1 /* Object file "section" support for the BFD library. 2 Copyright (C) 1990-2014 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Sections 25 26 The raw data contained within a BFD is maintained through the 27 section abstraction. A single BFD may have any number of 28 sections. It keeps hold of them by pointing to the first; 29 each one points to the next in the list. 30 31 Sections are supported in BFD in <<section.c>>. 32 33 @menu 34 @* Section Input:: 35 @* Section Output:: 36 @* typedef asection:: 37 @* section prototypes:: 38 @end menu 39 40 INODE 41 Section Input, Section Output, Sections, Sections 42 SUBSECTION 43 Section input 44 45 When a BFD is opened for reading, the section structures are 46 created and attached to the BFD. 47 48 Each section has a name which describes the section in the 49 outside world---for example, <<a.out>> would contain at least 50 three sections, called <<.text>>, <<.data>> and <<.bss>>. 51 52 Names need not be unique; for example a COFF file may have several 53 sections named <<.data>>. 54 55 Sometimes a BFD will contain more than the ``natural'' number of 56 sections. A back end may attach other sections containing 57 constructor data, or an application may add a section (using 58 <<bfd_make_section>>) to the sections attached to an already open 59 BFD. For example, the linker creates an extra section 60 <<COMMON>> for each input file's BFD to hold information about 61 common storage. 62 63 The raw data is not necessarily read in when 64 the section descriptor is created. Some targets may leave the 65 data in place until a <<bfd_get_section_contents>> call is 66 made. Other back ends may read in all the data at once. For 67 example, an S-record file has to be read once to determine the 68 size of the data. An IEEE-695 file doesn't contain raw data in 69 sections, but data and relocation expressions intermixed, so 70 the data area has to be parsed to get out the data and 71 relocations. 72 73 INODE 74 Section Output, typedef asection, Section Input, Sections 75 76 SUBSECTION 77 Section output 78 79 To write a new object style BFD, the various sections to be 80 written have to be created. They are attached to the BFD in 81 the same way as input sections; data is written to the 82 sections using <<bfd_set_section_contents>>. 83 84 Any program that creates or combines sections (e.g., the assembler 85 and linker) must use the <<asection>> fields <<output_section>> and 86 <<output_offset>> to indicate the file sections to which each 87 section must be written. (If the section is being created from 88 scratch, <<output_section>> should probably point to the section 89 itself and <<output_offset>> should probably be zero.) 90 91 The data to be written comes from input sections attached 92 (via <<output_section>> pointers) to 93 the output sections. The output section structure can be 94 considered a filter for the input section: the output section 95 determines the vma of the output data and the name, but the 96 input section determines the offset into the output section of 97 the data to be written. 98 99 E.g., to create a section "O", starting at 0x100, 0x123 long, 100 containing two subsections, "A" at offset 0x0 (i.e., at vma 101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 102 structures would look like: 103 104 | section name "A" 105 | output_offset 0x00 106 | size 0x20 107 | output_section -----------> section name "O" 108 | | vma 0x100 109 | section name "B" | size 0x123 110 | output_offset 0x20 | 111 | size 0x103 | 112 | output_section --------| 113 114 SUBSECTION 115 Link orders 116 117 The data within a section is stored in a @dfn{link_order}. 118 These are much like the fixups in <<gas>>. The link_order 119 abstraction allows a section to grow and shrink within itself. 120 121 A link_order knows how big it is, and which is the next 122 link_order and where the raw data for it is; it also points to 123 a list of relocations which apply to it. 124 125 The link_order is used by the linker to perform relaxing on 126 final code. The compiler creates code which is as big as 127 necessary to make it work without relaxing, and the user can 128 select whether to relax. Sometimes relaxing takes a lot of 129 time. The linker runs around the relocations to see if any 130 are attached to data which can be shrunk, if so it does it on 131 a link_order by link_order basis. 132 133 */ 134 135 #include "sysdep.h" 136 #include "bfd.h" 137 #include "libbfd.h" 138 #include "bfdlink.h" 139 140 /* 141 DOCDD 142 INODE 143 typedef asection, section prototypes, Section Output, Sections 144 SUBSECTION 145 typedef asection 146 147 Here is the section structure: 148 149 CODE_FRAGMENT 150 . 151 .typedef struct bfd_section 152 .{ 153 . {* The name of the section; the name isn't a copy, the pointer is 154 . the same as that passed to bfd_make_section. *} 155 . const char *name; 156 . 157 . {* A unique sequence number. *} 158 . int id; 159 . 160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 161 . int index; 162 . 163 . {* The next section in the list belonging to the BFD, or NULL. *} 164 . struct bfd_section *next; 165 . 166 . {* The previous section in the list belonging to the BFD, or NULL. *} 167 . struct bfd_section *prev; 168 . 169 . {* The field flags contains attributes of the section. Some 170 . flags are read in from the object file, and some are 171 . synthesized from other information. *} 172 . flagword flags; 173 . 174 .#define SEC_NO_FLAGS 0x000 175 . 176 . {* Tells the OS to allocate space for this section when loading. 177 . This is clear for a section containing debug information only. *} 178 .#define SEC_ALLOC 0x001 179 . 180 . {* Tells the OS to load the section from the file when loading. 181 . This is clear for a .bss section. *} 182 .#define SEC_LOAD 0x002 183 . 184 . {* The section contains data still to be relocated, so there is 185 . some relocation information too. *} 186 .#define SEC_RELOC 0x004 187 . 188 . {* A signal to the OS that the section contains read only data. *} 189 .#define SEC_READONLY 0x008 190 . 191 . {* The section contains code only. *} 192 .#define SEC_CODE 0x010 193 . 194 . {* The section contains data only. *} 195 .#define SEC_DATA 0x020 196 . 197 . {* The section will reside in ROM. *} 198 .#define SEC_ROM 0x040 199 . 200 . {* The section contains constructor information. This section 201 . type is used by the linker to create lists of constructors and 202 . destructors used by <<g++>>. When a back end sees a symbol 203 . which should be used in a constructor list, it creates a new 204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 205 . the symbol to it, and builds a relocation. To build the lists 206 . of constructors, all the linker has to do is catenate all the 207 . sections called <<__CTOR_LIST__>> and relocate the data 208 . contained within - exactly the operations it would peform on 209 . standard data. *} 210 .#define SEC_CONSTRUCTOR 0x080 211 . 212 . {* The section has contents - a data section could be 213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 214 . <<SEC_HAS_CONTENTS>> *} 215 .#define SEC_HAS_CONTENTS 0x100 216 . 217 . {* An instruction to the linker to not output the section 218 . even if it has information which would normally be written. *} 219 .#define SEC_NEVER_LOAD 0x200 220 . 221 . {* The section contains thread local data. *} 222 .#define SEC_THREAD_LOCAL 0x400 223 . 224 . {* The section has GOT references. This flag is only for the 225 . linker, and is currently only used by the elf32-hppa back end. 226 . It will be set if global offset table references were detected 227 . in this section, which indicate to the linker that the section 228 . contains PIC code, and must be handled specially when doing a 229 . static link. *} 230 .#define SEC_HAS_GOT_REF 0x800 231 . 232 . {* The section contains common symbols (symbols may be defined 233 . multiple times, the value of a symbol is the amount of 234 . space it requires, and the largest symbol value is the one 235 . used). Most targets have exactly one of these (which we 236 . translate to bfd_com_section_ptr), but ECOFF has two. *} 237 .#define SEC_IS_COMMON 0x1000 238 . 239 . {* The section contains only debugging information. For 240 . example, this is set for ELF .debug and .stab sections. 241 . strip tests this flag to see if a section can be 242 . discarded. *} 243 .#define SEC_DEBUGGING 0x2000 244 . 245 . {* The contents of this section are held in memory pointed to 246 . by the contents field. This is checked by bfd_get_section_contents, 247 . and the data is retrieved from memory if appropriate. *} 248 .#define SEC_IN_MEMORY 0x4000 249 . 250 . {* The contents of this section are to be excluded by the 251 . linker for executable and shared objects unless those 252 . objects are to be further relocated. *} 253 .#define SEC_EXCLUDE 0x8000 254 . 255 . {* The contents of this section are to be sorted based on the sum of 256 . the symbol and addend values specified by the associated relocation 257 . entries. Entries without associated relocation entries will be 258 . appended to the end of the section in an unspecified order. *} 259 .#define SEC_SORT_ENTRIES 0x10000 260 . 261 . {* When linking, duplicate sections of the same name should be 262 . discarded, rather than being combined into a single section as 263 . is usually done. This is similar to how common symbols are 264 . handled. See SEC_LINK_DUPLICATES below. *} 265 .#define SEC_LINK_ONCE 0x20000 266 . 267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 268 . should handle duplicate sections. *} 269 .#define SEC_LINK_DUPLICATES 0xc0000 270 . 271 . {* This value for SEC_LINK_DUPLICATES means that duplicate 272 . sections with the same name should simply be discarded. *} 273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 274 . 275 . {* This value for SEC_LINK_DUPLICATES means that the linker 276 . should warn if there are any duplicate sections, although 277 . it should still only link one copy. *} 278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 279 . 280 . {* This value for SEC_LINK_DUPLICATES means that the linker 281 . should warn if any duplicate sections are a different size. *} 282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 283 . 284 . {* This value for SEC_LINK_DUPLICATES means that the linker 285 . should warn if any duplicate sections contain different 286 . contents. *} 287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 289 . 290 . {* This section was created by the linker as part of dynamic 291 . relocation or other arcane processing. It is skipped when 292 . going through the first-pass output, trusting that someone 293 . else up the line will take care of it later. *} 294 .#define SEC_LINKER_CREATED 0x100000 295 . 296 . {* This section should not be subject to garbage collection. 297 . Also set to inform the linker that this section should not be 298 . listed in the link map as discarded. *} 299 .#define SEC_KEEP 0x200000 300 . 301 . {* This section contains "short" data, and should be placed 302 . "near" the GP. *} 303 .#define SEC_SMALL_DATA 0x400000 304 . 305 . {* Attempt to merge identical entities in the section. 306 . Entity size is given in the entsize field. *} 307 .#define SEC_MERGE 0x800000 308 . 309 . {* If given with SEC_MERGE, entities to merge are zero terminated 310 . strings where entsize specifies character size instead of fixed 311 . size entries. *} 312 .#define SEC_STRINGS 0x1000000 313 . 314 . {* This section contains data about section groups. *} 315 .#define SEC_GROUP 0x2000000 316 . 317 . {* The section is a COFF shared library section. This flag is 318 . only for the linker. If this type of section appears in 319 . the input file, the linker must copy it to the output file 320 . without changing the vma or size. FIXME: Although this 321 . was originally intended to be general, it really is COFF 322 . specific (and the flag was renamed to indicate this). It 323 . might be cleaner to have some more general mechanism to 324 . allow the back end to control what the linker does with 325 . sections. *} 326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 327 . 328 . {* This input section should be copied to output in reverse order 329 . as an array of pointers. This is for ELF linker internal use 330 . only. *} 331 .#define SEC_ELF_REVERSE_COPY 0x4000000 332 . 333 . {* This section contains data which may be shared with other 334 . executables or shared objects. This is for COFF only. *} 335 .#define SEC_COFF_SHARED 0x8000000 336 . 337 . {* When a section with this flag is being linked, then if the size of 338 . the input section is less than a page, it should not cross a page 339 . boundary. If the size of the input section is one page or more, 340 . it should be aligned on a page boundary. This is for TI 341 . TMS320C54X only. *} 342 .#define SEC_TIC54X_BLOCK 0x10000000 343 . 344 . {* Conditionally link this section; do not link if there are no 345 . references found to any symbol in the section. This is for TI 346 . TMS320C54X only. *} 347 .#define SEC_TIC54X_CLINK 0x20000000 348 . 349 . {* Indicate that section has the no read flag set. This happens 350 . when memory read flag isn't set. *} 351 .#define SEC_COFF_NOREAD 0x40000000 352 . 353 . {* End of section flags. *} 354 . 355 . {* Some internal packed boolean fields. *} 356 . 357 . {* See the vma field. *} 358 . unsigned int user_set_vma : 1; 359 . 360 . {* A mark flag used by some of the linker backends. *} 361 . unsigned int linker_mark : 1; 362 . 363 . {* Another mark flag used by some of the linker backends. Set for 364 . output sections that have an input section. *} 365 . unsigned int linker_has_input : 1; 366 . 367 . {* Mark flag used by some linker backends for garbage collection. *} 368 . unsigned int gc_mark : 1; 369 . 370 . {* Section compression status. *} 371 . unsigned int compress_status : 2; 372 .#define COMPRESS_SECTION_NONE 0 373 .#define COMPRESS_SECTION_DONE 1 374 .#define DECOMPRESS_SECTION_SIZED 2 375 . 376 . {* The following flags are used by the ELF linker. *} 377 . 378 . {* Mark sections which have been allocated to segments. *} 379 . unsigned int segment_mark : 1; 380 . 381 . {* Type of sec_info information. *} 382 . unsigned int sec_info_type:3; 383 .#define SEC_INFO_TYPE_NONE 0 384 .#define SEC_INFO_TYPE_STABS 1 385 .#define SEC_INFO_TYPE_MERGE 2 386 .#define SEC_INFO_TYPE_EH_FRAME 3 387 .#define SEC_INFO_TYPE_JUST_SYMS 4 388 .#define SEC_INFO_TYPE_TARGET 5 389 . 390 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 391 . unsigned int use_rela_p:1; 392 . 393 . {* Bits used by various backends. The generic code doesn't touch 394 . these fields. *} 395 . 396 . unsigned int sec_flg0:1; 397 . unsigned int sec_flg1:1; 398 . unsigned int sec_flg2:1; 399 . unsigned int sec_flg3:1; 400 . unsigned int sec_flg4:1; 401 . unsigned int sec_flg5:1; 402 . 403 . {* End of internal packed boolean fields. *} 404 . 405 . {* The virtual memory address of the section - where it will be 406 . at run time. The symbols are relocated against this. The 407 . user_set_vma flag is maintained by bfd; if it's not set, the 408 . backend can assign addresses (for example, in <<a.out>>, where 409 . the default address for <<.data>> is dependent on the specific 410 . target and various flags). *} 411 . bfd_vma vma; 412 . 413 . {* The load address of the section - where it would be in a 414 . rom image; really only used for writing section header 415 . information. *} 416 . bfd_vma lma; 417 . 418 . {* The size of the section in octets, as it will be output. 419 . Contains a value even if the section has no contents (e.g., the 420 . size of <<.bss>>). *} 421 . bfd_size_type size; 422 . 423 . {* For input sections, the original size on disk of the section, in 424 . octets. This field should be set for any section whose size is 425 . changed by linker relaxation. It is required for sections where 426 . the linker relaxation scheme doesn't cache altered section and 427 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 428 . targets), and thus the original size needs to be kept to read the 429 . section multiple times. For output sections, rawsize holds the 430 . section size calculated on a previous linker relaxation pass. *} 431 . bfd_size_type rawsize; 432 . 433 . {* The compressed size of the section in octets. *} 434 . bfd_size_type compressed_size; 435 . 436 . {* Relaxation table. *} 437 . struct relax_table *relax; 438 . 439 . {* Count of used relaxation table entries. *} 440 . int relax_count; 441 . 442 . 443 . {* If this section is going to be output, then this value is the 444 . offset in *bytes* into the output section of the first byte in the 445 . input section (byte ==> smallest addressable unit on the 446 . target). In most cases, if this was going to start at the 447 . 100th octet (8-bit quantity) in the output section, this value 448 . would be 100. However, if the target byte size is 16 bits 449 . (bfd_octets_per_byte is "2"), this value would be 50. *} 450 . bfd_vma output_offset; 451 . 452 . {* The output section through which to map on output. *} 453 . struct bfd_section *output_section; 454 . 455 . {* The alignment requirement of the section, as an exponent of 2 - 456 . e.g., 3 aligns to 2^3 (or 8). *} 457 . unsigned int alignment_power; 458 . 459 . {* If an input section, a pointer to a vector of relocation 460 . records for the data in this section. *} 461 . struct reloc_cache_entry *relocation; 462 . 463 . {* If an output section, a pointer to a vector of pointers to 464 . relocation records for the data in this section. *} 465 . struct reloc_cache_entry **orelocation; 466 . 467 . {* The number of relocation records in one of the above. *} 468 . unsigned reloc_count; 469 . 470 . {* Information below is back end specific - and not always used 471 . or updated. *} 472 . 473 . {* File position of section data. *} 474 . file_ptr filepos; 475 . 476 . {* File position of relocation info. *} 477 . file_ptr rel_filepos; 478 . 479 . {* File position of line data. *} 480 . file_ptr line_filepos; 481 . 482 . {* Pointer to data for applications. *} 483 . void *userdata; 484 . 485 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 486 . contents. *} 487 . unsigned char *contents; 488 . 489 . {* Attached line number information. *} 490 . alent *lineno; 491 . 492 . {* Number of line number records. *} 493 . unsigned int lineno_count; 494 . 495 . {* Entity size for merging purposes. *} 496 . unsigned int entsize; 497 . 498 . {* Points to the kept section if this section is a link-once section, 499 . and is discarded. *} 500 . struct bfd_section *kept_section; 501 . 502 . {* When a section is being output, this value changes as more 503 . linenumbers are written out. *} 504 . file_ptr moving_line_filepos; 505 . 506 . {* What the section number is in the target world. *} 507 . int target_index; 508 . 509 . void *used_by_bfd; 510 . 511 . {* If this is a constructor section then here is a list of the 512 . relocations created to relocate items within it. *} 513 . struct relent_chain *constructor_chain; 514 . 515 . {* The BFD which owns the section. *} 516 . bfd *owner; 517 . 518 . {* A symbol which points at this section only. *} 519 . struct bfd_symbol *symbol; 520 . struct bfd_symbol **symbol_ptr_ptr; 521 . 522 . {* Early in the link process, map_head and map_tail are used to build 523 . a list of input sections attached to an output section. Later, 524 . output sections use these fields for a list of bfd_link_order 525 . structs. *} 526 . union { 527 . struct bfd_link_order *link_order; 528 . struct bfd_section *s; 529 . } map_head, map_tail; 530 .} asection; 531 . 532 .{* Relax table contains information about instructions which can 533 . be removed by relaxation -- replacing a long address with a 534 . short address. *} 535 .struct relax_table { 536 . {* Address where bytes may be deleted. *} 537 . bfd_vma addr; 538 . 539 . {* Number of bytes to be deleted. *} 540 . int size; 541 .}; 542 . 543 .{* Note: the following are provided as inline functions rather than macros 544 . because not all callers use the return value. A macro implementation 545 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some 546 . compilers will complain about comma expressions that have no effect. *} 547 .static inline bfd_boolean 548 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val) 549 .{ 550 . ptr->userdata = val; 551 . return TRUE; 552 .} 553 . 554 .static inline bfd_boolean 555 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val) 556 .{ 557 . ptr->vma = ptr->lma = val; 558 . ptr->user_set_vma = TRUE; 559 . return TRUE; 560 .} 561 . 562 .static inline bfd_boolean 563 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val) 564 .{ 565 . ptr->alignment_power = val; 566 . return TRUE; 567 .} 568 . 569 .{* These sections are global, and are managed by BFD. The application 570 . and target back end are not permitted to change the values in 571 . these sections. *} 572 .extern asection _bfd_std_section[4]; 573 . 574 .#define BFD_ABS_SECTION_NAME "*ABS*" 575 .#define BFD_UND_SECTION_NAME "*UND*" 576 .#define BFD_COM_SECTION_NAME "*COM*" 577 .#define BFD_IND_SECTION_NAME "*IND*" 578 . 579 .{* Pointer to the common section. *} 580 .#define bfd_com_section_ptr (&_bfd_std_section[0]) 581 .{* Pointer to the undefined section. *} 582 .#define bfd_und_section_ptr (&_bfd_std_section[1]) 583 .{* Pointer to the absolute section. *} 584 .#define bfd_abs_section_ptr (&_bfd_std_section[2]) 585 .{* Pointer to the indirect section. *} 586 .#define bfd_ind_section_ptr (&_bfd_std_section[3]) 587 . 588 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 589 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 590 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 591 . 592 .#define bfd_is_const_section(SEC) \ 593 . ( ((SEC) == bfd_abs_section_ptr) \ 594 . || ((SEC) == bfd_und_section_ptr) \ 595 . || ((SEC) == bfd_com_section_ptr) \ 596 . || ((SEC) == bfd_ind_section_ptr)) 597 . 598 .{* Macros to handle insertion and deletion of a bfd's sections. These 599 . only handle the list pointers, ie. do not adjust section_count, 600 . target_index etc. *} 601 .#define bfd_section_list_remove(ABFD, S) \ 602 . do \ 603 . { \ 604 . asection *_s = S; \ 605 . asection *_next = _s->next; \ 606 . asection *_prev = _s->prev; \ 607 . if (_prev) \ 608 . _prev->next = _next; \ 609 . else \ 610 . (ABFD)->sections = _next; \ 611 . if (_next) \ 612 . _next->prev = _prev; \ 613 . else \ 614 . (ABFD)->section_last = _prev; \ 615 . } \ 616 . while (0) 617 .#define bfd_section_list_append(ABFD, S) \ 618 . do \ 619 . { \ 620 . asection *_s = S; \ 621 . bfd *_abfd = ABFD; \ 622 . _s->next = NULL; \ 623 . if (_abfd->section_last) \ 624 . { \ 625 . _s->prev = _abfd->section_last; \ 626 . _abfd->section_last->next = _s; \ 627 . } \ 628 . else \ 629 . { \ 630 . _s->prev = NULL; \ 631 . _abfd->sections = _s; \ 632 . } \ 633 . _abfd->section_last = _s; \ 634 . } \ 635 . while (0) 636 .#define bfd_section_list_prepend(ABFD, S) \ 637 . do \ 638 . { \ 639 . asection *_s = S; \ 640 . bfd *_abfd = ABFD; \ 641 . _s->prev = NULL; \ 642 . if (_abfd->sections) \ 643 . { \ 644 . _s->next = _abfd->sections; \ 645 . _abfd->sections->prev = _s; \ 646 . } \ 647 . else \ 648 . { \ 649 . _s->next = NULL; \ 650 . _abfd->section_last = _s; \ 651 . } \ 652 . _abfd->sections = _s; \ 653 . } \ 654 . while (0) 655 .#define bfd_section_list_insert_after(ABFD, A, S) \ 656 . do \ 657 . { \ 658 . asection *_a = A; \ 659 . asection *_s = S; \ 660 . asection *_next = _a->next; \ 661 . _s->next = _next; \ 662 . _s->prev = _a; \ 663 . _a->next = _s; \ 664 . if (_next) \ 665 . _next->prev = _s; \ 666 . else \ 667 . (ABFD)->section_last = _s; \ 668 . } \ 669 . while (0) 670 .#define bfd_section_list_insert_before(ABFD, B, S) \ 671 . do \ 672 . { \ 673 . asection *_b = B; \ 674 . asection *_s = S; \ 675 . asection *_prev = _b->prev; \ 676 . _s->prev = _prev; \ 677 . _s->next = _b; \ 678 . _b->prev = _s; \ 679 . if (_prev) \ 680 . _prev->next = _s; \ 681 . else \ 682 . (ABFD)->sections = _s; \ 683 . } \ 684 . while (0) 685 .#define bfd_section_removed_from_list(ABFD, S) \ 686 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 687 . 688 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 689 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 690 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 691 . \ 692 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 693 . 0, 0, 1, 0, \ 694 . \ 695 . {* segment_mark, sec_info_type, use_rela_p, *} \ 696 . 0, 0, 0, \ 697 . \ 698 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 699 . 0, 0, 0, 0, 0, 0, \ 700 . \ 701 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 702 . 0, 0, 0, 0, 0, 0, 0, \ 703 . \ 704 . {* output_offset, output_section, alignment_power, *} \ 705 . 0, &SEC, 0, \ 706 . \ 707 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 708 . NULL, NULL, 0, 0, 0, \ 709 . \ 710 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 711 . 0, NULL, NULL, NULL, 0, \ 712 . \ 713 . {* entsize, kept_section, moving_line_filepos, *} \ 714 . 0, NULL, 0, \ 715 . \ 716 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 717 . 0, NULL, NULL, NULL, \ 718 . \ 719 . {* symbol, symbol_ptr_ptr, *} \ 720 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 721 . \ 722 . {* map_head, map_tail *} \ 723 . { NULL }, { NULL } \ 724 . } 725 . 726 */ 727 728 /* We use a macro to initialize the static asymbol structures because 729 traditional C does not permit us to initialize a union member while 730 gcc warns if we don't initialize it. */ 731 /* the_bfd, name, value, attr, section [, udata] */ 732 #ifdef __STDC__ 733 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 734 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 735 #else 736 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 737 { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 738 #endif 739 740 /* These symbols are global, not specific to any BFD. Therefore, anything 741 that tries to change them is broken, and should be repaired. */ 742 743 static const asymbol global_syms[] = 744 { 745 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 746 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 747 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 748 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 749 }; 750 751 #define STD_SECTION(NAME, IDX, FLAGS) \ 752 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX) 753 754 asection _bfd_std_section[] = { 755 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 756 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 757 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 758 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 759 }; 760 #undef STD_SECTION 761 762 /* Initialize an entry in the section hash table. */ 763 764 struct bfd_hash_entry * 765 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 766 struct bfd_hash_table *table, 767 const char *string) 768 { 769 /* Allocate the structure if it has not already been allocated by a 770 subclass. */ 771 if (entry == NULL) 772 { 773 entry = (struct bfd_hash_entry *) 774 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 775 if (entry == NULL) 776 return entry; 777 } 778 779 /* Call the allocation method of the superclass. */ 780 entry = bfd_hash_newfunc (entry, table, string); 781 if (entry != NULL) 782 memset (&((struct section_hash_entry *) entry)->section, 0, 783 sizeof (asection)); 784 785 return entry; 786 } 787 788 #define section_hash_lookup(table, string, create, copy) \ 789 ((struct section_hash_entry *) \ 790 bfd_hash_lookup ((table), (string), (create), (copy))) 791 792 /* Create a symbol whose only job is to point to this section. This 793 is useful for things like relocs which are relative to the base 794 of a section. */ 795 796 bfd_boolean 797 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 798 { 799 newsect->symbol = bfd_make_empty_symbol (abfd); 800 if (newsect->symbol == NULL) 801 return FALSE; 802 803 newsect->symbol->name = newsect->name; 804 newsect->symbol->value = 0; 805 newsect->symbol->section = newsect; 806 newsect->symbol->flags = BSF_SECTION_SYM; 807 808 newsect->symbol_ptr_ptr = &newsect->symbol; 809 return TRUE; 810 } 811 812 /* Initializes a new section. NEWSECT->NAME is already set. */ 813 814 static asection * 815 bfd_section_init (bfd *abfd, asection *newsect) 816 { 817 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 818 819 newsect->id = section_id; 820 newsect->index = abfd->section_count; 821 newsect->owner = abfd; 822 823 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 824 return NULL; 825 826 section_id++; 827 abfd->section_count++; 828 bfd_section_list_append (abfd, newsect); 829 return newsect; 830 } 831 832 /* 833 DOCDD 834 INODE 835 section prototypes, , typedef asection, Sections 836 SUBSECTION 837 Section prototypes 838 839 These are the functions exported by the section handling part of BFD. 840 */ 841 842 /* 843 FUNCTION 844 bfd_section_list_clear 845 846 SYNOPSIS 847 void bfd_section_list_clear (bfd *); 848 849 DESCRIPTION 850 Clears the section list, and also resets the section count and 851 hash table entries. 852 */ 853 854 void 855 bfd_section_list_clear (bfd *abfd) 856 { 857 abfd->sections = NULL; 858 abfd->section_last = NULL; 859 abfd->section_count = 0; 860 memset (abfd->section_htab.table, 0, 861 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 862 abfd->section_htab.count = 0; 863 } 864 865 /* 866 FUNCTION 867 bfd_get_section_by_name 868 869 SYNOPSIS 870 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 871 872 DESCRIPTION 873 Return the most recently created section attached to @var{abfd} 874 named @var{name}. Return NULL if no such section exists. 875 */ 876 877 asection * 878 bfd_get_section_by_name (bfd *abfd, const char *name) 879 { 880 struct section_hash_entry *sh; 881 882 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 883 if (sh != NULL) 884 return &sh->section; 885 886 return NULL; 887 } 888 889 /* 890 FUNCTION 891 bfd_get_next_section_by_name 892 893 SYNOPSIS 894 asection *bfd_get_next_section_by_name (asection *sec); 895 896 DESCRIPTION 897 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 898 return the next most recently created section attached to the same 899 BFD with the same name. Return NULL if no such section exists. 900 */ 901 902 asection * 903 bfd_get_next_section_by_name (asection *sec) 904 { 905 struct section_hash_entry *sh; 906 const char *name; 907 unsigned long hash; 908 909 sh = ((struct section_hash_entry *) 910 ((char *) sec - offsetof (struct section_hash_entry, section))); 911 912 hash = sh->root.hash; 913 name = sec->name; 914 for (sh = (struct section_hash_entry *) sh->root.next; 915 sh != NULL; 916 sh = (struct section_hash_entry *) sh->root.next) 917 if (sh->root.hash == hash 918 && strcmp (sh->root.string, name) == 0) 919 return &sh->section; 920 921 return NULL; 922 } 923 924 /* 925 FUNCTION 926 bfd_get_linker_section 927 928 SYNOPSIS 929 asection *bfd_get_linker_section (bfd *abfd, const char *name); 930 931 DESCRIPTION 932 Return the linker created section attached to @var{abfd} 933 named @var{name}. Return NULL if no such section exists. 934 */ 935 936 asection * 937 bfd_get_linker_section (bfd *abfd, const char *name) 938 { 939 asection *sec = bfd_get_section_by_name (abfd, name); 940 941 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 942 sec = bfd_get_next_section_by_name (sec); 943 return sec; 944 } 945 946 /* 947 FUNCTION 948 bfd_get_section_by_name_if 949 950 SYNOPSIS 951 asection *bfd_get_section_by_name_if 952 (bfd *abfd, 953 const char *name, 954 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 955 void *obj); 956 957 DESCRIPTION 958 Call the provided function @var{func} for each section 959 attached to the BFD @var{abfd} whose name matches @var{name}, 960 passing @var{obj} as an argument. The function will be called 961 as if by 962 963 | func (abfd, the_section, obj); 964 965 It returns the first section for which @var{func} returns true, 966 otherwise <<NULL>>. 967 968 */ 969 970 asection * 971 bfd_get_section_by_name_if (bfd *abfd, const char *name, 972 bfd_boolean (*operation) (bfd *, 973 asection *, 974 void *), 975 void *user_storage) 976 { 977 struct section_hash_entry *sh; 978 unsigned long hash; 979 980 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 981 if (sh == NULL) 982 return NULL; 983 984 hash = sh->root.hash; 985 do 986 { 987 if ((*operation) (abfd, &sh->section, user_storage)) 988 return &sh->section; 989 sh = (struct section_hash_entry *) sh->root.next; 990 } 991 while (sh != NULL && sh->root.hash == hash 992 && strcmp (sh->root.string, name) == 0); 993 994 return NULL; 995 } 996 997 /* 998 FUNCTION 999 bfd_get_unique_section_name 1000 1001 SYNOPSIS 1002 char *bfd_get_unique_section_name 1003 (bfd *abfd, const char *templat, int *count); 1004 1005 DESCRIPTION 1006 Invent a section name that is unique in @var{abfd} by tacking 1007 a dot and a digit suffix onto the original @var{templat}. If 1008 @var{count} is non-NULL, then it specifies the first number 1009 tried as a suffix to generate a unique name. The value 1010 pointed to by @var{count} will be incremented in this case. 1011 */ 1012 1013 char * 1014 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 1015 { 1016 int num; 1017 unsigned int len; 1018 char *sname; 1019 1020 len = strlen (templat); 1021 sname = (char *) bfd_malloc (len + 8); 1022 if (sname == NULL) 1023 return NULL; 1024 memcpy (sname, templat, len); 1025 num = 1; 1026 if (count != NULL) 1027 num = *count; 1028 1029 do 1030 { 1031 /* If we have a million sections, something is badly wrong. */ 1032 if (num > 999999) 1033 abort (); 1034 sprintf (sname + len, ".%d", num++); 1035 } 1036 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 1037 1038 if (count != NULL) 1039 *count = num; 1040 return sname; 1041 } 1042 1043 /* 1044 FUNCTION 1045 bfd_make_section_old_way 1046 1047 SYNOPSIS 1048 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1049 1050 DESCRIPTION 1051 Create a new empty section called @var{name} 1052 and attach it to the end of the chain of sections for the 1053 BFD @var{abfd}. An attempt to create a section with a name which 1054 is already in use returns its pointer without changing the 1055 section chain. 1056 1057 It has the funny name since this is the way it used to be 1058 before it was rewritten.... 1059 1060 Possible errors are: 1061 o <<bfd_error_invalid_operation>> - 1062 If output has already started for this BFD. 1063 o <<bfd_error_no_memory>> - 1064 If memory allocation fails. 1065 1066 */ 1067 1068 asection * 1069 bfd_make_section_old_way (bfd *abfd, const char *name) 1070 { 1071 asection *newsect; 1072 1073 if (abfd->output_has_begun) 1074 { 1075 bfd_set_error (bfd_error_invalid_operation); 1076 return NULL; 1077 } 1078 1079 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1080 newsect = bfd_abs_section_ptr; 1081 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1082 newsect = bfd_com_section_ptr; 1083 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1084 newsect = bfd_und_section_ptr; 1085 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1086 newsect = bfd_ind_section_ptr; 1087 else 1088 { 1089 struct section_hash_entry *sh; 1090 1091 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1092 if (sh == NULL) 1093 return NULL; 1094 1095 newsect = &sh->section; 1096 if (newsect->name != NULL) 1097 { 1098 /* Section already exists. */ 1099 return newsect; 1100 } 1101 1102 newsect->name = name; 1103 return bfd_section_init (abfd, newsect); 1104 } 1105 1106 /* Call new_section_hook when "creating" the standard abs, com, und 1107 and ind sections to tack on format specific section data. 1108 Also, create a proper section symbol. */ 1109 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1110 return NULL; 1111 return newsect; 1112 } 1113 1114 /* 1115 FUNCTION 1116 bfd_make_section_anyway_with_flags 1117 1118 SYNOPSIS 1119 asection *bfd_make_section_anyway_with_flags 1120 (bfd *abfd, const char *name, flagword flags); 1121 1122 DESCRIPTION 1123 Create a new empty section called @var{name} and attach it to the end of 1124 the chain of sections for @var{abfd}. Create a new section even if there 1125 is already a section with that name. Also set the attributes of the 1126 new section to the value @var{flags}. 1127 1128 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1129 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1130 o <<bfd_error_no_memory>> - If memory allocation fails. 1131 */ 1132 1133 sec_ptr 1134 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1135 flagword flags) 1136 { 1137 struct section_hash_entry *sh; 1138 asection *newsect; 1139 1140 if (abfd->output_has_begun) 1141 { 1142 bfd_set_error (bfd_error_invalid_operation); 1143 return NULL; 1144 } 1145 1146 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1147 if (sh == NULL) 1148 return NULL; 1149 1150 newsect = &sh->section; 1151 if (newsect->name != NULL) 1152 { 1153 /* We are making a section of the same name. Put it in the 1154 section hash table. Even though we can't find it directly by a 1155 hash lookup, we'll be able to find the section by traversing 1156 sh->root.next quicker than looking at all the bfd sections. */ 1157 struct section_hash_entry *new_sh; 1158 new_sh = (struct section_hash_entry *) 1159 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1160 if (new_sh == NULL) 1161 return NULL; 1162 1163 new_sh->root = sh->root; 1164 sh->root.next = &new_sh->root; 1165 newsect = &new_sh->section; 1166 } 1167 1168 newsect->flags = flags; 1169 newsect->name = name; 1170 return bfd_section_init (abfd, newsect); 1171 } 1172 1173 /* 1174 FUNCTION 1175 bfd_make_section_anyway 1176 1177 SYNOPSIS 1178 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1179 1180 DESCRIPTION 1181 Create a new empty section called @var{name} and attach it to the end of 1182 the chain of sections for @var{abfd}. Create a new section even if there 1183 is already a section with that name. 1184 1185 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1186 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1187 o <<bfd_error_no_memory>> - If memory allocation fails. 1188 */ 1189 1190 sec_ptr 1191 bfd_make_section_anyway (bfd *abfd, const char *name) 1192 { 1193 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1194 } 1195 1196 /* 1197 FUNCTION 1198 bfd_make_section_with_flags 1199 1200 SYNOPSIS 1201 asection *bfd_make_section_with_flags 1202 (bfd *, const char *name, flagword flags); 1203 1204 DESCRIPTION 1205 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1206 bfd_set_error ()) without changing the section chain if there is already a 1207 section named @var{name}. Also set the attributes of the new section to 1208 the value @var{flags}. If there is an error, return <<NULL>> and set 1209 <<bfd_error>>. 1210 */ 1211 1212 asection * 1213 bfd_make_section_with_flags (bfd *abfd, const char *name, 1214 flagword flags) 1215 { 1216 struct section_hash_entry *sh; 1217 asection *newsect; 1218 1219 if (abfd->output_has_begun) 1220 { 1221 bfd_set_error (bfd_error_invalid_operation); 1222 return NULL; 1223 } 1224 1225 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1226 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1227 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1228 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1229 return NULL; 1230 1231 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1232 if (sh == NULL) 1233 return NULL; 1234 1235 newsect = &sh->section; 1236 if (newsect->name != NULL) 1237 { 1238 /* Section already exists. */ 1239 return NULL; 1240 } 1241 1242 newsect->name = name; 1243 newsect->flags = flags; 1244 return bfd_section_init (abfd, newsect); 1245 } 1246 1247 /* 1248 FUNCTION 1249 bfd_make_section 1250 1251 SYNOPSIS 1252 asection *bfd_make_section (bfd *, const char *name); 1253 1254 DESCRIPTION 1255 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1256 bfd_set_error ()) without changing the section chain if there is already a 1257 section named @var{name}. If there is an error, return <<NULL>> and set 1258 <<bfd_error>>. 1259 */ 1260 1261 asection * 1262 bfd_make_section (bfd *abfd, const char *name) 1263 { 1264 return bfd_make_section_with_flags (abfd, name, 0); 1265 } 1266 1267 /* 1268 FUNCTION 1269 bfd_set_section_flags 1270 1271 SYNOPSIS 1272 bfd_boolean bfd_set_section_flags 1273 (bfd *abfd, asection *sec, flagword flags); 1274 1275 DESCRIPTION 1276 Set the attributes of the section @var{sec} in the BFD 1277 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1278 <<FALSE>> on error. Possible error returns are: 1279 1280 o <<bfd_error_invalid_operation>> - 1281 The section cannot have one or more of the attributes 1282 requested. For example, a .bss section in <<a.out>> may not 1283 have the <<SEC_HAS_CONTENTS>> field set. 1284 1285 */ 1286 1287 bfd_boolean 1288 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1289 sec_ptr section, 1290 flagword flags) 1291 { 1292 section->flags = flags; 1293 return TRUE; 1294 } 1295 1296 /* 1297 FUNCTION 1298 bfd_rename_section 1299 1300 SYNOPSIS 1301 void bfd_rename_section 1302 (bfd *abfd, asection *sec, const char *newname); 1303 1304 DESCRIPTION 1305 Rename section @var{sec} in @var{abfd} to @var{newname}. 1306 */ 1307 1308 void 1309 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1310 { 1311 struct section_hash_entry *sh; 1312 1313 sh = (struct section_hash_entry *) 1314 ((char *) sec - offsetof (struct section_hash_entry, section)); 1315 sh->section.name = newname; 1316 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1317 } 1318 1319 /* 1320 FUNCTION 1321 bfd_map_over_sections 1322 1323 SYNOPSIS 1324 void bfd_map_over_sections 1325 (bfd *abfd, 1326 void (*func) (bfd *abfd, asection *sect, void *obj), 1327 void *obj); 1328 1329 DESCRIPTION 1330 Call the provided function @var{func} for each section 1331 attached to the BFD @var{abfd}, passing @var{obj} as an 1332 argument. The function will be called as if by 1333 1334 | func (abfd, the_section, obj); 1335 1336 This is the preferred method for iterating over sections; an 1337 alternative would be to use a loop: 1338 1339 | asection *p; 1340 | for (p = abfd->sections; p != NULL; p = p->next) 1341 | func (abfd, p, ...) 1342 1343 */ 1344 1345 void 1346 bfd_map_over_sections (bfd *abfd, 1347 void (*operation) (bfd *, asection *, void *), 1348 void *user_storage) 1349 { 1350 asection *sect; 1351 unsigned int i = 0; 1352 1353 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1354 (*operation) (abfd, sect, user_storage); 1355 1356 if (i != abfd->section_count) /* Debugging */ 1357 abort (); 1358 } 1359 1360 /* 1361 FUNCTION 1362 bfd_sections_find_if 1363 1364 SYNOPSIS 1365 asection *bfd_sections_find_if 1366 (bfd *abfd, 1367 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1368 void *obj); 1369 1370 DESCRIPTION 1371 Call the provided function @var{operation} for each section 1372 attached to the BFD @var{abfd}, passing @var{obj} as an 1373 argument. The function will be called as if by 1374 1375 | operation (abfd, the_section, obj); 1376 1377 It returns the first section for which @var{operation} returns true. 1378 1379 */ 1380 1381 asection * 1382 bfd_sections_find_if (bfd *abfd, 1383 bfd_boolean (*operation) (bfd *, asection *, void *), 1384 void *user_storage) 1385 { 1386 asection *sect; 1387 1388 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1389 if ((*operation) (abfd, sect, user_storage)) 1390 break; 1391 1392 return sect; 1393 } 1394 1395 /* 1396 FUNCTION 1397 bfd_set_section_size 1398 1399 SYNOPSIS 1400 bfd_boolean bfd_set_section_size 1401 (bfd *abfd, asection *sec, bfd_size_type val); 1402 1403 DESCRIPTION 1404 Set @var{sec} to the size @var{val}. If the operation is 1405 ok, then <<TRUE>> is returned, else <<FALSE>>. 1406 1407 Possible error returns: 1408 o <<bfd_error_invalid_operation>> - 1409 Writing has started to the BFD, so setting the size is invalid. 1410 1411 */ 1412 1413 bfd_boolean 1414 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1415 { 1416 /* Once you've started writing to any section you cannot create or change 1417 the size of any others. */ 1418 1419 if (abfd->output_has_begun) 1420 { 1421 bfd_set_error (bfd_error_invalid_operation); 1422 return FALSE; 1423 } 1424 1425 ptr->size = val; 1426 return TRUE; 1427 } 1428 1429 /* 1430 FUNCTION 1431 bfd_set_section_contents 1432 1433 SYNOPSIS 1434 bfd_boolean bfd_set_section_contents 1435 (bfd *abfd, asection *section, const void *data, 1436 file_ptr offset, bfd_size_type count); 1437 1438 DESCRIPTION 1439 Sets the contents of the section @var{section} in BFD 1440 @var{abfd} to the data starting in memory at @var{data}. The 1441 data is written to the output section starting at offset 1442 @var{offset} for @var{count} octets. 1443 1444 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1445 returns are: 1446 o <<bfd_error_no_contents>> - 1447 The output section does not have the <<SEC_HAS_CONTENTS>> 1448 attribute, so nothing can be written to it. 1449 o and some more too 1450 1451 This routine is front end to the back end function 1452 <<_bfd_set_section_contents>>. 1453 1454 */ 1455 1456 bfd_boolean 1457 bfd_set_section_contents (bfd *abfd, 1458 sec_ptr section, 1459 const void *location, 1460 file_ptr offset, 1461 bfd_size_type count) 1462 { 1463 bfd_size_type sz; 1464 1465 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1466 { 1467 bfd_set_error (bfd_error_no_contents); 1468 return FALSE; 1469 } 1470 1471 sz = section->size; 1472 if ((bfd_size_type) offset > sz 1473 || count > sz 1474 || offset + count > sz 1475 || count != (size_t) count) 1476 { 1477 bfd_set_error (bfd_error_bad_value); 1478 return FALSE; 1479 } 1480 1481 if (!bfd_write_p (abfd)) 1482 { 1483 bfd_set_error (bfd_error_invalid_operation); 1484 return FALSE; 1485 } 1486 1487 /* Record a copy of the data in memory if desired. */ 1488 if (section->contents 1489 && location != section->contents + offset) 1490 memcpy (section->contents + offset, location, (size_t) count); 1491 1492 if (BFD_SEND (abfd, _bfd_set_section_contents, 1493 (abfd, section, location, offset, count))) 1494 { 1495 abfd->output_has_begun = TRUE; 1496 return TRUE; 1497 } 1498 1499 return FALSE; 1500 } 1501 1502 /* 1503 FUNCTION 1504 bfd_get_section_contents 1505 1506 SYNOPSIS 1507 bfd_boolean bfd_get_section_contents 1508 (bfd *abfd, asection *section, void *location, file_ptr offset, 1509 bfd_size_type count); 1510 1511 DESCRIPTION 1512 Read data from @var{section} in BFD @var{abfd} 1513 into memory starting at @var{location}. The data is read at an 1514 offset of @var{offset} from the start of the input section, 1515 and is read for @var{count} bytes. 1516 1517 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1518 flag set are requested or if the section does not have the 1519 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1520 with zeroes. If no errors occur, <<TRUE>> is returned, else 1521 <<FALSE>>. 1522 1523 */ 1524 bfd_boolean 1525 bfd_get_section_contents (bfd *abfd, 1526 sec_ptr section, 1527 void *location, 1528 file_ptr offset, 1529 bfd_size_type count) 1530 { 1531 bfd_size_type sz; 1532 1533 if (section->flags & SEC_CONSTRUCTOR) 1534 { 1535 memset (location, 0, (size_t) count); 1536 return TRUE; 1537 } 1538 1539 if (abfd->direction != write_direction && section->rawsize != 0) 1540 sz = section->rawsize; 1541 else 1542 sz = section->size; 1543 if ((bfd_size_type) offset > sz 1544 || count > sz 1545 || offset + count > sz 1546 || count != (size_t) count) 1547 { 1548 bfd_set_error (bfd_error_bad_value); 1549 return FALSE; 1550 } 1551 1552 if (count == 0) 1553 /* Don't bother. */ 1554 return TRUE; 1555 1556 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1557 { 1558 memset (location, 0, (size_t) count); 1559 return TRUE; 1560 } 1561 1562 if ((section->flags & SEC_IN_MEMORY) != 0) 1563 { 1564 if (section->contents == NULL) 1565 { 1566 /* This can happen because of errors earlier on in the linking process. 1567 We do not want to seg-fault here, so clear the flag and return an 1568 error code. */ 1569 section->flags &= ~ SEC_IN_MEMORY; 1570 bfd_set_error (bfd_error_invalid_operation); 1571 return FALSE; 1572 } 1573 1574 memmove (location, section->contents + offset, (size_t) count); 1575 return TRUE; 1576 } 1577 1578 return BFD_SEND (abfd, _bfd_get_section_contents, 1579 (abfd, section, location, offset, count)); 1580 } 1581 1582 /* 1583 FUNCTION 1584 bfd_malloc_and_get_section 1585 1586 SYNOPSIS 1587 bfd_boolean bfd_malloc_and_get_section 1588 (bfd *abfd, asection *section, bfd_byte **buf); 1589 1590 DESCRIPTION 1591 Read all data from @var{section} in BFD @var{abfd} 1592 into a buffer, *@var{buf}, malloc'd by this function. 1593 */ 1594 1595 bfd_boolean 1596 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1597 { 1598 *buf = NULL; 1599 return bfd_get_full_section_contents (abfd, sec, buf); 1600 } 1601 /* 1602 FUNCTION 1603 bfd_copy_private_section_data 1604 1605 SYNOPSIS 1606 bfd_boolean bfd_copy_private_section_data 1607 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1608 1609 DESCRIPTION 1610 Copy private section information from @var{isec} in the BFD 1611 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1612 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1613 returns are: 1614 1615 o <<bfd_error_no_memory>> - 1616 Not enough memory exists to create private data for @var{osec}. 1617 1618 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1619 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1620 . (ibfd, isection, obfd, osection)) 1621 */ 1622 1623 /* 1624 FUNCTION 1625 bfd_generic_is_group_section 1626 1627 SYNOPSIS 1628 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1629 1630 DESCRIPTION 1631 Returns TRUE if @var{sec} is a member of a group. 1632 */ 1633 1634 bfd_boolean 1635 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1636 const asection *sec ATTRIBUTE_UNUSED) 1637 { 1638 return FALSE; 1639 } 1640 1641 /* 1642 FUNCTION 1643 bfd_generic_discard_group 1644 1645 SYNOPSIS 1646 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1647 1648 DESCRIPTION 1649 Remove all members of @var{group} from the output. 1650 */ 1651 1652 bfd_boolean 1653 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1654 asection *group ATTRIBUTE_UNUSED) 1655 { 1656 return TRUE; 1657 } 1658