1 /* DWARF 2 support. 2 Copyright (C) 1994-2014 Free Software Foundation, Inc. 3 4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions 5 (gavin (at) cygnus.com). 6 7 From the dwarf2read.c header: 8 Adapted by Gary Funck (gary (at) intrepid.com), Intrepid Technology, 9 Inc. with support from Florida State University (under contract 10 with the Ada Joint Program Office), and Silicon Graphics, Inc. 11 Initial contribution by Brent Benson, Harris Computer Systems, Inc., 12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1 13 support in dwarfread.c 14 15 This file is part of BFD. 16 17 This program is free software; you can redistribute it and/or modify 18 it under the terms of the GNU General Public License as published by 19 the Free Software Foundation; either version 3 of the License, or (at 20 your option) any later version. 21 22 This program is distributed in the hope that it will be useful, but 23 WITHOUT ANY WARRANTY; without even the implied warranty of 24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 25 General Public License for more details. 26 27 You should have received a copy of the GNU General Public License 28 along with this program; if not, write to the Free Software 29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 30 MA 02110-1301, USA. */ 31 32 #include "sysdep.h" 33 #include "bfd.h" 34 #include "libiberty.h" 35 #include "libbfd.h" 36 #include "elf-bfd.h" 37 #include "dwarf2.h" 38 39 /* The data in the .debug_line statement prologue looks like this. */ 40 41 struct line_head 42 { 43 bfd_vma total_length; 44 unsigned short version; 45 bfd_vma prologue_length; 46 unsigned char minimum_instruction_length; 47 unsigned char maximum_ops_per_insn; 48 unsigned char default_is_stmt; 49 int line_base; 50 unsigned char line_range; 51 unsigned char opcode_base; 52 unsigned char *standard_opcode_lengths; 53 }; 54 55 /* Attributes have a name and a value. */ 56 57 struct attribute 58 { 59 enum dwarf_attribute name; 60 enum dwarf_form form; 61 union 62 { 63 char *str; 64 struct dwarf_block *blk; 65 bfd_uint64_t val; 66 bfd_int64_t sval; 67 } 68 u; 69 }; 70 71 /* Blocks are a bunch of untyped bytes. */ 72 struct dwarf_block 73 { 74 unsigned int size; 75 bfd_byte *data; 76 }; 77 78 struct adjusted_section 79 { 80 asection *section; 81 bfd_vma adj_vma; 82 }; 83 84 struct dwarf2_debug 85 { 86 /* A list of all previously read comp_units. */ 87 struct comp_unit *all_comp_units; 88 89 /* Last comp unit in list above. */ 90 struct comp_unit *last_comp_unit; 91 92 /* Names of the debug sections. */ 93 const struct dwarf_debug_section *debug_sections; 94 95 /* The next unread compilation unit within the .debug_info section. 96 Zero indicates that the .debug_info section has not been loaded 97 into a buffer yet. */ 98 bfd_byte *info_ptr; 99 100 /* Pointer to the end of the .debug_info section memory buffer. */ 101 bfd_byte *info_ptr_end; 102 103 /* Pointer to the bfd, section and address of the beginning of the 104 section. The bfd might be different than expected because of 105 gnu_debuglink sections. */ 106 bfd *bfd_ptr; 107 asection *sec; 108 bfd_byte *sec_info_ptr; 109 110 /* Support for alternate debug info sections created by the DWZ utility: 111 This includes a pointer to an alternate bfd which contains *extra*, 112 possibly duplicate debug sections, and pointers to the loaded 113 .debug_str and .debug_info sections from this bfd. */ 114 bfd * alt_bfd_ptr; 115 bfd_byte * alt_dwarf_str_buffer; 116 bfd_size_type alt_dwarf_str_size; 117 bfd_byte * alt_dwarf_info_buffer; 118 bfd_size_type alt_dwarf_info_size; 119 120 /* A pointer to the memory block allocated for info_ptr. Neither 121 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the 122 beginning of the malloc block. This is used only to free the 123 memory later. */ 124 bfd_byte *info_ptr_memory; 125 126 /* Pointer to the symbol table. */ 127 asymbol **syms; 128 129 /* Pointer to the .debug_abbrev section loaded into memory. */ 130 bfd_byte *dwarf_abbrev_buffer; 131 132 /* Length of the loaded .debug_abbrev section. */ 133 bfd_size_type dwarf_abbrev_size; 134 135 /* Buffer for decode_line_info. */ 136 bfd_byte *dwarf_line_buffer; 137 138 /* Length of the loaded .debug_line section. */ 139 bfd_size_type dwarf_line_size; 140 141 /* Pointer to the .debug_str section loaded into memory. */ 142 bfd_byte *dwarf_str_buffer; 143 144 /* Length of the loaded .debug_str section. */ 145 bfd_size_type dwarf_str_size; 146 147 /* Pointer to the .debug_ranges section loaded into memory. */ 148 bfd_byte *dwarf_ranges_buffer; 149 150 /* Length of the loaded .debug_ranges section. */ 151 bfd_size_type dwarf_ranges_size; 152 153 /* If the most recent call to bfd_find_nearest_line was given an 154 address in an inlined function, preserve a pointer into the 155 calling chain for subsequent calls to bfd_find_inliner_info to 156 use. */ 157 struct funcinfo *inliner_chain; 158 159 /* Section VMAs at the time the stash was built. */ 160 bfd_vma *sec_vma; 161 162 /* Number of sections whose VMA we must adjust. */ 163 int adjusted_section_count; 164 165 /* Array of sections with adjusted VMA. */ 166 struct adjusted_section *adjusted_sections; 167 168 /* Number of times find_line is called. This is used in 169 the heuristic for enabling the info hash tables. */ 170 int info_hash_count; 171 172 #define STASH_INFO_HASH_TRIGGER 100 173 174 /* Hash table mapping symbol names to function infos. */ 175 struct info_hash_table *funcinfo_hash_table; 176 177 /* Hash table mapping symbol names to variable infos. */ 178 struct info_hash_table *varinfo_hash_table; 179 180 /* Head of comp_unit list in the last hash table update. */ 181 struct comp_unit *hash_units_head; 182 183 /* Status of info hash. */ 184 int info_hash_status; 185 #define STASH_INFO_HASH_OFF 0 186 #define STASH_INFO_HASH_ON 1 187 #define STASH_INFO_HASH_DISABLED 2 188 189 /* True if we opened bfd_ptr. */ 190 bfd_boolean close_on_cleanup; 191 }; 192 193 struct arange 194 { 195 struct arange *next; 196 bfd_vma low; 197 bfd_vma high; 198 }; 199 200 /* A minimal decoding of DWARF2 compilation units. We only decode 201 what's needed to get to the line number information. */ 202 203 struct comp_unit 204 { 205 /* Chain the previously read compilation units. */ 206 struct comp_unit *next_unit; 207 208 /* Likewise, chain the compilation unit read after this one. 209 The comp units are stored in reversed reading order. */ 210 struct comp_unit *prev_unit; 211 212 /* Keep the bfd convenient (for memory allocation). */ 213 bfd *abfd; 214 215 /* The lowest and highest addresses contained in this compilation 216 unit as specified in the compilation unit header. */ 217 struct arange arange; 218 219 /* The DW_AT_name attribute (for error messages). */ 220 char *name; 221 222 /* The abbrev hash table. */ 223 struct abbrev_info **abbrevs; 224 225 /* Note that an error was found by comp_unit_find_nearest_line. */ 226 int error; 227 228 /* The DW_AT_comp_dir attribute. */ 229 char *comp_dir; 230 231 /* TRUE if there is a line number table associated with this comp. unit. */ 232 int stmtlist; 233 234 /* Pointer to the current comp_unit so that we can find a given entry 235 by its reference. */ 236 bfd_byte *info_ptr_unit; 237 238 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */ 239 bfd_byte *sec_info_ptr; 240 241 /* The offset into .debug_line of the line number table. */ 242 unsigned long line_offset; 243 244 /* Pointer to the first child die for the comp unit. */ 245 bfd_byte *first_child_die_ptr; 246 247 /* The end of the comp unit. */ 248 bfd_byte *end_ptr; 249 250 /* The decoded line number, NULL if not yet decoded. */ 251 struct line_info_table *line_table; 252 253 /* A list of the functions found in this comp. unit. */ 254 struct funcinfo *function_table; 255 256 /* A list of the variables found in this comp. unit. */ 257 struct varinfo *variable_table; 258 259 /* Pointer to dwarf2_debug structure. */ 260 struct dwarf2_debug *stash; 261 262 /* DWARF format version for this unit - from unit header. */ 263 int version; 264 265 /* Address size for this unit - from unit header. */ 266 unsigned char addr_size; 267 268 /* Offset size for this unit - from unit header. */ 269 unsigned char offset_size; 270 271 /* Base address for this unit - from DW_AT_low_pc attribute of 272 DW_TAG_compile_unit DIE */ 273 bfd_vma base_address; 274 275 /* TRUE if symbols are cached in hash table for faster lookup by name. */ 276 bfd_boolean cached; 277 }; 278 279 /* This data structure holds the information of an abbrev. */ 280 struct abbrev_info 281 { 282 unsigned int number; /* Number identifying abbrev. */ 283 enum dwarf_tag tag; /* DWARF tag. */ 284 int has_children; /* Boolean. */ 285 unsigned int num_attrs; /* Number of attributes. */ 286 struct attr_abbrev *attrs; /* An array of attribute descriptions. */ 287 struct abbrev_info *next; /* Next in chain. */ 288 }; 289 290 struct attr_abbrev 291 { 292 enum dwarf_attribute name; 293 enum dwarf_form form; 294 }; 295 296 /* Map of uncompressed DWARF debug section name to compressed one. It 297 is terminated by NULL uncompressed_name. */ 298 299 const struct dwarf_debug_section dwarf_debug_sections[] = 300 { 301 { ".debug_abbrev", ".zdebug_abbrev" }, 302 { ".debug_aranges", ".zdebug_aranges" }, 303 { ".debug_frame", ".zdebug_frame" }, 304 { ".debug_info", ".zdebug_info" }, 305 { ".debug_info", ".zdebug_info" }, 306 { ".debug_line", ".zdebug_line" }, 307 { ".debug_loc", ".zdebug_loc" }, 308 { ".debug_macinfo", ".zdebug_macinfo" }, 309 { ".debug_macro", ".zdebug_macro" }, 310 { ".debug_pubnames", ".zdebug_pubnames" }, 311 { ".debug_pubtypes", ".zdebug_pubtypes" }, 312 { ".debug_ranges", ".zdebug_ranges" }, 313 { ".debug_static_func", ".zdebug_static_func" }, 314 { ".debug_static_vars", ".zdebug_static_vars" }, 315 { ".debug_str", ".zdebug_str", }, 316 { ".debug_str", ".zdebug_str", }, 317 { ".debug_types", ".zdebug_types" }, 318 /* GNU DWARF 1 extensions */ 319 { ".debug_sfnames", ".zdebug_sfnames" }, 320 { ".debug_srcinfo", ".zebug_srcinfo" }, 321 /* SGI/MIPS DWARF 2 extensions */ 322 { ".debug_funcnames", ".zdebug_funcnames" }, 323 { ".debug_typenames", ".zdebug_typenames" }, 324 { ".debug_varnames", ".zdebug_varnames" }, 325 { ".debug_weaknames", ".zdebug_weaknames" }, 326 { NULL, NULL }, 327 }; 328 329 /* NB/ Numbers in this enum must match up with indicies 330 into the dwarf_debug_sections[] array above. */ 331 enum dwarf_debug_section_enum 332 { 333 debug_abbrev = 0, 334 debug_aranges, 335 debug_frame, 336 debug_info, 337 debug_info_alt, 338 debug_line, 339 debug_loc, 340 debug_macinfo, 341 debug_macro, 342 debug_pubnames, 343 debug_pubtypes, 344 debug_ranges, 345 debug_static_func, 346 debug_static_vars, 347 debug_str, 348 debug_str_alt, 349 debug_types, 350 debug_sfnames, 351 debug_srcinfo, 352 debug_funcnames, 353 debug_typenames, 354 debug_varnames, 355 debug_weaknames 356 }; 357 358 #ifndef ABBREV_HASH_SIZE 359 #define ABBREV_HASH_SIZE 121 360 #endif 361 #ifndef ATTR_ALLOC_CHUNK 362 #define ATTR_ALLOC_CHUNK 4 363 #endif 364 365 /* Variable and function hash tables. This is used to speed up look-up 366 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table(). 367 In order to share code between variable and function infos, we use 368 a list of untyped pointer for all variable/function info associated with 369 a symbol. We waste a bit of memory for list with one node but that 370 simplifies the code. */ 371 372 struct info_list_node 373 { 374 struct info_list_node *next; 375 void *info; 376 }; 377 378 /* Info hash entry. */ 379 struct info_hash_entry 380 { 381 struct bfd_hash_entry root; 382 struct info_list_node *head; 383 }; 384 385 struct info_hash_table 386 { 387 struct bfd_hash_table base; 388 }; 389 390 /* Function to create a new entry in info hash table. */ 391 392 static struct bfd_hash_entry * 393 info_hash_table_newfunc (struct bfd_hash_entry *entry, 394 struct bfd_hash_table *table, 395 const char *string) 396 { 397 struct info_hash_entry *ret = (struct info_hash_entry *) entry; 398 399 /* Allocate the structure if it has not already been allocated by a 400 derived class. */ 401 if (ret == NULL) 402 { 403 ret = (struct info_hash_entry *) bfd_hash_allocate (table, 404 sizeof (* ret)); 405 if (ret == NULL) 406 return NULL; 407 } 408 409 /* Call the allocation method of the base class. */ 410 ret = ((struct info_hash_entry *) 411 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); 412 413 /* Initialize the local fields here. */ 414 if (ret) 415 ret->head = NULL; 416 417 return (struct bfd_hash_entry *) ret; 418 } 419 420 /* Function to create a new info hash table. It returns a pointer to the 421 newly created table or NULL if there is any error. We need abfd 422 solely for memory allocation. */ 423 424 static struct info_hash_table * 425 create_info_hash_table (bfd *abfd) 426 { 427 struct info_hash_table *hash_table; 428 429 hash_table = ((struct info_hash_table *) 430 bfd_alloc (abfd, sizeof (struct info_hash_table))); 431 if (!hash_table) 432 return hash_table; 433 434 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc, 435 sizeof (struct info_hash_entry))) 436 { 437 bfd_release (abfd, hash_table); 438 return NULL; 439 } 440 441 return hash_table; 442 } 443 444 /* Insert an info entry into an info hash table. We do not check of 445 duplicate entries. Also, the caller need to guarantee that the 446 right type of info in inserted as info is passed as a void* pointer. 447 This function returns true if there is no error. */ 448 449 static bfd_boolean 450 insert_info_hash_table (struct info_hash_table *hash_table, 451 const char *key, 452 void *info, 453 bfd_boolean copy_p) 454 { 455 struct info_hash_entry *entry; 456 struct info_list_node *node; 457 458 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, 459 key, TRUE, copy_p); 460 if (!entry) 461 return FALSE; 462 463 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base, 464 sizeof (*node)); 465 if (!node) 466 return FALSE; 467 468 node->info = info; 469 node->next = entry->head; 470 entry->head = node; 471 472 return TRUE; 473 } 474 475 /* Look up an info entry list from an info hash table. Return NULL 476 if there is none. */ 477 478 static struct info_list_node * 479 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key) 480 { 481 struct info_hash_entry *entry; 482 483 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key, 484 FALSE, FALSE); 485 return entry ? entry->head : NULL; 486 } 487 488 /* Read a section into its appropriate place in the dwarf2_debug 489 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is 490 not NULL, use bfd_simple_get_relocated_section_contents to read the 491 section contents, otherwise use bfd_get_section_contents. Fail if 492 the located section does not contain at least OFFSET bytes. */ 493 494 static bfd_boolean 495 read_section (bfd * abfd, 496 const struct dwarf_debug_section *sec, 497 asymbol ** syms, 498 bfd_uint64_t offset, 499 bfd_byte ** section_buffer, 500 bfd_size_type * section_size) 501 { 502 asection *msec; 503 const char *section_name = sec->uncompressed_name; 504 505 /* The section may have already been read. */ 506 if (*section_buffer == NULL) 507 { 508 msec = bfd_get_section_by_name (abfd, section_name); 509 if (! msec) 510 { 511 section_name = sec->compressed_name; 512 if (section_name != NULL) 513 msec = bfd_get_section_by_name (abfd, section_name); 514 } 515 if (! msec) 516 { 517 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."), 518 sec->uncompressed_name); 519 bfd_set_error (bfd_error_bad_value); 520 return FALSE; 521 } 522 523 *section_size = msec->rawsize ? msec->rawsize : msec->size; 524 if (syms) 525 { 526 *section_buffer 527 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms); 528 if (! *section_buffer) 529 return FALSE; 530 } 531 else 532 { 533 *section_buffer = (bfd_byte *) bfd_malloc (*section_size); 534 if (! *section_buffer) 535 return FALSE; 536 if (! bfd_get_section_contents (abfd, msec, *section_buffer, 537 0, *section_size)) 538 return FALSE; 539 } 540 } 541 542 /* It is possible to get a bad value for the offset into the section 543 that the client wants. Validate it here to avoid trouble later. */ 544 if (offset != 0 && offset >= *section_size) 545 { 546 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu)" 547 " greater than or equal to %s size (%lu)."), 548 (long) offset, section_name, *section_size); 549 bfd_set_error (bfd_error_bad_value); 550 return FALSE; 551 } 552 553 return TRUE; 554 } 555 556 /* VERBATIM 557 The following function up to the END VERBATIM mark are 558 copied directly from dwarf2read.c. */ 559 560 /* Read dwarf information from a buffer. */ 561 562 static unsigned int 563 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf) 564 { 565 return bfd_get_8 (abfd, buf); 566 } 567 568 static int 569 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf) 570 { 571 return bfd_get_signed_8 (abfd, buf); 572 } 573 574 static unsigned int 575 read_2_bytes (bfd *abfd, bfd_byte *buf) 576 { 577 return bfd_get_16 (abfd, buf); 578 } 579 580 static unsigned int 581 read_4_bytes (bfd *abfd, bfd_byte *buf) 582 { 583 return bfd_get_32 (abfd, buf); 584 } 585 586 static bfd_uint64_t 587 read_8_bytes (bfd *abfd, bfd_byte *buf) 588 { 589 return bfd_get_64 (abfd, buf); 590 } 591 592 static bfd_byte * 593 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED, 594 bfd_byte *buf, 595 unsigned int size ATTRIBUTE_UNUSED) 596 { 597 return buf; 598 } 599 600 static char * 601 read_string (bfd *abfd ATTRIBUTE_UNUSED, 602 bfd_byte *buf, 603 unsigned int *bytes_read_ptr) 604 { 605 /* Return a pointer to the embedded string. */ 606 char *str = (char *) buf; 607 608 if (*str == '\0') 609 { 610 *bytes_read_ptr = 1; 611 return NULL; 612 } 613 614 *bytes_read_ptr = strlen (str) + 1; 615 return str; 616 } 617 618 /* END VERBATIM */ 619 620 static char * 621 read_indirect_string (struct comp_unit * unit, 622 bfd_byte * buf, 623 unsigned int * bytes_read_ptr) 624 { 625 bfd_uint64_t offset; 626 struct dwarf2_debug *stash = unit->stash; 627 char *str; 628 629 if (unit->offset_size == 4) 630 offset = read_4_bytes (unit->abfd, buf); 631 else 632 offset = read_8_bytes (unit->abfd, buf); 633 634 *bytes_read_ptr = unit->offset_size; 635 636 if (! read_section (unit->abfd, &stash->debug_sections[debug_str], 637 stash->syms, offset, 638 &stash->dwarf_str_buffer, &stash->dwarf_str_size)) 639 return NULL; 640 641 str = (char *) stash->dwarf_str_buffer + offset; 642 if (*str == '\0') 643 return NULL; 644 return str; 645 } 646 647 /* Like read_indirect_string but uses a .debug_str located in 648 an alternate file pointed to by the .gnu_debugaltlink section. 649 Used to impement DW_FORM_GNU_strp_alt. */ 650 651 static char * 652 read_alt_indirect_string (struct comp_unit * unit, 653 bfd_byte * buf, 654 unsigned int * bytes_read_ptr) 655 { 656 bfd_uint64_t offset; 657 struct dwarf2_debug *stash = unit->stash; 658 char *str; 659 660 if (unit->offset_size == 4) 661 offset = read_4_bytes (unit->abfd, buf); 662 else 663 offset = read_8_bytes (unit->abfd, buf); 664 665 *bytes_read_ptr = unit->offset_size; 666 667 if (stash->alt_bfd_ptr == NULL) 668 { 669 bfd * debug_bfd; 670 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR); 671 672 if (debug_filename == NULL) 673 return NULL; 674 675 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL 676 || ! bfd_check_format (debug_bfd, bfd_object)) 677 { 678 if (debug_bfd) 679 bfd_close (debug_bfd); 680 681 /* FIXME: Should we report our failure to follow the debuglink ? */ 682 free (debug_filename); 683 return NULL; 684 } 685 stash->alt_bfd_ptr = debug_bfd; 686 } 687 688 if (! read_section (unit->stash->alt_bfd_ptr, 689 stash->debug_sections + debug_str_alt, 690 NULL, /* FIXME: Do we need to load alternate symbols ? */ 691 offset, 692 &stash->alt_dwarf_str_buffer, 693 &stash->alt_dwarf_str_size)) 694 return NULL; 695 696 str = (char *) stash->alt_dwarf_str_buffer + offset; 697 if (*str == '\0') 698 return NULL; 699 700 return str; 701 } 702 703 /* Resolve an alternate reference from UNIT at OFFSET. 704 Returns a pointer into the loaded alternate CU upon success 705 or NULL upon failure. */ 706 707 static bfd_byte * 708 read_alt_indirect_ref (struct comp_unit * unit, 709 bfd_uint64_t offset) 710 { 711 struct dwarf2_debug *stash = unit->stash; 712 713 if (stash->alt_bfd_ptr == NULL) 714 { 715 bfd * debug_bfd; 716 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR); 717 718 if (debug_filename == NULL) 719 return FALSE; 720 721 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL 722 || ! bfd_check_format (debug_bfd, bfd_object)) 723 { 724 if (debug_bfd) 725 bfd_close (debug_bfd); 726 727 /* FIXME: Should we report our failure to follow the debuglink ? */ 728 free (debug_filename); 729 return NULL; 730 } 731 stash->alt_bfd_ptr = debug_bfd; 732 } 733 734 if (! read_section (unit->stash->alt_bfd_ptr, 735 stash->debug_sections + debug_info_alt, 736 NULL, /* FIXME: Do we need to load alternate symbols ? */ 737 offset, 738 &stash->alt_dwarf_info_buffer, 739 &stash->alt_dwarf_info_size)) 740 return NULL; 741 742 return stash->alt_dwarf_info_buffer + offset; 743 } 744 745 static bfd_uint64_t 746 read_address (struct comp_unit *unit, bfd_byte *buf) 747 { 748 int signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma; 749 750 if (signed_vma) 751 { 752 switch (unit->addr_size) 753 { 754 case 8: 755 return bfd_get_signed_64 (unit->abfd, buf); 756 case 4: 757 return bfd_get_signed_32 (unit->abfd, buf); 758 case 2: 759 return bfd_get_signed_16 (unit->abfd, buf); 760 default: 761 abort (); 762 } 763 } 764 else 765 { 766 switch (unit->addr_size) 767 { 768 case 8: 769 return bfd_get_64 (unit->abfd, buf); 770 case 4: 771 return bfd_get_32 (unit->abfd, buf); 772 case 2: 773 return bfd_get_16 (unit->abfd, buf); 774 default: 775 abort (); 776 } 777 } 778 } 779 780 /* Lookup an abbrev_info structure in the abbrev hash table. */ 781 782 static struct abbrev_info * 783 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs) 784 { 785 unsigned int hash_number; 786 struct abbrev_info *abbrev; 787 788 hash_number = number % ABBREV_HASH_SIZE; 789 abbrev = abbrevs[hash_number]; 790 791 while (abbrev) 792 { 793 if (abbrev->number == number) 794 return abbrev; 795 else 796 abbrev = abbrev->next; 797 } 798 799 return NULL; 800 } 801 802 /* In DWARF version 2, the description of the debugging information is 803 stored in a separate .debug_abbrev section. Before we read any 804 dies from a section we read in all abbreviations and install them 805 in a hash table. */ 806 807 static struct abbrev_info** 808 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash) 809 { 810 struct abbrev_info **abbrevs; 811 bfd_byte *abbrev_ptr; 812 struct abbrev_info *cur_abbrev; 813 unsigned int abbrev_number, bytes_read, abbrev_name; 814 unsigned int abbrev_form, hash_number; 815 bfd_size_type amt; 816 817 if (! read_section (abfd, &stash->debug_sections[debug_abbrev], 818 stash->syms, offset, 819 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size)) 820 return NULL; 821 822 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE; 823 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt); 824 if (abbrevs == NULL) 825 return NULL; 826 827 abbrev_ptr = stash->dwarf_abbrev_buffer + offset; 828 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 829 abbrev_ptr += bytes_read; 830 831 /* Loop until we reach an abbrev number of 0. */ 832 while (abbrev_number) 833 { 834 amt = sizeof (struct abbrev_info); 835 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt); 836 if (cur_abbrev == NULL) 837 return NULL; 838 839 /* Read in abbrev header. */ 840 cur_abbrev->number = abbrev_number; 841 cur_abbrev->tag = (enum dwarf_tag) 842 read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 843 abbrev_ptr += bytes_read; 844 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr); 845 abbrev_ptr += 1; 846 847 /* Now read in declarations. */ 848 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 849 abbrev_ptr += bytes_read; 850 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 851 abbrev_ptr += bytes_read; 852 853 while (abbrev_name) 854 { 855 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0) 856 { 857 struct attr_abbrev *tmp; 858 859 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK; 860 amt *= sizeof (struct attr_abbrev); 861 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt); 862 if (tmp == NULL) 863 { 864 size_t i; 865 866 for (i = 0; i < ABBREV_HASH_SIZE; i++) 867 { 868 struct abbrev_info *abbrev = abbrevs[i]; 869 870 while (abbrev) 871 { 872 free (abbrev->attrs); 873 abbrev = abbrev->next; 874 } 875 } 876 return NULL; 877 } 878 cur_abbrev->attrs = tmp; 879 } 880 881 cur_abbrev->attrs[cur_abbrev->num_attrs].name 882 = (enum dwarf_attribute) abbrev_name; 883 cur_abbrev->attrs[cur_abbrev->num_attrs++].form 884 = (enum dwarf_form) abbrev_form; 885 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 886 abbrev_ptr += bytes_read; 887 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 888 abbrev_ptr += bytes_read; 889 } 890 891 hash_number = abbrev_number % ABBREV_HASH_SIZE; 892 cur_abbrev->next = abbrevs[hash_number]; 893 abbrevs[hash_number] = cur_abbrev; 894 895 /* Get next abbreviation. 896 Under Irix6 the abbreviations for a compilation unit are not 897 always properly terminated with an abbrev number of 0. 898 Exit loop if we encounter an abbreviation which we have 899 already read (which means we are about to read the abbreviations 900 for the next compile unit) or if the end of the abbreviation 901 table is reached. */ 902 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer) 903 >= stash->dwarf_abbrev_size) 904 break; 905 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); 906 abbrev_ptr += bytes_read; 907 if (lookup_abbrev (abbrev_number,abbrevs) != NULL) 908 break; 909 } 910 911 return abbrevs; 912 } 913 914 /* Returns true if the form is one which has a string value. */ 915 916 static inline bfd_boolean 917 is_str_attr (enum dwarf_form form) 918 { 919 return form == DW_FORM_string || form == DW_FORM_strp || form == DW_FORM_GNU_strp_alt; 920 } 921 922 /* Read an attribute value described by an attribute form. */ 923 924 static bfd_byte * 925 read_attribute_value (struct attribute *attr, 926 unsigned form, 927 struct comp_unit *unit, 928 bfd_byte *info_ptr) 929 { 930 bfd *abfd = unit->abfd; 931 unsigned int bytes_read; 932 struct dwarf_block *blk; 933 bfd_size_type amt; 934 935 attr->form = (enum dwarf_form) form; 936 937 switch (form) 938 { 939 case DW_FORM_ref_addr: 940 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in 941 DWARF3. */ 942 if (unit->version == 3 || unit->version == 4) 943 { 944 if (unit->offset_size == 4) 945 attr->u.val = read_4_bytes (unit->abfd, info_ptr); 946 else 947 attr->u.val = read_8_bytes (unit->abfd, info_ptr); 948 info_ptr += unit->offset_size; 949 break; 950 } 951 /* FALLTHROUGH */ 952 case DW_FORM_addr: 953 attr->u.val = read_address (unit, info_ptr); 954 info_ptr += unit->addr_size; 955 break; 956 case DW_FORM_GNU_ref_alt: 957 case DW_FORM_sec_offset: 958 if (unit->offset_size == 4) 959 attr->u.val = read_4_bytes (unit->abfd, info_ptr); 960 else 961 attr->u.val = read_8_bytes (unit->abfd, info_ptr); 962 info_ptr += unit->offset_size; 963 break; 964 case DW_FORM_block2: 965 amt = sizeof (struct dwarf_block); 966 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 967 if (blk == NULL) 968 return NULL; 969 blk->size = read_2_bytes (abfd, info_ptr); 970 info_ptr += 2; 971 blk->data = read_n_bytes (abfd, info_ptr, blk->size); 972 info_ptr += blk->size; 973 attr->u.blk = blk; 974 break; 975 case DW_FORM_block4: 976 amt = sizeof (struct dwarf_block); 977 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 978 if (blk == NULL) 979 return NULL; 980 blk->size = read_4_bytes (abfd, info_ptr); 981 info_ptr += 4; 982 blk->data = read_n_bytes (abfd, info_ptr, blk->size); 983 info_ptr += blk->size; 984 attr->u.blk = blk; 985 break; 986 case DW_FORM_data2: 987 attr->u.val = read_2_bytes (abfd, info_ptr); 988 info_ptr += 2; 989 break; 990 case DW_FORM_data4: 991 attr->u.val = read_4_bytes (abfd, info_ptr); 992 info_ptr += 4; 993 break; 994 case DW_FORM_data8: 995 attr->u.val = read_8_bytes (abfd, info_ptr); 996 info_ptr += 8; 997 break; 998 case DW_FORM_string: 999 attr->u.str = read_string (abfd, info_ptr, &bytes_read); 1000 info_ptr += bytes_read; 1001 break; 1002 case DW_FORM_strp: 1003 attr->u.str = read_indirect_string (unit, info_ptr, &bytes_read); 1004 info_ptr += bytes_read; 1005 break; 1006 case DW_FORM_GNU_strp_alt: 1007 attr->u.str = read_alt_indirect_string (unit, info_ptr, &bytes_read); 1008 info_ptr += bytes_read; 1009 break; 1010 case DW_FORM_exprloc: 1011 case DW_FORM_block: 1012 amt = sizeof (struct dwarf_block); 1013 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 1014 if (blk == NULL) 1015 return NULL; 1016 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 1017 info_ptr += bytes_read; 1018 blk->data = read_n_bytes (abfd, info_ptr, blk->size); 1019 info_ptr += blk->size; 1020 attr->u.blk = blk; 1021 break; 1022 case DW_FORM_block1: 1023 amt = sizeof (struct dwarf_block); 1024 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 1025 if (blk == NULL) 1026 return NULL; 1027 blk->size = read_1_byte (abfd, info_ptr); 1028 info_ptr += 1; 1029 blk->data = read_n_bytes (abfd, info_ptr, blk->size); 1030 info_ptr += blk->size; 1031 attr->u.blk = blk; 1032 break; 1033 case DW_FORM_data1: 1034 attr->u.val = read_1_byte (abfd, info_ptr); 1035 info_ptr += 1; 1036 break; 1037 case DW_FORM_flag: 1038 attr->u.val = read_1_byte (abfd, info_ptr); 1039 info_ptr += 1; 1040 break; 1041 case DW_FORM_flag_present: 1042 attr->u.val = 1; 1043 break; 1044 case DW_FORM_sdata: 1045 attr->u.sval = read_signed_leb128 (abfd, info_ptr, &bytes_read); 1046 info_ptr += bytes_read; 1047 break; 1048 case DW_FORM_udata: 1049 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 1050 info_ptr += bytes_read; 1051 break; 1052 case DW_FORM_ref1: 1053 attr->u.val = read_1_byte (abfd, info_ptr); 1054 info_ptr += 1; 1055 break; 1056 case DW_FORM_ref2: 1057 attr->u.val = read_2_bytes (abfd, info_ptr); 1058 info_ptr += 2; 1059 break; 1060 case DW_FORM_ref4: 1061 attr->u.val = read_4_bytes (abfd, info_ptr); 1062 info_ptr += 4; 1063 break; 1064 case DW_FORM_ref8: 1065 attr->u.val = read_8_bytes (abfd, info_ptr); 1066 info_ptr += 8; 1067 break; 1068 case DW_FORM_ref_sig8: 1069 attr->u.val = read_8_bytes (abfd, info_ptr); 1070 info_ptr += 8; 1071 break; 1072 case DW_FORM_ref_udata: 1073 attr->u.val = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 1074 info_ptr += bytes_read; 1075 break; 1076 case DW_FORM_indirect: 1077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 1078 info_ptr += bytes_read; 1079 info_ptr = read_attribute_value (attr, form, unit, info_ptr); 1080 break; 1081 default: 1082 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %#x."), 1083 form); 1084 bfd_set_error (bfd_error_bad_value); 1085 return NULL; 1086 } 1087 return info_ptr; 1088 } 1089 1090 /* Read an attribute described by an abbreviated attribute. */ 1091 1092 static bfd_byte * 1093 read_attribute (struct attribute *attr, 1094 struct attr_abbrev *abbrev, 1095 struct comp_unit *unit, 1096 bfd_byte *info_ptr) 1097 { 1098 attr->name = abbrev->name; 1099 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr); 1100 return info_ptr; 1101 } 1102 1103 /* Source line information table routines. */ 1104 1105 #define FILE_ALLOC_CHUNK 5 1106 #define DIR_ALLOC_CHUNK 5 1107 1108 struct line_info 1109 { 1110 struct line_info* prev_line; 1111 bfd_vma address; 1112 char *filename; 1113 unsigned int line; 1114 unsigned int column; 1115 unsigned int discriminator; 1116 unsigned char op_index; 1117 unsigned char end_sequence; /* End of (sequential) code sequence. */ 1118 }; 1119 1120 struct fileinfo 1121 { 1122 char *name; 1123 unsigned int dir; 1124 unsigned int time; 1125 unsigned int size; 1126 }; 1127 1128 struct line_sequence 1129 { 1130 bfd_vma low_pc; 1131 struct line_sequence* prev_sequence; 1132 struct line_info* last_line; /* Largest VMA. */ 1133 }; 1134 1135 struct line_info_table 1136 { 1137 bfd* abfd; 1138 unsigned int num_files; 1139 unsigned int num_dirs; 1140 unsigned int num_sequences; 1141 char * comp_dir; 1142 char ** dirs; 1143 struct fileinfo* files; 1144 struct line_sequence* sequences; 1145 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */ 1146 }; 1147 1148 /* Remember some information about each function. If the function is 1149 inlined (DW_TAG_inlined_subroutine) it may have two additional 1150 attributes, DW_AT_call_file and DW_AT_call_line, which specify the 1151 source code location where this function was inlined. */ 1152 1153 struct funcinfo 1154 { 1155 /* Pointer to previous function in list of all functions. */ 1156 struct funcinfo *prev_func; 1157 /* Pointer to function one scope higher. */ 1158 struct funcinfo *caller_func; 1159 /* Source location file name where caller_func inlines this func. */ 1160 char *caller_file; 1161 /* Source location line number where caller_func inlines this func. */ 1162 int caller_line; 1163 /* Source location file name. */ 1164 char *file; 1165 /* Source location line number. */ 1166 int line; 1167 int tag; 1168 char *name; 1169 struct arange arange; 1170 /* Where the symbol is defined. */ 1171 asection *sec; 1172 }; 1173 1174 struct varinfo 1175 { 1176 /* Pointer to previous variable in list of all variables */ 1177 struct varinfo *prev_var; 1178 /* Source location file name */ 1179 char *file; 1180 /* Source location line number */ 1181 int line; 1182 int tag; 1183 char *name; 1184 bfd_vma addr; 1185 /* Where the symbol is defined */ 1186 asection *sec; 1187 /* Is this a stack variable? */ 1188 unsigned int stack: 1; 1189 }; 1190 1191 /* Return TRUE if NEW_LINE should sort after LINE. */ 1192 1193 static inline bfd_boolean 1194 new_line_sorts_after (struct line_info *new_line, struct line_info *line) 1195 { 1196 return (new_line->address > line->address 1197 || (new_line->address == line->address 1198 && (new_line->op_index > line->op_index 1199 || (new_line->op_index == line->op_index 1200 && new_line->end_sequence < line->end_sequence)))); 1201 } 1202 1203 1204 /* Adds a new entry to the line_info list in the line_info_table, ensuring 1205 that the list is sorted. Note that the line_info list is sorted from 1206 highest to lowest VMA (with possible duplicates); that is, 1207 line_info->prev_line always accesses an equal or smaller VMA. */ 1208 1209 static bfd_boolean 1210 add_line_info (struct line_info_table *table, 1211 bfd_vma address, 1212 unsigned char op_index, 1213 char *filename, 1214 unsigned int line, 1215 unsigned int column, 1216 unsigned int discriminator, 1217 int end_sequence) 1218 { 1219 bfd_size_type amt = sizeof (struct line_info); 1220 struct line_sequence* seq = table->sequences; 1221 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt); 1222 1223 if (info == NULL) 1224 return FALSE; 1225 1226 /* Set member data of 'info'. */ 1227 info->prev_line = NULL; 1228 info->address = address; 1229 info->op_index = op_index; 1230 info->line = line; 1231 info->column = column; 1232 info->discriminator = discriminator; 1233 info->end_sequence = end_sequence; 1234 1235 if (filename && filename[0]) 1236 { 1237 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1); 1238 if (info->filename == NULL) 1239 return FALSE; 1240 strcpy (info->filename, filename); 1241 } 1242 else 1243 info->filename = NULL; 1244 1245 /* Find the correct location for 'info'. Normally we will receive 1246 new line_info data 1) in order and 2) with increasing VMAs. 1247 However some compilers break the rules (cf. decode_line_info) and 1248 so we include some heuristics for quickly finding the correct 1249 location for 'info'. In particular, these heuristics optimize for 1250 the common case in which the VMA sequence that we receive is a 1251 list of locally sorted VMAs such as 1252 p...z a...j (where a < j < p < z) 1253 1254 Note: table->lcl_head is used to head an *actual* or *possible* 1255 sub-sequence within the list (such as a...j) that is not directly 1256 headed by table->last_line 1257 1258 Note: we may receive duplicate entries from 'decode_line_info'. */ 1259 1260 if (seq 1261 && seq->last_line->address == address 1262 && seq->last_line->op_index == op_index 1263 && seq->last_line->end_sequence == end_sequence) 1264 { 1265 /* We only keep the last entry with the same address and end 1266 sequence. See PR ld/4986. */ 1267 if (table->lcl_head == seq->last_line) 1268 table->lcl_head = info; 1269 info->prev_line = seq->last_line->prev_line; 1270 seq->last_line = info; 1271 } 1272 else if (!seq || seq->last_line->end_sequence) 1273 { 1274 /* Start a new line sequence. */ 1275 amt = sizeof (struct line_sequence); 1276 seq = (struct line_sequence *) bfd_malloc (amt); 1277 if (seq == NULL) 1278 return FALSE; 1279 seq->low_pc = address; 1280 seq->prev_sequence = table->sequences; 1281 seq->last_line = info; 1282 table->lcl_head = info; 1283 table->sequences = seq; 1284 table->num_sequences++; 1285 } 1286 else if (new_line_sorts_after (info, seq->last_line)) 1287 { 1288 /* Normal case: add 'info' to the beginning of the current sequence. */ 1289 info->prev_line = seq->last_line; 1290 seq->last_line = info; 1291 1292 /* lcl_head: initialize to head a *possible* sequence at the end. */ 1293 if (!table->lcl_head) 1294 table->lcl_head = info; 1295 } 1296 else if (!new_line_sorts_after (info, table->lcl_head) 1297 && (!table->lcl_head->prev_line 1298 || new_line_sorts_after (info, table->lcl_head->prev_line))) 1299 { 1300 /* Abnormal but easy: lcl_head is the head of 'info'. */ 1301 info->prev_line = table->lcl_head->prev_line; 1302 table->lcl_head->prev_line = info; 1303 } 1304 else 1305 { 1306 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head' 1307 are valid heads for 'info'. Reset 'lcl_head'. */ 1308 struct line_info* li2 = seq->last_line; /* Always non-NULL. */ 1309 struct line_info* li1 = li2->prev_line; 1310 1311 while (li1) 1312 { 1313 if (!new_line_sorts_after (info, li2) 1314 && new_line_sorts_after (info, li1)) 1315 break; 1316 1317 li2 = li1; /* always non-NULL */ 1318 li1 = li1->prev_line; 1319 } 1320 table->lcl_head = li2; 1321 info->prev_line = table->lcl_head->prev_line; 1322 table->lcl_head->prev_line = info; 1323 if (address < seq->low_pc) 1324 seq->low_pc = address; 1325 } 1326 return TRUE; 1327 } 1328 1329 /* Extract a fully qualified filename from a line info table. 1330 The returned string has been malloc'ed and it is the caller's 1331 responsibility to free it. */ 1332 1333 static char * 1334 concat_filename (struct line_info_table *table, unsigned int file) 1335 { 1336 char *filename; 1337 1338 if (file - 1 >= table->num_files) 1339 { 1340 /* FILE == 0 means unknown. */ 1341 if (file) 1342 (*_bfd_error_handler) 1343 (_("Dwarf Error: mangled line number section (bad file number).")); 1344 return strdup ("<unknown>"); 1345 } 1346 1347 filename = table->files[file - 1].name; 1348 1349 if (!IS_ABSOLUTE_PATH (filename)) 1350 { 1351 char *dir_name = NULL; 1352 char *subdir_name = NULL; 1353 char *name; 1354 size_t len; 1355 1356 if (table->files[file - 1].dir) 1357 subdir_name = table->dirs[table->files[file - 1].dir - 1]; 1358 1359 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name)) 1360 dir_name = table->comp_dir; 1361 1362 if (!dir_name) 1363 { 1364 dir_name = subdir_name; 1365 subdir_name = NULL; 1366 } 1367 1368 if (!dir_name) 1369 return strdup (filename); 1370 1371 len = strlen (dir_name) + strlen (filename) + 2; 1372 1373 if (subdir_name) 1374 { 1375 len += strlen (subdir_name) + 1; 1376 name = (char *) bfd_malloc (len); 1377 if (name) 1378 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename); 1379 } 1380 else 1381 { 1382 name = (char *) bfd_malloc (len); 1383 if (name) 1384 sprintf (name, "%s/%s", dir_name, filename); 1385 } 1386 1387 return name; 1388 } 1389 1390 return strdup (filename); 1391 } 1392 1393 static bfd_boolean 1394 arange_add (const struct comp_unit *unit, struct arange *first_arange, 1395 bfd_vma low_pc, bfd_vma high_pc) 1396 { 1397 struct arange *arange; 1398 1399 /* Ignore empty ranges. */ 1400 if (low_pc == high_pc) 1401 return TRUE; 1402 1403 /* If the first arange is empty, use it. */ 1404 if (first_arange->high == 0) 1405 { 1406 first_arange->low = low_pc; 1407 first_arange->high = high_pc; 1408 return TRUE; 1409 } 1410 1411 /* Next see if we can cheaply extend an existing range. */ 1412 arange = first_arange; 1413 do 1414 { 1415 if (low_pc == arange->high) 1416 { 1417 arange->high = high_pc; 1418 return TRUE; 1419 } 1420 if (high_pc == arange->low) 1421 { 1422 arange->low = low_pc; 1423 return TRUE; 1424 } 1425 arange = arange->next; 1426 } 1427 while (arange); 1428 1429 /* Need to allocate a new arange and insert it into the arange list. 1430 Order isn't significant, so just insert after the first arange. */ 1431 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange)); 1432 if (arange == NULL) 1433 return FALSE; 1434 arange->low = low_pc; 1435 arange->high = high_pc; 1436 arange->next = first_arange->next; 1437 first_arange->next = arange; 1438 return TRUE; 1439 } 1440 1441 /* Compare function for line sequences. */ 1442 1443 static int 1444 compare_sequences (const void* a, const void* b) 1445 { 1446 const struct line_sequence* seq1 = a; 1447 const struct line_sequence* seq2 = b; 1448 1449 /* Sort by low_pc as the primary key. */ 1450 if (seq1->low_pc < seq2->low_pc) 1451 return -1; 1452 if (seq1->low_pc > seq2->low_pc) 1453 return 1; 1454 1455 /* If low_pc values are equal, sort in reverse order of 1456 high_pc, so that the largest region comes first. */ 1457 if (seq1->last_line->address < seq2->last_line->address) 1458 return 1; 1459 if (seq1->last_line->address > seq2->last_line->address) 1460 return -1; 1461 1462 if (seq1->last_line->op_index < seq2->last_line->op_index) 1463 return 1; 1464 if (seq1->last_line->op_index > seq2->last_line->op_index) 1465 return -1; 1466 1467 return 0; 1468 } 1469 1470 /* Sort the line sequences for quick lookup. */ 1471 1472 static bfd_boolean 1473 sort_line_sequences (struct line_info_table* table) 1474 { 1475 bfd_size_type amt; 1476 struct line_sequence* sequences; 1477 struct line_sequence* seq; 1478 unsigned int n = 0; 1479 unsigned int num_sequences = table->num_sequences; 1480 bfd_vma last_high_pc; 1481 1482 if (num_sequences == 0) 1483 return TRUE; 1484 1485 /* Allocate space for an array of sequences. */ 1486 amt = sizeof (struct line_sequence) * num_sequences; 1487 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt); 1488 if (sequences == NULL) 1489 return FALSE; 1490 1491 /* Copy the linked list into the array, freeing the original nodes. */ 1492 seq = table->sequences; 1493 for (n = 0; n < num_sequences; n++) 1494 { 1495 struct line_sequence* last_seq = seq; 1496 1497 BFD_ASSERT (seq); 1498 sequences[n].low_pc = seq->low_pc; 1499 sequences[n].prev_sequence = NULL; 1500 sequences[n].last_line = seq->last_line; 1501 seq = seq->prev_sequence; 1502 free (last_seq); 1503 } 1504 BFD_ASSERT (seq == NULL); 1505 1506 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences); 1507 1508 /* Make the list binary-searchable by trimming overlapping entries 1509 and removing nested entries. */ 1510 num_sequences = 1; 1511 last_high_pc = sequences[0].last_line->address; 1512 for (n = 1; n < table->num_sequences; n++) 1513 { 1514 if (sequences[n].low_pc < last_high_pc) 1515 { 1516 if (sequences[n].last_line->address <= last_high_pc) 1517 /* Skip nested entries. */ 1518 continue; 1519 1520 /* Trim overlapping entries. */ 1521 sequences[n].low_pc = last_high_pc; 1522 } 1523 last_high_pc = sequences[n].last_line->address; 1524 if (n > num_sequences) 1525 { 1526 /* Close up the gap. */ 1527 sequences[num_sequences].low_pc = sequences[n].low_pc; 1528 sequences[num_sequences].last_line = sequences[n].last_line; 1529 } 1530 num_sequences++; 1531 } 1532 1533 table->sequences = sequences; 1534 table->num_sequences = num_sequences; 1535 return TRUE; 1536 } 1537 1538 /* Decode the line number information for UNIT. */ 1539 1540 static struct line_info_table* 1541 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash) 1542 { 1543 bfd *abfd = unit->abfd; 1544 struct line_info_table* table; 1545 bfd_byte *line_ptr; 1546 bfd_byte *line_end; 1547 struct line_head lh; 1548 unsigned int i, bytes_read, offset_size; 1549 char *cur_file, *cur_dir; 1550 unsigned char op_code, extended_op, adj_opcode; 1551 unsigned int exop_len; 1552 bfd_size_type amt; 1553 1554 if (! read_section (abfd, &stash->debug_sections[debug_line], 1555 stash->syms, unit->line_offset, 1556 &stash->dwarf_line_buffer, &stash->dwarf_line_size)) 1557 return NULL; 1558 1559 amt = sizeof (struct line_info_table); 1560 table = (struct line_info_table *) bfd_alloc (abfd, amt); 1561 if (table == NULL) 1562 return NULL; 1563 table->abfd = abfd; 1564 table->comp_dir = unit->comp_dir; 1565 1566 table->num_files = 0; 1567 table->files = NULL; 1568 1569 table->num_dirs = 0; 1570 table->dirs = NULL; 1571 1572 table->num_sequences = 0; 1573 table->sequences = NULL; 1574 1575 table->lcl_head = NULL; 1576 1577 line_ptr = stash->dwarf_line_buffer + unit->line_offset; 1578 1579 /* Read in the prologue. */ 1580 lh.total_length = read_4_bytes (abfd, line_ptr); 1581 line_ptr += 4; 1582 offset_size = 4; 1583 if (lh.total_length == 0xffffffff) 1584 { 1585 lh.total_length = read_8_bytes (abfd, line_ptr); 1586 line_ptr += 8; 1587 offset_size = 8; 1588 } 1589 else if (lh.total_length == 0 && unit->addr_size == 8) 1590 { 1591 /* Handle (non-standard) 64-bit DWARF2 formats. */ 1592 lh.total_length = read_4_bytes (abfd, line_ptr); 1593 line_ptr += 4; 1594 offset_size = 8; 1595 } 1596 line_end = line_ptr + lh.total_length; 1597 lh.version = read_2_bytes (abfd, line_ptr); 1598 if (lh.version < 2 || lh.version > 4) 1599 { 1600 (*_bfd_error_handler) 1601 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version); 1602 bfd_set_error (bfd_error_bad_value); 1603 return NULL; 1604 } 1605 line_ptr += 2; 1606 if (offset_size == 4) 1607 lh.prologue_length = read_4_bytes (abfd, line_ptr); 1608 else 1609 lh.prologue_length = read_8_bytes (abfd, line_ptr); 1610 line_ptr += offset_size; 1611 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr); 1612 line_ptr += 1; 1613 if (lh.version >= 4) 1614 { 1615 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr); 1616 line_ptr += 1; 1617 } 1618 else 1619 lh.maximum_ops_per_insn = 1; 1620 if (lh.maximum_ops_per_insn == 0) 1621 { 1622 (*_bfd_error_handler) 1623 (_("Dwarf Error: Invalid maximum operations per instruction.")); 1624 bfd_set_error (bfd_error_bad_value); 1625 return NULL; 1626 } 1627 lh.default_is_stmt = read_1_byte (abfd, line_ptr); 1628 line_ptr += 1; 1629 lh.line_base = read_1_signed_byte (abfd, line_ptr); 1630 line_ptr += 1; 1631 lh.line_range = read_1_byte (abfd, line_ptr); 1632 line_ptr += 1; 1633 lh.opcode_base = read_1_byte (abfd, line_ptr); 1634 line_ptr += 1; 1635 amt = lh.opcode_base * sizeof (unsigned char); 1636 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt); 1637 1638 lh.standard_opcode_lengths[0] = 1; 1639 1640 for (i = 1; i < lh.opcode_base; ++i) 1641 { 1642 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr); 1643 line_ptr += 1; 1644 } 1645 1646 /* Read directory table. */ 1647 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL) 1648 { 1649 line_ptr += bytes_read; 1650 1651 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0) 1652 { 1653 char **tmp; 1654 1655 amt = table->num_dirs + DIR_ALLOC_CHUNK; 1656 amt *= sizeof (char *); 1657 1658 tmp = (char **) bfd_realloc (table->dirs, amt); 1659 if (tmp == NULL) 1660 goto fail; 1661 table->dirs = tmp; 1662 } 1663 1664 table->dirs[table->num_dirs++] = cur_dir; 1665 } 1666 1667 line_ptr += bytes_read; 1668 1669 /* Read file name table. */ 1670 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL) 1671 { 1672 line_ptr += bytes_read; 1673 1674 if ((table->num_files % FILE_ALLOC_CHUNK) == 0) 1675 { 1676 struct fileinfo *tmp; 1677 1678 amt = table->num_files + FILE_ALLOC_CHUNK; 1679 amt *= sizeof (struct fileinfo); 1680 1681 tmp = (struct fileinfo *) bfd_realloc (table->files, amt); 1682 if (tmp == NULL) 1683 goto fail; 1684 table->files = tmp; 1685 } 1686 1687 table->files[table->num_files].name = cur_file; 1688 table->files[table->num_files].dir = 1689 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1690 line_ptr += bytes_read; 1691 table->files[table->num_files].time = 1692 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1693 line_ptr += bytes_read; 1694 table->files[table->num_files].size = 1695 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1696 line_ptr += bytes_read; 1697 table->num_files++; 1698 } 1699 1700 line_ptr += bytes_read; 1701 1702 /* Read the statement sequences until there's nothing left. */ 1703 while (line_ptr < line_end) 1704 { 1705 /* State machine registers. */ 1706 bfd_vma address = 0; 1707 unsigned char op_index = 0; 1708 char * filename = table->num_files ? concat_filename (table, 1) : NULL; 1709 unsigned int line = 1; 1710 unsigned int column = 0; 1711 unsigned int discriminator = 0; 1712 int is_stmt = lh.default_is_stmt; 1713 int end_sequence = 0; 1714 /* eraxxon (at) alumni.rice.edu: Against the DWARF2 specs, some 1715 compilers generate address sequences that are wildly out of 1716 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler 1717 for ia64-Linux). Thus, to determine the low and high 1718 address, we must compare on every DW_LNS_copy, etc. */ 1719 bfd_vma low_pc = (bfd_vma) -1; 1720 bfd_vma high_pc = 0; 1721 1722 /* Decode the table. */ 1723 while (! end_sequence) 1724 { 1725 op_code = read_1_byte (abfd, line_ptr); 1726 line_ptr += 1; 1727 1728 if (op_code >= lh.opcode_base) 1729 { 1730 /* Special operand. */ 1731 adj_opcode = op_code - lh.opcode_base; 1732 if (lh.maximum_ops_per_insn == 1) 1733 address += (adj_opcode / lh.line_range 1734 * lh.minimum_instruction_length); 1735 else 1736 { 1737 address += ((op_index + adj_opcode / lh.line_range) 1738 / lh.maximum_ops_per_insn 1739 * lh.minimum_instruction_length); 1740 op_index = ((op_index + adj_opcode / lh.line_range) 1741 % lh.maximum_ops_per_insn); 1742 } 1743 line += lh.line_base + (adj_opcode % lh.line_range); 1744 /* Append row to matrix using current values. */ 1745 if (!add_line_info (table, address, op_index, filename, 1746 line, column, discriminator, 0)) 1747 goto line_fail; 1748 discriminator = 0; 1749 if (address < low_pc) 1750 low_pc = address; 1751 if (address > high_pc) 1752 high_pc = address; 1753 } 1754 else switch (op_code) 1755 { 1756 case DW_LNS_extended_op: 1757 exop_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1758 line_ptr += bytes_read; 1759 extended_op = read_1_byte (abfd, line_ptr); 1760 line_ptr += 1; 1761 1762 switch (extended_op) 1763 { 1764 case DW_LNE_end_sequence: 1765 end_sequence = 1; 1766 if (!add_line_info (table, address, op_index, filename, line, 1767 column, discriminator, end_sequence)) 1768 goto line_fail; 1769 discriminator = 0; 1770 if (address < low_pc) 1771 low_pc = address; 1772 if (address > high_pc) 1773 high_pc = address; 1774 if (!arange_add (unit, &unit->arange, low_pc, high_pc)) 1775 goto line_fail; 1776 break; 1777 case DW_LNE_set_address: 1778 address = read_address (unit, line_ptr); 1779 op_index = 0; 1780 line_ptr += unit->addr_size; 1781 break; 1782 case DW_LNE_define_file: 1783 cur_file = read_string (abfd, line_ptr, &bytes_read); 1784 line_ptr += bytes_read; 1785 if ((table->num_files % FILE_ALLOC_CHUNK) == 0) 1786 { 1787 struct fileinfo *tmp; 1788 1789 amt = table->num_files + FILE_ALLOC_CHUNK; 1790 amt *= sizeof (struct fileinfo); 1791 tmp = (struct fileinfo *) bfd_realloc (table->files, amt); 1792 if (tmp == NULL) 1793 goto line_fail; 1794 table->files = tmp; 1795 } 1796 table->files[table->num_files].name = cur_file; 1797 table->files[table->num_files].dir = 1798 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1799 line_ptr += bytes_read; 1800 table->files[table->num_files].time = 1801 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1802 line_ptr += bytes_read; 1803 table->files[table->num_files].size = 1804 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1805 line_ptr += bytes_read; 1806 table->num_files++; 1807 break; 1808 case DW_LNE_set_discriminator: 1809 discriminator = 1810 read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1811 line_ptr += bytes_read; 1812 break; 1813 case DW_LNE_HP_source_file_correlation: 1814 line_ptr += exop_len - 1; 1815 break; 1816 default: 1817 (*_bfd_error_handler) 1818 (_("Dwarf Error: mangled line number section.")); 1819 bfd_set_error (bfd_error_bad_value); 1820 line_fail: 1821 if (filename != NULL) 1822 free (filename); 1823 goto fail; 1824 } 1825 break; 1826 case DW_LNS_copy: 1827 if (!add_line_info (table, address, op_index, 1828 filename, line, column, discriminator, 0)) 1829 goto line_fail; 1830 discriminator = 0; 1831 if (address < low_pc) 1832 low_pc = address; 1833 if (address > high_pc) 1834 high_pc = address; 1835 break; 1836 case DW_LNS_advance_pc: 1837 if (lh.maximum_ops_per_insn == 1) 1838 address += (lh.minimum_instruction_length 1839 * read_unsigned_leb128 (abfd, line_ptr, 1840 &bytes_read)); 1841 else 1842 { 1843 bfd_vma adjust = read_unsigned_leb128 (abfd, line_ptr, 1844 &bytes_read); 1845 address = ((op_index + adjust) / lh.maximum_ops_per_insn 1846 * lh.minimum_instruction_length); 1847 op_index = (op_index + adjust) % lh.maximum_ops_per_insn; 1848 } 1849 line_ptr += bytes_read; 1850 break; 1851 case DW_LNS_advance_line: 1852 line += read_signed_leb128 (abfd, line_ptr, &bytes_read); 1853 line_ptr += bytes_read; 1854 break; 1855 case DW_LNS_set_file: 1856 { 1857 unsigned int file; 1858 1859 /* The file and directory tables are 0 1860 based, the references are 1 based. */ 1861 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1862 line_ptr += bytes_read; 1863 if (filename) 1864 free (filename); 1865 filename = concat_filename (table, file); 1866 break; 1867 } 1868 case DW_LNS_set_column: 1869 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1870 line_ptr += bytes_read; 1871 break; 1872 case DW_LNS_negate_stmt: 1873 is_stmt = (!is_stmt); 1874 break; 1875 case DW_LNS_set_basic_block: 1876 break; 1877 case DW_LNS_const_add_pc: 1878 if (lh.maximum_ops_per_insn == 1) 1879 address += (lh.minimum_instruction_length 1880 * ((255 - lh.opcode_base) / lh.line_range)); 1881 else 1882 { 1883 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range); 1884 address += (lh.minimum_instruction_length 1885 * ((op_index + adjust) 1886 / lh.maximum_ops_per_insn)); 1887 op_index = (op_index + adjust) % lh.maximum_ops_per_insn; 1888 } 1889 break; 1890 case DW_LNS_fixed_advance_pc: 1891 address += read_2_bytes (abfd, line_ptr); 1892 op_index = 0; 1893 line_ptr += 2; 1894 break; 1895 default: 1896 /* Unknown standard opcode, ignore it. */ 1897 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++) 1898 { 1899 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); 1900 line_ptr += bytes_read; 1901 } 1902 break; 1903 } 1904 } 1905 1906 if (filename) 1907 free (filename); 1908 } 1909 1910 if (sort_line_sequences (table)) 1911 return table; 1912 1913 fail: 1914 if (table->sequences != NULL) 1915 free (table->sequences); 1916 if (table->files != NULL) 1917 free (table->files); 1918 if (table->dirs != NULL) 1919 free (table->dirs); 1920 return NULL; 1921 } 1922 1923 /* If ADDR is within TABLE set the output parameters and return the 1924 range of addresses covered by the entry used to fill them out. 1925 Otherwise set * FILENAME_PTR to NULL and return 0. 1926 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR 1927 are pointers to the objects to be filled in. */ 1928 1929 static bfd_vma 1930 lookup_address_in_line_info_table (struct line_info_table *table, 1931 bfd_vma addr, 1932 const char **filename_ptr, 1933 unsigned int *linenumber_ptr, 1934 unsigned int *discriminator_ptr) 1935 { 1936 struct line_sequence *seq = NULL; 1937 struct line_info *each_line; 1938 int low, high, mid; 1939 1940 /* Binary search the array of sequences. */ 1941 low = 0; 1942 high = table->num_sequences; 1943 while (low < high) 1944 { 1945 mid = (low + high) / 2; 1946 seq = &table->sequences[mid]; 1947 if (addr < seq->low_pc) 1948 high = mid; 1949 else if (addr >= seq->last_line->address) 1950 low = mid + 1; 1951 else 1952 break; 1953 } 1954 1955 if (seq && addr >= seq->low_pc && addr < seq->last_line->address) 1956 { 1957 /* Note: seq->last_line should be a descendingly sorted list. */ 1958 for (each_line = seq->last_line; 1959 each_line; 1960 each_line = each_line->prev_line) 1961 if (addr >= each_line->address) 1962 break; 1963 1964 if (each_line 1965 && !(each_line->end_sequence || each_line == seq->last_line)) 1966 { 1967 *filename_ptr = each_line->filename; 1968 *linenumber_ptr = each_line->line; 1969 if (discriminator_ptr) 1970 *discriminator_ptr = each_line->discriminator; 1971 return seq->last_line->address - seq->low_pc; 1972 } 1973 } 1974 1975 *filename_ptr = NULL; 1976 return 0; 1977 } 1978 1979 /* Read in the .debug_ranges section for future reference. */ 1980 1981 static bfd_boolean 1982 read_debug_ranges (struct comp_unit *unit) 1983 { 1984 struct dwarf2_debug *stash = unit->stash; 1985 return read_section (unit->abfd, &stash->debug_sections[debug_ranges], 1986 stash->syms, 0, 1987 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size); 1988 } 1989 1990 /* Function table functions. */ 1991 1992 /* If ADDR is within UNIT's function tables, set FUNCTIONNAME_PTR, and return 1993 TRUE. Note that we need to find the function that has the smallest range 1994 that contains ADDR, to handle inlined functions without depending upon 1995 them being ordered in TABLE by increasing range. */ 1996 1997 static bfd_boolean 1998 lookup_address_in_function_table (struct comp_unit *unit, 1999 bfd_vma addr, 2000 struct funcinfo **function_ptr, 2001 const char **functionname_ptr) 2002 { 2003 struct funcinfo* each_func; 2004 struct funcinfo* best_fit = NULL; 2005 bfd_vma best_fit_len = 0; 2006 struct arange *arange; 2007 2008 for (each_func = unit->function_table; 2009 each_func; 2010 each_func = each_func->prev_func) 2011 { 2012 for (arange = &each_func->arange; 2013 arange; 2014 arange = arange->next) 2015 { 2016 if (addr >= arange->low && addr < arange->high) 2017 { 2018 if (!best_fit 2019 || arange->high - arange->low < best_fit_len) 2020 { 2021 best_fit = each_func; 2022 best_fit_len = arange->high - arange->low; 2023 } 2024 } 2025 } 2026 } 2027 2028 if (best_fit) 2029 { 2030 *functionname_ptr = best_fit->name; 2031 *function_ptr = best_fit; 2032 return TRUE; 2033 } 2034 else 2035 { 2036 return FALSE; 2037 } 2038 } 2039 2040 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR 2041 and LINENUMBER_PTR, and return TRUE. */ 2042 2043 static bfd_boolean 2044 lookup_symbol_in_function_table (struct comp_unit *unit, 2045 asymbol *sym, 2046 bfd_vma addr, 2047 const char **filename_ptr, 2048 unsigned int *linenumber_ptr) 2049 { 2050 struct funcinfo* each_func; 2051 struct funcinfo* best_fit = NULL; 2052 bfd_vma best_fit_len = 0; 2053 struct arange *arange; 2054 const char *name = bfd_asymbol_name (sym); 2055 asection *sec = bfd_get_section (sym); 2056 2057 for (each_func = unit->function_table; 2058 each_func; 2059 each_func = each_func->prev_func) 2060 { 2061 for (arange = &each_func->arange; 2062 arange; 2063 arange = arange->next) 2064 { 2065 if ((!each_func->sec || each_func->sec == sec) 2066 && addr >= arange->low 2067 && addr < arange->high 2068 && each_func->name 2069 && strcmp (name, each_func->name) == 0 2070 && (!best_fit 2071 || arange->high - arange->low < best_fit_len)) 2072 { 2073 best_fit = each_func; 2074 best_fit_len = arange->high - arange->low; 2075 } 2076 } 2077 } 2078 2079 if (best_fit) 2080 { 2081 best_fit->sec = sec; 2082 *filename_ptr = best_fit->file; 2083 *linenumber_ptr = best_fit->line; 2084 return TRUE; 2085 } 2086 else 2087 return FALSE; 2088 } 2089 2090 /* Variable table functions. */ 2091 2092 /* If SYM is within variable table of UNIT, set FILENAME_PTR and 2093 LINENUMBER_PTR, and return TRUE. */ 2094 2095 static bfd_boolean 2096 lookup_symbol_in_variable_table (struct comp_unit *unit, 2097 asymbol *sym, 2098 bfd_vma addr, 2099 const char **filename_ptr, 2100 unsigned int *linenumber_ptr) 2101 { 2102 const char *name = bfd_asymbol_name (sym); 2103 asection *sec = bfd_get_section (sym); 2104 struct varinfo* each; 2105 2106 for (each = unit->variable_table; each; each = each->prev_var) 2107 if (each->stack == 0 2108 && each->file != NULL 2109 && each->name != NULL 2110 && each->addr == addr 2111 && (!each->sec || each->sec == sec) 2112 && strcmp (name, each->name) == 0) 2113 break; 2114 2115 if (each) 2116 { 2117 each->sec = sec; 2118 *filename_ptr = each->file; 2119 *linenumber_ptr = each->line; 2120 return TRUE; 2121 } 2122 else 2123 return FALSE; 2124 } 2125 2126 static char * 2127 find_abstract_instance_name (struct comp_unit *unit, 2128 struct attribute *attr_ptr) 2129 { 2130 bfd *abfd = unit->abfd; 2131 bfd_byte *info_ptr; 2132 unsigned int abbrev_number, bytes_read, i; 2133 struct abbrev_info *abbrev; 2134 bfd_uint64_t die_ref = attr_ptr->u.val; 2135 struct attribute attr; 2136 char *name = NULL; 2137 2138 /* DW_FORM_ref_addr can reference an entry in a different CU. It 2139 is an offset from the .debug_info section, not the current CU. */ 2140 if (attr_ptr->form == DW_FORM_ref_addr) 2141 { 2142 /* We only support DW_FORM_ref_addr within the same file, so 2143 any relocations should be resolved already. */ 2144 if (!die_ref) 2145 abort (); 2146 2147 info_ptr = unit->sec_info_ptr + die_ref; 2148 2149 /* Now find the CU containing this pointer. */ 2150 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr) 2151 ; 2152 else 2153 { 2154 /* Check other CUs to see if they contain the abbrev. */ 2155 struct comp_unit * u; 2156 2157 for (u = unit->prev_unit; u != NULL; u = u->prev_unit) 2158 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr) 2159 break; 2160 2161 if (u == NULL) 2162 for (u = unit->next_unit; u != NULL; u = u->next_unit) 2163 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr) 2164 break; 2165 2166 if (u) 2167 unit = u; 2168 /* else FIXME: What do we do now ? */ 2169 } 2170 } 2171 else if (attr_ptr->form == DW_FORM_GNU_ref_alt) 2172 { 2173 info_ptr = read_alt_indirect_ref (unit, die_ref); 2174 if (info_ptr == NULL) 2175 { 2176 (*_bfd_error_handler) 2177 (_("Dwarf Error: Unable to read alt ref %u."), die_ref); 2178 bfd_set_error (bfd_error_bad_value); 2179 return name; 2180 } 2181 /* FIXME: Do we need to locate the correct CU, in a similar 2182 fashion to the code in the DW_FORM_ref_addr case above ? */ 2183 } 2184 else 2185 info_ptr = unit->info_ptr_unit + die_ref; 2186 2187 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 2188 info_ptr += bytes_read; 2189 2190 if (abbrev_number) 2191 { 2192 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs); 2193 if (! abbrev) 2194 { 2195 (*_bfd_error_handler) 2196 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number); 2197 bfd_set_error (bfd_error_bad_value); 2198 } 2199 else 2200 { 2201 for (i = 0; i < abbrev->num_attrs; ++i) 2202 { 2203 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, 2204 info_ptr); 2205 if (info_ptr == NULL) 2206 break; 2207 switch (attr.name) 2208 { 2209 case DW_AT_name: 2210 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name 2211 over DW_AT_name. */ 2212 if (name == NULL && is_str_attr (attr.form)) 2213 name = attr.u.str; 2214 break; 2215 case DW_AT_specification: 2216 name = find_abstract_instance_name (unit, &attr); 2217 break; 2218 case DW_AT_linkage_name: 2219 case DW_AT_MIPS_linkage_name: 2220 /* PR 16949: Corrupt debug info can place 2221 non-string forms into these attributes. */ 2222 if (is_str_attr (attr.form)) 2223 name = attr.u.str; 2224 break; 2225 default: 2226 break; 2227 } 2228 } 2229 } 2230 } 2231 return name; 2232 } 2233 2234 static bfd_boolean 2235 read_rangelist (struct comp_unit *unit, struct arange *arange, 2236 bfd_uint64_t offset) 2237 { 2238 bfd_byte *ranges_ptr; 2239 bfd_vma base_address = unit->base_address; 2240 2241 if (! unit->stash->dwarf_ranges_buffer) 2242 { 2243 if (! read_debug_ranges (unit)) 2244 return FALSE; 2245 } 2246 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset; 2247 2248 for (;;) 2249 { 2250 bfd_vma low_pc; 2251 bfd_vma high_pc; 2252 2253 low_pc = read_address (unit, ranges_ptr); 2254 ranges_ptr += unit->addr_size; 2255 high_pc = read_address (unit, ranges_ptr); 2256 ranges_ptr += unit->addr_size; 2257 2258 if (low_pc == 0 && high_pc == 0) 2259 break; 2260 if (low_pc == -1UL && high_pc != -1UL) 2261 base_address = high_pc; 2262 else 2263 { 2264 if (!arange_add (unit, arange, 2265 base_address + low_pc, base_address + high_pc)) 2266 return FALSE; 2267 } 2268 } 2269 return TRUE; 2270 } 2271 2272 /* DWARF2 Compilation unit functions. */ 2273 2274 /* Scan over each die in a comp. unit looking for functions to add 2275 to the function table and variables to the variable table. */ 2276 2277 static bfd_boolean 2278 scan_unit_for_symbols (struct comp_unit *unit) 2279 { 2280 bfd *abfd = unit->abfd; 2281 bfd_byte *info_ptr = unit->first_child_die_ptr; 2282 int nesting_level = 1; 2283 struct funcinfo **nested_funcs; 2284 int nested_funcs_size; 2285 2286 /* Maintain a stack of in-scope functions and inlined functions, which we 2287 can use to set the caller_func field. */ 2288 nested_funcs_size = 32; 2289 nested_funcs = (struct funcinfo **) 2290 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *)); 2291 if (nested_funcs == NULL) 2292 return FALSE; 2293 nested_funcs[nesting_level] = 0; 2294 2295 while (nesting_level) 2296 { 2297 unsigned int abbrev_number, bytes_read, i; 2298 struct abbrev_info *abbrev; 2299 struct attribute attr; 2300 struct funcinfo *func; 2301 struct varinfo *var; 2302 bfd_vma low_pc = 0; 2303 bfd_vma high_pc = 0; 2304 bfd_boolean high_pc_relative = FALSE; 2305 2306 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 2307 info_ptr += bytes_read; 2308 2309 if (! abbrev_number) 2310 { 2311 nesting_level--; 2312 continue; 2313 } 2314 2315 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs); 2316 if (! abbrev) 2317 { 2318 (*_bfd_error_handler) 2319 (_("Dwarf Error: Could not find abbrev number %u."), 2320 abbrev_number); 2321 bfd_set_error (bfd_error_bad_value); 2322 goto fail; 2323 } 2324 2325 var = NULL; 2326 if (abbrev->tag == DW_TAG_subprogram 2327 || abbrev->tag == DW_TAG_entry_point 2328 || abbrev->tag == DW_TAG_inlined_subroutine) 2329 { 2330 bfd_size_type amt = sizeof (struct funcinfo); 2331 func = (struct funcinfo *) bfd_zalloc (abfd, amt); 2332 if (func == NULL) 2333 goto fail; 2334 func->tag = abbrev->tag; 2335 func->prev_func = unit->function_table; 2336 unit->function_table = func; 2337 BFD_ASSERT (!unit->cached); 2338 2339 if (func->tag == DW_TAG_inlined_subroutine) 2340 for (i = nesting_level - 1; i >= 1; i--) 2341 if (nested_funcs[i]) 2342 { 2343 func->caller_func = nested_funcs[i]; 2344 break; 2345 } 2346 nested_funcs[nesting_level] = func; 2347 } 2348 else 2349 { 2350 func = NULL; 2351 if (abbrev->tag == DW_TAG_variable) 2352 { 2353 bfd_size_type amt = sizeof (struct varinfo); 2354 var = (struct varinfo *) bfd_zalloc (abfd, amt); 2355 if (var == NULL) 2356 goto fail; 2357 var->tag = abbrev->tag; 2358 var->stack = 1; 2359 var->prev_var = unit->variable_table; 2360 unit->variable_table = var; 2361 BFD_ASSERT (!unit->cached); 2362 } 2363 2364 /* No inline function in scope at this nesting level. */ 2365 nested_funcs[nesting_level] = 0; 2366 } 2367 2368 for (i = 0; i < abbrev->num_attrs; ++i) 2369 { 2370 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr); 2371 if (info_ptr == NULL) 2372 goto fail; 2373 2374 if (func) 2375 { 2376 switch (attr.name) 2377 { 2378 case DW_AT_call_file: 2379 func->caller_file = concat_filename (unit->line_table, 2380 attr.u.val); 2381 break; 2382 2383 case DW_AT_call_line: 2384 func->caller_line = attr.u.val; 2385 break; 2386 2387 case DW_AT_abstract_origin: 2388 case DW_AT_specification: 2389 func->name = find_abstract_instance_name (unit, &attr); 2390 break; 2391 2392 case DW_AT_name: 2393 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name 2394 over DW_AT_name. */ 2395 if (func->name == NULL && is_str_attr (attr.form)) 2396 func->name = attr.u.str; 2397 break; 2398 2399 case DW_AT_linkage_name: 2400 case DW_AT_MIPS_linkage_name: 2401 /* PR 16949: Corrupt debug info can place 2402 non-string forms into these attributes. */ 2403 if (is_str_attr (attr.form)) 2404 func->name = attr.u.str; 2405 break; 2406 2407 case DW_AT_low_pc: 2408 low_pc = attr.u.val; 2409 break; 2410 2411 case DW_AT_high_pc: 2412 high_pc = attr.u.val; 2413 high_pc_relative = attr.form != DW_FORM_addr; 2414 break; 2415 2416 case DW_AT_ranges: 2417 if (!read_rangelist (unit, &func->arange, attr.u.val)) 2418 goto fail; 2419 break; 2420 2421 case DW_AT_decl_file: 2422 func->file = concat_filename (unit->line_table, 2423 attr.u.val); 2424 break; 2425 2426 case DW_AT_decl_line: 2427 func->line = attr.u.val; 2428 break; 2429 2430 default: 2431 break; 2432 } 2433 } 2434 else if (var) 2435 { 2436 switch (attr.name) 2437 { 2438 case DW_AT_name: 2439 var->name = attr.u.str; 2440 break; 2441 2442 case DW_AT_decl_file: 2443 var->file = concat_filename (unit->line_table, 2444 attr.u.val); 2445 break; 2446 2447 case DW_AT_decl_line: 2448 var->line = attr.u.val; 2449 break; 2450 2451 case DW_AT_external: 2452 if (attr.u.val != 0) 2453 var->stack = 0; 2454 break; 2455 2456 case DW_AT_location: 2457 switch (attr.form) 2458 { 2459 case DW_FORM_block: 2460 case DW_FORM_block1: 2461 case DW_FORM_block2: 2462 case DW_FORM_block4: 2463 case DW_FORM_exprloc: 2464 if (*attr.u.blk->data == DW_OP_addr) 2465 { 2466 var->stack = 0; 2467 2468 /* Verify that DW_OP_addr is the only opcode in the 2469 location, in which case the block size will be 1 2470 plus the address size. */ 2471 /* ??? For TLS variables, gcc can emit 2472 DW_OP_addr <addr> DW_OP_GNU_push_tls_address 2473 which we don't handle here yet. */ 2474 if (attr.u.blk->size == unit->addr_size + 1U) 2475 var->addr = bfd_get (unit->addr_size * 8, 2476 unit->abfd, 2477 attr.u.blk->data + 1); 2478 } 2479 break; 2480 2481 default: 2482 break; 2483 } 2484 break; 2485 2486 default: 2487 break; 2488 } 2489 } 2490 } 2491 2492 if (high_pc_relative) 2493 high_pc += low_pc; 2494 2495 if (func && high_pc != 0) 2496 { 2497 if (!arange_add (unit, &func->arange, low_pc, high_pc)) 2498 goto fail; 2499 } 2500 2501 if (abbrev->has_children) 2502 { 2503 nesting_level++; 2504 2505 if (nesting_level >= nested_funcs_size) 2506 { 2507 struct funcinfo **tmp; 2508 2509 nested_funcs_size *= 2; 2510 tmp = (struct funcinfo **) 2511 bfd_realloc (nested_funcs, 2512 nested_funcs_size * sizeof (struct funcinfo *)); 2513 if (tmp == NULL) 2514 goto fail; 2515 nested_funcs = tmp; 2516 } 2517 nested_funcs[nesting_level] = 0; 2518 } 2519 } 2520 2521 free (nested_funcs); 2522 return TRUE; 2523 2524 fail: 2525 free (nested_funcs); 2526 return FALSE; 2527 } 2528 2529 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This 2530 includes the compilation unit header that proceeds the DIE's, but 2531 does not include the length field that precedes each compilation 2532 unit header. END_PTR points one past the end of this comp unit. 2533 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes). 2534 2535 This routine does not read the whole compilation unit; only enough 2536 to get to the line number information for the compilation unit. */ 2537 2538 static struct comp_unit * 2539 parse_comp_unit (struct dwarf2_debug *stash, 2540 bfd_vma unit_length, 2541 bfd_byte *info_ptr_unit, 2542 unsigned int offset_size) 2543 { 2544 struct comp_unit* unit; 2545 unsigned int version; 2546 bfd_uint64_t abbrev_offset = 0; 2547 unsigned int addr_size; 2548 struct abbrev_info** abbrevs; 2549 unsigned int abbrev_number, bytes_read, i; 2550 struct abbrev_info *abbrev; 2551 struct attribute attr; 2552 bfd_byte *info_ptr = stash->info_ptr; 2553 bfd_byte *end_ptr = info_ptr + unit_length; 2554 bfd_size_type amt; 2555 bfd_vma low_pc = 0; 2556 bfd_vma high_pc = 0; 2557 bfd *abfd = stash->bfd_ptr; 2558 bfd_boolean high_pc_relative = FALSE; 2559 2560 version = read_2_bytes (abfd, info_ptr); 2561 info_ptr += 2; 2562 BFD_ASSERT (offset_size == 4 || offset_size == 8); 2563 if (offset_size == 4) 2564 abbrev_offset = read_4_bytes (abfd, info_ptr); 2565 else 2566 abbrev_offset = read_8_bytes (abfd, info_ptr); 2567 info_ptr += offset_size; 2568 addr_size = read_1_byte (abfd, info_ptr); 2569 info_ptr += 1; 2570 2571 if (version != 2 && version != 3 && version != 4) 2572 { 2573 (*_bfd_error_handler) 2574 (_("Dwarf Error: found dwarf version '%u', this reader" 2575 " only handles version 2, 3 and 4 information."), version); 2576 bfd_set_error (bfd_error_bad_value); 2577 return 0; 2578 } 2579 2580 if (addr_size > sizeof (bfd_vma)) 2581 { 2582 (*_bfd_error_handler) 2583 (_("Dwarf Error: found address size '%u', this reader" 2584 " can not handle sizes greater than '%u'."), 2585 addr_size, 2586 (unsigned int) sizeof (bfd_vma)); 2587 bfd_set_error (bfd_error_bad_value); 2588 return 0; 2589 } 2590 2591 if (addr_size != 2 && addr_size != 4 && addr_size != 8) 2592 { 2593 (*_bfd_error_handler) 2594 ("Dwarf Error: found address size '%u', this reader" 2595 " can only handle address sizes '2', '4' and '8'.", addr_size); 2596 bfd_set_error (bfd_error_bad_value); 2597 return 0; 2598 } 2599 2600 /* Read the abbrevs for this compilation unit into a table. */ 2601 abbrevs = read_abbrevs (abfd, abbrev_offset, stash); 2602 if (! abbrevs) 2603 return 0; 2604 2605 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); 2606 info_ptr += bytes_read; 2607 if (! abbrev_number) 2608 { 2609 (*_bfd_error_handler) (_("Dwarf Error: Bad abbrev number: %u."), 2610 abbrev_number); 2611 bfd_set_error (bfd_error_bad_value); 2612 return 0; 2613 } 2614 2615 abbrev = lookup_abbrev (abbrev_number, abbrevs); 2616 if (! abbrev) 2617 { 2618 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."), 2619 abbrev_number); 2620 bfd_set_error (bfd_error_bad_value); 2621 return 0; 2622 } 2623 2624 amt = sizeof (struct comp_unit); 2625 unit = (struct comp_unit *) bfd_zalloc (abfd, amt); 2626 if (unit == NULL) 2627 return NULL; 2628 unit->abfd = abfd; 2629 unit->version = version; 2630 unit->addr_size = addr_size; 2631 unit->offset_size = offset_size; 2632 unit->abbrevs = abbrevs; 2633 unit->end_ptr = end_ptr; 2634 unit->stash = stash; 2635 unit->info_ptr_unit = info_ptr_unit; 2636 unit->sec_info_ptr = stash->sec_info_ptr; 2637 2638 for (i = 0; i < abbrev->num_attrs; ++i) 2639 { 2640 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr); 2641 if (info_ptr == NULL) 2642 return NULL; 2643 2644 /* Store the data if it is of an attribute we want to keep in a 2645 partial symbol table. */ 2646 switch (attr.name) 2647 { 2648 case DW_AT_stmt_list: 2649 unit->stmtlist = 1; 2650 unit->line_offset = attr.u.val; 2651 break; 2652 2653 case DW_AT_name: 2654 unit->name = attr.u.str; 2655 break; 2656 2657 case DW_AT_low_pc: 2658 low_pc = attr.u.val; 2659 /* If the compilation unit DIE has a DW_AT_low_pc attribute, 2660 this is the base address to use when reading location 2661 lists or range lists. */ 2662 if (abbrev->tag == DW_TAG_compile_unit) 2663 unit->base_address = low_pc; 2664 break; 2665 2666 case DW_AT_high_pc: 2667 high_pc = attr.u.val; 2668 high_pc_relative = attr.form != DW_FORM_addr; 2669 break; 2670 2671 case DW_AT_ranges: 2672 if (!read_rangelist (unit, &unit->arange, attr.u.val)) 2673 return NULL; 2674 break; 2675 2676 case DW_AT_comp_dir: 2677 { 2678 char *comp_dir = attr.u.str; 2679 if (comp_dir) 2680 { 2681 /* Irix 6.2 native cc prepends <machine>.: to the compilation 2682 directory, get rid of it. */ 2683 char *cp = strchr (comp_dir, ':'); 2684 2685 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/') 2686 comp_dir = cp + 1; 2687 } 2688 unit->comp_dir = comp_dir; 2689 break; 2690 } 2691 2692 default: 2693 break; 2694 } 2695 } 2696 if (high_pc_relative) 2697 high_pc += low_pc; 2698 if (high_pc != 0) 2699 { 2700 if (!arange_add (unit, &unit->arange, low_pc, high_pc)) 2701 return NULL; 2702 } 2703 2704 unit->first_child_die_ptr = info_ptr; 2705 return unit; 2706 } 2707 2708 /* Return TRUE if UNIT may contain the address given by ADDR. When 2709 there are functions written entirely with inline asm statements, the 2710 range info in the compilation unit header may not be correct. We 2711 need to consult the line info table to see if a compilation unit 2712 really contains the given address. */ 2713 2714 static bfd_boolean 2715 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr) 2716 { 2717 struct arange *arange; 2718 2719 if (unit->error) 2720 return FALSE; 2721 2722 arange = &unit->arange; 2723 do 2724 { 2725 if (addr >= arange->low && addr < arange->high) 2726 return TRUE; 2727 arange = arange->next; 2728 } 2729 while (arange); 2730 2731 return FALSE; 2732 } 2733 2734 /* If UNIT contains ADDR, set the output parameters to the values for 2735 the line containing ADDR. The output parameters, FILENAME_PTR, 2736 FUNCTIONNAME_PTR, and LINENUMBER_PTR, are pointers to the objects 2737 to be filled in. 2738 2739 Returns the range of addresses covered by the entry that was used 2740 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */ 2741 2742 static bfd_vma 2743 comp_unit_find_nearest_line (struct comp_unit *unit, 2744 bfd_vma addr, 2745 const char **filename_ptr, 2746 const char **functionname_ptr, 2747 unsigned int *linenumber_ptr, 2748 unsigned int *discriminator_ptr, 2749 struct dwarf2_debug *stash) 2750 { 2751 bfd_boolean func_p; 2752 struct funcinfo *function; 2753 2754 if (unit->error) 2755 return FALSE; 2756 2757 if (! unit->line_table) 2758 { 2759 if (! unit->stmtlist) 2760 { 2761 unit->error = 1; 2762 return FALSE; 2763 } 2764 2765 unit->line_table = decode_line_info (unit, stash); 2766 2767 if (! unit->line_table) 2768 { 2769 unit->error = 1; 2770 return FALSE; 2771 } 2772 2773 if (unit->first_child_die_ptr < unit->end_ptr 2774 && ! scan_unit_for_symbols (unit)) 2775 { 2776 unit->error = 1; 2777 return FALSE; 2778 } 2779 } 2780 2781 function = NULL; 2782 func_p = lookup_address_in_function_table (unit, addr, 2783 &function, functionname_ptr); 2784 if (func_p && (function->tag == DW_TAG_inlined_subroutine)) 2785 stash->inliner_chain = function; 2786 2787 return lookup_address_in_line_info_table (unit->line_table, addr, 2788 filename_ptr, 2789 linenumber_ptr, 2790 discriminator_ptr); 2791 } 2792 2793 /* Check to see if line info is already decoded in a comp_unit. 2794 If not, decode it. Returns TRUE if no errors were encountered; 2795 FALSE otherwise. */ 2796 2797 static bfd_boolean 2798 comp_unit_maybe_decode_line_info (struct comp_unit *unit, 2799 struct dwarf2_debug *stash) 2800 { 2801 if (unit->error) 2802 return FALSE; 2803 2804 if (! unit->line_table) 2805 { 2806 if (! unit->stmtlist) 2807 { 2808 unit->error = 1; 2809 return FALSE; 2810 } 2811 2812 unit->line_table = decode_line_info (unit, stash); 2813 2814 if (! unit->line_table) 2815 { 2816 unit->error = 1; 2817 return FALSE; 2818 } 2819 2820 if (unit->first_child_die_ptr < unit->end_ptr 2821 && ! scan_unit_for_symbols (unit)) 2822 { 2823 unit->error = 1; 2824 return FALSE; 2825 } 2826 } 2827 2828 return TRUE; 2829 } 2830 2831 /* If UNIT contains SYM at ADDR, set the output parameters to the 2832 values for the line containing SYM. The output parameters, 2833 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be 2834 filled in. 2835 2836 Return TRUE if UNIT contains SYM, and no errors were encountered; 2837 FALSE otherwise. */ 2838 2839 static bfd_boolean 2840 comp_unit_find_line (struct comp_unit *unit, 2841 asymbol *sym, 2842 bfd_vma addr, 2843 const char **filename_ptr, 2844 unsigned int *linenumber_ptr, 2845 struct dwarf2_debug *stash) 2846 { 2847 if (!comp_unit_maybe_decode_line_info (unit, stash)) 2848 return FALSE; 2849 2850 if (sym->flags & BSF_FUNCTION) 2851 return lookup_symbol_in_function_table (unit, sym, addr, 2852 filename_ptr, 2853 linenumber_ptr); 2854 2855 return lookup_symbol_in_variable_table (unit, sym, addr, 2856 filename_ptr, 2857 linenumber_ptr); 2858 } 2859 2860 static struct funcinfo * 2861 reverse_funcinfo_list (struct funcinfo *head) 2862 { 2863 struct funcinfo *rhead; 2864 struct funcinfo *temp; 2865 2866 for (rhead = NULL; head; head = temp) 2867 { 2868 temp = head->prev_func; 2869 head->prev_func = rhead; 2870 rhead = head; 2871 } 2872 return rhead; 2873 } 2874 2875 static struct varinfo * 2876 reverse_varinfo_list (struct varinfo *head) 2877 { 2878 struct varinfo *rhead; 2879 struct varinfo *temp; 2880 2881 for (rhead = NULL; head; head = temp) 2882 { 2883 temp = head->prev_var; 2884 head->prev_var = rhead; 2885 rhead = head; 2886 } 2887 return rhead; 2888 } 2889 2890 /* Extract all interesting funcinfos and varinfos of a compilation 2891 unit into hash tables for faster lookup. Returns TRUE if no 2892 errors were enountered; FALSE otherwise. */ 2893 2894 static bfd_boolean 2895 comp_unit_hash_info (struct dwarf2_debug *stash, 2896 struct comp_unit *unit, 2897 struct info_hash_table *funcinfo_hash_table, 2898 struct info_hash_table *varinfo_hash_table) 2899 { 2900 struct funcinfo* each_func; 2901 struct varinfo* each_var; 2902 bfd_boolean okay = TRUE; 2903 2904 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED); 2905 2906 if (!comp_unit_maybe_decode_line_info (unit, stash)) 2907 return FALSE; 2908 2909 BFD_ASSERT (!unit->cached); 2910 2911 /* To preserve the original search order, we went to visit the function 2912 infos in the reversed order of the list. However, making the list 2913 bi-directional use quite a bit of extra memory. So we reverse 2914 the list first, traverse the list in the now reversed order and 2915 finally reverse the list again to get back the original order. */ 2916 unit->function_table = reverse_funcinfo_list (unit->function_table); 2917 for (each_func = unit->function_table; 2918 each_func && okay; 2919 each_func = each_func->prev_func) 2920 { 2921 /* Skip nameless functions. */ 2922 if (each_func->name) 2923 /* There is no need to copy name string into hash table as 2924 name string is either in the dwarf string buffer or 2925 info in the stash. */ 2926 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name, 2927 (void*) each_func, FALSE); 2928 } 2929 unit->function_table = reverse_funcinfo_list (unit->function_table); 2930 if (!okay) 2931 return FALSE; 2932 2933 /* We do the same for variable infos. */ 2934 unit->variable_table = reverse_varinfo_list (unit->variable_table); 2935 for (each_var = unit->variable_table; 2936 each_var && okay; 2937 each_var = each_var->prev_var) 2938 { 2939 /* Skip stack vars and vars with no files or names. */ 2940 if (each_var->stack == 0 2941 && each_var->file != NULL 2942 && each_var->name != NULL) 2943 /* There is no need to copy name string into hash table as 2944 name string is either in the dwarf string buffer or 2945 info in the stash. */ 2946 okay = insert_info_hash_table (varinfo_hash_table, each_var->name, 2947 (void*) each_var, FALSE); 2948 } 2949 2950 unit->variable_table = reverse_varinfo_list (unit->variable_table); 2951 unit->cached = TRUE; 2952 return okay; 2953 } 2954 2955 /* Locate a section in a BFD containing debugging info. The search starts 2956 from the section after AFTER_SEC, or from the first section in the BFD if 2957 AFTER_SEC is NULL. The search works by examining the names of the 2958 sections. There are three permissiable names. The first two are given 2959 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info 2960 and .zdebug_info). The third is a prefix .gnu.linkonce.wi. 2961 This is a variation on the .debug_info section which has a checksum 2962 describing the contents appended onto the name. This allows the linker to 2963 identify and discard duplicate debugging sections for different 2964 compilation units. */ 2965 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi." 2966 2967 static asection * 2968 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections, 2969 asection *after_sec) 2970 { 2971 asection *msec; 2972 const char *look; 2973 2974 if (after_sec == NULL) 2975 { 2976 look = debug_sections[debug_info].uncompressed_name; 2977 msec = bfd_get_section_by_name (abfd, look); 2978 if (msec != NULL) 2979 return msec; 2980 2981 look = debug_sections[debug_info].compressed_name; 2982 if (look != NULL) 2983 { 2984 msec = bfd_get_section_by_name (abfd, look); 2985 if (msec != NULL) 2986 return msec; 2987 } 2988 2989 for (msec = abfd->sections; msec != NULL; msec = msec->next) 2990 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO)) 2991 return msec; 2992 2993 return NULL; 2994 } 2995 2996 for (msec = after_sec->next; msec != NULL; msec = msec->next) 2997 { 2998 look = debug_sections[debug_info].uncompressed_name; 2999 if (strcmp (msec->name, look) == 0) 3000 return msec; 3001 3002 look = debug_sections[debug_info].compressed_name; 3003 if (look != NULL && strcmp (msec->name, look) == 0) 3004 return msec; 3005 3006 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO)) 3007 return msec; 3008 } 3009 3010 return NULL; 3011 } 3012 3013 /* Transfer VMAs from object file to separate debug file. */ 3014 3015 static void 3016 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd) 3017 { 3018 asection *s, *d; 3019 3020 for (s = orig_bfd->sections, d = debug_bfd->sections; 3021 s != NULL && d != NULL; 3022 s = s->next, d = d->next) 3023 { 3024 if ((d->flags & SEC_DEBUGGING) != 0) 3025 break; 3026 /* ??? Assumes 1-1 correspondence between sections in the 3027 two files. */ 3028 if (strcmp (s->name, d->name) == 0) 3029 { 3030 d->output_section = s->output_section; 3031 d->output_offset = s->output_offset; 3032 d->vma = s->vma; 3033 } 3034 } 3035 } 3036 3037 /* Unset vmas for adjusted sections in STASH. */ 3038 3039 static void 3040 unset_sections (struct dwarf2_debug *stash) 3041 { 3042 int i; 3043 struct adjusted_section *p; 3044 3045 i = stash->adjusted_section_count; 3046 p = stash->adjusted_sections; 3047 for (; i > 0; i--, p++) 3048 p->section->vma = 0; 3049 } 3050 3051 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a 3052 relocatable object file. VMAs are normally all zero in relocatable 3053 object files, so if we want to distinguish locations in sections by 3054 address we need to set VMAs so the sections do not overlap. We 3055 also set VMA on .debug_info so that when we have multiple 3056 .debug_info sections (or the linkonce variant) they also do not 3057 overlap. The multiple .debug_info sections make up a single 3058 logical section. ??? We should probably do the same for other 3059 debug sections. */ 3060 3061 static bfd_boolean 3062 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash) 3063 { 3064 bfd *abfd; 3065 struct adjusted_section *p; 3066 int i; 3067 const char *debug_info_name; 3068 3069 if (stash->adjusted_section_count != 0) 3070 { 3071 i = stash->adjusted_section_count; 3072 p = stash->adjusted_sections; 3073 for (; i > 0; i--, p++) 3074 p->section->vma = p->adj_vma; 3075 return TRUE; 3076 } 3077 3078 debug_info_name = stash->debug_sections[debug_info].uncompressed_name; 3079 i = 0; 3080 abfd = orig_bfd; 3081 while (1) 3082 { 3083 asection *sect; 3084 3085 for (sect = abfd->sections; sect != NULL; sect = sect->next) 3086 { 3087 int is_debug_info; 3088 3089 if ((sect->output_section != NULL 3090 && sect->output_section != sect 3091 && (sect->flags & SEC_DEBUGGING) == 0) 3092 || sect->vma != 0) 3093 continue; 3094 3095 is_debug_info = (strcmp (sect->name, debug_info_name) == 0 3096 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO)); 3097 3098 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd) 3099 && !is_debug_info) 3100 continue; 3101 3102 i++; 3103 } 3104 if (abfd == stash->bfd_ptr) 3105 break; 3106 abfd = stash->bfd_ptr; 3107 } 3108 3109 if (i <= 1) 3110 stash->adjusted_section_count = -1; 3111 else 3112 { 3113 bfd_vma last_vma = 0, last_dwarf = 0; 3114 bfd_size_type amt = i * sizeof (struct adjusted_section); 3115 3116 p = (struct adjusted_section *) bfd_malloc (amt); 3117 if (p == NULL) 3118 return FALSE; 3119 3120 stash->adjusted_sections = p; 3121 stash->adjusted_section_count = i; 3122 3123 abfd = orig_bfd; 3124 while (1) 3125 { 3126 asection *sect; 3127 3128 for (sect = abfd->sections; sect != NULL; sect = sect->next) 3129 { 3130 bfd_size_type sz; 3131 int is_debug_info; 3132 3133 if ((sect->output_section != NULL 3134 && sect->output_section != sect 3135 && (sect->flags & SEC_DEBUGGING) == 0) 3136 || sect->vma != 0) 3137 continue; 3138 3139 is_debug_info = (strcmp (sect->name, debug_info_name) == 0 3140 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO)); 3141 3142 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd) 3143 && !is_debug_info) 3144 continue; 3145 3146 sz = sect->rawsize ? sect->rawsize : sect->size; 3147 3148 if (is_debug_info) 3149 { 3150 BFD_ASSERT (sect->alignment_power == 0); 3151 sect->vma = last_dwarf; 3152 last_dwarf += sz; 3153 } 3154 else 3155 { 3156 /* Align the new address to the current section 3157 alignment. */ 3158 last_vma = ((last_vma 3159 + ~((bfd_vma) -1 << sect->alignment_power)) 3160 & ((bfd_vma) -1 << sect->alignment_power)); 3161 sect->vma = last_vma; 3162 last_vma += sz; 3163 } 3164 3165 p->section = sect; 3166 p->adj_vma = sect->vma; 3167 p++; 3168 } 3169 if (abfd == stash->bfd_ptr) 3170 break; 3171 abfd = stash->bfd_ptr; 3172 } 3173 } 3174 3175 if (orig_bfd != stash->bfd_ptr) 3176 set_debug_vma (orig_bfd, stash->bfd_ptr); 3177 3178 return TRUE; 3179 } 3180 3181 /* Look up a funcinfo by name using the given info hash table. If found, 3182 also update the locations pointed to by filename_ptr and linenumber_ptr. 3183 3184 This function returns TRUE if a funcinfo that matches the given symbol 3185 and address is found with any error; otherwise it returns FALSE. */ 3186 3187 static bfd_boolean 3188 info_hash_lookup_funcinfo (struct info_hash_table *hash_table, 3189 asymbol *sym, 3190 bfd_vma addr, 3191 const char **filename_ptr, 3192 unsigned int *linenumber_ptr) 3193 { 3194 struct funcinfo* each_func; 3195 struct funcinfo* best_fit = NULL; 3196 bfd_vma best_fit_len = 0; 3197 struct info_list_node *node; 3198 struct arange *arange; 3199 const char *name = bfd_asymbol_name (sym); 3200 asection *sec = bfd_get_section (sym); 3201 3202 for (node = lookup_info_hash_table (hash_table, name); 3203 node; 3204 node = node->next) 3205 { 3206 each_func = (struct funcinfo *) node->info; 3207 for (arange = &each_func->arange; 3208 arange; 3209 arange = arange->next) 3210 { 3211 if ((!each_func->sec || each_func->sec == sec) 3212 && addr >= arange->low 3213 && addr < arange->high 3214 && (!best_fit 3215 || arange->high - arange->low < best_fit_len)) 3216 { 3217 best_fit = each_func; 3218 best_fit_len = arange->high - arange->low; 3219 } 3220 } 3221 } 3222 3223 if (best_fit) 3224 { 3225 best_fit->sec = sec; 3226 *filename_ptr = best_fit->file; 3227 *linenumber_ptr = best_fit->line; 3228 return TRUE; 3229 } 3230 3231 return FALSE; 3232 } 3233 3234 /* Look up a varinfo by name using the given info hash table. If found, 3235 also update the locations pointed to by filename_ptr and linenumber_ptr. 3236 3237 This function returns TRUE if a varinfo that matches the given symbol 3238 and address is found with any error; otherwise it returns FALSE. */ 3239 3240 static bfd_boolean 3241 info_hash_lookup_varinfo (struct info_hash_table *hash_table, 3242 asymbol *sym, 3243 bfd_vma addr, 3244 const char **filename_ptr, 3245 unsigned int *linenumber_ptr) 3246 { 3247 const char *name = bfd_asymbol_name (sym); 3248 asection *sec = bfd_get_section (sym); 3249 struct varinfo* each; 3250 struct info_list_node *node; 3251 3252 for (node = lookup_info_hash_table (hash_table, name); 3253 node; 3254 node = node->next) 3255 { 3256 each = (struct varinfo *) node->info; 3257 if (each->addr == addr 3258 && (!each->sec || each->sec == sec)) 3259 { 3260 each->sec = sec; 3261 *filename_ptr = each->file; 3262 *linenumber_ptr = each->line; 3263 return TRUE; 3264 } 3265 } 3266 3267 return FALSE; 3268 } 3269 3270 /* Update the funcinfo and varinfo info hash tables if they are 3271 not up to date. Returns TRUE if there is no error; otherwise 3272 returns FALSE and disable the info hash tables. */ 3273 3274 static bfd_boolean 3275 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash) 3276 { 3277 struct comp_unit *each; 3278 3279 /* Exit if hash tables are up-to-date. */ 3280 if (stash->all_comp_units == stash->hash_units_head) 3281 return TRUE; 3282 3283 if (stash->hash_units_head) 3284 each = stash->hash_units_head->prev_unit; 3285 else 3286 each = stash->last_comp_unit; 3287 3288 while (each) 3289 { 3290 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table, 3291 stash->varinfo_hash_table)) 3292 { 3293 stash->info_hash_status = STASH_INFO_HASH_DISABLED; 3294 return FALSE; 3295 } 3296 each = each->prev_unit; 3297 } 3298 3299 stash->hash_units_head = stash->all_comp_units; 3300 return TRUE; 3301 } 3302 3303 /* Check consistency of info hash tables. This is for debugging only. */ 3304 3305 static void ATTRIBUTE_UNUSED 3306 stash_verify_info_hash_table (struct dwarf2_debug *stash) 3307 { 3308 struct comp_unit *each_unit; 3309 struct funcinfo *each_func; 3310 struct varinfo *each_var; 3311 struct info_list_node *node; 3312 bfd_boolean found; 3313 3314 for (each_unit = stash->all_comp_units; 3315 each_unit; 3316 each_unit = each_unit->next_unit) 3317 { 3318 for (each_func = each_unit->function_table; 3319 each_func; 3320 each_func = each_func->prev_func) 3321 { 3322 if (!each_func->name) 3323 continue; 3324 node = lookup_info_hash_table (stash->funcinfo_hash_table, 3325 each_func->name); 3326 BFD_ASSERT (node); 3327 found = FALSE; 3328 while (node && !found) 3329 { 3330 found = node->info == each_func; 3331 node = node->next; 3332 } 3333 BFD_ASSERT (found); 3334 } 3335 3336 for (each_var = each_unit->variable_table; 3337 each_var; 3338 each_var = each_var->prev_var) 3339 { 3340 if (!each_var->name || !each_var->file || each_var->stack) 3341 continue; 3342 node = lookup_info_hash_table (stash->varinfo_hash_table, 3343 each_var->name); 3344 BFD_ASSERT (node); 3345 found = FALSE; 3346 while (node && !found) 3347 { 3348 found = node->info == each_var; 3349 node = node->next; 3350 } 3351 BFD_ASSERT (found); 3352 } 3353 } 3354 } 3355 3356 /* Check to see if we want to enable the info hash tables, which consume 3357 quite a bit of memory. Currently we only check the number times 3358 bfd_dwarf2_find_line is called. In the future, we may also want to 3359 take the number of symbols into account. */ 3360 3361 static void 3362 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash) 3363 { 3364 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF); 3365 3366 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER) 3367 return; 3368 3369 /* FIXME: Maybe we should check the reduce_memory_overheads 3370 and optimize fields in the bfd_link_info structure ? */ 3371 3372 /* Create hash tables. */ 3373 stash->funcinfo_hash_table = create_info_hash_table (abfd); 3374 stash->varinfo_hash_table = create_info_hash_table (abfd); 3375 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table) 3376 { 3377 /* Turn off info hashes if any allocation above fails. */ 3378 stash->info_hash_status = STASH_INFO_HASH_DISABLED; 3379 return; 3380 } 3381 /* We need a forced update so that the info hash tables will 3382 be created even though there is no compilation unit. That 3383 happens if STASH_INFO_HASH_TRIGGER is 0. */ 3384 stash_maybe_update_info_hash_tables (stash); 3385 stash->info_hash_status = STASH_INFO_HASH_ON; 3386 } 3387 3388 /* Find the file and line associated with a symbol and address using the 3389 info hash tables of a stash. If there is a match, the function returns 3390 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr; 3391 otherwise it returns FALSE. */ 3392 3393 static bfd_boolean 3394 stash_find_line_fast (struct dwarf2_debug *stash, 3395 asymbol *sym, 3396 bfd_vma addr, 3397 const char **filename_ptr, 3398 unsigned int *linenumber_ptr) 3399 { 3400 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON); 3401 3402 if (sym->flags & BSF_FUNCTION) 3403 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr, 3404 filename_ptr, linenumber_ptr); 3405 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr, 3406 filename_ptr, linenumber_ptr); 3407 } 3408 3409 /* Save current section VMAs. */ 3410 3411 static bfd_boolean 3412 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash) 3413 { 3414 asection *s; 3415 unsigned int i; 3416 3417 if (abfd->section_count == 0) 3418 return TRUE; 3419 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count); 3420 if (stash->sec_vma == NULL) 3421 return FALSE; 3422 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next) 3423 { 3424 if (s->output_section != NULL) 3425 stash->sec_vma[i] = s->output_section->vma + s->output_offset; 3426 else 3427 stash->sec_vma[i] = s->vma; 3428 } 3429 return TRUE; 3430 } 3431 3432 /* Compare current section VMAs against those at the time the stash 3433 was created. If find_nearest_line is used in linker warnings or 3434 errors early in the link process, the debug info stash will be 3435 invalid for later calls. This is because we relocate debug info 3436 sections, so the stashed section contents depend on symbol values, 3437 which in turn depend on section VMAs. */ 3438 3439 static bfd_boolean 3440 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash) 3441 { 3442 asection *s; 3443 unsigned int i; 3444 3445 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next) 3446 { 3447 bfd_vma vma; 3448 3449 if (s->output_section != NULL) 3450 vma = s->output_section->vma + s->output_offset; 3451 else 3452 vma = s->vma; 3453 if (vma != stash->sec_vma[i]) 3454 return FALSE; 3455 } 3456 return TRUE; 3457 } 3458 3459 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified. 3460 If DEBUG_BFD is not specified, we read debug information from ABFD 3461 or its gnu_debuglink. The results will be stored in PINFO. 3462 The function returns TRUE iff debug information is ready. */ 3463 3464 bfd_boolean 3465 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd, 3466 const struct dwarf_debug_section *debug_sections, 3467 asymbol **symbols, 3468 void **pinfo, 3469 bfd_boolean do_place) 3470 { 3471 bfd_size_type amt = sizeof (struct dwarf2_debug); 3472 bfd_size_type total_size; 3473 asection *msec; 3474 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo; 3475 3476 if (stash != NULL) 3477 { 3478 if (section_vma_same (abfd, stash)) 3479 return TRUE; 3480 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo); 3481 memset (stash, 0, amt); 3482 } 3483 else 3484 { 3485 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt); 3486 if (! stash) 3487 return FALSE; 3488 } 3489 stash->debug_sections = debug_sections; 3490 stash->syms = symbols; 3491 if (!save_section_vma (abfd, stash)) 3492 return FALSE; 3493 3494 *pinfo = stash; 3495 3496 if (debug_bfd == NULL) 3497 debug_bfd = abfd; 3498 3499 msec = find_debug_info (debug_bfd, debug_sections, NULL); 3500 if (msec == NULL && abfd == debug_bfd) 3501 { 3502 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR); 3503 3504 if (debug_filename == NULL) 3505 /* No dwarf2 info, and no gnu_debuglink to follow. 3506 Note that at this point the stash has been allocated, but 3507 contains zeros. This lets future calls to this function 3508 fail more quickly. */ 3509 return FALSE; 3510 3511 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL 3512 || ! bfd_check_format (debug_bfd, bfd_object) 3513 || (msec = find_debug_info (debug_bfd, 3514 debug_sections, NULL)) == NULL 3515 || !bfd_generic_link_read_symbols (debug_bfd)) 3516 { 3517 if (debug_bfd) 3518 bfd_close (debug_bfd); 3519 /* FIXME: Should we report our failure to follow the debuglink ? */ 3520 free (debug_filename); 3521 return FALSE; 3522 } 3523 3524 symbols = bfd_get_outsymbols (debug_bfd); 3525 stash->syms = symbols; 3526 stash->close_on_cleanup = TRUE; 3527 } 3528 stash->bfd_ptr = debug_bfd; 3529 3530 if (do_place 3531 && !place_sections (abfd, stash)) 3532 return FALSE; 3533 3534 /* There can be more than one DWARF2 info section in a BFD these 3535 days. First handle the easy case when there's only one. If 3536 there's more than one, try case two: none of the sections is 3537 compressed. In that case, read them all in and produce one 3538 large stash. We do this in two passes - in the first pass we 3539 just accumulate the section sizes, and in the second pass we 3540 read in the section's contents. (The allows us to avoid 3541 reallocing the data as we add sections to the stash.) If 3542 some or all sections are compressed, then do things the slow 3543 way, with a bunch of reallocs. */ 3544 3545 if (! find_debug_info (debug_bfd, debug_sections, msec)) 3546 { 3547 /* Case 1: only one info section. */ 3548 total_size = msec->size; 3549 if (! read_section (debug_bfd, &stash->debug_sections[debug_info], 3550 symbols, 0, 3551 &stash->info_ptr_memory, &total_size)) 3552 return FALSE; 3553 } 3554 else 3555 { 3556 /* Case 2: multiple sections. */ 3557 for (total_size = 0; 3558 msec; 3559 msec = find_debug_info (debug_bfd, debug_sections, msec)) 3560 total_size += msec->size; 3561 3562 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size); 3563 if (stash->info_ptr_memory == NULL) 3564 return FALSE; 3565 3566 total_size = 0; 3567 for (msec = find_debug_info (debug_bfd, debug_sections, NULL); 3568 msec; 3569 msec = find_debug_info (debug_bfd, debug_sections, msec)) 3570 { 3571 bfd_size_type size; 3572 3573 size = msec->size; 3574 if (size == 0) 3575 continue; 3576 3577 if (!(bfd_simple_get_relocated_section_contents 3578 (debug_bfd, msec, stash->info_ptr_memory + total_size, 3579 symbols))) 3580 return FALSE; 3581 3582 total_size += size; 3583 } 3584 } 3585 3586 stash->info_ptr = stash->info_ptr_memory; 3587 stash->info_ptr_end = stash->info_ptr + total_size; 3588 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL); 3589 stash->sec_info_ptr = stash->info_ptr; 3590 return TRUE; 3591 } 3592 3593 /* Find the source code location of SYMBOL. If SYMBOL is NULL 3594 then find the nearest source code location corresponding to 3595 the address SECTION + OFFSET. 3596 Returns TRUE if the line is found without error and fills in 3597 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was 3598 NULL the FUNCTIONNAME_PTR is also filled in. 3599 SYMBOLS contains the symbol table for ABFD. 3600 DEBUG_SECTIONS contains the name of the dwarf debug sections. 3601 ADDR_SIZE is the number of bytes in the initial .debug_info length 3602 field and in the abbreviation offset, or zero to indicate that the 3603 default value should be used. */ 3604 3605 bfd_boolean 3606 _bfd_dwarf2_find_nearest_line (bfd *abfd, 3607 asymbol **symbols, 3608 asymbol *symbol, 3609 asection *section, 3610 bfd_vma offset, 3611 const char **filename_ptr, 3612 const char **functionname_ptr, 3613 unsigned int *linenumber_ptr, 3614 unsigned int *discriminator_ptr, 3615 const struct dwarf_debug_section *debug_sections, 3616 unsigned int addr_size, 3617 void **pinfo) 3618 { 3619 /* Read each compilation unit from the section .debug_info, and check 3620 to see if it contains the address we are searching for. If yes, 3621 lookup the address, and return the line number info. If no, go 3622 on to the next compilation unit. 3623 3624 We keep a list of all the previously read compilation units, and 3625 a pointer to the next un-read compilation unit. Check the 3626 previously read units before reading more. */ 3627 struct dwarf2_debug *stash; 3628 /* What address are we looking for? */ 3629 bfd_vma addr; 3630 struct comp_unit* each; 3631 bfd_boolean found = FALSE; 3632 bfd_boolean do_line; 3633 3634 *filename_ptr = NULL; 3635 if (functionname_ptr != NULL) 3636 *functionname_ptr = NULL; 3637 *linenumber_ptr = 0; 3638 if (discriminator_ptr) 3639 *discriminator_ptr = 0; 3640 3641 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections, 3642 symbols, pinfo, 3643 (abfd->flags & (EXEC_P | DYNAMIC)) == 0)) 3644 return FALSE; 3645 3646 stash = (struct dwarf2_debug *) *pinfo; 3647 3648 do_line = symbol != NULL; 3649 if (do_line) 3650 { 3651 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL); 3652 section = bfd_get_section (symbol); 3653 addr = symbol->value; 3654 } 3655 else 3656 { 3657 BFD_ASSERT (section != NULL && functionname_ptr != NULL); 3658 addr = offset; 3659 } 3660 3661 if (section->output_section) 3662 addr += section->output_section->vma + section->output_offset; 3663 else 3664 addr += section->vma; 3665 3666 /* A null info_ptr indicates that there is no dwarf2 info 3667 (or that an error occured while setting up the stash). */ 3668 if (! stash->info_ptr) 3669 return FALSE; 3670 3671 stash->inliner_chain = NULL; 3672 3673 /* Check the previously read comp. units first. */ 3674 if (do_line) 3675 { 3676 /* The info hash tables use quite a bit of memory. We may not want to 3677 always use them. We use some heuristics to decide if and when to 3678 turn it on. */ 3679 if (stash->info_hash_status == STASH_INFO_HASH_OFF) 3680 stash_maybe_enable_info_hash_tables (abfd, stash); 3681 3682 /* Keep info hash table up to date if they are available. Note that we 3683 may disable the hash tables if there is any error duing update. */ 3684 if (stash->info_hash_status == STASH_INFO_HASH_ON) 3685 stash_maybe_update_info_hash_tables (stash); 3686 3687 if (stash->info_hash_status == STASH_INFO_HASH_ON) 3688 { 3689 found = stash_find_line_fast (stash, symbol, addr, filename_ptr, 3690 linenumber_ptr); 3691 if (found) 3692 goto done; 3693 } 3694 else 3695 { 3696 /* Check the previously read comp. units first. */ 3697 for (each = stash->all_comp_units; each; each = each->next_unit) 3698 if ((symbol->flags & BSF_FUNCTION) == 0 3699 || each->arange.high == 0 3700 || comp_unit_contains_address (each, addr)) 3701 { 3702 found = comp_unit_find_line (each, symbol, addr, filename_ptr, 3703 linenumber_ptr, stash); 3704 if (found) 3705 goto done; 3706 } 3707 } 3708 } 3709 else 3710 { 3711 bfd_vma min_range = (bfd_vma) -1; 3712 const char * local_filename = NULL; 3713 const char * local_functionname = NULL; 3714 unsigned int local_linenumber = 0; 3715 unsigned int local_discriminator = 0; 3716 3717 for (each = stash->all_comp_units; each; each = each->next_unit) 3718 { 3719 bfd_vma range = (bfd_vma) -1; 3720 3721 found = ((each->arange.high == 0 3722 || comp_unit_contains_address (each, addr)) 3723 && (range = comp_unit_find_nearest_line (each, addr, 3724 & local_filename, 3725 & local_functionname, 3726 & local_linenumber, 3727 & local_discriminator, 3728 stash)) != 0); 3729 if (found) 3730 { 3731 /* PRs 15935 15994: Bogus debug information may have provided us 3732 with an erroneous match. We attempt to counter this by 3733 selecting the match that has the smallest address range 3734 associated with it. (We are assuming that corrupt debug info 3735 will tend to result in extra large address ranges rather than 3736 extra small ranges). 3737 3738 This does mean that we scan through all of the CUs associated 3739 with the bfd each time this function is called. But this does 3740 have the benefit of producing consistent results every time the 3741 function is called. */ 3742 if (range <= min_range) 3743 { 3744 if (filename_ptr && local_filename) 3745 * filename_ptr = local_filename; 3746 if (functionname_ptr && local_functionname) 3747 * functionname_ptr = local_functionname; 3748 if (discriminator_ptr && local_discriminator) 3749 * discriminator_ptr = local_discriminator; 3750 if (local_linenumber) 3751 * linenumber_ptr = local_linenumber; 3752 min_range = range; 3753 } 3754 } 3755 } 3756 3757 if (* linenumber_ptr) 3758 { 3759 found = TRUE; 3760 goto done; 3761 } 3762 } 3763 3764 /* The DWARF2 spec says that the initial length field, and the 3765 offset of the abbreviation table, should both be 4-byte values. 3766 However, some compilers do things differently. */ 3767 if (addr_size == 0) 3768 addr_size = 4; 3769 BFD_ASSERT (addr_size == 4 || addr_size == 8); 3770 3771 /* Read each remaining comp. units checking each as they are read. */ 3772 while (stash->info_ptr < stash->info_ptr_end) 3773 { 3774 bfd_vma length; 3775 unsigned int offset_size = addr_size; 3776 bfd_byte *info_ptr_unit = stash->info_ptr; 3777 3778 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr); 3779 /* A 0xffffff length is the DWARF3 way of indicating 3780 we use 64-bit offsets, instead of 32-bit offsets. */ 3781 if (length == 0xffffffff) 3782 { 3783 offset_size = 8; 3784 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4); 3785 stash->info_ptr += 12; 3786 } 3787 /* A zero length is the IRIX way of indicating 64-bit offsets, 3788 mostly because the 64-bit length will generally fit in 32 3789 bits, and the endianness helps. */ 3790 else if (length == 0) 3791 { 3792 offset_size = 8; 3793 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4); 3794 stash->info_ptr += 8; 3795 } 3796 /* In the absence of the hints above, we assume 32-bit DWARF2 3797 offsets even for targets with 64-bit addresses, because: 3798 a) most of the time these targets will not have generated 3799 more than 2Gb of debug info and so will not need 64-bit 3800 offsets, 3801 and 3802 b) if they do use 64-bit offsets but they are not using 3803 the size hints that are tested for above then they are 3804 not conforming to the DWARF3 standard anyway. */ 3805 else if (addr_size == 8) 3806 { 3807 offset_size = 4; 3808 stash->info_ptr += 4; 3809 } 3810 else 3811 stash->info_ptr += 4; 3812 3813 if (length > 0) 3814 { 3815 each = parse_comp_unit (stash, length, info_ptr_unit, 3816 offset_size); 3817 if (!each) 3818 /* The dwarf information is damaged, don't trust it any 3819 more. */ 3820 break; 3821 stash->info_ptr += length; 3822 3823 if (stash->all_comp_units) 3824 stash->all_comp_units->prev_unit = each; 3825 else 3826 stash->last_comp_unit = each; 3827 3828 each->next_unit = stash->all_comp_units; 3829 stash->all_comp_units = each; 3830 3831 /* DW_AT_low_pc and DW_AT_high_pc are optional for 3832 compilation units. If we don't have them (i.e., 3833 unit->high == 0), we need to consult the line info table 3834 to see if a compilation unit contains the given 3835 address. */ 3836 if (do_line) 3837 found = (((symbol->flags & BSF_FUNCTION) == 0 3838 || each->arange.high == 0 3839 || comp_unit_contains_address (each, addr)) 3840 && comp_unit_find_line (each, symbol, addr, 3841 filename_ptr, 3842 linenumber_ptr, 3843 stash)); 3844 else 3845 found = ((each->arange.high == 0 3846 || comp_unit_contains_address (each, addr)) 3847 && comp_unit_find_nearest_line (each, addr, 3848 filename_ptr, 3849 functionname_ptr, 3850 linenumber_ptr, 3851 discriminator_ptr, 3852 stash)) > 0; 3853 3854 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr) 3855 == stash->sec->size) 3856 { 3857 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections, 3858 stash->sec); 3859 stash->sec_info_ptr = stash->info_ptr; 3860 } 3861 3862 if (found) 3863 goto done; 3864 } 3865 } 3866 3867 done: 3868 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 3869 unset_sections (stash); 3870 3871 return found; 3872 } 3873 3874 bfd_boolean 3875 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED, 3876 const char **filename_ptr, 3877 const char **functionname_ptr, 3878 unsigned int *linenumber_ptr, 3879 void **pinfo) 3880 { 3881 struct dwarf2_debug *stash; 3882 3883 stash = (struct dwarf2_debug *) *pinfo; 3884 if (stash) 3885 { 3886 struct funcinfo *func = stash->inliner_chain; 3887 3888 if (func && func->caller_func) 3889 { 3890 *filename_ptr = func->caller_file; 3891 *functionname_ptr = func->caller_func->name; 3892 *linenumber_ptr = func->caller_line; 3893 stash->inliner_chain = func->caller_func; 3894 return TRUE; 3895 } 3896 } 3897 3898 return FALSE; 3899 } 3900 3901 void 3902 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo) 3903 { 3904 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo; 3905 struct comp_unit *each; 3906 3907 if (abfd == NULL || stash == NULL) 3908 return; 3909 3910 for (each = stash->all_comp_units; each; each = each->next_unit) 3911 { 3912 struct abbrev_info **abbrevs = each->abbrevs; 3913 struct funcinfo *function_table = each->function_table; 3914 struct varinfo *variable_table = each->variable_table; 3915 size_t i; 3916 3917 for (i = 0; i < ABBREV_HASH_SIZE; i++) 3918 { 3919 struct abbrev_info *abbrev = abbrevs[i]; 3920 3921 while (abbrev) 3922 { 3923 free (abbrev->attrs); 3924 abbrev = abbrev->next; 3925 } 3926 } 3927 3928 if (each->line_table) 3929 { 3930 free (each->line_table->dirs); 3931 free (each->line_table->files); 3932 } 3933 3934 while (function_table) 3935 { 3936 if (function_table->file) 3937 { 3938 free (function_table->file); 3939 function_table->file = NULL; 3940 } 3941 3942 if (function_table->caller_file) 3943 { 3944 free (function_table->caller_file); 3945 function_table->caller_file = NULL; 3946 } 3947 function_table = function_table->prev_func; 3948 } 3949 3950 while (variable_table) 3951 { 3952 if (variable_table->file) 3953 { 3954 free (variable_table->file); 3955 variable_table->file = NULL; 3956 } 3957 3958 variable_table = variable_table->prev_var; 3959 } 3960 } 3961 3962 if (stash->dwarf_abbrev_buffer) 3963 free (stash->dwarf_abbrev_buffer); 3964 if (stash->dwarf_line_buffer) 3965 free (stash->dwarf_line_buffer); 3966 if (stash->dwarf_str_buffer) 3967 free (stash->dwarf_str_buffer); 3968 if (stash->dwarf_ranges_buffer) 3969 free (stash->dwarf_ranges_buffer); 3970 if (stash->info_ptr_memory) 3971 free (stash->info_ptr_memory); 3972 if (stash->close_on_cleanup) 3973 bfd_close (stash->bfd_ptr); 3974 if (stash->alt_dwarf_str_buffer) 3975 free (stash->alt_dwarf_str_buffer); 3976 if (stash->alt_dwarf_info_buffer) 3977 free (stash->alt_dwarf_info_buffer); 3978 if (stash->sec_vma) 3979 free (stash->sec_vma); 3980 if (stash->adjusted_sections) 3981 free (stash->adjusted_sections); 3982 if (stash->alt_bfd_ptr) 3983 bfd_close (stash->alt_bfd_ptr); 3984 } 3985