Home | History | Annotate | Download | only in builtins
      1 //===-- lib/divtf3.c - Quad-precision division --------------------*- C -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is dual licensed under the MIT and the University of Illinois Open
      6 // Source Licenses. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements quad-precision soft-float division
     11 // with the IEEE-754 default rounding (to nearest, ties to even).
     12 //
     13 // For simplicity, this implementation currently flushes denormals to zero.
     14 // It should be a fairly straightforward exercise to implement gradual
     15 // underflow with correct rounding.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define QUAD_PRECISION
     20 #include "fp_lib.h"
     21 
     22 #if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
     23 COMPILER_RT_ABI fp_t __divtf3(fp_t a, fp_t b) {
     24 
     25     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
     26     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
     27     const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
     28 
     29     rep_t aSignificand = toRep(a) & significandMask;
     30     rep_t bSignificand = toRep(b) & significandMask;
     31     int scale = 0;
     32 
     33     // Detect if a or b is zero, denormal, infinity, or NaN.
     34     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
     35 
     36         const rep_t aAbs = toRep(a) & absMask;
     37         const rep_t bAbs = toRep(b) & absMask;
     38 
     39         // NaN / anything = qNaN
     40         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
     41         // anything / NaN = qNaN
     42         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
     43 
     44         if (aAbs == infRep) {
     45             // infinity / infinity = NaN
     46             if (bAbs == infRep) return fromRep(qnanRep);
     47             // infinity / anything else = +/- infinity
     48             else return fromRep(aAbs | quotientSign);
     49         }
     50 
     51         // anything else / infinity = +/- 0
     52         if (bAbs == infRep) return fromRep(quotientSign);
     53 
     54         if (!aAbs) {
     55             // zero / zero = NaN
     56             if (!bAbs) return fromRep(qnanRep);
     57             // zero / anything else = +/- zero
     58             else return fromRep(quotientSign);
     59         }
     60         // anything else / zero = +/- infinity
     61         if (!bAbs) return fromRep(infRep | quotientSign);
     62 
     63         // one or both of a or b is denormal, the other (if applicable) is a
     64         // normal number.  Renormalize one or both of a and b, and set scale to
     65         // include the necessary exponent adjustment.
     66         if (aAbs < implicitBit) scale += normalize(&aSignificand);
     67         if (bAbs < implicitBit) scale -= normalize(&bSignificand);
     68     }
     69 
     70     // Or in the implicit significand bit.  (If we fell through from the
     71     // denormal path it was already set by normalize( ), but setting it twice
     72     // won't hurt anything.)
     73     aSignificand |= implicitBit;
     74     bSignificand |= implicitBit;
     75     int quotientExponent = aExponent - bExponent + scale;
     76 
     77     // Align the significand of b as a Q63 fixed-point number in the range
     78     // [1, 2.0) and get a Q64 approximate reciprocal using a small minimax
     79     // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
     80     // is accurate to about 3.5 binary digits.
     81     const uint64_t q63b = bSignificand >> 49;
     82     uint64_t recip64 = UINT64_C(0x7504f333F9DE6484) - q63b;
     83     // 0x7504f333F9DE6484 / 2^64 + 1 = 3/4 + 1/sqrt(2)
     84 
     85     // Now refine the reciprocal estimate using a Newton-Raphson iteration:
     86     //
     87     //     x1 = x0 * (2 - x0 * b)
     88     //
     89     // This doubles the number of correct binary digits in the approximation
     90     // with each iteration.
     91     uint64_t correction64;
     92     correction64 = -((rep_t)recip64 * q63b >> 64);
     93     recip64 = (rep_t)recip64 * correction64 >> 63;
     94     correction64 = -((rep_t)recip64 * q63b >> 64);
     95     recip64 = (rep_t)recip64 * correction64 >> 63;
     96     correction64 = -((rep_t)recip64 * q63b >> 64);
     97     recip64 = (rep_t)recip64 * correction64 >> 63;
     98     correction64 = -((rep_t)recip64 * q63b >> 64);
     99     recip64 = (rep_t)recip64 * correction64 >> 63;
    100     correction64 = -((rep_t)recip64 * q63b >> 64);
    101     recip64 = (rep_t)recip64 * correction64 >> 63;
    102 
    103     // recip64 might have overflowed to exactly zero in the preceeding
    104     // computation if the high word of b is exactly 1.0.  This would sabotage
    105     // the full-width final stage of the computation that follows, so we adjust
    106     // recip64 downward by one bit.
    107     recip64--;
    108 
    109     // We need to perform one more iteration to get us to 112 binary digits;
    110     // The last iteration needs to happen with extra precision.
    111     const uint64_t q127blo = bSignificand << 15;
    112     rep_t correction, reciprocal;
    113 
    114     // NOTE: This operation is equivalent to __multi3, which is not implemented
    115     //       in some architechure
    116     rep_t r64q63, r64q127, r64cH, r64cL, dummy;
    117     wideMultiply((rep_t)recip64, (rep_t)q63b, &dummy, &r64q63);
    118     wideMultiply((rep_t)recip64, (rep_t)q127blo, &dummy, &r64q127);
    119 
    120     correction = -(r64q63 + (r64q127 >> 64));
    121 
    122     uint64_t cHi = correction >> 64;
    123     uint64_t cLo = correction;
    124 
    125     wideMultiply((rep_t)recip64, (rep_t)cHi, &dummy, &r64cH);
    126     wideMultiply((rep_t)recip64, (rep_t)cLo, &dummy, &r64cL);
    127 
    128     reciprocal = r64cH + (r64cL >> 64);
    129 
    130     // We already adjusted the 64-bit estimate, now we need to adjust the final
    131     // 128-bit reciprocal estimate downward to ensure that it is strictly smaller
    132     // than the infinitely precise exact reciprocal.  Because the computation
    133     // of the Newton-Raphson step is truncating at every step, this adjustment
    134     // is small; most of the work is already done.
    135     reciprocal -= 2;
    136 
    137     // The numerical reciprocal is accurate to within 2^-112, lies in the
    138     // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
    139     // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
    140     // in Q127 with the following properties:
    141     //
    142     //    1. q < a/b
    143     //    2. q is in the interval [0.5, 2.0)
    144     //    3. the error in q is bounded away from 2^-113 (actually, we have a
    145     //       couple of bits to spare, but this is all we need).
    146 
    147     // We need a 128 x 128 multiply high to compute q, which isn't a basic
    148     // operation in C, so we need to be a little bit fussy.
    149     rep_t quotient, quotientLo;
    150     wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
    151 
    152     // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
    153     // In either case, we are going to compute a residual of the form
    154     //
    155     //     r = a - q*b
    156     //
    157     // We know from the construction of q that r satisfies:
    158     //
    159     //     0 <= r < ulp(q)*b
    160     //
    161     // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
    162     // already have the correct result.  The exact halfway case cannot occur.
    163     // We also take this time to right shift quotient if it falls in the [1,2)
    164     // range and adjust the exponent accordingly.
    165     rep_t residual;
    166     rep_t qb;
    167 
    168     if (quotient < (implicitBit << 1)) {
    169         wideMultiply(quotient, bSignificand, &dummy, &qb);
    170         residual = (aSignificand << 113) - qb;
    171         quotientExponent--;
    172     } else {
    173         quotient >>= 1;
    174         wideMultiply(quotient, bSignificand, &dummy, &qb);
    175         residual = (aSignificand << 112) - qb;
    176     }
    177 
    178     const int writtenExponent = quotientExponent + exponentBias;
    179 
    180     if (writtenExponent >= maxExponent) {
    181         // If we have overflowed the exponent, return infinity.
    182         return fromRep(infRep | quotientSign);
    183     }
    184     else if (writtenExponent < 1) {
    185         // Flush denormals to zero.  In the future, it would be nice to add
    186         // code to round them correctly.
    187         return fromRep(quotientSign);
    188     }
    189     else {
    190         const bool round = (residual << 1) >= bSignificand;
    191         // Clear the implicit bit
    192         rep_t absResult = quotient & significandMask;
    193         // Insert the exponent
    194         absResult |= (rep_t)writtenExponent << significandBits;
    195         // Round
    196         absResult += round;
    197         // Insert the sign and return
    198         const long double result = fromRep(absResult | quotientSign);
    199         return result;
    200     }
    201 }
    202 
    203 #endif
    204