Home | History | Annotate | Download | only in space
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "image_space.h"
     18 
     19 #include <lz4.h>
     20 #include <random>
     21 #include <sys/statvfs.h>
     22 #include <sys/types.h>
     23 #include <unistd.h>
     24 
     25 #include "art_method.h"
     26 #include "base/macros.h"
     27 #include "base/stl_util.h"
     28 #include "base/scoped_flock.h"
     29 #include "base/systrace.h"
     30 #include "base/time_utils.h"
     31 #include "gc/accounting/space_bitmap-inl.h"
     32 #include "image-inl.h"
     33 #include "image_space_fs.h"
     34 #include "mirror/class-inl.h"
     35 #include "mirror/object-inl.h"
     36 #include "oat_file.h"
     37 #include "os.h"
     38 #include "space-inl.h"
     39 #include "utils.h"
     40 
     41 namespace art {
     42 namespace gc {
     43 namespace space {
     44 
     45 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
     46 
     47 ImageSpace::ImageSpace(const std::string& image_filename,
     48                        const char* image_location,
     49                        MemMap* mem_map,
     50                        accounting::ContinuousSpaceBitmap* live_bitmap,
     51                        uint8_t* end)
     52     : MemMapSpace(image_filename,
     53                   mem_map,
     54                   mem_map->Begin(),
     55                   end,
     56                   end,
     57                   kGcRetentionPolicyNeverCollect),
     58       oat_file_non_owned_(nullptr),
     59       image_location_(image_location) {
     60   DCHECK(live_bitmap != nullptr);
     61   live_bitmap_.reset(live_bitmap);
     62 }
     63 
     64 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
     65   CHECK_ALIGNED(min_delta, kPageSize);
     66   CHECK_ALIGNED(max_delta, kPageSize);
     67   CHECK_LT(min_delta, max_delta);
     68 
     69   int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
     70   if (r % 2 == 0) {
     71     r = RoundUp(r, kPageSize);
     72   } else {
     73     r = RoundDown(r, kPageSize);
     74   }
     75   CHECK_LE(min_delta, r);
     76   CHECK_GE(max_delta, r);
     77   CHECK_ALIGNED(r, kPageSize);
     78   return r;
     79 }
     80 
     81 static bool GenerateImage(const std::string& image_filename, InstructionSet image_isa,
     82                           std::string* error_msg) {
     83   const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
     84   std::vector<std::string> boot_class_path;
     85   Split(boot_class_path_string, ':', &boot_class_path);
     86   if (boot_class_path.empty()) {
     87     *error_msg = "Failed to generate image because no boot class path specified";
     88     return false;
     89   }
     90   // We should clean up so we are more likely to have room for the image.
     91   if (Runtime::Current()->IsZygote()) {
     92     LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
     93     PruneDalvikCache(image_isa);
     94   }
     95 
     96   std::vector<std::string> arg_vector;
     97 
     98   std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
     99   arg_vector.push_back(dex2oat);
    100 
    101   std::string image_option_string("--image=");
    102   image_option_string += image_filename;
    103   arg_vector.push_back(image_option_string);
    104 
    105   for (size_t i = 0; i < boot_class_path.size(); i++) {
    106     arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
    107   }
    108 
    109   std::string oat_file_option_string("--oat-file=");
    110   oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
    111   arg_vector.push_back(oat_file_option_string);
    112 
    113   // Note: we do not generate a fully debuggable boot image so we do not pass the
    114   // compiler flag --debuggable here.
    115 
    116   Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
    117   CHECK_EQ(image_isa, kRuntimeISA)
    118       << "We should always be generating an image for the current isa.";
    119 
    120   int32_t base_offset = ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
    121                                                     ART_BASE_ADDRESS_MAX_DELTA);
    122   LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
    123             << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
    124   arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));
    125 
    126   if (!kIsTargetBuild) {
    127     arg_vector.push_back("--host");
    128   }
    129 
    130   const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
    131   for (size_t i = 0; i < compiler_options.size(); ++i) {
    132     arg_vector.push_back(compiler_options[i].c_str());
    133   }
    134 
    135   std::string command_line(Join(arg_vector, ' '));
    136   LOG(INFO) << "GenerateImage: " << command_line;
    137   return Exec(arg_vector, error_msg);
    138 }
    139 
    140 bool ImageSpace::FindImageFilename(const char* image_location,
    141                                    const InstructionSet image_isa,
    142                                    std::string* system_filename,
    143                                    bool* has_system,
    144                                    std::string* cache_filename,
    145                                    bool* dalvik_cache_exists,
    146                                    bool* has_cache,
    147                                    bool* is_global_cache) {
    148   *has_system = false;
    149   *has_cache = false;
    150   // image_location = /system/framework/boot.art
    151   // system_image_location = /system/framework/<image_isa>/boot.art
    152   std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
    153   if (OS::FileExists(system_image_filename.c_str())) {
    154     *system_filename = system_image_filename;
    155     *has_system = true;
    156   }
    157 
    158   bool have_android_data = false;
    159   *dalvik_cache_exists = false;
    160   std::string dalvik_cache;
    161   GetDalvikCache(GetInstructionSetString(image_isa), true, &dalvik_cache,
    162                  &have_android_data, dalvik_cache_exists, is_global_cache);
    163 
    164   if (have_android_data && *dalvik_cache_exists) {
    165     // Always set output location even if it does not exist,
    166     // so that the caller knows where to create the image.
    167     //
    168     // image_location = /system/framework/boot.art
    169     // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
    170     std::string error_msg;
    171     if (!GetDalvikCacheFilename(image_location, dalvik_cache.c_str(), cache_filename, &error_msg)) {
    172       LOG(WARNING) << error_msg;
    173       return *has_system;
    174     }
    175     *has_cache = OS::FileExists(cache_filename->c_str());
    176   }
    177   return *has_system || *has_cache;
    178 }
    179 
    180 static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
    181     std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
    182     if (image_file.get() == nullptr) {
    183       return false;
    184     }
    185     const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
    186     if (!success || !image_header->IsValid()) {
    187       return false;
    188     }
    189     return true;
    190 }
    191 
    192 // Relocate the image at image_location to dest_filename and relocate it by a random amount.
    193 static bool RelocateImage(const char* image_location, const char* dest_filename,
    194                                InstructionSet isa, std::string* error_msg) {
    195   // We should clean up so we are more likely to have room for the image.
    196   if (Runtime::Current()->IsZygote()) {
    197     LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
    198     PruneDalvikCache(isa);
    199   }
    200 
    201   std::string patchoat(Runtime::Current()->GetPatchoatExecutable());
    202 
    203   std::string input_image_location_arg("--input-image-location=");
    204   input_image_location_arg += image_location;
    205 
    206   std::string output_image_filename_arg("--output-image-file=");
    207   output_image_filename_arg += dest_filename;
    208 
    209   std::string instruction_set_arg("--instruction-set=");
    210   instruction_set_arg += GetInstructionSetString(isa);
    211 
    212   std::string base_offset_arg("--base-offset-delta=");
    213   StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA,
    214                                                                     ART_BASE_ADDRESS_MAX_DELTA));
    215 
    216   std::vector<std::string> argv;
    217   argv.push_back(patchoat);
    218 
    219   argv.push_back(input_image_location_arg);
    220   argv.push_back(output_image_filename_arg);
    221 
    222   argv.push_back(instruction_set_arg);
    223   argv.push_back(base_offset_arg);
    224 
    225   std::string command_line(Join(argv, ' '));
    226   LOG(INFO) << "RelocateImage: " << command_line;
    227   return Exec(argv, error_msg);
    228 }
    229 
    230 static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
    231   std::unique_ptr<ImageHeader> hdr(new ImageHeader);
    232   if (!ReadSpecificImageHeader(filename, hdr.get())) {
    233     *error_msg = StringPrintf("Unable to read image header for %s", filename);
    234     return nullptr;
    235   }
    236   return hdr.release();
    237 }
    238 
    239 ImageHeader* ImageSpace::ReadImageHeaderOrDie(const char* image_location,
    240                                               const InstructionSet image_isa) {
    241   std::string error_msg;
    242   ImageHeader* image_header = ReadImageHeader(image_location, image_isa, &error_msg);
    243   if (image_header == nullptr) {
    244     LOG(FATAL) << error_msg;
    245   }
    246   return image_header;
    247 }
    248 
    249 ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
    250                                          const InstructionSet image_isa,
    251                                          std::string* error_msg) {
    252   std::string system_filename;
    253   bool has_system = false;
    254   std::string cache_filename;
    255   bool has_cache = false;
    256   bool dalvik_cache_exists = false;
    257   bool is_global_cache = false;
    258   if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
    259                         &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
    260     if (Runtime::Current()->ShouldRelocate()) {
    261       if (has_system && has_cache) {
    262         std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
    263         std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
    264         if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
    265           *error_msg = StringPrintf("Unable to read image header for %s at %s",
    266                                     image_location, system_filename.c_str());
    267           return nullptr;
    268         }
    269         if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
    270           *error_msg = StringPrintf("Unable to read image header for %s at %s",
    271                                     image_location, cache_filename.c_str());
    272           return nullptr;
    273         }
    274         if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
    275           *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
    276                                     image_location);
    277           return nullptr;
    278         }
    279         return cache_hdr.release();
    280       } else if (!has_cache) {
    281         *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
    282                                   image_location);
    283         return nullptr;
    284       } else if (!has_system && has_cache) {
    285         // This can probably just use the cache one.
    286         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
    287       }
    288     } else {
    289       // We don't want to relocate, Just pick the appropriate one if we have it and return.
    290       if (has_system && has_cache) {
    291         // We want the cache if the checksum matches, otherwise the system.
    292         std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
    293                                                                     error_msg));
    294         std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
    295                                                                    error_msg));
    296         if (system.get() == nullptr ||
    297             (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
    298           return cache.release();
    299         } else {
    300           return system.release();
    301         }
    302       } else if (has_system) {
    303         return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
    304       } else if (has_cache) {
    305         return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
    306       }
    307     }
    308   }
    309 
    310   *error_msg = StringPrintf("Unable to find image file for %s", image_location);
    311   return nullptr;
    312 }
    313 
    314 static bool ChecksumsMatch(const char* image_a, const char* image_b) {
    315   ImageHeader hdr_a;
    316   ImageHeader hdr_b;
    317   return ReadSpecificImageHeader(image_a, &hdr_a) && ReadSpecificImageHeader(image_b, &hdr_b)
    318       && hdr_a.GetOatChecksum() == hdr_b.GetOatChecksum();
    319 }
    320 
    321 static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
    322   // Anyone can write into a "local" cache.
    323   if (!is_global_cache) {
    324     return true;
    325   }
    326 
    327   // Only the zygote is allowed to create the global boot image.
    328   if (Runtime::Current()->IsZygote()) {
    329     return true;
    330   }
    331 
    332   *error_msg = "Only the zygote can create the global boot image.";
    333   return false;
    334 }
    335 
    336 static constexpr uint64_t kLowSpaceValue = 50 * MB;
    337 static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;
    338 
    339 // Read the free space of the cache partition and make a decision whether to keep the generated
    340 // image. This is to try to mitigate situations where the system might run out of space later.
    341 static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
    342   // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
    343   struct statvfs buf;
    344 
    345   int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
    346   if (res != 0) {
    347     // Could not stat. Conservatively tell the system to delete the image.
    348     *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
    349     return false;
    350   }
    351 
    352   uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
    353   // Zygote is privileged, but other things are not. Use bavail.
    354   uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);
    355 
    356   // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
    357   // environment. We do not want to fail quickening the boot image there, as it is beneficial
    358   // for time-to-UI.
    359   if (fs_overall_size > kTmpFsSentinelValue) {
    360     if (fs_free_size < kLowSpaceValue) {
    361       *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available after image"
    362                                 " generation, need at least %" PRIu64 ".",
    363                                 static_cast<double>(fs_free_size) / MB,
    364                                 kLowSpaceValue / MB);
    365       return false;
    366     }
    367   }
    368   return true;
    369 }
    370 
    371 ImageSpace* ImageSpace::CreateBootImage(const char* image_location,
    372                                         const InstructionSet image_isa,
    373                                         bool secondary_image,
    374                                         std::string* error_msg) {
    375   ScopedTrace trace(__FUNCTION__);
    376   std::string system_filename;
    377   bool has_system = false;
    378   std::string cache_filename;
    379   bool has_cache = false;
    380   bool dalvik_cache_exists = false;
    381   bool is_global_cache = true;
    382   bool found_image = FindImageFilename(image_location, image_isa, &system_filename,
    383                                        &has_system, &cache_filename, &dalvik_cache_exists,
    384                                        &has_cache, &is_global_cache);
    385 
    386   const bool is_zygote = Runtime::Current()->IsZygote();
    387   if (is_zygote && !secondary_image) {
    388     MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
    389   }
    390 
    391   ImageSpace* space;
    392   bool relocate = Runtime::Current()->ShouldRelocate();
    393   bool can_compile = Runtime::Current()->IsImageDex2OatEnabled();
    394   if (found_image) {
    395     const std::string* image_filename;
    396     bool is_system = false;
    397     bool relocated_version_used = false;
    398     if (relocate) {
    399       if (!dalvik_cache_exists) {
    400         *error_msg = StringPrintf("Requiring relocation for image '%s' at '%s' but we do not have "
    401                                   "any dalvik_cache to find/place it in.",
    402                                   image_location, system_filename.c_str());
    403         return nullptr;
    404       }
    405       if (has_system) {
    406         if (has_cache && ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
    407           // We already have a relocated version
    408           image_filename = &cache_filename;
    409           relocated_version_used = true;
    410         } else {
    411           // We cannot have a relocated version, Relocate the system one and use it.
    412 
    413           std::string reason;
    414           bool success;
    415 
    416           // Check whether we are allowed to relocate.
    417           if (!can_compile) {
    418             reason = "Image dex2oat disabled by -Xnoimage-dex2oat.";
    419             success = false;
    420           } else if (!ImageCreationAllowed(is_global_cache, &reason)) {
    421             // Whether we can write to the cache.
    422             success = false;
    423           } else if (secondary_image) {
    424             if (is_zygote) {
    425               // Secondary image is out of date. Clear cache and exit to let it retry from scratch.
    426               LOG(ERROR) << "Cannot patch secondary image '" << image_location
    427                          << "', clearing dalvik_cache and restarting zygote.";
    428               PruneDalvikCache(image_isa);
    429               _exit(1);
    430             } else {
    431               reason = "Should not have to patch secondary image.";
    432               success = false;
    433             }
    434           } else {
    435             // Try to relocate.
    436             success = RelocateImage(image_location, cache_filename.c_str(), image_isa, &reason);
    437           }
    438 
    439           if (success) {
    440             relocated_version_used = true;
    441             image_filename = &cache_filename;
    442           } else {
    443             *error_msg = StringPrintf("Unable to relocate image '%s' from '%s' to '%s': %s",
    444                                       image_location, system_filename.c_str(),
    445                                       cache_filename.c_str(), reason.c_str());
    446             // We failed to create files, remove any possibly garbage output.
    447             // Since ImageCreationAllowed was true above, we are the zygote
    448             // and therefore the only process expected to generate these for
    449             // the device.
    450             PruneDalvikCache(image_isa);
    451             return nullptr;
    452           }
    453         }
    454       } else {
    455         CHECK(has_cache);
    456         // We can just use cache's since it should be fine. This might or might not be relocated.
    457         image_filename = &cache_filename;
    458       }
    459     } else {
    460       if (has_system && has_cache) {
    461         // Check they have the same cksum. If they do use the cache. Otherwise system.
    462         if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str())) {
    463           image_filename = &cache_filename;
    464           relocated_version_used = true;
    465         } else {
    466           image_filename = &system_filename;
    467           is_system = true;
    468         }
    469       } else if (has_system) {
    470         image_filename = &system_filename;
    471         is_system = true;
    472       } else {
    473         CHECK(has_cache);
    474         image_filename = &cache_filename;
    475       }
    476     }
    477     {
    478       // Note that we must not use the file descriptor associated with
    479       // ScopedFlock::GetFile to Init the image file. We want the file
    480       // descriptor (and the associated exclusive lock) to be released when
    481       // we leave Create.
    482       ScopedFlock image_lock;
    483       // Should this be a RDWR lock? This is only a defensive measure, as at
    484       // this point the image should exist.
    485       // However, only the zygote can write into the global dalvik-cache, so
    486       // restrict to zygote processes, or any process that isn't using
    487       // /data/dalvik-cache (which we assume to be allowed to write there).
    488       const bool rw_lock = is_zygote || !is_global_cache;
    489       image_lock.Init(image_filename->c_str(),
    490                       rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
    491                       true /* block */,
    492                       error_msg);
    493       VLOG(startup) << "Using image file " << image_filename->c_str() << " for image location "
    494                     << image_location;
    495       // If we are in /system we can assume the image is good. We can also
    496       // assume this if we are using a relocated image (i.e. image checksum
    497       // matches) since this is only different by the offset. We need this to
    498       // make sure that host tests continue to work.
    499       // Since we are the boot image, pass null since we load the oat file from the boot image oat
    500       // file name.
    501       space = ImageSpace::Init(image_filename->c_str(),
    502                                image_location,
    503                                !(is_system || relocated_version_used),
    504                                /* oat_file */nullptr,
    505                                error_msg);
    506     }
    507     if (space != nullptr) {
    508       // Check whether there is enough space left over in the data partition. Even if we can load
    509       // the image, we need to be conservative, as some parts of the platform are not very tolerant
    510       // of space constraints.
    511       // ImageSpace doesn't know about the data partition per se, it relies on the FindImageFilename
    512       // helper (which relies on GetDalvikCache). So for now, if we load an image out of /system,
    513       // ignore the check (as it would test for free space in /system instead).
    514       if (!is_system && !CheckSpace(*image_filename, error_msg)) {
    515         // No. Delete the generated image and try to run out of the dex files.
    516         PruneDalvikCache(image_isa);
    517         return nullptr;
    518       }
    519       return space;
    520     }
    521 
    522     if (relocated_version_used) {
    523       // Something is wrong with the relocated copy (even though checksums match). Cleanup.
    524       // This can happen if the .oat is corrupt, since the above only checks the .art checksums.
    525       // TODO: Check the oat file validity earlier.
    526       *error_msg = StringPrintf("Attempted to use relocated version of %s at %s generated from %s "
    527                                 "but image failed to load: %s",
    528                                 image_location, cache_filename.c_str(), system_filename.c_str(),
    529                                 error_msg->c_str());
    530       PruneDalvikCache(image_isa);
    531       return nullptr;
    532     } else if (is_system) {
    533       // If the /system file exists, it should be up-to-date, don't try to generate it.
    534       *error_msg = StringPrintf("Failed to load /system image '%s': %s",
    535                                 image_filename->c_str(), error_msg->c_str());
    536       return nullptr;
    537     } else {
    538       // Otherwise, log a warning and fall through to GenerateImage.
    539       LOG(WARNING) << *error_msg;
    540     }
    541   }
    542 
    543   if (!can_compile) {
    544     *error_msg = "Not attempting to compile image because -Xnoimage-dex2oat";
    545     return nullptr;
    546   } else if (!dalvik_cache_exists) {
    547     *error_msg = StringPrintf("No place to put generated image.");
    548     return nullptr;
    549   } else if (!ImageCreationAllowed(is_global_cache, error_msg)) {
    550     return nullptr;
    551   } else if (secondary_image) {
    552     *error_msg = "Cannot compile a secondary image.";
    553     return nullptr;
    554   } else if (!GenerateImage(cache_filename, image_isa, error_msg)) {
    555     *error_msg = StringPrintf("Failed to generate image '%s': %s",
    556                               cache_filename.c_str(), error_msg->c_str());
    557     // We failed to create files, remove any possibly garbage output.
    558     // Since ImageCreationAllowed was true above, we are the zygote
    559     // and therefore the only process expected to generate these for
    560     // the device.
    561     PruneDalvikCache(image_isa);
    562     return nullptr;
    563   } else {
    564     // Check whether there is enough space left over after we have generated the image.
    565     if (!CheckSpace(cache_filename, error_msg)) {
    566       // No. Delete the generated image and try to run out of the dex files.
    567       PruneDalvikCache(image_isa);
    568       return nullptr;
    569     }
    570 
    571     // Note that we must not use the file descriptor associated with
    572     // ScopedFlock::GetFile to Init the image file. We want the file
    573     // descriptor (and the associated exclusive lock) to be released when
    574     // we leave Create.
    575     ScopedFlock image_lock;
    576     image_lock.Init(cache_filename.c_str(), error_msg);
    577     space = ImageSpace::Init(cache_filename.c_str(), image_location, true, nullptr, error_msg);
    578     if (space == nullptr) {
    579       *error_msg = StringPrintf("Failed to load generated image '%s': %s",
    580                                 cache_filename.c_str(), error_msg->c_str());
    581     }
    582     return space;
    583   }
    584 }
    585 
    586 void ImageSpace::VerifyImageAllocations() {
    587   uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
    588   while (current < End()) {
    589     CHECK_ALIGNED(current, kObjectAlignment);
    590     auto* obj = reinterpret_cast<mirror::Object*>(current);
    591     CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
    592     CHECK(live_bitmap_->Test(obj)) << PrettyTypeOf(obj);
    593     if (kUseBakerOrBrooksReadBarrier) {
    594       obj->AssertReadBarrierPointer();
    595     }
    596     current += RoundUp(obj->SizeOf(), kObjectAlignment);
    597   }
    598 }
    599 
    600 // Helper class for relocating from one range of memory to another.
    601 class RelocationRange {
    602  public:
    603   RelocationRange() = default;
    604   RelocationRange(const RelocationRange&) = default;
    605   RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
    606       : source_(source),
    607         dest_(dest),
    608         length_(length) {}
    609 
    610   bool InSource(uintptr_t address) const {
    611     return address - source_ < length_;
    612   }
    613 
    614   bool InDest(uintptr_t address) const {
    615     return address - dest_ < length_;
    616   }
    617 
    618   // Translate a source address to the destination space.
    619   uintptr_t ToDest(uintptr_t address) const {
    620     DCHECK(InSource(address));
    621     return address + Delta();
    622   }
    623 
    624   // Returns the delta between the dest from the source.
    625   uintptr_t Delta() const {
    626     return dest_ - source_;
    627   }
    628 
    629   uintptr_t Source() const {
    630     return source_;
    631   }
    632 
    633   uintptr_t Dest() const {
    634     return dest_;
    635   }
    636 
    637   uintptr_t Length() const {
    638     return length_;
    639   }
    640 
    641  private:
    642   const uintptr_t source_;
    643   const uintptr_t dest_;
    644   const uintptr_t length_;
    645 };
    646 
    647 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
    648   return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
    649             << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
    650             << reinterpret_cast<const void*>(reloc.Dest()) << "-"
    651             << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
    652 }
    653 
    654 class FixupVisitor : public ValueObject {
    655  public:
    656   FixupVisitor(const RelocationRange& boot_image,
    657                const RelocationRange& boot_oat,
    658                const RelocationRange& app_image,
    659                const RelocationRange& app_oat)
    660       : boot_image_(boot_image),
    661         boot_oat_(boot_oat),
    662         app_image_(app_image),
    663         app_oat_(app_oat) {}
    664 
    665   // Return the relocated address of a heap object.
    666   template <typename T>
    667   ALWAYS_INLINE T* ForwardObject(T* src) const {
    668     const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
    669     if (boot_image_.InSource(uint_src)) {
    670       return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
    671     }
    672     if (app_image_.InSource(uint_src)) {
    673       return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
    674     }
    675     // Since we are fixing up the app image, there should only be pointers to the app image and
    676     // boot image.
    677     DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
    678     return src;
    679   }
    680 
    681   // Return the relocated address of a code pointer (contained by an oat file).
    682   ALWAYS_INLINE const void* ForwardCode(const void* src) const {
    683     const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
    684     if (boot_oat_.InSource(uint_src)) {
    685       return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
    686     }
    687     if (app_oat_.InSource(uint_src)) {
    688       return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
    689     }
    690     DCHECK(src == nullptr) << src;
    691     return src;
    692   }
    693 
    694   // Must be called on pointers that already have been relocated to the destination relocation.
    695   ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
    696     return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
    697   }
    698 
    699  protected:
    700   // Source section.
    701   const RelocationRange boot_image_;
    702   const RelocationRange boot_oat_;
    703   const RelocationRange app_image_;
    704   const RelocationRange app_oat_;
    705 };
    706 
    707 // Adapt for mirror::Class::FixupNativePointers.
    708 class FixupObjectAdapter : public FixupVisitor {
    709  public:
    710   template<typename... Args>
    711   explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}
    712 
    713   template <typename T>
    714   T* operator()(T* obj) const {
    715     return ForwardObject(obj);
    716   }
    717 };
    718 
    719 class FixupRootVisitor : public FixupVisitor {
    720  public:
    721   template<typename... Args>
    722   explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}
    723 
    724   ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
    725       SHARED_REQUIRES(Locks::mutator_lock_) {
    726     if (!root->IsNull()) {
    727       VisitRoot(root);
    728     }
    729   }
    730 
    731   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
    732       SHARED_REQUIRES(Locks::mutator_lock_) {
    733     mirror::Object* ref = root->AsMirrorPtr();
    734     mirror::Object* new_ref = ForwardObject(ref);
    735     if (ref != new_ref) {
    736       root->Assign(new_ref);
    737     }
    738   }
    739 };
    740 
    741 class FixupObjectVisitor : public FixupVisitor {
    742  public:
    743   template<typename... Args>
    744   explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
    745                               const size_t pointer_size,
    746                               Args... args)
    747       : FixupVisitor(args...),
    748         pointer_size_(pointer_size),
    749         visited_(visited) {}
    750 
    751   // Fix up separately since we also need to fix up method entrypoints.
    752   ALWAYS_INLINE void VisitRootIfNonNull(
    753       mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
    754 
    755   ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
    756       const {}
    757 
    758   ALWAYS_INLINE void operator()(mirror::Object* obj,
    759                                 MemberOffset offset,
    760                                 bool is_static ATTRIBUTE_UNUSED) const
    761       NO_THREAD_SAFETY_ANALYSIS {
    762     // There could be overlap between ranges, we must avoid visiting the same reference twice.
    763     // Avoid the class field since we already fixed it up in FixupClassVisitor.
    764     if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
    765       // Space is not yet added to the heap, don't do a read barrier.
    766       mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
    767           offset);
    768       // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
    769       // image.
    770       obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
    771     }
    772   }
    773 
    774   // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
    775   // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
    776   template <typename Visitor>
    777   void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
    778       NO_THREAD_SAFETY_ANALYSIS {
    779     DCHECK(array != nullptr);
    780     DCHECK(visitor.IsInAppImage(array));
    781     // The bit for the array contents is different than the bit for the array. Since we may have
    782     // already visited the array as a long / int array from walking the bitmap without knowing it
    783     // was a pointer array.
    784     static_assert(kObjectAlignment == 8u, "array bit may be in another object");
    785     mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
    786         reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
    787     // If the bit is not set then the contents have not yet been updated.
    788     if (!visited_->Test(contents_bit)) {
    789       array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
    790       visited_->Set(contents_bit);
    791     }
    792   }
    793 
    794   // java.lang.ref.Reference visitor.
    795   void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
    796       SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
    797     mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
    798     ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
    799         mirror::Reference::ReferentOffset(),
    800         ForwardObject(obj));
    801   }
    802 
    803   void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
    804     if (visited_->Test(obj)) {
    805       // Already visited.
    806       return;
    807     }
    808     visited_->Set(obj);
    809 
    810     // Handle class specially first since we need it to be updated to properly visit the rest of
    811     // the instance fields.
    812     {
    813       mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
    814       DCHECK(klass != nullptr) << "Null class in image";
    815       // No AsClass since our fields aren't quite fixed up yet.
    816       mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
    817       if (klass != new_klass) {
    818         obj->SetClass<kVerifyNone>(new_klass);
    819       }
    820       if (new_klass != klass && IsInAppImage(new_klass)) {
    821         // Make sure the klass contents are fixed up since we depend on it to walk the fields.
    822         operator()(new_klass);
    823       }
    824     }
    825 
    826     obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
    827         *this,
    828         *this);
    829     // Note that this code relies on no circular dependencies.
    830     // We want to use our own class loader and not the one in the image.
    831     if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
    832       mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
    833       FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
    834       as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
    835                                                                       pointer_size_,
    836                                                                       visitor);
    837       // Deal with the pointer arrays. Use the helper function since multiple classes can reference
    838       // the same arrays.
    839       mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
    840       if (vtable != nullptr && IsInAppImage(vtable)) {
    841         operator()(vtable);
    842         UpdatePointerArrayContents(vtable, visitor);
    843       }
    844       mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
    845       // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
    846       // contents.
    847       if (iftable != nullptr && IsInAppImage(iftable)) {
    848         operator()(iftable);
    849         for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
    850           if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
    851             mirror::PointerArray* methods =
    852                 iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
    853             if (visitor.IsInAppImage(methods)) {
    854               operator()(methods);
    855               DCHECK(methods != nullptr);
    856               UpdatePointerArrayContents(methods, visitor);
    857             }
    858           }
    859         }
    860       }
    861     }
    862   }
    863 
    864  private:
    865   const size_t pointer_size_;
    866   gc::accounting::ContinuousSpaceBitmap* const visited_;
    867 };
    868 
    869 class ForwardObjectAdapter {
    870  public:
    871   ALWAYS_INLINE ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}
    872 
    873   template <typename T>
    874   ALWAYS_INLINE T* operator()(T* src) const {
    875     return visitor_->ForwardObject(src);
    876   }
    877 
    878  private:
    879   const FixupVisitor* const visitor_;
    880 };
    881 
    882 class ForwardCodeAdapter {
    883  public:
    884   ALWAYS_INLINE ForwardCodeAdapter(const FixupVisitor* visitor)
    885       : visitor_(visitor) {}
    886 
    887   template <typename T>
    888   ALWAYS_INLINE T* operator()(T* src) const {
    889     return visitor_->ForwardCode(src);
    890   }
    891 
    892  private:
    893   const FixupVisitor* const visitor_;
    894 };
    895 
    896 class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
    897  public:
    898   template<typename... Args>
    899   explicit FixupArtMethodVisitor(bool fixup_heap_objects, size_t pointer_size, Args... args)
    900       : FixupVisitor(args...),
    901         fixup_heap_objects_(fixup_heap_objects),
    902         pointer_size_(pointer_size) {}
    903 
    904   virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
    905     // TODO: Separate visitor for runtime vs normal methods.
    906     if (UNLIKELY(method->IsRuntimeMethod())) {
    907       ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
    908       if (table != nullptr) {
    909         ImtConflictTable* new_table = ForwardObject(table);
    910         if (table != new_table) {
    911           method->SetImtConflictTable(new_table, pointer_size_);
    912         }
    913       }
    914       const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
    915       const void* new_code = ForwardCode(old_code);
    916       if (old_code != new_code) {
    917         method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
    918       }
    919     } else {
    920       if (fixup_heap_objects_) {
    921         method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
    922       }
    923       method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
    924     }
    925   }
    926 
    927  private:
    928   const bool fixup_heap_objects_;
    929   const size_t pointer_size_;
    930 };
    931 
    932 class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
    933  public:
    934   template<typename... Args>
    935   explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}
    936 
    937   virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
    938     field->UpdateObjects(ForwardObjectAdapter(this));
    939   }
    940 };
    941 
    942 // Relocate an image space mapped at target_base which possibly used to be at a different base
    943 // address. Only needs a single image space, not one for both source and destination.
    944 // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
    945 // to another.
    946 static bool RelocateInPlace(ImageHeader& image_header,
    947                             uint8_t* target_base,
    948                             accounting::ContinuousSpaceBitmap* bitmap,
    949                             const OatFile* app_oat_file,
    950                             std::string* error_msg) {
    951   DCHECK(error_msg != nullptr);
    952   if (!image_header.IsPic()) {
    953     if (image_header.GetImageBegin() == target_base) {
    954       return true;
    955     }
    956     *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
    957                               (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
    958     return false;
    959   }
    960   // Set up sections.
    961   uint32_t boot_image_begin = 0;
    962   uint32_t boot_image_end = 0;
    963   uint32_t boot_oat_begin = 0;
    964   uint32_t boot_oat_end = 0;
    965   const size_t pointer_size = image_header.GetPointerSize();
    966   gc::Heap* const heap = Runtime::Current()->GetHeap();
    967   heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
    968   if (boot_image_begin == boot_image_end) {
    969     *error_msg = "Can not relocate app image without boot image space";
    970     return false;
    971   }
    972   if (boot_oat_begin == boot_oat_end) {
    973     *error_msg = "Can not relocate app image without boot oat file";
    974     return false;
    975   }
    976   const uint32_t boot_image_size = boot_image_end - boot_image_begin;
    977   const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
    978   const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
    979   const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
    980   if (boot_image_size != image_header_boot_image_size) {
    981     *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
    982                                   PRIu64,
    983                               static_cast<uint64_t>(boot_image_size),
    984                               static_cast<uint64_t>(image_header_boot_image_size));
    985     return false;
    986   }
    987   if (boot_oat_size != image_header_boot_oat_size) {
    988     *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
    989                                   PRIu64,
    990                               static_cast<uint64_t>(boot_oat_size),
    991                               static_cast<uint64_t>(image_header_boot_oat_size));
    992     return false;
    993   }
    994   TimingLogger logger(__FUNCTION__, true, false);
    995   RelocationRange boot_image(image_header.GetBootImageBegin(),
    996                              boot_image_begin,
    997                              boot_image_size);
    998   RelocationRange boot_oat(image_header.GetBootOatBegin(),
    999                            boot_oat_begin,
   1000                            boot_oat_size);
   1001   RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
   1002                             reinterpret_cast<uintptr_t>(target_base),
   1003                             image_header.GetImageSize());
   1004   // Use the oat data section since this is where the OatFile::Begin is.
   1005   RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
   1006                           // Not necessarily in low 4GB.
   1007                           reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
   1008                           image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
   1009   VLOG(image) << "App image " << app_image;
   1010   VLOG(image) << "App oat " << app_oat;
   1011   VLOG(image) << "Boot image " << boot_image;
   1012   VLOG(image) << "Boot oat " << boot_oat;
   1013   // True if we need to fixup any heap pointers, otherwise only code pointers.
   1014   const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
   1015   const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
   1016   if (!fixup_image && !fixup_code) {
   1017     // Nothing to fix up.
   1018     return true;
   1019   }
   1020   ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
   1021   // Need to update the image to be at the target base.
   1022   const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
   1023   uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
   1024   uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
   1025   FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
   1026   if (fixup_image) {
   1027     // Two pass approach, fix up all classes first, then fix up non class-objects.
   1028     // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
   1029     std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
   1030         gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
   1031                                                       target_base,
   1032                                                       image_header.GetImageSize()));
   1033     FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
   1034                                             pointer_size,
   1035                                             boot_image,
   1036                                             boot_oat,
   1037                                             app_image,
   1038                                             app_oat);
   1039     TimingLogger::ScopedTiming timing("Fixup classes", &logger);
   1040     // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
   1041     // its probably not required.
   1042     ScopedObjectAccess soa(Thread::Current());
   1043     timing.NewTiming("Fixup objects");
   1044     bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
   1045     // Fixup image roots.
   1046     CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
   1047         image_header.GetImageRoots<kWithoutReadBarrier>())));
   1048     image_header.RelocateImageObjects(app_image.Delta());
   1049     CHECK_EQ(image_header.GetImageBegin(), target_base);
   1050     // Fix up dex cache DexFile pointers.
   1051     auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
   1052         AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
   1053     for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
   1054       mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
   1055       // Fix up dex cache pointers.
   1056       GcRoot<mirror::String>* strings = dex_cache->GetStrings();
   1057       if (strings != nullptr) {
   1058         GcRoot<mirror::String>* new_strings = fixup_adapter.ForwardObject(strings);
   1059         if (strings != new_strings) {
   1060           dex_cache->SetStrings(new_strings);
   1061         }
   1062         dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
   1063       }
   1064       GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
   1065       if (types != nullptr) {
   1066         GcRoot<mirror::Class>* new_types = fixup_adapter.ForwardObject(types);
   1067         if (types != new_types) {
   1068           dex_cache->SetResolvedTypes(new_types);
   1069         }
   1070         dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
   1071       }
   1072       ArtMethod** methods = dex_cache->GetResolvedMethods();
   1073       if (methods != nullptr) {
   1074         ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
   1075         if (methods != new_methods) {
   1076           dex_cache->SetResolvedMethods(new_methods);
   1077         }
   1078         for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
   1079           ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
   1080           ArtMethod* copy = fixup_adapter.ForwardObject(orig);
   1081           if (orig != copy) {
   1082             mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
   1083           }
   1084         }
   1085       }
   1086       ArtField** fields = dex_cache->GetResolvedFields();
   1087       if (fields != nullptr) {
   1088         ArtField** new_fields = fixup_adapter.ForwardObject(fields);
   1089         if (fields != new_fields) {
   1090           dex_cache->SetResolvedFields(new_fields);
   1091         }
   1092         for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
   1093           ArtField* orig = mirror::DexCache::GetElementPtrSize(new_fields, j, pointer_size);
   1094           ArtField* copy = fixup_adapter.ForwardObject(orig);
   1095           if (orig != copy) {
   1096             mirror::DexCache::SetElementPtrSize(new_fields, j, copy, pointer_size);
   1097           }
   1098         }
   1099       }
   1100     }
   1101   }
   1102   {
   1103     // Only touches objects in the app image, no need for mutator lock.
   1104     TimingLogger::ScopedTiming timing("Fixup methods", &logger);
   1105     FixupArtMethodVisitor method_visitor(fixup_image,
   1106                                          pointer_size,
   1107                                          boot_image,
   1108                                          boot_oat,
   1109                                          app_image,
   1110                                          app_oat);
   1111     image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
   1112   }
   1113   if (fixup_image) {
   1114     {
   1115       // Only touches objects in the app image, no need for mutator lock.
   1116       TimingLogger::ScopedTiming timing("Fixup fields", &logger);
   1117       FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
   1118       image_header.VisitPackedArtFields(&field_visitor, target_base);
   1119     }
   1120     {
   1121       TimingLogger::ScopedTiming timing("Fixup imt", &logger);
   1122       image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
   1123     }
   1124     {
   1125       TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
   1126       image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
   1127     }
   1128     // In the app image case, the image methods are actually in the boot image.
   1129     image_header.RelocateImageMethods(boot_image.Delta());
   1130     const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
   1131     if (class_table_section.Size() > 0u) {
   1132       // Note that we require that ReadFromMemory does not make an internal copy of the elements.
   1133       // This also relies on visit roots not doing any verification which could fail after we update
   1134       // the roots to be the image addresses.
   1135       ScopedObjectAccess soa(Thread::Current());
   1136       WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
   1137       ClassTable temp_table;
   1138       temp_table.ReadFromMemory(target_base + class_table_section.Offset());
   1139       FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
   1140       temp_table.VisitRoots(root_visitor);
   1141     }
   1142   }
   1143   if (VLOG_IS_ON(image)) {
   1144     logger.Dump(LOG(INFO));
   1145   }
   1146   return true;
   1147 }
   1148 
   1149 ImageSpace* ImageSpace::Init(const char* image_filename,
   1150                              const char* image_location,
   1151                              bool validate_oat_file,
   1152                              const OatFile* oat_file,
   1153                              std::string* error_msg) {
   1154   CHECK(image_filename != nullptr);
   1155   CHECK(image_location != nullptr);
   1156 
   1157   TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
   1158   VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
   1159 
   1160   std::unique_ptr<File> file;
   1161   {
   1162     TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
   1163     file.reset(OS::OpenFileForReading(image_filename));
   1164     if (file == nullptr) {
   1165       *error_msg = StringPrintf("Failed to open '%s'", image_filename);
   1166       return nullptr;
   1167     }
   1168   }
   1169   ImageHeader temp_image_header;
   1170   ImageHeader* image_header = &temp_image_header;
   1171   {
   1172     TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
   1173     bool success = file->ReadFully(image_header, sizeof(*image_header));
   1174     if (!success || !image_header->IsValid()) {
   1175       *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
   1176       return nullptr;
   1177     }
   1178   }
   1179   // Check that the file is larger or equal to the header size + data size.
   1180   const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
   1181   if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
   1182     *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
   1183                               image_file_size,
   1184                               sizeof(ImageHeader) + image_header->GetDataSize());
   1185     return nullptr;
   1186   }
   1187 
   1188   if (oat_file != nullptr) {
   1189     // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
   1190     // app image case. Otherwise, we open the oat file after the image and check the checksum there.
   1191     const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
   1192     const uint32_t image_oat_checksum = image_header->GetOatChecksum();
   1193     if (oat_checksum != image_oat_checksum) {
   1194       *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
   1195                                 oat_checksum,
   1196                                 image_oat_checksum,
   1197                                 image_filename);
   1198       return nullptr;
   1199     }
   1200   }
   1201 
   1202   if (VLOG_IS_ON(startup)) {
   1203     LOG(INFO) << "Dumping image sections";
   1204     for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
   1205       const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
   1206       auto& section = image_header->GetImageSection(section_idx);
   1207       LOG(INFO) << section_idx << " start="
   1208                 << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
   1209                 << section;
   1210     }
   1211   }
   1212 
   1213   const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
   1214   // The location we want to map from is the first aligned page after the end of the stored
   1215   // (possibly compressed) data.
   1216   const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
   1217                                              kPageSize);
   1218   const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
   1219   if (end_of_bitmap != image_file_size) {
   1220     *error_msg = StringPrintf(
   1221         "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
   1222         end_of_bitmap);
   1223     return nullptr;
   1224   }
   1225 
   1226   // The preferred address to map the image, null specifies any address. If we manage to map the
   1227   // image at the image begin, the amount of fixup work required is minimized.
   1228   std::vector<uint8_t*> addresses(1, image_header->GetImageBegin());
   1229   if (image_header->IsPic()) {
   1230     // Can also map at a random low_4gb address since we can relocate in-place.
   1231     addresses.push_back(nullptr);
   1232   }
   1233 
   1234   // Note: The image header is part of the image due to mmap page alignment required of offset.
   1235   std::unique_ptr<MemMap> map;
   1236   std::string temp_error_msg;
   1237   for (uint8_t* address : addresses) {
   1238     TimingLogger::ScopedTiming timing("MapImageFile", &logger);
   1239     // Only care about the error message for the last address in addresses. We want to avoid the
   1240     // overhead of printing the process maps if we can relocate.
   1241     std::string* out_error_msg = (address == addresses.back()) ? &temp_error_msg : nullptr;
   1242     const ImageHeader::StorageMode storage_mode = image_header->GetStorageMode();
   1243     if (storage_mode == ImageHeader::kStorageModeUncompressed) {
   1244       map.reset(MemMap::MapFileAtAddress(address,
   1245                                          image_header->GetImageSize(),
   1246                                          PROT_READ | PROT_WRITE,
   1247                                          MAP_PRIVATE,
   1248                                          file->Fd(),
   1249                                          0,
   1250                                          /*low_4gb*/true,
   1251                                          /*reuse*/false,
   1252                                          image_filename,
   1253                                          /*out*/out_error_msg));
   1254     } else {
   1255       if (storage_mode != ImageHeader::kStorageModeLZ4 &&
   1256           storage_mode != ImageHeader::kStorageModeLZ4HC) {
   1257         *error_msg = StringPrintf("Invalid storage mode in image header %d",
   1258                                   static_cast<int>(storage_mode));
   1259         return nullptr;
   1260       }
   1261       // Reserve output and decompress into it.
   1262       map.reset(MemMap::MapAnonymous(image_location,
   1263                                      address,
   1264                                      image_header->GetImageSize(),
   1265                                      PROT_READ | PROT_WRITE,
   1266                                      /*low_4gb*/true,
   1267                                      /*reuse*/false,
   1268                                      /*out*/out_error_msg));
   1269       if (map != nullptr) {
   1270         const size_t stored_size = image_header->GetDataSize();
   1271         const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
   1272         std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
   1273                                                          PROT_READ,
   1274                                                          MAP_PRIVATE,
   1275                                                          file->Fd(),
   1276                                                          /*offset*/0,
   1277                                                          /*low_4gb*/false,
   1278                                                          image_filename,
   1279                                                          out_error_msg));
   1280         if (temp_map == nullptr) {
   1281           DCHECK(!out_error_msg->empty());
   1282           return nullptr;
   1283         }
   1284         memcpy(map->Begin(), image_header, sizeof(ImageHeader));
   1285         const uint64_t start = NanoTime();
   1286         // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
   1287         TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
   1288         const size_t decompressed_size = LZ4_decompress_safe(
   1289             reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
   1290             reinterpret_cast<char*>(map->Begin()) + decompress_offset,
   1291             stored_size,
   1292             map->Size() - decompress_offset);
   1293         VLOG(image) << "Decompressing image took " << PrettyDuration(NanoTime() - start);
   1294         if (decompressed_size + sizeof(ImageHeader) != image_header->GetImageSize()) {
   1295           *error_msg = StringPrintf(
   1296               "Decompressed size does not match expected image size %zu vs %zu",
   1297               decompressed_size + sizeof(ImageHeader),
   1298               image_header->GetImageSize());
   1299           return nullptr;
   1300         }
   1301       }
   1302     }
   1303     if (map != nullptr) {
   1304       break;
   1305     }
   1306   }
   1307 
   1308   if (map == nullptr) {
   1309     DCHECK(!temp_error_msg.empty());
   1310     *error_msg = temp_error_msg;
   1311     return nullptr;
   1312   }
   1313   DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));
   1314 
   1315   std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
   1316                                                                     bitmap_section.Size(),
   1317                                                                     PROT_READ, MAP_PRIVATE,
   1318                                                                     file->Fd(),
   1319                                                                     image_bitmap_offset,
   1320                                                                     /*low_4gb*/false,
   1321                                                                     /*reuse*/false,
   1322                                                                     image_filename,
   1323                                                                     error_msg));
   1324   if (image_bitmap_map == nullptr) {
   1325     *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
   1326     return nullptr;
   1327   }
   1328   // Loaded the map, use the image header from the file now in case we patch it with
   1329   // RelocateInPlace.
   1330   image_header = reinterpret_cast<ImageHeader*>(map->Begin());
   1331   const uint32_t bitmap_index = bitmap_index_.FetchAndAddSequentiallyConsistent(1);
   1332   std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
   1333                                        image_filename,
   1334                                        bitmap_index));
   1335   // Bitmap only needs to cover until the end of the mirror objects section.
   1336   const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
   1337   // We only want the mirror object, not the ArtFields and ArtMethods.
   1338   uint8_t* const image_end = map->Begin() + image_objects.End();
   1339   std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
   1340   {
   1341     TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
   1342     bitmap.reset(
   1343       accounting::ContinuousSpaceBitmap::CreateFromMemMap(
   1344           bitmap_name,
   1345           image_bitmap_map.release(),
   1346           reinterpret_cast<uint8_t*>(map->Begin()),
   1347           image_objects.End()));
   1348     if (bitmap == nullptr) {
   1349       *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
   1350       return nullptr;
   1351     }
   1352   }
   1353   {
   1354     TimingLogger::ScopedTiming timing("RelocateImage", &logger);
   1355     if (!RelocateInPlace(*image_header,
   1356                          map->Begin(),
   1357                          bitmap.get(),
   1358                          oat_file,
   1359                          error_msg)) {
   1360       return nullptr;
   1361     }
   1362   }
   1363   // We only want the mirror object, not the ArtFields and ArtMethods.
   1364   std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
   1365                                                    image_location,
   1366                                                    map.release(),
   1367                                                    bitmap.release(),
   1368                                                    image_end));
   1369 
   1370   // VerifyImageAllocations() will be called later in Runtime::Init()
   1371   // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
   1372   // and ArtField::java_lang_reflect_ArtField_, which are used from
   1373   // Object::SizeOf() which VerifyImageAllocations() calls, are not
   1374   // set yet at this point.
   1375   if (oat_file == nullptr) {
   1376     TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
   1377     space->oat_file_.reset(space->OpenOatFile(image_filename, error_msg));
   1378     if (space->oat_file_ == nullptr) {
   1379       DCHECK(!error_msg->empty());
   1380       return nullptr;
   1381     }
   1382     space->oat_file_non_owned_ = space->oat_file_.get();
   1383   } else {
   1384     space->oat_file_non_owned_ = oat_file;
   1385   }
   1386 
   1387   if (validate_oat_file) {
   1388     TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
   1389     if (!space->ValidateOatFile(error_msg)) {
   1390      DCHECK(!error_msg->empty());
   1391       return nullptr;
   1392     }
   1393   }
   1394 
   1395   Runtime* runtime = Runtime::Current();
   1396 
   1397   // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
   1398   // to set the runtime methods.
   1399   CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
   1400   if (image_header->IsAppImage()) {
   1401     CHECK_EQ(runtime->GetResolutionMethod(),
   1402              image_header->GetImageMethod(ImageHeader::kResolutionMethod));
   1403     CHECK_EQ(runtime->GetImtConflictMethod(),
   1404              image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
   1405     CHECK_EQ(runtime->GetImtUnimplementedMethod(),
   1406              image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
   1407     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAll),
   1408              image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod));
   1409     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsOnly),
   1410              image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod));
   1411     CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kRefsAndArgs),
   1412              image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod));
   1413   } else if (!runtime->HasResolutionMethod()) {
   1414     runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
   1415     runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
   1416     runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
   1417     runtime->SetImtUnimplementedMethod(
   1418         image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
   1419     runtime->SetCalleeSaveMethod(
   1420         image_header->GetImageMethod(ImageHeader::kCalleeSaveMethod), Runtime::kSaveAll);
   1421     runtime->SetCalleeSaveMethod(
   1422         image_header->GetImageMethod(ImageHeader::kRefsOnlySaveMethod), Runtime::kRefsOnly);
   1423     runtime->SetCalleeSaveMethod(
   1424         image_header->GetImageMethod(ImageHeader::kRefsAndArgsSaveMethod), Runtime::kRefsAndArgs);
   1425   }
   1426 
   1427   VLOG(image) << "ImageSpace::Init exiting " << *space.get();
   1428   if (VLOG_IS_ON(image)) {
   1429     logger.Dump(LOG(INFO));
   1430   }
   1431   return space.release();
   1432 }
   1433 
   1434 OatFile* ImageSpace::OpenOatFile(const char* image_path, std::string* error_msg) const {
   1435   const ImageHeader& image_header = GetImageHeader();
   1436   std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);
   1437 
   1438   CHECK(image_header.GetOatDataBegin() != nullptr);
   1439 
   1440   OatFile* oat_file = OatFile::Open(oat_filename,
   1441                                     oat_filename,
   1442                                     image_header.GetOatDataBegin(),
   1443                                     image_header.GetOatFileBegin(),
   1444                                     !Runtime::Current()->IsAotCompiler(),
   1445                                     /*low_4gb*/false,
   1446                                     nullptr,
   1447                                     error_msg);
   1448   if (oat_file == nullptr) {
   1449     *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
   1450                               oat_filename.c_str(), GetName(), error_msg->c_str());
   1451     return nullptr;
   1452   }
   1453   uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
   1454   uint32_t image_oat_checksum = image_header.GetOatChecksum();
   1455   if (oat_checksum != image_oat_checksum) {
   1456     *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
   1457                               " in image %s", oat_checksum, image_oat_checksum, GetName());
   1458     return nullptr;
   1459   }
   1460   int32_t image_patch_delta = image_header.GetPatchDelta();
   1461   int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
   1462   if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
   1463     // We should have already relocated by this point. Bail out.
   1464     *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
   1465                               "in image %s", oat_patch_delta, image_patch_delta, GetName());
   1466     return nullptr;
   1467   }
   1468 
   1469   return oat_file;
   1470 }
   1471 
   1472 bool ImageSpace::ValidateOatFile(std::string* error_msg) const {
   1473   CHECK(oat_file_.get() != nullptr);
   1474   for (const OatFile::OatDexFile* oat_dex_file : oat_file_->GetOatDexFiles()) {
   1475     const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
   1476     uint32_t dex_file_location_checksum;
   1477     if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
   1478       *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
   1479                                 "%s", dex_file_location.c_str(), GetName(), error_msg->c_str());
   1480       return false;
   1481     }
   1482     if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
   1483       *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
   1484                                 "dex file '%s' (0x%x != 0x%x)",
   1485                                 oat_file_->GetLocation().c_str(), dex_file_location.c_str(),
   1486                                 oat_dex_file->GetDexFileLocationChecksum(),
   1487                                 dex_file_location_checksum);
   1488       return false;
   1489     }
   1490   }
   1491   return true;
   1492 }
   1493 
   1494 const OatFile* ImageSpace::GetOatFile() const {
   1495   return oat_file_non_owned_;
   1496 }
   1497 
   1498 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
   1499   CHECK(oat_file_ != nullptr);
   1500   return std::move(oat_file_);
   1501 }
   1502 
   1503 void ImageSpace::Dump(std::ostream& os) const {
   1504   os << GetType()
   1505       << " begin=" << reinterpret_cast<void*>(Begin())
   1506       << ",end=" << reinterpret_cast<void*>(End())
   1507       << ",size=" << PrettySize(Size())
   1508       << ",name=\"" << GetName() << "\"]";
   1509 }
   1510 
   1511 void ImageSpace::CreateMultiImageLocations(const std::string& input_image_file_name,
   1512                                            const std::string& boot_classpath,
   1513                                            std::vector<std::string>* image_file_names) {
   1514   DCHECK(image_file_names != nullptr);
   1515 
   1516   std::vector<std::string> images;
   1517   Split(boot_classpath, ':', &images);
   1518 
   1519   // Add the rest into the list. We have to adjust locations, possibly:
   1520   //
   1521   // For example, image_file_name is /a/b/c/d/e.art
   1522   //              images[0] is          f/c/d/e.art
   1523   // ----------------------------------------------
   1524   //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
   1525   const std::string& first_image = images[0];
   1526   // Length of common suffix.
   1527   size_t common = 0;
   1528   while (common < input_image_file_name.size() &&
   1529          common < first_image.size() &&
   1530          *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
   1531     ++common;
   1532   }
   1533   // We want to replace the prefix of the input image with the prefix of the boot class path.
   1534   // This handles the case where the image file contains @ separators.
   1535   // Example image_file_name is oats/system@framework (at) boot.art
   1536   // images[0] is .../arm/boot.art
   1537   // means that the image name prefix will be oats/system@framework@
   1538   // so that the other images are openable.
   1539   const size_t old_prefix_length = first_image.size() - common;
   1540   const std::string new_prefix = input_image_file_name.substr(
   1541       0,
   1542       input_image_file_name.size() - common);
   1543 
   1544   // Apply pattern to images[1] .. images[n].
   1545   for (size_t i = 1; i < images.size(); ++i) {
   1546     const std::string& image = images[i];
   1547     CHECK_GT(image.length(), old_prefix_length);
   1548     std::string suffix = image.substr(old_prefix_length);
   1549     image_file_names->push_back(new_prefix + suffix);
   1550   }
   1551 }
   1552 
   1553 ImageSpace* ImageSpace::CreateFromAppImage(const char* image,
   1554                                            const OatFile* oat_file,
   1555                                            std::string* error_msg) {
   1556   return gc::space::ImageSpace::Init(image,
   1557                                      image,
   1558                                      /*validate_oat_file*/false,
   1559                                      oat_file,
   1560                                      /*out*/error_msg);
   1561 }
   1562 
   1563 void ImageSpace::DumpSections(std::ostream& os) const {
   1564   const uint8_t* base = Begin();
   1565   const ImageHeader& header = GetImageHeader();
   1566   for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
   1567     auto section_type = static_cast<ImageHeader::ImageSections>(i);
   1568     const ImageSection& section = header.GetImageSection(section_type);
   1569     os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
   1570        << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
   1571   }
   1572 }
   1573 
   1574 }  // namespace space
   1575 }  // namespace gc
   1576 }  // namespace art
   1577