1 /************************************************************************** 2 * 3 * Copyright 2009 VMware, Inc. 4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the 9 * "Software"), to deal in the Software without restriction, including 10 * without limitation the rights to use, copy, modify, merge, publish, 11 * distribute, sub license, and/or sell copies of the Software, and to 12 * permit persons to whom the Software is furnished to do so, subject to 13 * the following conditions: 14 * 15 * The above copyright notice and this permission notice (including the 16 * next paragraph) shall be included in all copies or substantial portions 17 * of the Software. 18 * 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. 22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR 23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, 24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE 25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 26 * 27 **************************************************************************/ 28 29 /** 30 * @file 31 * Code generate the whole fragment pipeline. 32 * 33 * The fragment pipeline consists of the following stages: 34 * - early depth test 35 * - fragment shader 36 * - alpha test 37 * - depth/stencil test 38 * - blending 39 * 40 * This file has only the glue to assemble the fragment pipeline. The actual 41 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the 42 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we 43 * muster the LLVM JIT execution engine to create a function that follows an 44 * established binary interface and that can be called from C directly. 45 * 46 * A big source of complexity here is that we often want to run different 47 * stages with different precisions and data types and precisions. For example, 48 * the fragment shader needs typically to be done in floats, but the 49 * depth/stencil test and blending is better done in the type that most closely 50 * matches the depth/stencil and color buffer respectively. 51 * 52 * Since the width of a SIMD vector register stays the same regardless of the 53 * element type, different types imply different number of elements, so we must 54 * code generate more instances of the stages with larger types to be able to 55 * feed/consume the stages with smaller types. 56 * 57 * @author Jose Fonseca <jfonseca (at) vmware.com> 58 */ 59 60 #include <limits.h> 61 #include "pipe/p_defines.h" 62 #include "util/u_inlines.h" 63 #include "util/u_memory.h" 64 #include "util/u_pointer.h" 65 #include "util/u_format.h" 66 #include "util/u_dump.h" 67 #include "util/u_string.h" 68 #include "util/u_simple_list.h" 69 #include "os/os_time.h" 70 #include "pipe/p_shader_tokens.h" 71 #include "draw/draw_context.h" 72 #include "tgsi/tgsi_dump.h" 73 #include "tgsi/tgsi_scan.h" 74 #include "tgsi/tgsi_parse.h" 75 #include "gallivm/lp_bld_type.h" 76 #include "gallivm/lp_bld_const.h" 77 #include "gallivm/lp_bld_conv.h" 78 #include "gallivm/lp_bld_init.h" 79 #include "gallivm/lp_bld_intr.h" 80 #include "gallivm/lp_bld_logic.h" 81 #include "gallivm/lp_bld_tgsi.h" 82 #include "gallivm/lp_bld_swizzle.h" 83 #include "gallivm/lp_bld_flow.h" 84 #include "gallivm/lp_bld_debug.h" 85 86 #include "lp_bld_alpha.h" 87 #include "lp_bld_blend.h" 88 #include "lp_bld_depth.h" 89 #include "lp_bld_interp.h" 90 #include "lp_context.h" 91 #include "lp_debug.h" 92 #include "lp_perf.h" 93 #include "lp_setup.h" 94 #include "lp_state.h" 95 #include "lp_tex_sample.h" 96 #include "lp_flush.h" 97 #include "lp_state_fs.h" 98 99 100 /** Fragment shader number (for debugging) */ 101 static unsigned fs_no = 0; 102 103 104 /** 105 * Expand the relevant bits of mask_input to a n*4-dword mask for the 106 * n*four pixels in n 2x2 quads. This will set the n*four elements of the 107 * quad mask vector to 0 or ~0. 108 * Grouping is 01, 23 for 2 quad mode hence only 0 and 2 are valid 109 * quad arguments with fs length 8. 110 * 111 * \param first_quad which quad(s) of the quad group to test, in [0,3] 112 * \param mask_input bitwise mask for the whole 4x4 stamp 113 */ 114 static LLVMValueRef 115 generate_quad_mask(struct gallivm_state *gallivm, 116 struct lp_type fs_type, 117 unsigned first_quad, 118 LLVMValueRef mask_input) /* int32 */ 119 { 120 LLVMBuilderRef builder = gallivm->builder; 121 struct lp_type mask_type; 122 LLVMTypeRef i32t = LLVMInt32TypeInContext(gallivm->context); 123 LLVMValueRef bits[16]; 124 LLVMValueRef mask; 125 int shift, i; 126 127 /* 128 * XXX: We'll need a different path for 16 x u8 129 */ 130 assert(fs_type.width == 32); 131 assert(fs_type.length <= Elements(bits)); 132 mask_type = lp_int_type(fs_type); 133 134 /* 135 * mask_input >>= (quad * 4) 136 */ 137 switch (first_quad) { 138 case 0: 139 shift = 0; 140 break; 141 case 1: 142 assert(fs_type.length == 4); 143 shift = 2; 144 break; 145 case 2: 146 shift = 8; 147 break; 148 case 3: 149 assert(fs_type.length == 4); 150 shift = 10; 151 break; 152 default: 153 assert(0); 154 shift = 0; 155 } 156 157 mask_input = LLVMBuildLShr(builder, 158 mask_input, 159 LLVMConstInt(i32t, shift, 0), 160 ""); 161 162 /* 163 * mask = { mask_input & (1 << i), for i in [0,3] } 164 */ 165 mask = lp_build_broadcast(gallivm, 166 lp_build_vec_type(gallivm, mask_type), 167 mask_input); 168 169 for (i = 0; i < fs_type.length / 4; i++) { 170 unsigned j = 2 * (i % 2) + (i / 2) * 8; 171 bits[4*i + 0] = LLVMConstInt(i32t, 1 << (j + 0), 0); 172 bits[4*i + 1] = LLVMConstInt(i32t, 1 << (j + 1), 0); 173 bits[4*i + 2] = LLVMConstInt(i32t, 1 << (j + 4), 0); 174 bits[4*i + 3] = LLVMConstInt(i32t, 1 << (j + 5), 0); 175 } 176 mask = LLVMBuildAnd(builder, mask, LLVMConstVector(bits, fs_type.length), ""); 177 178 /* 179 * mask = mask != 0 ? ~0 : 0 180 */ 181 mask = lp_build_compare(gallivm, 182 mask_type, PIPE_FUNC_NOTEQUAL, 183 mask, 184 lp_build_const_int_vec(gallivm, mask_type, 0)); 185 186 return mask; 187 } 188 189 190 #define EARLY_DEPTH_TEST 0x1 191 #define LATE_DEPTH_TEST 0x2 192 #define EARLY_DEPTH_WRITE 0x4 193 #define LATE_DEPTH_WRITE 0x8 194 195 static int 196 find_output_by_semantic( const struct tgsi_shader_info *info, 197 unsigned semantic, 198 unsigned index ) 199 { 200 int i; 201 202 for (i = 0; i < info->num_outputs; i++) 203 if (info->output_semantic_name[i] == semantic && 204 info->output_semantic_index[i] == index) 205 return i; 206 207 return -1; 208 } 209 210 211 /** 212 * Generate the fragment shader, depth/stencil test, and alpha tests. 213 * \param i which quad in the tile, in range [0,3] 214 * \param partial_mask if 1, do mask_input testing 215 */ 216 static void 217 generate_fs(struct gallivm_state *gallivm, 218 struct lp_fragment_shader *shader, 219 const struct lp_fragment_shader_variant_key *key, 220 LLVMBuilderRef builder, 221 struct lp_type type, 222 LLVMValueRef context_ptr, 223 unsigned i, 224 struct lp_build_interp_soa_context *interp, 225 struct lp_build_sampler_soa *sampler, 226 LLVMValueRef *pmask, 227 LLVMValueRef (*color)[4], 228 LLVMValueRef depth_ptr, 229 LLVMValueRef facing, 230 unsigned partial_mask, 231 LLVMValueRef mask_input, 232 LLVMValueRef counter) 233 { 234 const struct util_format_description *zs_format_desc = NULL; 235 const struct tgsi_token *tokens = shader->base.tokens; 236 LLVMTypeRef vec_type; 237 LLVMValueRef consts_ptr; 238 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS]; 239 LLVMValueRef z; 240 LLVMValueRef zs_value = NULL; 241 LLVMValueRef stencil_refs[2]; 242 struct lp_build_mask_context mask; 243 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 && 244 shader->info.base.num_inputs < 3 && 245 shader->info.base.num_instructions < 8); 246 unsigned attrib; 247 unsigned chan; 248 unsigned cbuf; 249 unsigned depth_mode; 250 struct lp_bld_tgsi_system_values system_values; 251 252 memset(&system_values, 0, sizeof(system_values)); 253 254 if (key->depth.enabled || 255 key->stencil[0].enabled || 256 key->stencil[1].enabled) { 257 258 zs_format_desc = util_format_description(key->zsbuf_format); 259 assert(zs_format_desc); 260 261 if (!shader->info.base.writes_z) { 262 if (key->alpha.enabled || shader->info.base.uses_kill) 263 /* With alpha test and kill, can do the depth test early 264 * and hopefully eliminate some quads. But need to do a 265 * special deferred depth write once the final mask value 266 * is known. 267 */ 268 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE; 269 else 270 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE; 271 } 272 else { 273 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE; 274 } 275 276 if (!(key->depth.enabled && key->depth.writemask) && 277 !(key->stencil[0].enabled && key->stencil[0].writemask)) 278 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE); 279 } 280 else { 281 depth_mode = 0; 282 } 283 284 assert(i < 4); 285 286 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr); 287 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr); 288 289 vec_type = lp_build_vec_type(gallivm, type); 290 291 consts_ptr = lp_jit_context_constants(gallivm, context_ptr); 292 293 memset(outputs, 0, sizeof outputs); 294 295 /* Declare the color and z variables */ 296 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { 297 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { 298 color[cbuf][chan] = lp_build_alloca(gallivm, vec_type, "color"); 299 } 300 } 301 302 /* do triangle edge testing */ 303 if (partial_mask) { 304 *pmask = generate_quad_mask(gallivm, type, 305 i*type.length/4, mask_input); 306 } 307 else { 308 *pmask = lp_build_const_int_vec(gallivm, type, ~0); 309 } 310 311 /* 'mask' will control execution based on quad's pixel alive/killed state */ 312 lp_build_mask_begin(&mask, gallivm, type, *pmask); 313 314 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader) 315 lp_build_mask_check(&mask); 316 317 lp_build_interp_soa_update_pos(interp, gallivm, i*type.length/4); 318 z = interp->pos[2]; 319 320 if (depth_mode & EARLY_DEPTH_TEST) { 321 lp_build_depth_stencil_test(gallivm, 322 &key->depth, 323 key->stencil, 324 type, 325 zs_format_desc, 326 &mask, 327 stencil_refs, 328 z, 329 depth_ptr, facing, 330 &zs_value, 331 !simple_shader); 332 333 if (depth_mode & EARLY_DEPTH_WRITE) { 334 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value); 335 } 336 } 337 338 lp_build_interp_soa_update_inputs(interp, gallivm, i*type.length/4); 339 340 /* Build the actual shader */ 341 lp_build_tgsi_soa(gallivm, tokens, type, &mask, 342 consts_ptr, &system_values, 343 interp->pos, interp->inputs, 344 outputs, sampler, &shader->info.base); 345 346 /* Alpha test */ 347 if (key->alpha.enabled) { 348 int color0 = find_output_by_semantic(&shader->info.base, 349 TGSI_SEMANTIC_COLOR, 350 0); 351 352 if (color0 != -1 && outputs[color0][3]) { 353 const struct util_format_description *cbuf_format_desc; 354 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha"); 355 LLVMValueRef alpha_ref_value; 356 357 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr); 358 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value); 359 360 cbuf_format_desc = util_format_description(key->cbuf_format[0]); 361 362 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc, 363 &mask, alpha, alpha_ref_value, 364 (depth_mode & LATE_DEPTH_TEST) != 0); 365 } 366 } 367 368 /* Late Z test */ 369 if (depth_mode & LATE_DEPTH_TEST) { 370 int pos0 = find_output_by_semantic(&shader->info.base, 371 TGSI_SEMANTIC_POSITION, 372 0); 373 374 if (pos0 != -1 && outputs[pos0][2]) { 375 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z"); 376 } 377 378 lp_build_depth_stencil_test(gallivm, 379 &key->depth, 380 key->stencil, 381 type, 382 zs_format_desc, 383 &mask, 384 stencil_refs, 385 z, 386 depth_ptr, facing, 387 &zs_value, 388 !simple_shader); 389 /* Late Z write */ 390 if (depth_mode & LATE_DEPTH_WRITE) { 391 lp_build_depth_write(builder, zs_format_desc, depth_ptr, zs_value); 392 } 393 } 394 else if ((depth_mode & EARLY_DEPTH_TEST) && 395 (depth_mode & LATE_DEPTH_WRITE)) 396 { 397 /* Need to apply a reduced mask to the depth write. Reload the 398 * depth value, update from zs_value with the new mask value and 399 * write that out. 400 */ 401 lp_build_deferred_depth_write(gallivm, 402 type, 403 zs_format_desc, 404 &mask, 405 depth_ptr, 406 zs_value); 407 } 408 409 410 /* Color write */ 411 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) 412 { 413 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR && 414 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs) 415 { 416 unsigned cbuf = shader->info.base.output_semantic_index[attrib]; 417 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { 418 if(outputs[attrib][chan]) { 419 /* XXX: just initialize outputs to point at colors[] and 420 * skip this. 421 */ 422 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], ""); 423 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]); 424 LLVMBuildStore(builder, out, color[cbuf][chan]); 425 } 426 } 427 } 428 } 429 430 if (counter) 431 lp_build_occlusion_count(gallivm, type, 432 lp_build_mask_value(&mask), counter); 433 434 *pmask = lp_build_mask_end(&mask); 435 } 436 437 438 /** 439 * Generate the fragment shader, depth/stencil test, and alpha tests. 440 */ 441 static void 442 generate_fs_loop(struct gallivm_state *gallivm, 443 struct lp_fragment_shader *shader, 444 const struct lp_fragment_shader_variant_key *key, 445 LLVMBuilderRef builder, 446 struct lp_type type, 447 LLVMValueRef context_ptr, 448 LLVMValueRef num_loop, 449 struct lp_build_interp_soa_context *interp, 450 struct lp_build_sampler_soa *sampler, 451 LLVMValueRef mask_store, 452 LLVMValueRef (*out_color)[4], 453 LLVMValueRef depth_ptr, 454 unsigned depth_bits, 455 LLVMValueRef facing, 456 LLVMValueRef counter) 457 { 458 const struct util_format_description *zs_format_desc = NULL; 459 const struct tgsi_token *tokens = shader->base.tokens; 460 LLVMTypeRef vec_type; 461 LLVMValueRef mask_ptr, mask_val; 462 LLVMValueRef consts_ptr; 463 LLVMValueRef z; 464 LLVMValueRef zs_value = NULL; 465 LLVMValueRef stencil_refs[2]; 466 LLVMValueRef depth_ptr_i; 467 LLVMValueRef depth_offset; 468 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS]; 469 struct lp_build_for_loop_state loop_state; 470 struct lp_build_mask_context mask; 471 boolean simple_shader = (shader->info.base.file_count[TGSI_FILE_SAMPLER] == 0 && 472 shader->info.base.num_inputs < 3 && 473 shader->info.base.num_instructions < 8); 474 unsigned attrib; 475 unsigned chan; 476 unsigned cbuf; 477 unsigned depth_mode; 478 479 struct lp_bld_tgsi_system_values system_values; 480 481 memset(&system_values, 0, sizeof(system_values)); 482 483 if (key->depth.enabled || 484 key->stencil[0].enabled || 485 key->stencil[1].enabled) { 486 487 zs_format_desc = util_format_description(key->zsbuf_format); 488 assert(zs_format_desc); 489 490 if (!shader->info.base.writes_z) { 491 if (key->alpha.enabled || shader->info.base.uses_kill) 492 /* With alpha test and kill, can do the depth test early 493 * and hopefully eliminate some quads. But need to do a 494 * special deferred depth write once the final mask value 495 * is known. 496 */ 497 depth_mode = EARLY_DEPTH_TEST | LATE_DEPTH_WRITE; 498 else 499 depth_mode = EARLY_DEPTH_TEST | EARLY_DEPTH_WRITE; 500 } 501 else { 502 depth_mode = LATE_DEPTH_TEST | LATE_DEPTH_WRITE; 503 } 504 505 if (!(key->depth.enabled && key->depth.writemask) && 506 !(key->stencil[0].enabled && key->stencil[0].writemask)) 507 depth_mode &= ~(LATE_DEPTH_WRITE | EARLY_DEPTH_WRITE); 508 } 509 else { 510 depth_mode = 0; 511 } 512 513 514 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(gallivm, context_ptr); 515 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(gallivm, context_ptr); 516 517 vec_type = lp_build_vec_type(gallivm, type); 518 519 consts_ptr = lp_jit_context_constants(gallivm, context_ptr); 520 521 lp_build_for_loop_begin(&loop_state, gallivm, 522 lp_build_const_int32(gallivm, 0), 523 LLVMIntULT, 524 num_loop, 525 lp_build_const_int32(gallivm, 1)); 526 527 mask_ptr = LLVMBuildGEP(builder, mask_store, 528 &loop_state.counter, 1, "mask_ptr"); 529 mask_val = LLVMBuildLoad(builder, mask_ptr, ""); 530 531 depth_offset = LLVMBuildMul(builder, loop_state.counter, 532 lp_build_const_int32(gallivm, depth_bits * type.length), 533 ""); 534 535 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, ""); 536 537 memset(outputs, 0, sizeof outputs); 538 539 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { 540 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { 541 out_color[cbuf][chan] = lp_build_array_alloca(gallivm, 542 lp_build_vec_type(gallivm, 543 type), 544 num_loop, "color"); 545 } 546 } 547 548 549 550 /* 'mask' will control execution based on quad's pixel alive/killed state */ 551 lp_build_mask_begin(&mask, gallivm, type, mask_val); 552 553 if (!(depth_mode & EARLY_DEPTH_TEST) && !simple_shader) 554 lp_build_mask_check(&mask); 555 556 lp_build_interp_soa_update_pos_dyn(interp, gallivm, loop_state.counter); 557 z = interp->pos[2]; 558 559 if (depth_mode & EARLY_DEPTH_TEST) { 560 lp_build_depth_stencil_test(gallivm, 561 &key->depth, 562 key->stencil, 563 type, 564 zs_format_desc, 565 &mask, 566 stencil_refs, 567 z, 568 depth_ptr_i, facing, 569 &zs_value, 570 !simple_shader); 571 572 if (depth_mode & EARLY_DEPTH_WRITE) { 573 lp_build_depth_write(builder, zs_format_desc, depth_ptr_i, zs_value); 574 } 575 } 576 577 lp_build_interp_soa_update_inputs_dyn(interp, gallivm, loop_state.counter); 578 579 /* Build the actual shader */ 580 lp_build_tgsi_soa(gallivm, tokens, type, &mask, 581 consts_ptr, &system_values, 582 interp->pos, interp->inputs, 583 outputs, sampler, &shader->info.base); 584 585 /* Alpha test */ 586 if (key->alpha.enabled) { 587 int color0 = find_output_by_semantic(&shader->info.base, 588 TGSI_SEMANTIC_COLOR, 589 0); 590 591 if (color0 != -1 && outputs[color0][3]) { 592 const struct util_format_description *cbuf_format_desc; 593 LLVMValueRef alpha = LLVMBuildLoad(builder, outputs[color0][3], "alpha"); 594 LLVMValueRef alpha_ref_value; 595 596 alpha_ref_value = lp_jit_context_alpha_ref_value(gallivm, context_ptr); 597 alpha_ref_value = lp_build_broadcast(gallivm, vec_type, alpha_ref_value); 598 599 cbuf_format_desc = util_format_description(key->cbuf_format[0]); 600 601 lp_build_alpha_test(gallivm, key->alpha.func, type, cbuf_format_desc, 602 &mask, alpha, alpha_ref_value, 603 (depth_mode & LATE_DEPTH_TEST) != 0); 604 } 605 } 606 607 /* Late Z test */ 608 if (depth_mode & LATE_DEPTH_TEST) { 609 int pos0 = find_output_by_semantic(&shader->info.base, 610 TGSI_SEMANTIC_POSITION, 611 0); 612 613 if (pos0 != -1 && outputs[pos0][2]) { 614 z = LLVMBuildLoad(builder, outputs[pos0][2], "output.z"); 615 } 616 617 lp_build_depth_stencil_test(gallivm, 618 &key->depth, 619 key->stencil, 620 type, 621 zs_format_desc, 622 &mask, 623 stencil_refs, 624 z, 625 depth_ptr_i, facing, 626 &zs_value, 627 !simple_shader); 628 /* Late Z write */ 629 if (depth_mode & LATE_DEPTH_WRITE) { 630 lp_build_depth_write(builder, zs_format_desc, depth_ptr_i, zs_value); 631 } 632 } 633 else if ((depth_mode & EARLY_DEPTH_TEST) && 634 (depth_mode & LATE_DEPTH_WRITE)) 635 { 636 /* Need to apply a reduced mask to the depth write. Reload the 637 * depth value, update from zs_value with the new mask value and 638 * write that out. 639 */ 640 lp_build_deferred_depth_write(gallivm, 641 type, 642 zs_format_desc, 643 &mask, 644 depth_ptr_i, 645 zs_value); 646 } 647 648 649 /* Color write */ 650 for (attrib = 0; attrib < shader->info.base.num_outputs; ++attrib) 651 { 652 if (shader->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_COLOR && 653 shader->info.base.output_semantic_index[attrib] < key->nr_cbufs) 654 { 655 unsigned cbuf = shader->info.base.output_semantic_index[attrib]; 656 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { 657 if(outputs[attrib][chan]) { 658 /* XXX: just initialize outputs to point at colors[] and 659 * skip this. 660 */ 661 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], ""); 662 LLVMValueRef color_ptr; 663 color_ptr = LLVMBuildGEP(builder, out_color[cbuf][chan], 664 &loop_state.counter, 1, ""); 665 lp_build_name(out, "color%u.%c", attrib, "rgba"[chan]); 666 LLVMBuildStore(builder, out, color_ptr); 667 } 668 } 669 } 670 } 671 672 if (key->occlusion_count) { 673 lp_build_name(counter, "counter"); 674 lp_build_occlusion_count(gallivm, type, 675 lp_build_mask_value(&mask), counter); 676 } 677 678 mask_val = lp_build_mask_end(&mask); 679 LLVMBuildStore(builder, mask_val, mask_ptr); 680 lp_build_for_loop_end(&loop_state); 681 } 682 683 684 /** 685 * Generate color blending and color output. 686 * \param rt the render target index (to index blend, colormask state) 687 * \param type the pixel color type 688 * \param context_ptr pointer to the runtime JIT context 689 * \param mask execution mask (active fragment/pixel mask) 690 * \param src colors from the fragment shader 691 * \param dst_ptr the destination color buffer pointer 692 */ 693 static void 694 generate_blend(struct gallivm_state *gallivm, 695 const struct pipe_blend_state *blend, 696 unsigned rt, 697 LLVMBuilderRef builder, 698 struct lp_type type, 699 LLVMValueRef context_ptr, 700 LLVMValueRef mask, 701 LLVMValueRef *src, 702 LLVMValueRef dst_ptr, 703 boolean do_branch) 704 { 705 struct lp_build_context bld; 706 struct lp_build_mask_context mask_ctx; 707 LLVMTypeRef vec_type; 708 LLVMValueRef const_ptr; 709 LLVMValueRef con[4]; 710 LLVMValueRef dst[4]; 711 LLVMValueRef res[4]; 712 unsigned chan; 713 714 lp_build_context_init(&bld, gallivm, type); 715 716 lp_build_mask_begin(&mask_ctx, gallivm, type, mask); 717 if (do_branch) 718 lp_build_mask_check(&mask_ctx); 719 720 vec_type = lp_build_vec_type(gallivm, type); 721 722 const_ptr = lp_jit_context_blend_color(gallivm, context_ptr); 723 const_ptr = LLVMBuildBitCast(builder, const_ptr, 724 LLVMPointerType(vec_type, 0), ""); 725 726 /* load constant blend color and colors from the dest color buffer */ 727 for(chan = 0; chan < 4; ++chan) { 728 LLVMValueRef index = lp_build_const_int32(gallivm, chan); 729 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), ""); 730 731 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), ""); 732 733 lp_build_name(con[chan], "con.%c", "rgba"[chan]); 734 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]); 735 } 736 737 /* do blend */ 738 lp_build_blend_soa(gallivm, blend, type, rt, src, dst, con, res); 739 740 /* store results to color buffer */ 741 for(chan = 0; chan < 4; ++chan) { 742 if(blend->rt[rt].colormask & (1 << chan)) { 743 LLVMValueRef index = lp_build_const_int32(gallivm, chan); 744 lp_build_name(res[chan], "res.%c", "rgba"[chan]); 745 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]); 746 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, "")); 747 } 748 } 749 750 lp_build_mask_end(&mask_ctx); 751 } 752 753 754 /** 755 * Generate the runtime callable function for the whole fragment pipeline. 756 * Note that the function which we generate operates on a block of 16 757 * pixels at at time. The block contains 2x2 quads. Each quad contains 758 * 2x2 pixels. 759 */ 760 static void 761 generate_fragment(struct llvmpipe_context *lp, 762 struct lp_fragment_shader *shader, 763 struct lp_fragment_shader_variant *variant, 764 unsigned partial_mask) 765 { 766 struct gallivm_state *gallivm = variant->gallivm; 767 const struct lp_fragment_shader_variant_key *key = &variant->key; 768 struct lp_shader_input inputs[PIPE_MAX_SHADER_INPUTS]; 769 char func_name[256]; 770 struct lp_type fs_type; 771 struct lp_type blend_type; 772 LLVMTypeRef fs_elem_type; 773 LLVMTypeRef blend_vec_type; 774 LLVMTypeRef arg_types[11]; 775 LLVMTypeRef func_type; 776 LLVMTypeRef int32_type = LLVMInt32TypeInContext(gallivm->context); 777 LLVMTypeRef int8_type = LLVMInt8TypeInContext(gallivm->context); 778 LLVMValueRef context_ptr; 779 LLVMValueRef x; 780 LLVMValueRef y; 781 LLVMValueRef a0_ptr; 782 LLVMValueRef dadx_ptr; 783 LLVMValueRef dady_ptr; 784 LLVMValueRef color_ptr_ptr; 785 LLVMValueRef depth_ptr; 786 LLVMValueRef mask_input; 787 LLVMValueRef counter = NULL; 788 LLVMBasicBlockRef block; 789 LLVMBuilderRef builder; 790 struct lp_build_sampler_soa *sampler; 791 struct lp_build_interp_soa_context interp; 792 LLVMValueRef fs_mask[16 / 4]; 793 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS][16 / 4]; 794 LLVMValueRef blend_mask; 795 LLVMValueRef function; 796 LLVMValueRef facing; 797 const struct util_format_description *zs_format_desc; 798 unsigned num_fs; 799 unsigned i; 800 unsigned chan; 801 unsigned cbuf; 802 boolean cbuf0_write_all; 803 boolean try_loop = TRUE; 804 805 assert(lp_native_vector_width / 32 >= 4); 806 807 /* Adjust color input interpolation according to flatshade state: 808 */ 809 memcpy(inputs, shader->inputs, shader->info.base.num_inputs * sizeof inputs[0]); 810 for (i = 0; i < shader->info.base.num_inputs; i++) { 811 if (inputs[i].interp == LP_INTERP_COLOR) { 812 if (key->flatshade) 813 inputs[i].interp = LP_INTERP_CONSTANT; 814 else 815 inputs[i].interp = LP_INTERP_PERSPECTIVE; 816 } 817 } 818 819 /* check if writes to cbuf[0] are to be copied to all cbufs */ 820 cbuf0_write_all = FALSE; 821 for (i = 0;i < shader->info.base.num_properties; i++) { 822 if (shader->info.base.properties[i].name == 823 TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS) { 824 cbuf0_write_all = TRUE; 825 break; 826 } 827 } 828 829 /* TODO: actually pick these based on the fs and color buffer 830 * characteristics. */ 831 832 memset(&fs_type, 0, sizeof fs_type); 833 fs_type.floating = TRUE; /* floating point values */ 834 fs_type.sign = TRUE; /* values are signed */ 835 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */ 836 fs_type.width = 32; /* 32-bit float */ 837 fs_type.length = MIN2(lp_native_vector_width / 32, 16); /* n*4 elements per vector */ 838 num_fs = 16 / fs_type.length; /* number of loops per 4x4 stamp */ 839 840 memset(&blend_type, 0, sizeof blend_type); 841 blend_type.floating = FALSE; /* values are integers */ 842 blend_type.sign = FALSE; /* values are unsigned */ 843 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */ 844 blend_type.width = 8; /* 8-bit ubyte values */ 845 blend_type.length = 16; /* 16 elements per vector */ 846 847 /* 848 * Generate the function prototype. Any change here must be reflected in 849 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa. 850 */ 851 852 fs_elem_type = lp_build_elem_type(gallivm, fs_type); 853 854 blend_vec_type = lp_build_vec_type(gallivm, blend_type); 855 856 util_snprintf(func_name, sizeof(func_name), "fs%u_variant%u_%s", 857 shader->no, variant->no, partial_mask ? "partial" : "whole"); 858 859 arg_types[0] = variant->jit_context_ptr_type; /* context */ 860 arg_types[1] = int32_type; /* x */ 861 arg_types[2] = int32_type; /* y */ 862 arg_types[3] = int32_type; /* facing */ 863 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */ 864 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */ 865 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */ 866 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */ 867 arg_types[8] = LLVMPointerType(int8_type, 0); /* depth */ 868 arg_types[9] = int32_type; /* mask_input */ 869 arg_types[10] = LLVMPointerType(int32_type, 0); /* counter */ 870 871 func_type = LLVMFunctionType(LLVMVoidTypeInContext(gallivm->context), 872 arg_types, Elements(arg_types), 0); 873 874 function = LLVMAddFunction(gallivm->module, func_name, func_type); 875 LLVMSetFunctionCallConv(function, LLVMCCallConv); 876 877 variant->function[partial_mask] = function; 878 879 /* XXX: need to propagate noalias down into color param now we are 880 * passing a pointer-to-pointer? 881 */ 882 for(i = 0; i < Elements(arg_types); ++i) 883 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind) 884 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute); 885 886 context_ptr = LLVMGetParam(function, 0); 887 x = LLVMGetParam(function, 1); 888 y = LLVMGetParam(function, 2); 889 facing = LLVMGetParam(function, 3); 890 a0_ptr = LLVMGetParam(function, 4); 891 dadx_ptr = LLVMGetParam(function, 5); 892 dady_ptr = LLVMGetParam(function, 6); 893 color_ptr_ptr = LLVMGetParam(function, 7); 894 depth_ptr = LLVMGetParam(function, 8); 895 mask_input = LLVMGetParam(function, 9); 896 897 lp_build_name(context_ptr, "context"); 898 lp_build_name(x, "x"); 899 lp_build_name(y, "y"); 900 lp_build_name(a0_ptr, "a0"); 901 lp_build_name(dadx_ptr, "dadx"); 902 lp_build_name(dady_ptr, "dady"); 903 lp_build_name(color_ptr_ptr, "color_ptr_ptr"); 904 lp_build_name(depth_ptr, "depth"); 905 lp_build_name(mask_input, "mask_input"); 906 907 if (key->occlusion_count) { 908 counter = LLVMGetParam(function, 10); 909 lp_build_name(counter, "counter"); 910 } 911 912 /* 913 * Function body 914 */ 915 916 block = LLVMAppendBasicBlockInContext(gallivm->context, function, "entry"); 917 builder = gallivm->builder; 918 assert(builder); 919 LLVMPositionBuilderAtEnd(builder, block); 920 921 /* code generated texture sampling */ 922 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr); 923 924 zs_format_desc = util_format_description(key->zsbuf_format); 925 926 if (!try_loop) { 927 /* 928 * The shader input interpolation info is not explicitely baked in the 929 * shader key, but everything it derives from (TGSI, and flatshade) is 930 * already included in the shader key. 931 */ 932 lp_build_interp_soa_init(&interp, 933 gallivm, 934 shader->info.base.num_inputs, 935 inputs, 936 builder, fs_type, 937 FALSE, 938 a0_ptr, dadx_ptr, dady_ptr, 939 x, y); 940 941 /* loop over quads in the block */ 942 for(i = 0; i < num_fs; ++i) { 943 LLVMValueRef depth_offset = LLVMConstInt(int32_type, 944 i*fs_type.length*zs_format_desc->block.bits/8, 945 0); 946 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS]; 947 LLVMValueRef depth_ptr_i; 948 949 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &depth_offset, 1, ""); 950 951 generate_fs(gallivm, 952 shader, key, 953 builder, 954 fs_type, 955 context_ptr, 956 i, 957 &interp, 958 sampler, 959 &fs_mask[i], /* output */ 960 out_color, 961 depth_ptr_i, 962 facing, 963 partial_mask, 964 mask_input, 965 counter); 966 967 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) 968 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) 969 fs_out_color[cbuf][chan][i] = 970 out_color[cbuf * !cbuf0_write_all][chan]; 971 } 972 } 973 else { 974 unsigned depth_bits = zs_format_desc->block.bits/8; 975 LLVMValueRef num_loop = lp_build_const_int32(gallivm, num_fs); 976 LLVMTypeRef mask_type = lp_build_int_vec_type(gallivm, fs_type); 977 LLVMValueRef mask_store = lp_build_array_alloca(gallivm, mask_type, 978 num_loop, "mask_store"); 979 LLVMValueRef color_store[PIPE_MAX_COLOR_BUFS][TGSI_NUM_CHANNELS]; 980 981 /* 982 * The shader input interpolation info is not explicitely baked in the 983 * shader key, but everything it derives from (TGSI, and flatshade) is 984 * already included in the shader key. 985 */ 986 lp_build_interp_soa_init(&interp, 987 gallivm, 988 shader->info.base.num_inputs, 989 inputs, 990 builder, fs_type, 991 TRUE, 992 a0_ptr, dadx_ptr, dady_ptr, 993 x, y); 994 995 for (i = 0; i < num_fs; i++) { 996 LLVMValueRef mask; 997 LLVMValueRef indexi = lp_build_const_int32(gallivm, i); 998 LLVMValueRef mask_ptr = LLVMBuildGEP(builder, mask_store, 999 &indexi, 1, "mask_ptr"); 1000 1001 if (partial_mask) { 1002 mask = generate_quad_mask(gallivm, fs_type, 1003 i*fs_type.length/4, mask_input); 1004 } 1005 else { 1006 mask = lp_build_const_int_vec(gallivm, fs_type, ~0); 1007 } 1008 LLVMBuildStore(builder, mask, mask_ptr); 1009 } 1010 1011 generate_fs_loop(gallivm, 1012 shader, key, 1013 builder, 1014 fs_type, 1015 context_ptr, 1016 num_loop, 1017 &interp, 1018 sampler, 1019 mask_store, /* output */ 1020 color_store, 1021 depth_ptr, 1022 depth_bits, 1023 facing, 1024 counter); 1025 1026 for (i = 0; i < num_fs; i++) { 1027 LLVMValueRef indexi = lp_build_const_int32(gallivm, i); 1028 LLVMValueRef ptr = LLVMBuildGEP(builder, mask_store, 1029 &indexi, 1, ""); 1030 fs_mask[i] = LLVMBuildLoad(builder, ptr, "mask"); 1031 /* This is fucked up need to reorganize things */ 1032 for (cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { 1033 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { 1034 ptr = LLVMBuildGEP(builder, 1035 color_store[cbuf * !cbuf0_write_all][chan], 1036 &indexi, 1, ""); 1037 fs_out_color[cbuf][chan][i] = ptr; 1038 } 1039 } 1040 } 1041 } 1042 1043 sampler->destroy(sampler); 1044 1045 /* Loop over color outputs / color buffers to do blending. 1046 */ 1047 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) { 1048 LLVMValueRef color_ptr; 1049 LLVMValueRef index = lp_build_const_int32(gallivm, cbuf); 1050 LLVMValueRef blend_in_color[TGSI_NUM_CHANNELS]; 1051 unsigned rt; 1052 1053 /* 1054 * Convert the fs's output color and mask to fit to the blending type. 1055 */ 1056 for(chan = 0; chan < TGSI_NUM_CHANNELS; ++chan) { 1057 LLVMValueRef fs_color_vals[LP_MAX_VECTOR_LENGTH]; 1058 1059 for (i = 0; i < num_fs; i++) { 1060 fs_color_vals[i] = 1061 LLVMBuildLoad(builder, fs_out_color[cbuf][chan][i], "fs_color_vals"); 1062 } 1063 1064 lp_build_conv(gallivm, fs_type, blend_type, 1065 fs_color_vals, 1066 num_fs, 1067 &blend_in_color[chan], 1); 1068 1069 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]); 1070 } 1071 1072 if (partial_mask || !variant->opaque) { 1073 lp_build_conv_mask(variant->gallivm, fs_type, blend_type, 1074 fs_mask, num_fs, 1075 &blend_mask, 1); 1076 } else { 1077 blend_mask = lp_build_const_int_vec(variant->gallivm, blend_type, ~0); 1078 } 1079 1080 color_ptr = LLVMBuildLoad(builder, 1081 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""), 1082 ""); 1083 lp_build_name(color_ptr, "color_ptr%d", cbuf); 1084 1085 /* which blend/colormask state to use */ 1086 rt = key->blend.independent_blend_enable ? cbuf : 0; 1087 1088 /* 1089 * Blending. 1090 */ 1091 { 1092 /* Could the 4x4 have been killed? 1093 */ 1094 boolean do_branch = ((key->depth.enabled || key->stencil[0].enabled) && 1095 !key->alpha.enabled && 1096 !shader->info.base.uses_kill); 1097 1098 generate_blend(variant->gallivm, 1099 &key->blend, 1100 rt, 1101 builder, 1102 blend_type, 1103 context_ptr, 1104 blend_mask, 1105 blend_in_color, 1106 color_ptr, 1107 do_branch); 1108 } 1109 } 1110 1111 LLVMBuildRetVoid(builder); 1112 1113 gallivm_verify_function(gallivm, function); 1114 1115 variant->nr_instrs += lp_build_count_instructions(function); 1116 } 1117 1118 1119 static void 1120 dump_fs_variant_key(const struct lp_fragment_shader_variant_key *key) 1121 { 1122 unsigned i; 1123 1124 debug_printf("fs variant %p:\n", (void *) key); 1125 1126 if (key->flatshade) { 1127 debug_printf("flatshade = 1\n"); 1128 } 1129 for (i = 0; i < key->nr_cbufs; ++i) { 1130 debug_printf("cbuf_format[%u] = %s\n", i, util_format_name(key->cbuf_format[i])); 1131 } 1132 if (key->depth.enabled) { 1133 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format)); 1134 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE)); 1135 debug_printf("depth.writemask = %u\n", key->depth.writemask); 1136 } 1137 1138 for (i = 0; i < 2; ++i) { 1139 if (key->stencil[i].enabled) { 1140 debug_printf("stencil[%u].func = %s\n", i, util_dump_func(key->stencil[i].func, TRUE)); 1141 debug_printf("stencil[%u].fail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].fail_op, TRUE)); 1142 debug_printf("stencil[%u].zpass_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zpass_op, TRUE)); 1143 debug_printf("stencil[%u].zfail_op = %s\n", i, util_dump_stencil_op(key->stencil[i].zfail_op, TRUE)); 1144 debug_printf("stencil[%u].valuemask = 0x%x\n", i, key->stencil[i].valuemask); 1145 debug_printf("stencil[%u].writemask = 0x%x\n", i, key->stencil[i].writemask); 1146 } 1147 } 1148 1149 if (key->alpha.enabled) { 1150 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE)); 1151 } 1152 1153 if (key->occlusion_count) { 1154 debug_printf("occlusion_count = 1\n"); 1155 } 1156 1157 if (key->blend.logicop_enable) { 1158 debug_printf("blend.logicop_func = %s\n", util_dump_logicop(key->blend.logicop_func, TRUE)); 1159 } 1160 else if (key->blend.rt[0].blend_enable) { 1161 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE)); 1162 debug_printf("blend.rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE)); 1163 debug_printf("blend.rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE)); 1164 debug_printf("blend.alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE)); 1165 debug_printf("blend.alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE)); 1166 debug_printf("blend.alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE)); 1167 } 1168 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask); 1169 for (i = 0; i < key->nr_samplers; ++i) { 1170 debug_printf("sampler[%u] = \n", i); 1171 debug_printf(" .format = %s\n", 1172 util_format_name(key->sampler[i].format)); 1173 debug_printf(" .target = %s\n", 1174 util_dump_tex_target(key->sampler[i].target, TRUE)); 1175 debug_printf(" .pot = %u %u %u\n", 1176 key->sampler[i].pot_width, 1177 key->sampler[i].pot_height, 1178 key->sampler[i].pot_depth); 1179 debug_printf(" .wrap = %s %s %s\n", 1180 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE), 1181 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE), 1182 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE)); 1183 debug_printf(" .min_img_filter = %s\n", 1184 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE)); 1185 debug_printf(" .min_mip_filter = %s\n", 1186 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE)); 1187 debug_printf(" .mag_img_filter = %s\n", 1188 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE)); 1189 if (key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE) 1190 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE)); 1191 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords); 1192 debug_printf(" .min_max_lod_equal = %u\n", key->sampler[i].min_max_lod_equal); 1193 debug_printf(" .lod_bias_non_zero = %u\n", key->sampler[i].lod_bias_non_zero); 1194 debug_printf(" .apply_min_lod = %u\n", key->sampler[i].apply_min_lod); 1195 debug_printf(" .apply_max_lod = %u\n", key->sampler[i].apply_max_lod); 1196 } 1197 } 1198 1199 1200 void 1201 lp_debug_fs_variant(const struct lp_fragment_shader_variant *variant) 1202 { 1203 debug_printf("llvmpipe: Fragment shader #%u variant #%u:\n", 1204 variant->shader->no, variant->no); 1205 tgsi_dump(variant->shader->base.tokens, 0); 1206 dump_fs_variant_key(&variant->key); 1207 debug_printf("variant->opaque = %u\n", variant->opaque); 1208 debug_printf("\n"); 1209 } 1210 1211 1212 /** 1213 * Generate a new fragment shader variant from the shader code and 1214 * other state indicated by the key. 1215 */ 1216 static struct lp_fragment_shader_variant * 1217 generate_variant(struct llvmpipe_context *lp, 1218 struct lp_fragment_shader *shader, 1219 const struct lp_fragment_shader_variant_key *key) 1220 { 1221 struct lp_fragment_shader_variant *variant; 1222 const struct util_format_description *cbuf0_format_desc; 1223 boolean fullcolormask; 1224 1225 variant = CALLOC_STRUCT(lp_fragment_shader_variant); 1226 if(!variant) 1227 return NULL; 1228 1229 variant->gallivm = gallivm_create(); 1230 if (!variant->gallivm) { 1231 FREE(variant); 1232 return NULL; 1233 } 1234 1235 variant->shader = shader; 1236 variant->list_item_global.base = variant; 1237 variant->list_item_local.base = variant; 1238 variant->no = shader->variants_created++; 1239 1240 memcpy(&variant->key, key, shader->variant_key_size); 1241 1242 /* 1243 * Determine whether we are touching all channels in the color buffer. 1244 */ 1245 fullcolormask = FALSE; 1246 if (key->nr_cbufs == 1) { 1247 cbuf0_format_desc = util_format_description(key->cbuf_format[0]); 1248 fullcolormask = util_format_colormask_full(cbuf0_format_desc, key->blend.rt[0].colormask); 1249 } 1250 1251 variant->opaque = 1252 !key->blend.logicop_enable && 1253 !key->blend.rt[0].blend_enable && 1254 fullcolormask && 1255 !key->stencil[0].enabled && 1256 !key->alpha.enabled && 1257 !key->depth.enabled && 1258 !shader->info.base.uses_kill 1259 ? TRUE : FALSE; 1260 1261 1262 if ((LP_DEBUG & DEBUG_FS) || (gallivm_debug & GALLIVM_DEBUG_IR)) { 1263 lp_debug_fs_variant(variant); 1264 } 1265 1266 lp_jit_init_types(variant); 1267 1268 if (variant->jit_function[RAST_EDGE_TEST] == NULL) 1269 generate_fragment(lp, shader, variant, RAST_EDGE_TEST); 1270 1271 if (variant->jit_function[RAST_WHOLE] == NULL) { 1272 if (variant->opaque) { 1273 /* Specialized shader, which doesn't need to read the color buffer. */ 1274 generate_fragment(lp, shader, variant, RAST_WHOLE); 1275 } 1276 } 1277 1278 /* 1279 * Compile everything 1280 */ 1281 1282 gallivm_compile_module(variant->gallivm); 1283 1284 if (variant->function[RAST_EDGE_TEST]) { 1285 variant->jit_function[RAST_EDGE_TEST] = (lp_jit_frag_func) 1286 gallivm_jit_function(variant->gallivm, 1287 variant->function[RAST_EDGE_TEST]); 1288 } 1289 1290 if (variant->function[RAST_WHOLE]) { 1291 variant->jit_function[RAST_WHOLE] = (lp_jit_frag_func) 1292 gallivm_jit_function(variant->gallivm, 1293 variant->function[RAST_WHOLE]); 1294 } else if (!variant->jit_function[RAST_WHOLE]) { 1295 variant->jit_function[RAST_WHOLE] = variant->jit_function[RAST_EDGE_TEST]; 1296 } 1297 1298 return variant; 1299 } 1300 1301 1302 static void * 1303 llvmpipe_create_fs_state(struct pipe_context *pipe, 1304 const struct pipe_shader_state *templ) 1305 { 1306 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); 1307 struct lp_fragment_shader *shader; 1308 int nr_samplers; 1309 int i; 1310 1311 shader = CALLOC_STRUCT(lp_fragment_shader); 1312 if (!shader) 1313 return NULL; 1314 1315 shader->no = fs_no++; 1316 make_empty_list(&shader->variants); 1317 1318 /* get/save the summary info for this shader */ 1319 lp_build_tgsi_info(templ->tokens, &shader->info); 1320 1321 /* we need to keep a local copy of the tokens */ 1322 shader->base.tokens = tgsi_dup_tokens(templ->tokens); 1323 1324 shader->draw_data = draw_create_fragment_shader(llvmpipe->draw, templ); 1325 if (shader->draw_data == NULL) { 1326 FREE((void *) shader->base.tokens); 1327 FREE(shader); 1328 return NULL; 1329 } 1330 1331 nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1; 1332 1333 shader->variant_key_size = Offset(struct lp_fragment_shader_variant_key, 1334 sampler[nr_samplers]); 1335 1336 for (i = 0; i < shader->info.base.num_inputs; i++) { 1337 shader->inputs[i].usage_mask = shader->info.base.input_usage_mask[i]; 1338 shader->inputs[i].cyl_wrap = shader->info.base.input_cylindrical_wrap[i]; 1339 1340 switch (shader->info.base.input_interpolate[i]) { 1341 case TGSI_INTERPOLATE_CONSTANT: 1342 shader->inputs[i].interp = LP_INTERP_CONSTANT; 1343 break; 1344 case TGSI_INTERPOLATE_LINEAR: 1345 shader->inputs[i].interp = LP_INTERP_LINEAR; 1346 break; 1347 case TGSI_INTERPOLATE_PERSPECTIVE: 1348 shader->inputs[i].interp = LP_INTERP_PERSPECTIVE; 1349 break; 1350 case TGSI_INTERPOLATE_COLOR: 1351 shader->inputs[i].interp = LP_INTERP_COLOR; 1352 break; 1353 default: 1354 assert(0); 1355 break; 1356 } 1357 1358 switch (shader->info.base.input_semantic_name[i]) { 1359 case TGSI_SEMANTIC_FACE: 1360 shader->inputs[i].interp = LP_INTERP_FACING; 1361 break; 1362 case TGSI_SEMANTIC_POSITION: 1363 /* Position was already emitted above 1364 */ 1365 shader->inputs[i].interp = LP_INTERP_POSITION; 1366 shader->inputs[i].src_index = 0; 1367 continue; 1368 } 1369 1370 shader->inputs[i].src_index = i+1; 1371 } 1372 1373 if (LP_DEBUG & DEBUG_TGSI) { 1374 unsigned attrib; 1375 debug_printf("llvmpipe: Create fragment shader #%u %p:\n", 1376 shader->no, (void *) shader); 1377 tgsi_dump(templ->tokens, 0); 1378 debug_printf("usage masks:\n"); 1379 for (attrib = 0; attrib < shader->info.base.num_inputs; ++attrib) { 1380 unsigned usage_mask = shader->info.base.input_usage_mask[attrib]; 1381 debug_printf(" IN[%u].%s%s%s%s\n", 1382 attrib, 1383 usage_mask & TGSI_WRITEMASK_X ? "x" : "", 1384 usage_mask & TGSI_WRITEMASK_Y ? "y" : "", 1385 usage_mask & TGSI_WRITEMASK_Z ? "z" : "", 1386 usage_mask & TGSI_WRITEMASK_W ? "w" : ""); 1387 } 1388 debug_printf("\n"); 1389 } 1390 1391 return shader; 1392 } 1393 1394 1395 static void 1396 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs) 1397 { 1398 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); 1399 1400 if (llvmpipe->fs == fs) 1401 return; 1402 1403 draw_flush(llvmpipe->draw); 1404 1405 llvmpipe->fs = (struct lp_fragment_shader *) fs; 1406 1407 draw_bind_fragment_shader(llvmpipe->draw, 1408 (llvmpipe->fs ? llvmpipe->fs->draw_data : NULL)); 1409 1410 llvmpipe->dirty |= LP_NEW_FS; 1411 } 1412 1413 1414 /** 1415 * Remove shader variant from two lists: the shader's variant list 1416 * and the context's variant list. 1417 */ 1418 void 1419 llvmpipe_remove_shader_variant(struct llvmpipe_context *lp, 1420 struct lp_fragment_shader_variant *variant) 1421 { 1422 unsigned i; 1423 1424 if (gallivm_debug & GALLIVM_DEBUG_IR) { 1425 debug_printf("llvmpipe: del fs #%u var #%u v created #%u v cached" 1426 " #%u v total cached #%u\n", 1427 variant->shader->no, 1428 variant->no, 1429 variant->shader->variants_created, 1430 variant->shader->variants_cached, 1431 lp->nr_fs_variants); 1432 } 1433 1434 /* free all the variant's JIT'd functions */ 1435 for (i = 0; i < Elements(variant->function); i++) { 1436 if (variant->function[i]) { 1437 gallivm_free_function(variant->gallivm, 1438 variant->function[i], 1439 variant->jit_function[i]); 1440 } 1441 } 1442 1443 gallivm_destroy(variant->gallivm); 1444 1445 /* remove from shader's list */ 1446 remove_from_list(&variant->list_item_local); 1447 variant->shader->variants_cached--; 1448 1449 /* remove from context's list */ 1450 remove_from_list(&variant->list_item_global); 1451 lp->nr_fs_variants--; 1452 lp->nr_fs_instrs -= variant->nr_instrs; 1453 1454 FREE(variant); 1455 } 1456 1457 1458 static void 1459 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs) 1460 { 1461 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); 1462 struct lp_fragment_shader *shader = fs; 1463 struct lp_fs_variant_list_item *li; 1464 1465 assert(fs != llvmpipe->fs); 1466 1467 /* 1468 * XXX: we need to flush the context until we have some sort of reference 1469 * counting in fragment shaders as they may still be binned 1470 * Flushing alone might not sufficient we need to wait on it too. 1471 */ 1472 llvmpipe_finish(pipe, __FUNCTION__); 1473 1474 /* Delete all the variants */ 1475 li = first_elem(&shader->variants); 1476 while(!at_end(&shader->variants, li)) { 1477 struct lp_fs_variant_list_item *next = next_elem(li); 1478 llvmpipe_remove_shader_variant(llvmpipe, li->base); 1479 li = next; 1480 } 1481 1482 /* Delete draw module's data */ 1483 draw_delete_fragment_shader(llvmpipe->draw, shader->draw_data); 1484 1485 assert(shader->variants_cached == 0); 1486 FREE((void *) shader->base.tokens); 1487 FREE(shader); 1488 } 1489 1490 1491 1492 static void 1493 llvmpipe_set_constant_buffer(struct pipe_context *pipe, 1494 uint shader, uint index, 1495 struct pipe_constant_buffer *cb) 1496 { 1497 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe); 1498 struct pipe_resource *constants = cb ? cb->buffer : NULL; 1499 unsigned size; 1500 const void *data; 1501 1502 if (cb && cb->user_buffer) { 1503 constants = llvmpipe_user_buffer_create(pipe->screen, 1504 (void *) cb->user_buffer, 1505 cb->buffer_size, 1506 PIPE_BIND_CONSTANT_BUFFER); 1507 } 1508 1509 size = constants ? constants->width0 : 0; 1510 data = constants ? llvmpipe_resource_data(constants) : NULL; 1511 1512 assert(shader < PIPE_SHADER_TYPES); 1513 assert(index < PIPE_MAX_CONSTANT_BUFFERS); 1514 1515 if(llvmpipe->constants[shader][index] == constants) 1516 return; 1517 1518 draw_flush(llvmpipe->draw); 1519 1520 /* note: reference counting */ 1521 pipe_resource_reference(&llvmpipe->constants[shader][index], constants); 1522 1523 if(shader == PIPE_SHADER_VERTEX || 1524 shader == PIPE_SHADER_GEOMETRY) { 1525 draw_set_mapped_constant_buffer(llvmpipe->draw, shader, 1526 index, data, size); 1527 } 1528 1529 llvmpipe->dirty |= LP_NEW_CONSTANTS; 1530 1531 if (cb && cb->user_buffer) { 1532 pipe_resource_reference(&constants, NULL); 1533 } 1534 } 1535 1536 1537 /** 1538 * Return the blend factor equivalent to a destination alpha of one. 1539 */ 1540 static INLINE unsigned 1541 force_dst_alpha_one(unsigned factor) 1542 { 1543 switch(factor) { 1544 case PIPE_BLENDFACTOR_DST_ALPHA: 1545 return PIPE_BLENDFACTOR_ONE; 1546 case PIPE_BLENDFACTOR_INV_DST_ALPHA: 1547 return PIPE_BLENDFACTOR_ZERO; 1548 case PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE: 1549 return PIPE_BLENDFACTOR_ZERO; 1550 } 1551 1552 return factor; 1553 } 1554 1555 1556 /** 1557 * We need to generate several variants of the fragment pipeline to match 1558 * all the combinations of the contributing state atoms. 1559 * 1560 * TODO: there is actually no reason to tie this to context state -- the 1561 * generated code could be cached globally in the screen. 1562 */ 1563 static void 1564 make_variant_key(struct llvmpipe_context *lp, 1565 struct lp_fragment_shader *shader, 1566 struct lp_fragment_shader_variant_key *key) 1567 { 1568 unsigned i; 1569 1570 memset(key, 0, shader->variant_key_size); 1571 1572 if (lp->framebuffer.zsbuf) { 1573 if (lp->depth_stencil->depth.enabled) { 1574 key->zsbuf_format = lp->framebuffer.zsbuf->format; 1575 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth); 1576 } 1577 if (lp->depth_stencil->stencil[0].enabled) { 1578 key->zsbuf_format = lp->framebuffer.zsbuf->format; 1579 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil); 1580 } 1581 } 1582 1583 key->alpha.enabled = lp->depth_stencil->alpha.enabled; 1584 if(key->alpha.enabled) 1585 key->alpha.func = lp->depth_stencil->alpha.func; 1586 /* alpha.ref_value is passed in jit_context */ 1587 1588 key->flatshade = lp->rasterizer->flatshade; 1589 if (lp->active_query_count) { 1590 key->occlusion_count = TRUE; 1591 } 1592 1593 if (lp->framebuffer.nr_cbufs) { 1594 memcpy(&key->blend, lp->blend, sizeof key->blend); 1595 } 1596 1597 key->nr_cbufs = lp->framebuffer.nr_cbufs; 1598 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) { 1599 enum pipe_format format = lp->framebuffer.cbufs[i]->format; 1600 struct pipe_rt_blend_state *blend_rt = &key->blend.rt[i]; 1601 const struct util_format_description *format_desc; 1602 1603 key->cbuf_format[i] = format; 1604 1605 format_desc = util_format_description(format); 1606 assert(format_desc->colorspace == UTIL_FORMAT_COLORSPACE_RGB || 1607 format_desc->colorspace == UTIL_FORMAT_COLORSPACE_SRGB); 1608 1609 blend_rt->colormask = lp->blend->rt[i].colormask; 1610 1611 /* 1612 * Mask out color channels not present in the color buffer. 1613 */ 1614 blend_rt->colormask &= util_format_colormask(format_desc); 1615 1616 /* 1617 * Our swizzled render tiles always have an alpha channel, but the linear 1618 * render target format often does not, so force here the dst alpha to be 1619 * one. 1620 * 1621 * This is not a mere optimization. Wrong results will be produced if the 1622 * dst alpha is used, the dst format does not have alpha, and the previous 1623 * rendering was not flushed from the swizzled to linear buffer. For 1624 * example, NonPowTwo DCT. 1625 * 1626 * TODO: This should be generalized to all channels for better 1627 * performance, but only alpha causes correctness issues. 1628 * 1629 * Also, force rgb/alpha func/factors match, to make AoS blending easier. 1630 */ 1631 if (format_desc->swizzle[3] > UTIL_FORMAT_SWIZZLE_W || 1632 format_desc->swizzle[3] == format_desc->swizzle[0]) { 1633 blend_rt->rgb_src_factor = force_dst_alpha_one(blend_rt->rgb_src_factor); 1634 blend_rt->rgb_dst_factor = force_dst_alpha_one(blend_rt->rgb_dst_factor); 1635 blend_rt->alpha_func = blend_rt->rgb_func; 1636 blend_rt->alpha_src_factor = blend_rt->rgb_src_factor; 1637 blend_rt->alpha_dst_factor = blend_rt->rgb_dst_factor; 1638 } 1639 } 1640 1641 /* This value will be the same for all the variants of a given shader: 1642 */ 1643 key->nr_samplers = shader->info.base.file_max[TGSI_FILE_SAMPLER] + 1; 1644 1645 for(i = 0; i < key->nr_samplers; ++i) { 1646 if(shader->info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) { 1647 lp_sampler_static_state(&key->sampler[i], 1648 lp->sampler_views[PIPE_SHADER_FRAGMENT][i], 1649 lp->samplers[PIPE_SHADER_FRAGMENT][i]); 1650 } 1651 } 1652 } 1653 1654 1655 1656 /** 1657 * Update fragment shader state. This is called just prior to drawing 1658 * something when some fragment-related state has changed. 1659 */ 1660 void 1661 llvmpipe_update_fs(struct llvmpipe_context *lp) 1662 { 1663 struct lp_fragment_shader *shader = lp->fs; 1664 struct lp_fragment_shader_variant_key key; 1665 struct lp_fragment_shader_variant *variant = NULL; 1666 struct lp_fs_variant_list_item *li; 1667 1668 make_variant_key(lp, shader, &key); 1669 1670 /* Search the variants for one which matches the key */ 1671 li = first_elem(&shader->variants); 1672 while(!at_end(&shader->variants, li)) { 1673 if(memcmp(&li->base->key, &key, shader->variant_key_size) == 0) { 1674 variant = li->base; 1675 break; 1676 } 1677 li = next_elem(li); 1678 } 1679 1680 if (variant) { 1681 /* Move this variant to the head of the list to implement LRU 1682 * deletion of shader's when we have too many. 1683 */ 1684 move_to_head(&lp->fs_variants_list, &variant->list_item_global); 1685 } 1686 else { 1687 /* variant not found, create it now */ 1688 int64_t t0, t1, dt; 1689 unsigned i; 1690 unsigned variants_to_cull; 1691 1692 if (0) { 1693 debug_printf("%u variants,\t%u instrs,\t%u instrs/variant\n", 1694 lp->nr_fs_variants, 1695 lp->nr_fs_instrs, 1696 lp->nr_fs_variants ? lp->nr_fs_instrs / lp->nr_fs_variants : 0); 1697 } 1698 1699 /* First, check if we've exceeded the max number of shader variants. 1700 * If so, free 25% of them (the least recently used ones). 1701 */ 1702 variants_to_cull = lp->nr_fs_variants >= LP_MAX_SHADER_VARIANTS ? LP_MAX_SHADER_VARIANTS / 4 : 0; 1703 1704 if (variants_to_cull || 1705 lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS) { 1706 struct pipe_context *pipe = &lp->pipe; 1707 1708 /* 1709 * XXX: we need to flush the context until we have some sort of 1710 * reference counting in fragment shaders as they may still be binned 1711 * Flushing alone might not be sufficient we need to wait on it too. 1712 */ 1713 llvmpipe_finish(pipe, __FUNCTION__); 1714 1715 /* 1716 * We need to re-check lp->nr_fs_variants because an arbitrarliy large 1717 * number of shader variants (potentially all of them) could be 1718 * pending for destruction on flush. 1719 */ 1720 1721 for (i = 0; i < variants_to_cull || lp->nr_fs_instrs >= LP_MAX_SHADER_INSTRUCTIONS; i++) { 1722 struct lp_fs_variant_list_item *item; 1723 if (is_empty_list(&lp->fs_variants_list)) { 1724 break; 1725 } 1726 item = last_elem(&lp->fs_variants_list); 1727 assert(item); 1728 assert(item->base); 1729 llvmpipe_remove_shader_variant(lp, item->base); 1730 } 1731 } 1732 1733 /* 1734 * Generate the new variant. 1735 */ 1736 t0 = os_time_get(); 1737 variant = generate_variant(lp, shader, &key); 1738 t1 = os_time_get(); 1739 dt = t1 - t0; 1740 LP_COUNT_ADD(llvm_compile_time, dt); 1741 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */ 1742 1743 llvmpipe_variant_count++; 1744 1745 /* Put the new variant into the list */ 1746 if (variant) { 1747 insert_at_head(&shader->variants, &variant->list_item_local); 1748 insert_at_head(&lp->fs_variants_list, &variant->list_item_global); 1749 lp->nr_fs_variants++; 1750 lp->nr_fs_instrs += variant->nr_instrs; 1751 shader->variants_cached++; 1752 } 1753 } 1754 1755 /* Bind this variant */ 1756 lp_setup_set_fs_variant(lp->setup, variant); 1757 } 1758 1759 1760 1761 1762 1763 1764 1765 void 1766 llvmpipe_init_fs_funcs(struct llvmpipe_context *llvmpipe) 1767 { 1768 llvmpipe->pipe.create_fs_state = llvmpipe_create_fs_state; 1769 llvmpipe->pipe.bind_fs_state = llvmpipe_bind_fs_state; 1770 llvmpipe->pipe.delete_fs_state = llvmpipe_delete_fs_state; 1771 1772 llvmpipe->pipe.set_constant_buffer = llvmpipe_set_constant_buffer; 1773 } 1774