred->getLocationContext(); 280 281 switch (CastE->getCastKind()) { 282 case CK_LValueToRValue: 283 llvm_unreachable("LValueToRValue casts handled earlier."); 284 case CK_ToVoid: 285 continue; 286 // The analyzer doesn't do anything special with these casts, 287 // since it understands retain/release semantics already. 288 case CK_ARCProduceObject: 289 case CK_ARCConsumeObject: 290 case CK_ARCReclaimReturnedObject: 291 case CK_ARCExtendBlockObject: // Fall-through. 292 case CK_CopyAndAutoreleaseBlockObject: 293 // The analyser can ignore atomic casts for now, although some future 294 // checkers may want to make certain that you're not modifying the same 295 // value through atomic and nonatomic pointers. 296 case CK_AtomicToNonAtomic: 297 case CK_NonAtomicToAtomic: 298 // True no-ops. 299 case CK_NoOp: 300 case CK_ConstructorConversion: 301 case CK_UserDefinedConversion: 302 case CK_FunctionToPointerDecay: 303 case CK_BuiltinFnToFnPtr: { 304 // Copy the SVal of Ex to CastE. 305 ProgramStateRef state = Pred->getState(); 306 const LocationContext *LCtx = Pred->getLocationContext(); 307 SVal V = state->getSVal(Ex, LCtx); 308 state = state->BindExpr(CastE, LCtx, V); 309 Bldr.generateNode(CastE, Pred, state); 310 continue; 311 } 312 case CK_MemberPointerToBoolean: 313 // FIXME: For now, member pointers are represented by void *. 314 // FALLTHROUGH 315 case CK_Dependent: 316 case CK_ArrayToPointerDecay: 317 case CK_BitCast: 318 case CK_AddressSpaceConversion: 319 case CK_IntegralCast: 320 case CK_NullToPointer: 321 case CK_IntegralToPointer: 322 case CK_PointerToIntegral: 323 case CK_PointerToBoolean: 324 case CK_IntegralToBoolean: 325 case CK_IntegralToFloating: 326 case CK_FloatingToIntegral: 327 case CK_FloatingToBoolean: 328 case CK_FloatingCast: 329 case CK_FloatingRealToComplex: 330 case CK_FloatingComplexToReal: 331 case CK_FloatingComplexToBoolean: 332 case CK_FloatingComplexCast: 333 case CK_FloatingComplexToIntegralComplex: 334 case CK_IntegralRealToComplex: 335 case CK_IntegralComplexToReal: 336 case CK_IntegralComplexToBoolean: 337 case CK_IntegralComplexCast: 338 case CK_IntegralComplexToFloatingComplex: 339 case CK_CPointerToObjCPointerCast: 340 case CK_BlockPointerToObjCPointerCast: 341 case CK_AnyPointerToBlockPointerCast: 342 case CK_ObjCObjectLValueCast: 343 case CK_ZeroToOCLEvent: 344 case CK_LValueBitCast: { 345 // Delegate to SValBuilder to process. 346 SVal V = state->getSVal(Ex, LCtx); 347 V = svalBuilder.evalCast(V, T, ExTy); 348 state = state->BindExpr(CastE, LCtx, V); 349 Bldr.generateNode(CastE, Pred, state); 350 continue; 351 } 352 case CK_DerivedToBase: 353 case CK_UncheckedDerivedToBase: { 354 // For DerivedToBase cast, delegate to the store manager. 355 SVal val = state->getSVal(Ex, LCtx); 356 val = getStoreManager().evalDerivedToBase(val, CastE); 357 state = state->BindExpr(CastE, LCtx, val); 358 Bldr.generateNode(CastE, Pred, state); 359 continue; 360 } 361 // Handle C++ dyn_cast. 362 case CK_Dynamic: { 363 SVal val = state->getSVal(Ex, LCtx); 364 365 // Compute the type of the result. 366 QualType resultType = CastE->getType(); 367 if (CastE->isGLValue()) 368 resultType = getContext().getPointerType(resultType); 369 370 bool Failed = false; 371 372 // Check if the value being cast evaluates to 0. 373 if (val.isZeroConstant()) 374 Failed = true; 375 // Else, evaluate the cast. 376 else 377 val = getStoreManager().evalDynamicCast(val, T, Failed); 378 379 if (Failed) { 380 if (T->isReferenceType()) { 381 // A bad_cast exception is thrown if input value is a reference. 382 // Currently, we model this, by generating a sink. 383 Bldr.generateSink(CastE, Pred, state); 384 continue; 385 } else { 386 // If the cast fails on a pointer, bind to 0. 387 state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull()); 388 } 389 } else { 390 // If we don't know if the cast succeeded, conjure a new symbol. 391 if (val.isUnknown()) { 392 DefinedOrUnknownSVal NewSym = 393 svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, resultType, 394 currBldrCtx->blockCount()); 395 state = state->BindExpr(CastE, LCtx, NewSym); 396 } else 397 // Else, bind to the derived region value. 398 state = state->BindExpr(CastE, LCtx, val); 399 } 400 Bldr.generateNode(CastE, Pred, state); 401 continue; 402 } 403 case CK_NullToMemberPointer: { 404 // FIXME: For now, member pointers are represented by void *. 405 SVal V = svalBuilder.makeNull(); 406 state = state->BindExpr(CastE, LCtx, V); 407 Bldr.generateNode(CastE, Pred, state); 408 continue; 409 } 410 // Various C++ casts that are not handled yet. 411 case CK_ToUnion: 412 case CK_BaseToDerived: 413 case CK_BaseToDerivedMemberPointer: 414 case CK_DerivedToBaseMemberPointer: 415 case CK_ReinterpretMemberPointer: 416 case CK_VectorSplat: { 417 // Recover some path-sensitivty by conjuring a new value. 418 QualType resultType = CastE->getType(); 419 if (CastE->isGLValue()) 420 resultType = getContext().getPointerType(resultType); 421 SVal result = svalBuilder.conjureSymbolVal(nullptr, CastE, LCtx, 422 resultType, 423 currBldrCtx->blockCount()); 424 state = state->BindExpr(CastE, LCtx, result); 425 Bldr.generateNode(CastE, Pred, state); 426 continue; 427 } 428 } 429 } 430 } 431 432 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL, 433 ExplodedNode *Pred, 434 ExplodedNodeSet &Dst) { 435 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 436 437 ProgramStateRef State = Pred->getState(); 438 const LocationContext *LCtx = Pred->getLocationContext(); 439 440 const Expr *Init = CL->getInitializer(); 441 SVal V = State->getSVal(CL->getInitializer(), LCtx); 442 443 if (isa<CXXConstructExpr>(Init)) { 444 // No work needed. Just pass the value up to this expression. 445 } else { 446 assert(isa<InitListExpr>(Init)); 447 Loc CLLoc = State->getLValue(CL, LCtx); 448 State = State->bindLoc(CLLoc, V); 449 450 // Compound literal expressions are a GNU extension in C++. 451 // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues, 452 // and like temporary objects created by the functional notation T() 453 // CLs are destroyed at the end of the containing full-expression. 454 // HOWEVER, an rvalue of array type is not something the analyzer can 455 // reason about, since we expect all regions to be wrapped in Locs. 456 // So we treat array CLs as lvalues as well, knowing that they will decay 457 // to pointers as soon as they are used. 458 if (CL->isGLValue() || CL->getType()->isArrayType()) 459 V = CLLoc; 460 } 461 462 B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V)); 463 } 464 465 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred, 466 ExplodedNodeSet &Dst) { 467 // Assumption: The CFG has one DeclStmt per Decl. 468 const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin()); 469 470 if (!VD) { 471 //TODO:AZ: remove explicit insertion after refactoring is done. 472 Dst.insert(Pred); 473 return; 474 } 475 476 // FIXME: all pre/post visits should eventually be handled by ::Visit(). 477 ExplodedNodeSet dstPreVisit; 478 getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this); 479 480 ExplodedNodeSet dstEvaluated; 481 StmtNodeBuilder B(dstPreVisit, dstEvaluated, *currBldrCtx); 482 for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end(); 483 I!=E; ++I) { 484 ExplodedNode *N = *I; 485 ProgramStateRef state = N->getState(); 486 const LocationContext *LC = N->getLocationContext(); 487 488 // Decls without InitExpr are not initialized explicitly. 489 if (const Expr *InitEx = VD->getInit()) { 490 491 // Note in the state that the initialization has occurred. 492 ExplodedNode *UpdatedN = N; 493 SVal InitVal = state->getSVal(InitEx, LC); 494 495 assert(DS->isSingleDecl()); 496 if (auto *CtorExpr = findDirectConstructorForCurrentCFGElement()) { 497 assert(InitEx->IgnoreImplicit() == CtorExpr); 498 (void)CtorExpr; 499 // We constructed the object directly in the variable. 500 // No need to bind anything. 501 B.generateNode(DS, UpdatedN, state); 502 } else { 503 // We bound the temp obj region to the CXXConstructExpr. Now recover 504 // the lazy compound value when the variable is not a reference. 505 if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() && 506 !VD->getType()->isReferenceType()) { 507 if (Optional<loc::MemRegionVal> M = 508 InitVal.getAs<loc::MemRegionVal>()) { 509 InitVal = state->getSVal(M->getRegion()); 510 assert(InitVal.getAs<nonloc::LazyCompoundVal>()); 511 } 512 } 513 514 // Recover some path-sensitivity if a scalar value evaluated to 515 // UnknownVal. 516 if (InitVal.isUnknown()) { 517 QualType Ty = InitEx->getType(); 518 if (InitEx->isGLValue()) { 519 Ty = getContext().getPointerType(Ty); 520 } 521 522 InitVal = svalBuilder.conjureSymbolVal(nullptr, InitEx, LC, Ty, 523 currBldrCtx->blockCount()); 524 } 525 526 527 B.takeNodes(UpdatedN); 528 ExplodedNodeSet Dst2; 529 evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true); 530 B.addNodes(Dst2); 531 } 532 } 533 else { 534 B.generateNode(DS, N, state); 535 } 536 } 537 538 getCheckerManager().runCheckersForPostStmt(Dst, B.getResults(), DS, *this); 539 } 540 541 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred, 542 ExplodedNodeSet &Dst) { 543 assert(B->getOpcode() == BO_LAnd || 544 B->getOpcode() == BO_LOr); 545 546 StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); 547 ProgramStateRef state = Pred->getState(); 548 549 ExplodedNode *N = Pred; 550 while (!N->getLocation().getAs<BlockEntrance>()) { 551 ProgramPoint P = N->getLocation(); 552 assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>()); 553 (void) P; 554 assert(N->pred_size() == 1); 555 N = *N->pred_begin(); 556 } 557 assert(N->pred_size() == 1); 558 N = *N->pred_begin(); 559 BlockEdge BE = N->getLocation().castAs<BlockEdge>(); 560 SVal X; 561 562 // Determine the value of the expression by introspecting how we 563 // got this location in the CFG. This requires looking at the previous 564 // block we were in and what kind of control-flow transfer was involved. 565 const CFGBlock *SrcBlock = BE.getSrc(); 566 // The only terminator (if there is one) that makes sense is a logical op. 567 CFGTerminator T = SrcBlock->getTerminator(); 568 if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) { 569 (void) Term; 570 assert(Term->isLogicalOp()); 571 assert(SrcBlock->succ_size() == 2); 572 // Did we take the true or false branch? 573 unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0; 574 X = svalBuilder.makeIntVal(constant, B->getType()); 575 } 576 else { 577 // If there is no terminator, by construction the last statement 578 // in SrcBlock is the value of the enclosing expression. 579 // However, we still need to constrain that value to be 0 or 1. 580 assert(!SrcBlock->empty()); 581 CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>(); 582 const Expr *RHS = cast<Expr>(Elem.getStmt()); 583 SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext()); 584 585 if (RHSVal.isUndef()) { 586 X = RHSVal; 587 } else { 588 DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>(); 589 ProgramStateRef StTrue, StFalse; 590 std::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS); 591 if (StTrue) { 592 if (StFalse) { 593 // We can't constrain the value to 0 or 1. 594 // The best we can do is a cast. 595 X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType()); 596 } else { 597 // The value is known to be true. 598 X = getSValBuilder().makeIntVal(1, B->getType()); 599 } 600 } else { 601 // The value is known to be false. 602 assert(StFalse && "Infeasible path!"); 603 X = getSValBuilder().makeIntVal(0, B->getType()); 604 } 605 } 606 } 607 Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X)); 608 } 609 610 void ExprEngine::VisitInitListExpr(const InitListExpr *IE, 611 ExplodedNode *Pred, 612 ExplodedNodeSet &Dst) { 613 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 614 615 ProgramStateRef state = Pred->getState(); 616 const LocationContext *LCtx = Pred->getLocationContext(); 617 QualType T = getContext().getCanonicalType(IE->getType()); 618 unsigned NumInitElements = IE->getNumInits(); 619 620 if (!IE->isGLValue() && 621 (T->isArrayType() || T->isRecordType() || T->isVectorType() || 622 T->isAnyComplexType())) { 623 llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList(); 624 625 // Handle base case where the initializer has no elements. 626 // e.g: static int* myArray[] = {}; 627 if (NumInitElements == 0) { 628 SVal V = svalBuilder.makeCompoundVal(T, vals); 629 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 630 return; 631 } 632 633 for (InitListExpr::const_reverse_iterator it = IE->rbegin(), 634 ei = IE->rend(); it != ei; ++it) { 635 SVal V = state->getSVal(cast<Expr>(*it), LCtx); 636 vals = getBasicVals().consVals(V, vals); 637 } 638 639 B.generateNode(IE, Pred, 640 state->BindExpr(IE, LCtx, 641 svalBuilder.makeCompoundVal(T, vals))); 642 return; 643 } 644 645 // Handle scalars: int{5} and int{} and GLvalues. 646 // Note, if the InitListExpr is a GLvalue, it means that there is an address 647 // representing it, so it must have a single init element. 648 assert(NumInitElements <= 1); 649 650 SVal V; 651 if (NumInitElements == 0) 652 V = getSValBuilder().makeZeroVal(T); 653 else 654 V = state->getSVal(IE->getInit(0), LCtx); 655 656 B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V)); 657 } 658 659 void ExprEngine::VisitGuardedExpr(const Expr *Ex, 660 const Expr *L, 661 const Expr *R, 662 ExplodedNode *Pred, 663 ExplodedNodeSet &Dst) { 664 assert(L && R); 665 666 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 667 ProgramStateRef state = Pred->getState(); 668 const LocationContext *LCtx = Pred->getLocationContext(); 669 const CFGBlock *SrcBlock = nullptr; 670 671 // Find the predecessor block. 672 ProgramStateRef SrcState = state; 673 for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) { 674 ProgramPoint PP = N->getLocation(); 675 if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) { 676 assert(N->pred_size() == 1); 677 continue; 678 } 679 SrcBlock = PP.castAs<BlockEdge>().getSrc(); 680 SrcState = N->getState(); 681 break; 682 } 683 684 assert(SrcBlock && "missing function entry"); 685 686 // Find the last expression in the predecessor block. That is the 687 // expression that is used for the value of the ternary expression. 688 bool hasValue = false; 689 SVal V; 690 691 for (CFGElement CE : llvm::reverse(*SrcBlock)) { 692 if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) { 693 const Expr *ValEx = cast<Expr>(CS->getStmt()); 694 ValEx = ValEx->IgnoreParens(); 695 696 // For GNU extension '?:' operator, the left hand side will be an 697 // OpaqueValueExpr, so get the underlying expression. 698 if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L)) 699 L = OpaqueEx->getSourceExpr(); 700 701 // If the last expression in the predecessor block matches true or false 702 // subexpression, get its the value. 703 if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) { 704 hasValue = true; 705 V = SrcState->getSVal(ValEx, LCtx); 706 } 707 break; 708 } 709 } 710 711 if (!hasValue) 712 V = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 713 currBldrCtx->blockCount()); 714 715 // Generate a new node with the binding from the appropriate path. 716 B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true)); 717 } 718 719 void ExprEngine:: 720 VisitOffsetOfExpr(const OffsetOfExpr *OOE, 721 ExplodedNode *Pred, ExplodedNodeSet &Dst) { 722 StmtNodeBuilder B(Pred, Dst, *currBldrCtx); 723 APSInt IV; 724 if (OOE->EvaluateAsInt(IV, getContext())) { 725 assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType())); 726 assert(OOE->getType()->isBuiltinType()); 727 assert(OOE->getType()->getAs<BuiltinType>()->isInteger()); 728 assert(IV.isSigned() == OOE->getType()->isSignedIntegerType()); 729 SVal X = svalBuilder.makeIntVal(IV); 730 B.generateNode(OOE, Pred, 731 Pred->getState()->BindExpr(OOE, Pred->getLocationContext(), 732 X)); 733 } 734 // FIXME: Handle the case where __builtin_offsetof is not a constant. 735 } 736 737 738 void ExprEngine:: 739 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex, 740 ExplodedNode *Pred, 741 ExplodedNodeSet &Dst) { 742 // FIXME: Prechecks eventually go in ::Visit(). 743 ExplodedNodeSet CheckedSet; 744 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, Ex, *this); 745 746 ExplodedNodeSet EvalSet; 747 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 748 749 QualType T = Ex->getTypeOfArgument(); 750 751 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 752 I != E; ++I) { 753 if (Ex->getKind() == UETT_SizeOf) { 754 if (!T->isIncompleteType() && !T->isConstantSizeType()) { 755 assert(T->isVariableArrayType() && "Unknown non-constant-sized type."); 756 757 // FIXME: Add support for VLA type arguments and VLA expressions. 758 // When that happens, we should probably refactor VLASizeChecker's code. 759 continue; 760 } else if (T->getAs<ObjCObjectType>()) { 761 // Some code tries to take the sizeof an ObjCObjectType, relying that 762 // the compiler has laid out its representation. Just report Unknown 763 // for these. 764 continue; 765 } 766 } 767 768 APSInt Value = Ex->EvaluateKnownConstInt(getContext()); 769 CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue()); 770 771 ProgramStateRef state = (*I)->getState(); 772 state = state->BindExpr(Ex, (*I)->getLocationContext(), 773 svalBuilder.makeIntVal(amt.getQuantity(), 774 Ex->getType())); 775 Bldr.generateNode(Ex, *I, state); 776 } 777 778 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); 779 } 780 781 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U, 782 ExplodedNode *Pred, 783 ExplodedNodeSet &Dst) { 784 // FIXME: Prechecks eventually go in ::Visit(). 785 ExplodedNodeSet CheckedSet; 786 getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, U, *this); 787 788 ExplodedNodeSet EvalSet; 789 StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); 790 791 for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); 792 I != E; ++I) { 793 switch (U->getOpcode()) { 794 default: { 795 Bldr.takeNodes(*I); 796 ExplodedNodeSet Tmp; 797 VisitIncrementDecrementOperator(U, *I, Tmp); 798 Bldr.addNodes(Tmp); 799 break; 800 } 801 case UO_Real: { 802 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 803 804 // FIXME: We don't have complex SValues yet. 805 if (Ex->getType()->isAnyComplexType()) { 806 // Just report "Unknown." 807 break; 808 } 809 810 // For all other types, UO_Real is an identity operation. 811 assert (U->getType() == Ex->getType()); 812 ProgramStateRef state = (*I)->getState(); 813 const LocationContext *LCtx = (*I)->getLocationContext(); 814 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 815 state->getSVal(Ex, LCtx))); 816 break; 817 } 818 819 case UO_Imag: { 820 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 821 // FIXME: We don't have complex SValues yet. 822 if (Ex->getType()->isAnyComplexType()) { 823 // Just report "Unknown." 824 break; 825 } 826 // For all other types, UO_Imag returns 0. 827 ProgramStateRef state = (*I)->getState(); 828 const LocationContext *LCtx = (*I)->getLocationContext(); 829 SVal X = svalBuilder.makeZeroVal(Ex->getType()); 830 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, X)); 831 break; 832 } 833 834 case UO_Plus: 835 assert(!U->isGLValue()); 836 // FALL-THROUGH. 837 case UO_Deref: 838 case UO_AddrOf: 839 case UO_Extension: { 840 // FIXME: We can probably just have some magic in Environment::getSVal() 841 // that propagates values, instead of creating a new node here. 842 // 843 // Unary "+" is a no-op, similar to a parentheses. We still have places 844 // where it may be a block-level expression, so we need to 845 // generate an extra node that just propagates the value of the 846 // subexpression. 847 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 848 ProgramStateRef state = (*I)->getState(); 849 const LocationContext *LCtx = (*I)->getLocationContext(); 850 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, 851 state->getSVal(Ex, LCtx))); 852 break; 853 } 854 855 case UO_LNot: 856 case UO_Minus: 857 case UO_Not: { 858 assert (!U->isGLValue()); 859 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 860 ProgramStateRef state = (*I)->getState(); 861 const LocationContext *LCtx = (*I)->getLocationContext(); 862 863 // Get the value of the subexpression. 864 SVal V = state->getSVal(Ex, LCtx); 865 866 if (V.isUnknownOrUndef()) { 867 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V)); 868 break; 869 } 870 871 switch (U->getOpcode()) { 872 default: 873 llvm_unreachable("Invalid Opcode."); 874 case UO_Not: 875 // FIXME: Do we need to handle promotions? 876 state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>())); 877 break; 878 case UO_Minus: 879 // FIXME: Do we need to handle promotions? 880 state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>())); 881 break; 882 case UO_LNot: 883 // C99 6.5.3.3: "The expression !E is equivalent to (0==E)." 884 // 885 // Note: technically we do "E == 0", but this is the same in the 886 // transfer functions as "0 == E". 887 SVal Result; 888 if (Optional<Loc> LV = V.getAs<Loc>()) { 889 Loc X = svalBuilder.makeNull(); 890 Result = evalBinOp(state, BO_EQ, *LV, X, U->getType()); 891 } 892 else if (Ex->getType()->isFloatingType()) { 893 // FIXME: handle floating point types. 894 Result = UnknownVal(); 895 } else { 896 nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType())); 897 Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X, 898 U->getType()); 899 } 900 901 state = state->BindExpr(U, LCtx, Result); 902 break; 903 } 904 Bldr.generateNode(U, *I, state); 905 break; 906 } 907 } 908 } 909 910 getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, U, *this); 911 } 912 913 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U, 914 ExplodedNode *Pred, 915 ExplodedNodeSet &Dst) { 916 // Handle ++ and -- (both pre- and post-increment). 917 assert (U->isIncrementDecrementOp()); 918 const Expr *Ex = U->getSubExpr()->IgnoreParens(); 919 920 const LocationContext *LCtx = Pred->getLocationContext(); 921 ProgramStateRef state = Pred->getState(); 922 SVal loc = state->getSVal(Ex, LCtx); 923 924 // Perform a load. 925 ExplodedNodeSet Tmp; 926 evalLoad(Tmp, U, Ex, Pred, state, loc); 927 928 ExplodedNodeSet Dst2; 929 StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx); 930 for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) { 931 932 state = (*I)->getState(); 933 assert(LCtx == (*I)->getLocationContext()); 934 SVal V2_untested = state->getSVal(Ex, LCtx); 935 936 // Propagate unknown and undefined values. 937 if (V2_untested.isUnknownOrUndef()) { 938 Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested)); 939 continue; 940 } 941 DefinedSVal V2 = V2_untested.castAs<DefinedSVal>(); 942 943 // Handle all other values. 944 BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub; 945 946 // If the UnaryOperator has non-location type, use its type to create the 947 // constant value. If the UnaryOperator has location type, create the 948 // constant with int type and pointer width. 949 SVal RHS; 950 951 if (U->getType()->isAnyPointerType()) 952 RHS = svalBuilder.makeArrayIndex(1); 953 else if (U->getType()->isIntegralOrEnumerationType()) 954 RHS = svalBuilder.makeIntVal(1, U->getType()); 955 else 956 RHS = UnknownVal(); 957 958 SVal Result = evalBinOp(state, Op, V2, RHS, U->getType()); 959 960 // Conjure a new symbol if necessary to recover precision. 961 if (Result.isUnknown()){ 962 DefinedOrUnknownSVal SymVal = 963 svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, 964 currBldrCtx->blockCount()); 965 Result = SymVal; 966 967 // If the value is a location, ++/-- should always preserve 968 // non-nullness. Check if the original value was non-null, and if so 969 // propagate that constraint. 970 if (Loc::isLocType(U->getType())) { 971 DefinedOrUnknownSVal Constraint = 972 svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType())); 973 974 if (!state->assume(Constraint, true)) { 975 // It isn't feasible for the original value to be null. 976 // Propagate this constraint. 977 Constraint = svalBuilder.evalEQ(state, SymVal, 978 svalBuilder.makeZeroVal(U->getType())); 979 980 981 state = state->assume(Constraint, false); 982 assert(state); 983 } 984 } 985 } 986 987 // Since the lvalue-to-rvalue conversion is explicit in the AST, 988 // we bind an l-value if the operator is prefix and an lvalue (in C++). 989 if (U->isGLValue()) 990 state = state->BindExpr(U, LCtx, loc); 991 else 992 state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result); 993 994 // Perform the store. 995 Bldr.takeNodes(*I); 996 ExplodedNodeSet Dst3; 997 evalStore(Dst3, U, U, *I, state, loc, Result); 998 Bldr.addNodes(Dst3); 999 } 1000 Dst.insert(Dst2); 1001 } 1002