Home | History | Annotate | Download | only in dsp
      1 // Copyright 2010 Google Inc. All Rights Reserved.
      2 //
      3 // Use of this source code is governed by a BSD-style license
      4 // that can be found in the COPYING file in the root of the source
      5 // tree. An additional intellectual property rights grant can be found
      6 // in the file PATENTS. All contributing project authors may
      7 // be found in the AUTHORS file in the root of the source tree.
      8 // -----------------------------------------------------------------------------
      9 //
     10 // inline YUV<->RGB conversion function
     11 //
     12 // The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
     13 // More information at: http://en.wikipedia.org/wiki/YCbCr
     14 // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
     15 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
     16 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
     17 // We use 16bit fixed point operations for RGB->YUV conversion.
     18 //
     19 // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
     20 //   R = 1.164 * (Y-16) + 1.596 * (V-128)
     21 //   G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
     22 //   B = 1.164 * (Y-16)                   + 2.018 * (U-128)
     23 // where Y is in the [16,235] range, and U/V in the [16,240] range.
     24 // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
     25 // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
     26 // So in this case the formulae should be read as:
     27 //   R = 1.164 * [Y + 1.371 * (V-128)                  ] - 18.624
     28 //   G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
     29 //   B = 1.164 * [Y                   + 1.733 * (U-128)] - 18.624
     30 // once factorized. Here too, 16bit fixed precision is used.
     31 //
     32 // Author: Skal (pascal.massimino (at) gmail.com)
     33 
     34 #ifndef WEBP_DSP_YUV_H_
     35 #define WEBP_DSP_YUV_H_
     36 
     37 #include "../dec/decode_vp8.h"
     38 
     39 // Define the following to use the LUT-based code:
     40 #define WEBP_YUV_USE_TABLE
     41 
     42 #if defined(WEBP_EXPERIMENTAL_FEATURES)
     43 // Do NOT activate this feature for real compression. This is only experimental!
     44 // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
     45 // This colorspace is close to Rec.601's Y'CbCr model with the notable
     46 // difference of allowing larger range for luma/chroma.
     47 // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
     48 // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
     49 // #define USE_YUVj
     50 #endif
     51 
     52 //------------------------------------------------------------------------------
     53 // YUV -> RGB conversion
     54 
     55 #if defined(__cplusplus) || defined(c_plusplus)
     56 extern "C" {
     57 #endif
     58 
     59 enum { YUV_FIX = 16,                // fixed-point precision
     60        YUV_HALF = 1 << (YUV_FIX - 1),
     61        YUV_MASK = (256 << YUV_FIX) - 1,
     62        YUV_RANGE_MIN = -227,        // min value of r/g/b output
     63        YUV_RANGE_MAX = 256 + 226    // max value of r/g/b output
     64 };
     65 
     66 #ifdef WEBP_YUV_USE_TABLE
     67 
     68 extern int16_t VP8kVToR[256], VP8kUToB[256];
     69 extern int32_t VP8kVToG[256], VP8kUToG[256];
     70 extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
     71 extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN];
     72 
     73 static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
     74                                     uint8_t* const rgb) {
     75   const int r_off = VP8kVToR[v];
     76   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
     77   const int b_off = VP8kUToB[u];
     78   rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN];
     79   rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
     80   rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
     81 }
     82 
     83 static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
     84                                     uint8_t* const bgr) {
     85   const int r_off = VP8kVToR[v];
     86   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
     87   const int b_off = VP8kUToB[u];
     88   bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
     89   bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
     90   bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
     91 }
     92 
     93 static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
     94                                        uint8_t* const rgb) {
     95   const int r_off = VP8kVToR[v];
     96   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
     97   const int b_off = VP8kUToB[u];
     98   const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
     99                       (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
    100   const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
    101                       (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
    102 #ifdef WEBP_SWAP_16BIT_CSP
    103   rgb[0] = gb;
    104   rgb[1] = rg;
    105 #else
    106   rgb[0] = rg;
    107   rgb[1] = gb;
    108 #endif
    109 }
    110 
    111 static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
    112                                          uint8_t* const argb) {
    113   const int r_off = VP8kVToR[v];
    114   const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
    115   const int b_off = VP8kUToB[u];
    116   const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
    117                       VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
    118   const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
    119 #ifdef WEBP_SWAP_16BIT_CSP
    120   argb[0] = ba;
    121   argb[1] = rg;
    122 #else
    123   argb[0] = rg;
    124   argb[1] = ba;
    125 #endif
    126 }
    127 
    128 #else   // Table-free version (slower on x86)
    129 
    130 // These constants are 16b fixed-point version of ITU-R BT.601 constants
    131 #define kYScale 76309      // 1.164 = 255 / 219
    132 #define kVToR   104597     // 1.596 = 255 / 112 * 0.701
    133 #define kUToG   25674      // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
    134 #define kVToG   53278      // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
    135 #define kUToB   132201     // 2.018 = 255 / 112 * 0.886
    136 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF)
    137 #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF)
    138 #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF)
    139 
    140 static WEBP_INLINE uint8_t VP8Clip8(int v) {
    141   return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX)
    142                                 : (v < 0) ? 0u : 255u;
    143 }
    144 
    145 static WEBP_INLINE uint8_t VP8ClipN(int v, int N) {  // clip to N bits
    146   return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N)))
    147                                 : (v < 0) ? 0u : (255u >> (8 - N));
    148 }
    149 
    150 static WEBP_INLINE int VP8YUVToR(int y, int v) {
    151   return kYScale * y + kVToR * v + kRCst;
    152 }
    153 
    154 static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
    155   return kYScale * y - kUToG * u - kVToG * v + kGCst;
    156 }
    157 
    158 static WEBP_INLINE int VP8YUVToB(int y, int u) {
    159   return kYScale * y  + kUToB * u + kBCst;
    160 }
    161 
    162 static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
    163                                     uint8_t* const rgb) {
    164   rgb[0] = VP8Clip8(VP8YUVToR(y, v));
    165   rgb[1] = VP8Clip8(VP8YUVToG(y, u, v));
    166   rgb[2] = VP8Clip8(VP8YUVToB(y, u));
    167 }
    168 
    169 static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
    170                                     uint8_t* const bgr) {
    171   bgr[0] = VP8Clip8(VP8YUVToB(y, u));
    172   bgr[1] = VP8Clip8(VP8YUVToG(y, u, v));
    173   bgr[2] = VP8Clip8(VP8YUVToR(y, v));
    174 }
    175 
    176 static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
    177                                        uint8_t* const rgb) {
    178   const int r = VP8Clip8(VP8YUVToR(y, u));
    179   const int g = VP8ClipN(VP8YUVToG(y, u, v), 6);
    180   const int b = VP8ClipN(VP8YUVToB(y, v), 5);
    181   const uint8_t rg = (r & 0xf8) | (g >> 3);
    182   const uint8_t gb = (g << 5) | b;
    183 #ifdef WEBP_SWAP_16BIT_CSP
    184   rgb[0] = gb;
    185   rgb[1] = rg;
    186 #else
    187   rgb[0] = rg;
    188   rgb[1] = gb;
    189 #endif
    190 }
    191 
    192 static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
    193                                          uint8_t* const argb) {
    194   const int r = VP8Clip8(VP8YUVToR(y, u));
    195   const int g = VP8ClipN(VP8YUVToG(y, u, v), 4);
    196   const int b = VP8Clip8(VP8YUVToB(y, v));
    197   const uint8_t rg = (r & 0xf0) | g;
    198   const uint8_t ba = b | 0x0f;   // overwrite the lower 4 bits
    199 #ifdef WEBP_SWAP_16BIT_CSP
    200   argb[0] = ba;
    201   argb[1] = rg;
    202 #else
    203   argb[0] = rg;
    204   argb[1] = ba;
    205 #endif
    206 }
    207 
    208 #endif  // WEBP_YUV_USE_TABLE
    209 
    210 static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
    211                                      uint8_t* const argb) {
    212   argb[0] = 0xff;
    213   VP8YuvToRgb(y, u, v, argb + 1);
    214 }
    215 
    216 static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
    217                                      uint8_t* const bgra) {
    218   VP8YuvToBgr(y, u, v, bgra);
    219   bgra[3] = 0xff;
    220 }
    221 
    222 static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
    223                                      uint8_t* const rgba) {
    224   VP8YuvToRgb(y, u, v, rgba);
    225   rgba[3] = 0xff;
    226 }
    227 
    228 // Must be called before everything, to initialize the tables.
    229 void VP8YUVInit(void);
    230 
    231 //------------------------------------------------------------------------------
    232 // RGB -> YUV conversion
    233 
    234 static WEBP_INLINE int VP8ClipUV(int v) {
    235   v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
    236   return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
    237 }
    238 
    239 #ifndef USE_YUVj
    240 
    241 static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
    242   const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
    243   const int luma = 16839 * r + 33059 * g + 6420 * b;
    244   return (luma + kRound) >> YUV_FIX;  // no need to clip
    245 }
    246 
    247 static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
    248   const int u = -9719 * r - 19081 * g + 28800 * b;
    249   return VP8ClipUV(u);
    250 }
    251 
    252 static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
    253   const int v = +28800 * r - 24116 * g - 4684 * b;
    254   return VP8ClipUV(v);
    255 }
    256 
    257 #else
    258 
    259 // This JPEG-YUV colorspace, only for comparison!
    260 // These are also 16-bit precision coefficients from Rec.601, but with full
    261 // [0..255] output range.
    262 static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
    263   const int kRound = (1 << (YUV_FIX - 1));
    264   const int luma = 19595 * r + 38470 * g + 7471 * b;
    265   return (luma + kRound) >> YUV_FIX;  // no need to clip
    266 }
    267 
    268 static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
    269   const int u = -11058 * r - 21710 * g + 32768 * b;
    270   return VP8ClipUV(u);
    271 }
    272 
    273 static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
    274   const int v = 32768 * r - 27439 * g - 5329 * b;
    275   return VP8ClipUV(v);
    276 }
    277 
    278 #endif    // USE_YUVj
    279 
    280 #if defined(__cplusplus) || defined(c_plusplus)
    281 }    // extern "C"
    282 #endif
    283 
    284 #endif  /* WEBP_DSP_YUV_H_ */
    285