1 //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "MCTargetDesc/ARMMCTargetDesc.h" 11 #include "MCTargetDesc/ARMAddressingModes.h" 12 #include "MCTargetDesc/ARMAsmBackend.h" 13 #include "MCTargetDesc/ARMAsmBackendDarwin.h" 14 #include "MCTargetDesc/ARMAsmBackendELF.h" 15 #include "MCTargetDesc/ARMAsmBackendWinCOFF.h" 16 #include "MCTargetDesc/ARMBaseInfo.h" 17 #include "MCTargetDesc/ARMFixupKinds.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/MC/MCAsmBackend.h" 20 #include "llvm/MC/MCAssembler.h" 21 #include "llvm/MC/MCContext.h" 22 #include "llvm/MC/MCDirectives.h" 23 #include "llvm/MC/MCELFObjectWriter.h" 24 #include "llvm/MC/MCExpr.h" 25 #include "llvm/MC/MCFixupKindInfo.h" 26 #include "llvm/MC/MCMachObjectWriter.h" 27 #include "llvm/MC/MCObjectWriter.h" 28 #include "llvm/MC/MCRegisterInfo.h" 29 #include "llvm/MC/MCSectionELF.h" 30 #include "llvm/MC/MCSectionMachO.h" 31 #include "llvm/MC/MCSubtargetInfo.h" 32 #include "llvm/MC/MCValue.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ELF.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/Format.h" 37 #include "llvm/Support/MachO.h" 38 #include "llvm/Support/TargetParser.h" 39 #include "llvm/Support/raw_ostream.h" 40 using namespace llvm; 41 42 namespace { 43 class ARMELFObjectWriter : public MCELFObjectTargetWriter { 44 public: 45 ARMELFObjectWriter(uint8_t OSABI) 46 : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM, 47 /*HasRelocationAddend*/ false) {} 48 }; 49 50 const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const { 51 const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = { 52 // This table *must* be in the order that the fixup_* kinds are defined in 53 // ARMFixupKinds.h. 54 // 55 // Name Offset (bits) Size (bits) Flags 56 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 57 {"fixup_t2_ldst_pcrel_12", 0, 32, 58 MCFixupKindInfo::FKF_IsPCRel | 59 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 60 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 61 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 62 {"fixup_t2_pcrel_10", 0, 32, 63 MCFixupKindInfo::FKF_IsPCRel | 64 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 65 {"fixup_thumb_adr_pcrel_10", 0, 8, 66 MCFixupKindInfo::FKF_IsPCRel | 67 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 68 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 69 {"fixup_t2_adr_pcrel_12", 0, 32, 70 MCFixupKindInfo::FKF_IsPCRel | 71 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 72 {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 73 {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 74 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 75 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 76 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 77 {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 78 {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 79 {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel}, 80 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 81 {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 82 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 83 {"fixup_arm_thumb_cp", 0, 8, 84 MCFixupKindInfo::FKF_IsPCRel | 85 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 86 {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel}, 87 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 88 // - 19. 89 {"fixup_arm_movt_hi16", 0, 20, 0}, 90 {"fixup_arm_movw_lo16", 0, 20, 0}, 91 {"fixup_t2_movt_hi16", 0, 20, 0}, 92 {"fixup_t2_movw_lo16", 0, 20, 0}, 93 }; 94 const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = { 95 // This table *must* be in the order that the fixup_* kinds are defined in 96 // ARMFixupKinds.h. 97 // 98 // Name Offset (bits) Size (bits) Flags 99 {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 100 {"fixup_t2_ldst_pcrel_12", 0, 32, 101 MCFixupKindInfo::FKF_IsPCRel | 102 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 103 {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 104 {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 105 {"fixup_t2_pcrel_10", 0, 32, 106 MCFixupKindInfo::FKF_IsPCRel | 107 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 108 {"fixup_thumb_adr_pcrel_10", 8, 8, 109 MCFixupKindInfo::FKF_IsPCRel | 110 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 111 {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 112 {"fixup_t2_adr_pcrel_12", 0, 32, 113 MCFixupKindInfo::FKF_IsPCRel | 114 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 115 {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 116 {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 117 {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 118 {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 119 {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 120 {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 121 {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 122 {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel}, 123 {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 124 {"fixup_arm_thumb_blx", 0, 32, MCFixupKindInfo::FKF_IsPCRel}, 125 {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel}, 126 {"fixup_arm_thumb_cp", 8, 8, 127 MCFixupKindInfo::FKF_IsPCRel | 128 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits}, 129 {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel}, 130 // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16 131 // - 19. 132 {"fixup_arm_movt_hi16", 12, 20, 0}, 133 {"fixup_arm_movw_lo16", 12, 20, 0}, 134 {"fixup_t2_movt_hi16", 12, 20, 0}, 135 {"fixup_t2_movw_lo16", 12, 20, 0}, 136 }; 137 138 if (Kind < FirstTargetFixupKind) 139 return MCAsmBackend::getFixupKindInfo(Kind); 140 141 assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() && 142 "Invalid kind!"); 143 return (IsLittleEndian ? InfosLE : InfosBE)[Kind - FirstTargetFixupKind]; 144 } 145 146 void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) { 147 switch (Flag) { 148 default: 149 break; 150 case MCAF_Code16: 151 setIsThumb(true); 152 break; 153 case MCAF_Code32: 154 setIsThumb(false); 155 break; 156 } 157 } 158 } // end anonymous namespace 159 160 unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op) const { 161 bool HasThumb2 = STI->getFeatureBits()[ARM::FeatureThumb2]; 162 163 switch (Op) { 164 default: 165 return Op; 166 case ARM::tBcc: 167 return HasThumb2 ? (unsigned)ARM::t2Bcc : Op; 168 case ARM::tLDRpci: 169 return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op; 170 case ARM::tADR: 171 return HasThumb2 ? (unsigned)ARM::t2ADR : Op; 172 case ARM::tB: 173 return HasThumb2 ? (unsigned)ARM::t2B : Op; 174 case ARM::tCBZ: 175 return ARM::tHINT; 176 case ARM::tCBNZ: 177 return ARM::tHINT; 178 } 179 } 180 181 bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst) const { 182 if (getRelaxedOpcode(Inst.getOpcode()) != Inst.getOpcode()) 183 return true; 184 return false; 185 } 186 187 const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup, 188 uint64_t Value) const { 189 switch ((unsigned)Fixup.getKind()) { 190 case ARM::fixup_arm_thumb_br: { 191 // Relaxing tB to t2B. tB has a signed 12-bit displacement with the 192 // low bit being an implied zero. There's an implied +4 offset for the 193 // branch, so we adjust the other way here to determine what's 194 // encodable. 195 // 196 // Relax if the value is too big for a (signed) i8. 197 int64_t Offset = int64_t(Value) - 4; 198 if (Offset > 2046 || Offset < -2048) 199 return "out of range pc-relative fixup value"; 200 break; 201 } 202 case ARM::fixup_arm_thumb_bcc: { 203 // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the 204 // low bit being an implied zero. There's an implied +4 offset for the 205 // branch, so we adjust the other way here to determine what's 206 // encodable. 207 // 208 // Relax if the value is too big for a (signed) i8. 209 int64_t Offset = int64_t(Value) - 4; 210 if (Offset > 254 || Offset < -256) 211 return "out of range pc-relative fixup value"; 212 break; 213 } 214 case ARM::fixup_thumb_adr_pcrel_10: 215 case ARM::fixup_arm_thumb_cp: { 216 // If the immediate is negative, greater than 1020, or not a multiple 217 // of four, the wide version of the instruction must be used. 218 int64_t Offset = int64_t(Value) - 4; 219 if (Offset & 3) 220 return "misaligned pc-relative fixup value"; 221 else if (Offset > 1020 || Offset < 0) 222 return "out of range pc-relative fixup value"; 223 break; 224 } 225 case ARM::fixup_arm_thumb_cb: { 226 // If we have a Thumb CBZ or CBNZ instruction and its target is the next 227 // instruction it is is actually out of range for the instruction. 228 // It will be changed to a NOP. 229 int64_t Offset = (Value & ~1); 230 if (Offset == 2) 231 return "will be converted to nop"; 232 break; 233 } 234 default: 235 llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!"); 236 } 237 return nullptr; 238 } 239 240 bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value, 241 const MCRelaxableFragment *DF, 242 const MCAsmLayout &Layout) const { 243 return reasonForFixupRelaxation(Fixup, Value); 244 } 245 246 void ARMAsmBackend::relaxInstruction(const MCInst &Inst, MCInst &Res) const { 247 unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode()); 248 249 // Sanity check w/ diagnostic if we get here w/ a bogus instruction. 250 if (RelaxedOp == Inst.getOpcode()) { 251 SmallString<256> Tmp; 252 raw_svector_ostream OS(Tmp); 253 Inst.dump_pretty(OS); 254 OS << "\n"; 255 report_fatal_error("unexpected instruction to relax: " + OS.str()); 256 } 257 258 // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we 259 // have to change the operands too. 260 if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) && 261 RelaxedOp == ARM::tHINT) { 262 Res.setOpcode(RelaxedOp); 263 Res.addOperand(MCOperand::createImm(0)); 264 Res.addOperand(MCOperand::createImm(14)); 265 Res.addOperand(MCOperand::createReg(0)); 266 return; 267 } 268 269 // The rest of instructions we're relaxing have the same operands. 270 // We just need to update to the proper opcode. 271 Res = Inst; 272 Res.setOpcode(RelaxedOp); 273 } 274 275 bool ARMAsmBackend::writeNopData(uint64_t Count, MCObjectWriter *OW) const { 276 const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8 277 const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP 278 const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0 279 const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP 280 if (isThumb()) { 281 const uint16_t nopEncoding = 282 hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding; 283 uint64_t NumNops = Count / 2; 284 for (uint64_t i = 0; i != NumNops; ++i) 285 OW->write16(nopEncoding); 286 if (Count & 1) 287 OW->write8(0); 288 return true; 289 } 290 // ARM mode 291 const uint32_t nopEncoding = 292 hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding; 293 uint64_t NumNops = Count / 4; 294 for (uint64_t i = 0; i != NumNops; ++i) 295 OW->write32(nopEncoding); 296 // FIXME: should this function return false when unable to write exactly 297 // 'Count' bytes with NOP encodings? 298 switch (Count % 4) { 299 default: 300 break; // No leftover bytes to write 301 case 1: 302 OW->write8(0); 303 break; 304 case 2: 305 OW->write16(0); 306 break; 307 case 3: 308 OW->write16(0); 309 OW->write8(0xa0); 310 break; 311 } 312 313 return true; 314 } 315 316 static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) { 317 if (IsLittleEndian) { 318 // Note that the halfwords are stored high first and low second in thumb; 319 // so we need to swap the fixup value here to map properly. 320 uint32_t Swapped = (Value & 0xFFFF0000) >> 16; 321 Swapped |= (Value & 0x0000FFFF) << 16; 322 return Swapped; 323 } else 324 return Value; 325 } 326 327 static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf, 328 bool IsLittleEndian) { 329 uint32_t Value; 330 331 if (IsLittleEndian) { 332 Value = (SecondHalf & 0xFFFF) << 16; 333 Value |= (FirstHalf & 0xFFFF); 334 } else { 335 Value = (SecondHalf & 0xFFFF); 336 Value |= (FirstHalf & 0xFFFF) << 16; 337 } 338 339 return Value; 340 } 341 342 unsigned ARMAsmBackend::adjustFixupValue(const MCFixup &Fixup, uint64_t Value, 343 bool IsPCRel, MCContext *Ctx, 344 bool IsLittleEndian, 345 bool IsResolved) const { 346 unsigned Kind = Fixup.getKind(); 347 switch (Kind) { 348 default: 349 llvm_unreachable("Unknown fixup kind!"); 350 case FK_Data_1: 351 case FK_Data_2: 352 case FK_Data_4: 353 return Value; 354 case FK_SecRel_2: 355 return Value; 356 case FK_SecRel_4: 357 return Value; 358 case ARM::fixup_arm_movt_hi16: 359 if (!IsPCRel) 360 Value >>= 16; 361 // Fallthrough 362 case ARM::fixup_arm_movw_lo16: { 363 unsigned Hi4 = (Value & 0xF000) >> 12; 364 unsigned Lo12 = Value & 0x0FFF; 365 // inst{19-16} = Hi4; 366 // inst{11-0} = Lo12; 367 Value = (Hi4 << 16) | (Lo12); 368 return Value; 369 } 370 case ARM::fixup_t2_movt_hi16: 371 if (!IsPCRel) 372 Value >>= 16; 373 // Fallthrough 374 case ARM::fixup_t2_movw_lo16: { 375 unsigned Hi4 = (Value & 0xF000) >> 12; 376 unsigned i = (Value & 0x800) >> 11; 377 unsigned Mid3 = (Value & 0x700) >> 8; 378 unsigned Lo8 = Value & 0x0FF; 379 // inst{19-16} = Hi4; 380 // inst{26} = i; 381 // inst{14-12} = Mid3; 382 // inst{7-0} = Lo8; 383 Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8); 384 return swapHalfWords(Value, IsLittleEndian); 385 } 386 case ARM::fixup_arm_ldst_pcrel_12: 387 // ARM PC-relative values are offset by 8. 388 Value -= 4; 389 // FALLTHROUGH 390 case ARM::fixup_t2_ldst_pcrel_12: { 391 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 392 Value -= 4; 393 bool isAdd = true; 394 if ((int64_t)Value < 0) { 395 Value = -Value; 396 isAdd = false; 397 } 398 if (Ctx && Value >= 4096) { 399 Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 400 return 0; 401 } 402 Value |= isAdd << 23; 403 404 // Same addressing mode as fixup_arm_pcrel_10, 405 // but with 16-bit halfwords swapped. 406 if (Kind == ARM::fixup_t2_ldst_pcrel_12) 407 return swapHalfWords(Value, IsLittleEndian); 408 409 return Value; 410 } 411 case ARM::fixup_arm_adr_pcrel_12: { 412 // ARM PC-relative values are offset by 8. 413 Value -= 8; 414 unsigned opc = 4; // bits {24-21}. Default to add: 0b0100 415 if ((int64_t)Value < 0) { 416 Value = -Value; 417 opc = 2; // 0b0010 418 } 419 if (Ctx && ARM_AM::getSOImmVal(Value) == -1) { 420 Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 421 return 0; 422 } 423 // Encode the immediate and shift the opcode into place. 424 return ARM_AM::getSOImmVal(Value) | (opc << 21); 425 } 426 427 case ARM::fixup_t2_adr_pcrel_12: { 428 Value -= 4; 429 unsigned opc = 0; 430 if ((int64_t)Value < 0) { 431 Value = -Value; 432 opc = 5; 433 } 434 435 uint32_t out = (opc << 21); 436 out |= (Value & 0x800) << 15; 437 out |= (Value & 0x700) << 4; 438 out |= (Value & 0x0FF); 439 440 return swapHalfWords(out, IsLittleEndian); 441 } 442 443 case ARM::fixup_arm_condbranch: 444 case ARM::fixup_arm_uncondbranch: 445 case ARM::fixup_arm_uncondbl: 446 case ARM::fixup_arm_condbl: 447 case ARM::fixup_arm_blx: 448 // These values don't encode the low two bits since they're always zero. 449 // Offset by 8 just as above. 450 if (const MCSymbolRefExpr *SRE = 451 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 452 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL) 453 return 0; 454 return 0xffffff & ((Value - 8) >> 2); 455 case ARM::fixup_t2_uncondbranch: { 456 Value = Value - 4; 457 Value >>= 1; // Low bit is not encoded. 458 459 uint32_t out = 0; 460 bool I = Value & 0x800000; 461 bool J1 = Value & 0x400000; 462 bool J2 = Value & 0x200000; 463 J1 ^= I; 464 J2 ^= I; 465 466 out |= I << 26; // S bit 467 out |= !J1 << 13; // J1 bit 468 out |= !J2 << 11; // J2 bit 469 out |= (Value & 0x1FF800) << 5; // imm6 field 470 out |= (Value & 0x0007FF); // imm11 field 471 472 return swapHalfWords(out, IsLittleEndian); 473 } 474 case ARM::fixup_t2_condbranch: { 475 Value = Value - 4; 476 Value >>= 1; // Low bit is not encoded. 477 478 uint64_t out = 0; 479 out |= (Value & 0x80000) << 7; // S bit 480 out |= (Value & 0x40000) >> 7; // J2 bit 481 out |= (Value & 0x20000) >> 4; // J1 bit 482 out |= (Value & 0x1F800) << 5; // imm6 field 483 out |= (Value & 0x007FF); // imm11 field 484 485 return swapHalfWords(out, IsLittleEndian); 486 } 487 case ARM::fixup_arm_thumb_bl: { 488 // The value doesn't encode the low bit (always zero) and is offset by 489 // four. The 32-bit immediate value is encoded as 490 // imm32 = SignExtend(S:I1:I2:imm10:imm11:0) 491 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 492 // The value is encoded into disjoint bit positions in the destination 493 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 494 // J = either J1 or J2 bit 495 // 496 // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII 497 // 498 // Note that the halfwords are stored high first, low second; so we need 499 // to transpose the fixup value here to map properly. 500 uint32_t offset = (Value - 4) >> 1; 501 uint32_t signBit = (offset & 0x800000) >> 23; 502 uint32_t I1Bit = (offset & 0x400000) >> 22; 503 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 504 uint32_t I2Bit = (offset & 0x200000) >> 21; 505 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 506 uint32_t imm10Bits = (offset & 0x1FF800) >> 11; 507 uint32_t imm11Bits = (offset & 0x000007FF); 508 509 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits); 510 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 511 (uint16_t)imm11Bits); 512 return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); 513 } 514 case ARM::fixup_arm_thumb_blx: { 515 // The value doesn't encode the low two bits (always zero) and is offset by 516 // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as 517 // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00) 518 // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S). 519 // The value is encoded into disjoint bit positions in the destination 520 // opcode. x = unchanged, I = immediate value bit, S = sign extension bit, 521 // J = either J1 or J2 bit, 0 = zero. 522 // 523 // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0 524 // 525 // Note that the halfwords are stored high first, low second; so we need 526 // to transpose the fixup value here to map properly. 527 uint32_t offset = (Value - 2) >> 2; 528 if (const MCSymbolRefExpr *SRE = 529 dyn_cast<MCSymbolRefExpr>(Fixup.getValue())) 530 if (SRE->getKind() == MCSymbolRefExpr::VK_ARM_TLSCALL) 531 offset = 0; 532 uint32_t signBit = (offset & 0x400000) >> 22; 533 uint32_t I1Bit = (offset & 0x200000) >> 21; 534 uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit; 535 uint32_t I2Bit = (offset & 0x100000) >> 20; 536 uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit; 537 uint32_t imm10HBits = (offset & 0xFFC00) >> 10; 538 uint32_t imm10LBits = (offset & 0x3FF); 539 540 uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits); 541 uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) | 542 ((uint16_t)imm10LBits) << 1); 543 return joinHalfWords(FirstHalf, SecondHalf, IsLittleEndian); 544 } 545 case ARM::fixup_thumb_adr_pcrel_10: 546 case ARM::fixup_arm_thumb_cp: 547 // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we 548 // could have an error on our hands. 549 if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) { 550 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 551 if (FixupDiagnostic) { 552 Ctx->reportError(Fixup.getLoc(), FixupDiagnostic); 553 return 0; 554 } 555 } 556 // Offset by 4, and don't encode the low two bits. 557 return ((Value - 4) >> 2) & 0xff; 558 case ARM::fixup_arm_thumb_cb: { 559 // Offset by 4 and don't encode the lower bit, which is always 0. 560 // FIXME: diagnose if no Thumb2 561 uint32_t Binary = (Value - 4) >> 1; 562 return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3); 563 } 564 case ARM::fixup_arm_thumb_br: 565 // Offset by 4 and don't encode the lower bit, which is always 0. 566 if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) { 567 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 568 if (FixupDiagnostic) { 569 Ctx->reportError(Fixup.getLoc(), FixupDiagnostic); 570 return 0; 571 } 572 } 573 return ((Value - 4) >> 1) & 0x7ff; 574 case ARM::fixup_arm_thumb_bcc: 575 // Offset by 4 and don't encode the lower bit, which is always 0. 576 if (Ctx && !STI->getFeatureBits()[ARM::FeatureThumb2]) { 577 const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value); 578 if (FixupDiagnostic) { 579 Ctx->reportError(Fixup.getLoc(), FixupDiagnostic); 580 return 0; 581 } 582 } 583 return ((Value - 4) >> 1) & 0xff; 584 case ARM::fixup_arm_pcrel_10_unscaled: { 585 Value = Value - 8; // ARM fixups offset by an additional word and don't 586 // need to adjust for the half-word ordering. 587 bool isAdd = true; 588 if ((int64_t)Value < 0) { 589 Value = -Value; 590 isAdd = false; 591 } 592 // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8]. 593 if (Ctx && Value >= 256) { 594 Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 595 return 0; 596 } 597 Value = (Value & 0xf) | ((Value & 0xf0) << 4); 598 return Value | (isAdd << 23); 599 } 600 case ARM::fixup_arm_pcrel_10: 601 Value = Value - 4; // ARM fixups offset by an additional word and don't 602 // need to adjust for the half-word ordering. 603 // Fall through. 604 case ARM::fixup_t2_pcrel_10: { 605 // Offset by 4, adjusted by two due to the half-word ordering of thumb. 606 Value = Value - 4; 607 bool isAdd = true; 608 if ((int64_t)Value < 0) { 609 Value = -Value; 610 isAdd = false; 611 } 612 // These values don't encode the low two bits since they're always zero. 613 Value >>= 2; 614 if (Ctx && Value >= 256) { 615 Ctx->reportError(Fixup.getLoc(), "out of range pc-relative fixup value"); 616 return 0; 617 } 618 Value |= isAdd << 23; 619 620 // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords 621 // swapped. 622 if (Kind == ARM::fixup_t2_pcrel_10) 623 return swapHalfWords(Value, IsLittleEndian); 624 625 return Value; 626 } 627 } 628 } 629 630 void ARMAsmBackend::processFixupValue(const MCAssembler &Asm, 631 const MCAsmLayout &Layout, 632 const MCFixup &Fixup, 633 const MCFragment *DF, 634 const MCValue &Target, uint64_t &Value, 635 bool &IsResolved) { 636 const MCSymbolRefExpr *A = Target.getSymA(); 637 const MCSymbol *Sym = A ? &A->getSymbol() : nullptr; 638 // Some fixups to thumb function symbols need the low bit (thumb bit) 639 // twiddled. 640 if ((unsigned)Fixup.getKind() != ARM::fixup_arm_ldst_pcrel_12 && 641 (unsigned)Fixup.getKind() != ARM::fixup_t2_ldst_pcrel_12 && 642 (unsigned)Fixup.getKind() != ARM::fixup_arm_adr_pcrel_12 && 643 (unsigned)Fixup.getKind() != ARM::fixup_thumb_adr_pcrel_10 && 644 (unsigned)Fixup.getKind() != ARM::fixup_t2_adr_pcrel_12 && 645 (unsigned)Fixup.getKind() != ARM::fixup_arm_thumb_cp) { 646 if (Sym) { 647 if (Asm.isThumbFunc(Sym)) 648 Value |= 1; 649 } 650 } 651 if (IsResolved && (unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) { 652 assert(Sym && "How did we resolve this?"); 653 654 // If the symbol is external the linker will handle it. 655 // FIXME: Should we handle it as an optimization? 656 657 // If the symbol is out of range, produce a relocation and hope the 658 // linker can handle it. GNU AS produces an error in this case. 659 if (Sym->isExternal() || Value >= 0x400004) 660 IsResolved = false; 661 } 662 // We must always generate a relocation for BL/BLX instructions if we have 663 // a symbol to reference, as the linker relies on knowing the destination 664 // symbol's thumb-ness to get interworking right. 665 if (A && ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_blx || 666 (unsigned)Fixup.getKind() == ARM::fixup_arm_blx || 667 (unsigned)Fixup.getKind() == ARM::fixup_arm_uncondbl || 668 (unsigned)Fixup.getKind() == ARM::fixup_arm_condbl)) 669 IsResolved = false; 670 671 // Try to get the encoded value for the fixup as-if we're mapping it into 672 // the instruction. This allows adjustFixupValue() to issue a diagnostic 673 // if the value aren't invalid. 674 (void)adjustFixupValue(Fixup, Value, false, &Asm.getContext(), 675 IsLittleEndian, IsResolved); 676 } 677 678 /// getFixupKindNumBytes - The number of bytes the fixup may change. 679 static unsigned getFixupKindNumBytes(unsigned Kind) { 680 switch (Kind) { 681 default: 682 llvm_unreachable("Unknown fixup kind!"); 683 684 case FK_Data_1: 685 case ARM::fixup_arm_thumb_bcc: 686 case ARM::fixup_arm_thumb_cp: 687 case ARM::fixup_thumb_adr_pcrel_10: 688 return 1; 689 690 case FK_Data_2: 691 case ARM::fixup_arm_thumb_br: 692 case ARM::fixup_arm_thumb_cb: 693 return 2; 694 695 case ARM::fixup_arm_pcrel_10_unscaled: 696 case ARM::fixup_arm_ldst_pcrel_12: 697 case ARM::fixup_arm_pcrel_10: 698 case ARM::fixup_arm_adr_pcrel_12: 699 case ARM::fixup_arm_uncondbl: 700 case ARM::fixup_arm_condbl: 701 case ARM::fixup_arm_blx: 702 case ARM::fixup_arm_condbranch: 703 case ARM::fixup_arm_uncondbranch: 704 return 3; 705 706 case FK_Data_4: 707 case ARM::fixup_t2_ldst_pcrel_12: 708 case ARM::fixup_t2_condbranch: 709 case ARM::fixup_t2_uncondbranch: 710 case ARM::fixup_t2_pcrel_10: 711 case ARM::fixup_t2_adr_pcrel_12: 712 case ARM::fixup_arm_thumb_bl: 713 case ARM::fixup_arm_thumb_blx: 714 case ARM::fixup_arm_movt_hi16: 715 case ARM::fixup_arm_movw_lo16: 716 case ARM::fixup_t2_movt_hi16: 717 case ARM::fixup_t2_movw_lo16: 718 return 4; 719 720 case FK_SecRel_2: 721 return 2; 722 case FK_SecRel_4: 723 return 4; 724 } 725 } 726 727 /// getFixupKindContainerSizeBytes - The number of bytes of the 728 /// container involved in big endian. 729 static unsigned getFixupKindContainerSizeBytes(unsigned Kind) { 730 switch (Kind) { 731 default: 732 llvm_unreachable("Unknown fixup kind!"); 733 734 case FK_Data_1: 735 return 1; 736 case FK_Data_2: 737 return 2; 738 case FK_Data_4: 739 return 4; 740 741 case ARM::fixup_arm_thumb_bcc: 742 case ARM::fixup_arm_thumb_cp: 743 case ARM::fixup_thumb_adr_pcrel_10: 744 case ARM::fixup_arm_thumb_br: 745 case ARM::fixup_arm_thumb_cb: 746 // Instruction size is 2 bytes. 747 return 2; 748 749 case ARM::fixup_arm_pcrel_10_unscaled: 750 case ARM::fixup_arm_ldst_pcrel_12: 751 case ARM::fixup_arm_pcrel_10: 752 case ARM::fixup_arm_adr_pcrel_12: 753 case ARM::fixup_arm_uncondbl: 754 case ARM::fixup_arm_condbl: 755 case ARM::fixup_arm_blx: 756 case ARM::fixup_arm_condbranch: 757 case ARM::fixup_arm_uncondbranch: 758 case ARM::fixup_t2_ldst_pcrel_12: 759 case ARM::fixup_t2_condbranch: 760 case ARM::fixup_t2_uncondbranch: 761 case ARM::fixup_t2_pcrel_10: 762 case ARM::fixup_t2_adr_pcrel_12: 763 case ARM::fixup_arm_thumb_bl: 764 case ARM::fixup_arm_thumb_blx: 765 case ARM::fixup_arm_movt_hi16: 766 case ARM::fixup_arm_movw_lo16: 767 case ARM::fixup_t2_movt_hi16: 768 case ARM::fixup_t2_movw_lo16: 769 // Instruction size is 4 bytes. 770 return 4; 771 } 772 } 773 774 void ARMAsmBackend::applyFixup(const MCFixup &Fixup, char *Data, 775 unsigned DataSize, uint64_t Value, 776 bool IsPCRel) const { 777 unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind()); 778 Value = 779 adjustFixupValue(Fixup, Value, IsPCRel, nullptr, IsLittleEndian, true); 780 if (!Value) 781 return; // Doesn't change encoding. 782 783 unsigned Offset = Fixup.getOffset(); 784 assert(Offset + NumBytes <= DataSize && "Invalid fixup offset!"); 785 786 // Used to point to big endian bytes. 787 unsigned FullSizeBytes; 788 if (!IsLittleEndian) { 789 FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind()); 790 assert((Offset + FullSizeBytes) <= DataSize && "Invalid fixup size!"); 791 assert(NumBytes <= FullSizeBytes && "Invalid fixup size!"); 792 } 793 794 // For each byte of the fragment that the fixup touches, mask in the bits from 795 // the fixup value. The Value has been "split up" into the appropriate 796 // bitfields above. 797 for (unsigned i = 0; i != NumBytes; ++i) { 798 unsigned Idx = IsLittleEndian ? i : (FullSizeBytes - 1 - i); 799 Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff); 800 } 801 } 802 803 namespace CU { 804 805 /// \brief Compact unwind encoding values. 806 enum CompactUnwindEncodings { 807 UNWIND_ARM_MODE_MASK = 0x0F000000, 808 UNWIND_ARM_MODE_FRAME = 0x01000000, 809 UNWIND_ARM_MODE_FRAME_D = 0x02000000, 810 UNWIND_ARM_MODE_DWARF = 0x04000000, 811 812 UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000, 813 814 UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001, 815 UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002, 816 UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004, 817 818 UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008, 819 UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010, 820 UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020, 821 UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040, 822 UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080, 823 824 UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00, 825 826 UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF 827 }; 828 829 } // end CU namespace 830 831 /// Generate compact unwind encoding for the function based on the CFI 832 /// instructions. If the CFI instructions describe a frame that cannot be 833 /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which 834 /// tells the runtime to fallback and unwind using dwarf. 835 uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding( 836 ArrayRef<MCCFIInstruction> Instrs) const { 837 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n"); 838 // Only armv7k uses CFI based unwinding. 839 if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K) 840 return 0; 841 // No .cfi directives means no frame. 842 if (Instrs.empty()) 843 return 0; 844 // Start off assuming CFA is at SP+0. 845 int CFARegister = ARM::SP; 846 int CFARegisterOffset = 0; 847 // Mark savable registers as initially unsaved 848 DenseMap<unsigned, int> RegOffsets; 849 int FloatRegCount = 0; 850 // Process each .cfi directive and build up compact unwind info. 851 for (size_t i = 0, e = Instrs.size(); i != e; ++i) { 852 int Reg; 853 const MCCFIInstruction &Inst = Instrs[i]; 854 switch (Inst.getOperation()) { 855 case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa 856 CFARegisterOffset = -Inst.getOffset(); 857 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 858 break; 859 case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset 860 CFARegisterOffset = -Inst.getOffset(); 861 break; 862 case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register 863 CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true); 864 break; 865 case MCCFIInstruction::OpOffset: // DW_CFA_offset 866 Reg = MRI.getLLVMRegNum(Inst.getRegister(), true); 867 if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg)) 868 RegOffsets[Reg] = Inst.getOffset(); 869 else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) { 870 RegOffsets[Reg] = Inst.getOffset(); 871 ++FloatRegCount; 872 } else { 873 DEBUG_WITH_TYPE("compact-unwind", 874 llvm::dbgs() << ".cfi_offset on unknown register=" 875 << Inst.getRegister() << "\n"); 876 return CU::UNWIND_ARM_MODE_DWARF; 877 } 878 break; 879 case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc 880 // Ignore 881 break; 882 default: 883 // Directive not convertable to compact unwind, bail out. 884 DEBUG_WITH_TYPE("compact-unwind", 885 llvm::dbgs() 886 << "CFI directive not compatiable with comact " 887 "unwind encoding, opcode=" << Inst.getOperation() 888 << "\n"); 889 return CU::UNWIND_ARM_MODE_DWARF; 890 break; 891 } 892 } 893 894 // If no frame set up, return no unwind info. 895 if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0)) 896 return 0; 897 898 // Verify standard frame (lr/r7) was used. 899 if (CFARegister != ARM::R7) { 900 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is " 901 << CFARegister 902 << " instead of r7\n"); 903 return CU::UNWIND_ARM_MODE_DWARF; 904 } 905 int StackAdjust = CFARegisterOffset - 8; 906 if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) { 907 DEBUG_WITH_TYPE("compact-unwind", 908 llvm::dbgs() 909 << "LR not saved as standard frame, StackAdjust=" 910 << StackAdjust 911 << ", CFARegisterOffset=" << CFARegisterOffset 912 << ", lr save at offset=" << RegOffsets[14] << "\n"); 913 return CU::UNWIND_ARM_MODE_DWARF; 914 } 915 if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) { 916 DEBUG_WITH_TYPE("compact-unwind", 917 llvm::dbgs() << "r7 not saved as standard frame\n"); 918 return CU::UNWIND_ARM_MODE_DWARF; 919 } 920 uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME; 921 922 // If var-args are used, there may be a stack adjust required. 923 switch (StackAdjust) { 924 case 0: 925 break; 926 case 4: 927 CompactUnwindEncoding |= 0x00400000; 928 break; 929 case 8: 930 CompactUnwindEncoding |= 0x00800000; 931 break; 932 case 12: 933 CompactUnwindEncoding |= 0x00C00000; 934 break; 935 default: 936 DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() 937 << ".cfi_def_cfa stack adjust (" 938 << StackAdjust << ") out of range\n"); 939 return CU::UNWIND_ARM_MODE_DWARF; 940 } 941 942 // If r6 is saved, it must be right below r7. 943 static struct { 944 unsigned Reg; 945 unsigned Encoding; 946 } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6}, 947 {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5}, 948 {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4}, 949 {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12}, 950 {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11}, 951 {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10}, 952 {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9}, 953 {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}}; 954 955 int CurOffset = -8 - StackAdjust; 956 for (auto CSReg : GPRCSRegs) { 957 auto Offset = RegOffsets.find(CSReg.Reg); 958 if (Offset == RegOffsets.end()) 959 continue; 960 961 int RegOffset = Offset->second; 962 if (RegOffset != CurOffset - 4) { 963 DEBUG_WITH_TYPE("compact-unwind", 964 llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at " 965 << RegOffset << " but only supported at " 966 << CurOffset << "\n"); 967 return CU::UNWIND_ARM_MODE_DWARF; 968 } 969 CompactUnwindEncoding |= CSReg.Encoding; 970 CurOffset -= 4; 971 } 972 973 // If no floats saved, we are done. 974 if (FloatRegCount == 0) 975 return CompactUnwindEncoding; 976 977 // Switch mode to include D register saving. 978 CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK; 979 CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D; 980 981 // FIXME: supporting more than 4 saved D-registers compactly would be trivial, 982 // but needs coordination with the linker and libunwind. 983 if (FloatRegCount > 4) { 984 DEBUG_WITH_TYPE("compact-unwind", 985 llvm::dbgs() << "unsupported number of D registers saved (" 986 << FloatRegCount << ")\n"); 987 return CU::UNWIND_ARM_MODE_DWARF; 988 } 989 990 // Floating point registers must either be saved sequentially, or we defer to 991 // DWARF. No gaps allowed here so check that each saved d-register is 992 // precisely where it should be. 993 static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 }; 994 for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) { 995 auto Offset = RegOffsets.find(FPRCSRegs[Idx]); 996 if (Offset == RegOffsets.end()) { 997 DEBUG_WITH_TYPE("compact-unwind", 998 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 999 << MRI.getName(FPRCSRegs[Idx]) 1000 << " not saved\n"); 1001 return CU::UNWIND_ARM_MODE_DWARF; 1002 } else if (Offset->second != CurOffset - 8) { 1003 DEBUG_WITH_TYPE("compact-unwind", 1004 llvm::dbgs() << FloatRegCount << " D-regs saved, but " 1005 << MRI.getName(FPRCSRegs[Idx]) 1006 << " saved at " << Offset->second 1007 << ", expected at " << CurOffset - 8 1008 << "\n"); 1009 return CU::UNWIND_ARM_MODE_DWARF; 1010 } 1011 CurOffset -= 8; 1012 } 1013 1014 return CompactUnwindEncoding | ((FloatRegCount - 1) << 8); 1015 } 1016 1017 static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) { 1018 unsigned AK = ARM::parseArch(Arch); 1019 switch (AK) { 1020 default: 1021 return MachO::CPU_SUBTYPE_ARM_V7; 1022 case ARM::AK_ARMV4T: 1023 return MachO::CPU_SUBTYPE_ARM_V4T; 1024 case ARM::AK_ARMV5T: 1025 case ARM::AK_ARMV5TE: 1026 case ARM::AK_ARMV5TEJ: 1027 return MachO::CPU_SUBTYPE_ARM_V5; 1028 case ARM::AK_ARMV6: 1029 case ARM::AK_ARMV6K: 1030 return MachO::CPU_SUBTYPE_ARM_V6; 1031 case ARM::AK_ARMV7A: 1032 return MachO::CPU_SUBTYPE_ARM_V7; 1033 case ARM::AK_ARMV7S: 1034 return MachO::CPU_SUBTYPE_ARM_V7S; 1035 case ARM::AK_ARMV7K: 1036 return MachO::CPU_SUBTYPE_ARM_V7K; 1037 case ARM::AK_ARMV6M: 1038 return MachO::CPU_SUBTYPE_ARM_V6M; 1039 case ARM::AK_ARMV7M: 1040 return MachO::CPU_SUBTYPE_ARM_V7M; 1041 case ARM::AK_ARMV7EM: 1042 return MachO::CPU_SUBTYPE_ARM_V7EM; 1043 } 1044 } 1045 1046 MCAsmBackend *llvm::createARMAsmBackend(const Target &T, 1047 const MCRegisterInfo &MRI, 1048 const Triple &TheTriple, StringRef CPU, 1049 bool isLittle) { 1050 switch (TheTriple.getObjectFormat()) { 1051 default: 1052 llvm_unreachable("unsupported object format"); 1053 case Triple::MachO: { 1054 MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName()); 1055 return new ARMAsmBackendDarwin(T, TheTriple, MRI, CS); 1056 } 1057 case Triple::COFF: 1058 assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported"); 1059 return new ARMAsmBackendWinCOFF(T, TheTriple); 1060 case Triple::ELF: 1061 assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target"); 1062 uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS()); 1063 return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle); 1064 } 1065 } 1066 1067 MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T, 1068 const MCRegisterInfo &MRI, 1069 const Triple &TT, StringRef CPU) { 1070 return createARMAsmBackend(T, MRI, TT, CPU, true); 1071 } 1072 1073 MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T, 1074 const MCRegisterInfo &MRI, 1075 const Triple &TT, StringRef CPU) { 1076 return createARMAsmBackend(T, MRI, TT, CPU, false); 1077 } 1078 1079 MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T, 1080 const MCRegisterInfo &MRI, 1081 const Triple &TT, StringRef CPU) { 1082 return createARMAsmBackend(T, MRI, TT, CPU, true); 1083 } 1084 1085 MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T, 1086 const MCRegisterInfo &MRI, 1087 const Triple &TT, StringRef CPU) { 1088 return createARMAsmBackend(T, MRI, TT, CPU, false); 1089 } 1090