Home | History | Annotate | Download | only in signal_processing
      1 /*
      2  *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 
     12 /*
     13  * This file contains the function WebRtcSpl_Sqrt().
     14  * The description header can be found in signal_processing_library.h
     15  *
     16  */
     17 
     18 #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
     19 
     20 #include <assert.h>
     21 
     22 int32_t WebRtcSpl_SqrtLocal(int32_t in);
     23 
     24 int32_t WebRtcSpl_SqrtLocal(int32_t in)
     25 {
     26 
     27     int16_t x_half, t16;
     28     int32_t A, B, x2;
     29 
     30     /* The following block performs:
     31      y=in/2
     32      x=y-2^30
     33      x_half=x/2^31
     34      t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
     35          + 0.875*((x_half)^5)
     36      */
     37 
     38     B = in / 2;
     39 
     40     B = B - ((int32_t)0x40000000); // B = in/2 - 1/2
     41     x_half = (int16_t)(B >> 16);  // x_half = x/2 = (in-1)/2
     42     B = B + ((int32_t)0x40000000); // B = 1 + x/2
     43     B = B + ((int32_t)0x40000000); // Add 0.5 twice (since 1.0 does not exist in Q31)
     44 
     45     x2 = ((int32_t)x_half) * ((int32_t)x_half) * 2; // A = (x/2)^2
     46     A = -x2; // A = -(x/2)^2
     47     B = B + (A >> 1); // B = 1 + x/2 - 0.5*(x/2)^2
     48 
     49     A >>= 16;
     50     A = A * A * 2; // A = (x/2)^4
     51     t16 = (int16_t)(A >> 16);
     52     B += -20480 * t16 * 2;  // B = B - 0.625*A
     53     // After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4
     54 
     55     A = x_half * t16 * 2;  // A = (x/2)^5
     56     t16 = (int16_t)(A >> 16);
     57     B += 28672 * t16 * 2;  // B = B + 0.875*A
     58     // After this, B = 1 + x/2 - 0.5*(x/2)^2 - 0.625*(x/2)^4 + 0.875*(x/2)^5
     59 
     60     t16 = (int16_t)(x2 >> 16);
     61     A = x_half * t16 * 2;  // A = x/2^3
     62 
     63     B = B + (A >> 1); // B = B + 0.5*A
     64     // After this, B = 1 + x/2 - 0.5*(x/2)^2 + 0.5*(x/2)^3 - 0.625*(x/2)^4 + 0.875*(x/2)^5
     65 
     66     B = B + ((int32_t)32768); // Round off bit
     67 
     68     return B;
     69 }
     70 
     71 int32_t WebRtcSpl_Sqrt(int32_t value)
     72 {
     73     /*
     74      Algorithm:
     75 
     76      Six term Taylor Series is used here to compute the square root of a number
     77      y^0.5 = (1+x)^0.5 where x = y-1
     78      = 1+(x/2)-0.5*((x/2)^2+0.5*((x/2)^3-0.625*((x/2)^4+0.875*((x/2)^5)
     79      0.5 <= x < 1
     80 
     81      Example of how the algorithm works, with ut=sqrt(in), and
     82      with in=73632 and ut=271 (even shift value case):
     83 
     84      in=73632
     85      y= in/131072
     86      x=y-1
     87      t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
     88      ut=t*(1/sqrt(2))*512
     89 
     90      or:
     91 
     92      in=73632
     93      in2=73632*2^14
     94      y= in2/2^31
     95      x=y-1
     96      t = 1 + (x/2) - 0.5*((x/2)^2) + 0.5*((x/2)^3) - 0.625*((x/2)^4) + 0.875*((x/2)^5)
     97      ut=t*(1/sqrt(2))
     98      ut2=ut*2^9
     99 
    100      which gives:
    101 
    102      in  = 73632
    103      in2 = 1206386688
    104      y   = 0.56176757812500
    105      x   = -0.43823242187500
    106      t   = 0.74973506527313
    107      ut  = 0.53014274874797
    108      ut2 = 2.714330873589594e+002
    109 
    110      or:
    111 
    112      in=73632
    113      in2=73632*2^14
    114      y=in2/2
    115      x=y-2^30
    116      x_half=x/2^31
    117      t = 1 + (x_half) - 0.5*((x_half)^2) + 0.5*((x_half)^3) - 0.625*((x_half)^4)
    118          + 0.875*((x_half)^5)
    119      ut=t*(1/sqrt(2))
    120      ut2=ut*2^9
    121 
    122      which gives:
    123 
    124      in  = 73632
    125      in2 = 1206386688
    126      y   = 603193344
    127      x   = -470548480
    128      x_half =  -0.21911621093750
    129      t   = 0.74973506527313
    130      ut  = 0.53014274874797
    131      ut2 = 2.714330873589594e+002
    132 
    133      */
    134 
    135     int16_t x_norm, nshift, t16, sh;
    136     int32_t A;
    137 
    138     int16_t k_sqrt_2 = 23170; // 1/sqrt2 (==5a82)
    139 
    140     A = value;
    141 
    142     if (A == 0)
    143         return (int32_t)0; // sqrt(0) = 0
    144 
    145     sh = WebRtcSpl_NormW32(A); // # shifts to normalize A
    146     A = WEBRTC_SPL_LSHIFT_W32(A, sh); // Normalize A
    147     if (A < (WEBRTC_SPL_WORD32_MAX - 32767))
    148     {
    149         A = A + ((int32_t)32768); // Round off bit
    150     } else
    151     {
    152         A = WEBRTC_SPL_WORD32_MAX;
    153     }
    154 
    155     x_norm = (int16_t)(A >> 16);  // x_norm = AH
    156 
    157     nshift = (sh / 2);
    158     assert(nshift >= 0);
    159 
    160     A = (int32_t)WEBRTC_SPL_LSHIFT_W32((int32_t)x_norm, 16);
    161     A = WEBRTC_SPL_ABS_W32(A); // A = abs(x_norm<<16)
    162     A = WebRtcSpl_SqrtLocal(A); // A = sqrt(A)
    163 
    164     if (2 * nshift == sh) {
    165         // Even shift value case
    166 
    167         t16 = (int16_t)(A >> 16);  // t16 = AH
    168 
    169         A = k_sqrt_2 * t16 * 2;  // A = 1/sqrt(2)*t16
    170         A = A + ((int32_t)32768); // Round off
    171         A = A & ((int32_t)0x7fff0000); // Round off
    172 
    173         A >>= 15;  // A = A>>16
    174 
    175     } else
    176     {
    177         A >>= 16;  // A = A>>16
    178     }
    179 
    180     A = A & ((int32_t)0x0000ffff);
    181     A >>= nshift;  // De-normalize the result.
    182 
    183     return A;
    184 }
    185