Home | History | Annotate | Download | only in Scalar
      1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a trivial dead store elimination that only considers
     11 // basic-block local redundant stores.
     12 //
     13 // FIXME: This should eventually be extended to be a post-dominator tree
     14 // traversal.  Doing so would be pretty trivial.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/Scalar.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/Analysis/CaptureTracking.h"
     24 #include "llvm/Analysis/GlobalsModRef.h"
     25 #include "llvm/Analysis/MemoryBuiltins.h"
     26 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     27 #include "llvm/Analysis/TargetLibraryInfo.h"
     28 #include "llvm/Analysis/ValueTracking.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/GlobalVariable.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/Pass.h"
     37 #include "llvm/Support/Debug.h"
     38 #include "llvm/Support/raw_ostream.h"
     39 #include "llvm/Transforms/Utils/Local.h"
     40 using namespace llvm;
     41 
     42 #define DEBUG_TYPE "dse"
     43 
     44 STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
     45 STATISTIC(NumFastStores, "Number of stores deleted");
     46 STATISTIC(NumFastOther , "Number of other instrs removed");
     47 
     48 namespace {
     49   struct DSE : public FunctionPass {
     50     AliasAnalysis *AA;
     51     MemoryDependenceAnalysis *MD;
     52     DominatorTree *DT;
     53     const TargetLibraryInfo *TLI;
     54 
     55     static char ID; // Pass identification, replacement for typeid
     56     DSE() : FunctionPass(ID), AA(nullptr), MD(nullptr), DT(nullptr) {
     57       initializeDSEPass(*PassRegistry::getPassRegistry());
     58     }
     59 
     60     bool runOnFunction(Function &F) override {
     61       if (skipOptnoneFunction(F))
     62         return false;
     63 
     64       AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
     65       MD = &getAnalysis<MemoryDependenceAnalysis>();
     66       DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
     67       TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
     68 
     69       bool Changed = false;
     70       for (BasicBlock &I : F)
     71         // Only check non-dead blocks.  Dead blocks may have strange pointer
     72         // cycles that will confuse alias analysis.
     73         if (DT->isReachableFromEntry(&I))
     74           Changed |= runOnBasicBlock(I);
     75 
     76       AA = nullptr; MD = nullptr; DT = nullptr;
     77       return Changed;
     78     }
     79 
     80     bool runOnBasicBlock(BasicBlock &BB);
     81     bool MemoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI);
     82     bool HandleFree(CallInst *F);
     83     bool handleEndBlock(BasicBlock &BB);
     84     void RemoveAccessedObjects(const MemoryLocation &LoadedLoc,
     85                                SmallSetVector<Value *, 16> &DeadStackObjects,
     86                                const DataLayout &DL);
     87 
     88     void getAnalysisUsage(AnalysisUsage &AU) const override {
     89       AU.setPreservesCFG();
     90       AU.addRequired<DominatorTreeWrapperPass>();
     91       AU.addRequired<AAResultsWrapperPass>();
     92       AU.addRequired<MemoryDependenceAnalysis>();
     93       AU.addRequired<TargetLibraryInfoWrapperPass>();
     94       AU.addPreserved<DominatorTreeWrapperPass>();
     95       AU.addPreserved<GlobalsAAWrapperPass>();
     96       AU.addPreserved<MemoryDependenceAnalysis>();
     97     }
     98   };
     99 }
    100 
    101 char DSE::ID = 0;
    102 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
    103 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    104 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    105 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
    106 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    107 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    108 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
    109 
    110 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
    111 
    112 //===----------------------------------------------------------------------===//
    113 // Helper functions
    114 //===----------------------------------------------------------------------===//
    115 
    116 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
    117 /// and zero out all the operands of this instruction.  If any of them become
    118 /// dead, delete them and the computation tree that feeds them.
    119 ///
    120 /// If ValueSet is non-null, remove any deleted instructions from it as well.
    121 ///
    122 static void DeleteDeadInstruction(Instruction *I,
    123                                MemoryDependenceAnalysis &MD,
    124                                const TargetLibraryInfo &TLI,
    125                                SmallSetVector<Value*, 16> *ValueSet = nullptr) {
    126   SmallVector<Instruction*, 32> NowDeadInsts;
    127 
    128   NowDeadInsts.push_back(I);
    129   --NumFastOther;
    130 
    131   // Before we touch this instruction, remove it from memdep!
    132   do {
    133     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    134     ++NumFastOther;
    135 
    136     // This instruction is dead, zap it, in stages.  Start by removing it from
    137     // MemDep, which needs to know the operands and needs it to be in the
    138     // function.
    139     MD.removeInstruction(DeadInst);
    140 
    141     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    142       Value *Op = DeadInst->getOperand(op);
    143       DeadInst->setOperand(op, nullptr);
    144 
    145       // If this operand just became dead, add it to the NowDeadInsts list.
    146       if (!Op->use_empty()) continue;
    147 
    148       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    149         if (isInstructionTriviallyDead(OpI, &TLI))
    150           NowDeadInsts.push_back(OpI);
    151     }
    152 
    153     DeadInst->eraseFromParent();
    154 
    155     if (ValueSet) ValueSet->remove(DeadInst);
    156   } while (!NowDeadInsts.empty());
    157 }
    158 
    159 
    160 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
    161 /// true for things that we can analyze with other helpers below.
    162 static bool hasMemoryWrite(Instruction *I, const TargetLibraryInfo &TLI) {
    163   if (isa<StoreInst>(I))
    164     return true;
    165   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    166     switch (II->getIntrinsicID()) {
    167     default:
    168       return false;
    169     case Intrinsic::memset:
    170     case Intrinsic::memmove:
    171     case Intrinsic::memcpy:
    172     case Intrinsic::init_trampoline:
    173     case Intrinsic::lifetime_end:
    174       return true;
    175     }
    176   }
    177   if (auto CS = CallSite(I)) {
    178     if (Function *F = CS.getCalledFunction()) {
    179       if (TLI.has(LibFunc::strcpy) &&
    180           F->getName() == TLI.getName(LibFunc::strcpy)) {
    181         return true;
    182       }
    183       if (TLI.has(LibFunc::strncpy) &&
    184           F->getName() == TLI.getName(LibFunc::strncpy)) {
    185         return true;
    186       }
    187       if (TLI.has(LibFunc::strcat) &&
    188           F->getName() == TLI.getName(LibFunc::strcat)) {
    189         return true;
    190       }
    191       if (TLI.has(LibFunc::strncat) &&
    192           F->getName() == TLI.getName(LibFunc::strncat)) {
    193         return true;
    194       }
    195     }
    196   }
    197   return false;
    198 }
    199 
    200 /// getLocForWrite - Return a Location stored to by the specified instruction.
    201 /// If isRemovable returns true, this function and getLocForRead completely
    202 /// describe the memory operations for this instruction.
    203 static MemoryLocation getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
    204   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    205     return MemoryLocation::get(SI);
    206 
    207   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
    208     // memcpy/memmove/memset.
    209     MemoryLocation Loc = MemoryLocation::getForDest(MI);
    210     return Loc;
    211   }
    212 
    213   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    214   if (!II)
    215     return MemoryLocation();
    216 
    217   switch (II->getIntrinsicID()) {
    218   default:
    219     return MemoryLocation(); // Unhandled intrinsic.
    220   case Intrinsic::init_trampoline:
    221     // FIXME: We don't know the size of the trampoline, so we can't really
    222     // handle it here.
    223     return MemoryLocation(II->getArgOperand(0));
    224   case Intrinsic::lifetime_end: {
    225     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    226     return MemoryLocation(II->getArgOperand(1), Len);
    227   }
    228   }
    229 }
    230 
    231 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
    232 /// instruction if any.
    233 static MemoryLocation getLocForRead(Instruction *Inst,
    234                                     const TargetLibraryInfo &TLI) {
    235   assert(hasMemoryWrite(Inst, TLI) && "Unknown instruction case");
    236 
    237   // The only instructions that both read and write are the mem transfer
    238   // instructions (memcpy/memmove).
    239   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
    240     return MemoryLocation::getForSource(MTI);
    241   return MemoryLocation();
    242 }
    243 
    244 
    245 /// isRemovable - If the value of this instruction and the memory it writes to
    246 /// is unused, may we delete this instruction?
    247 static bool isRemovable(Instruction *I) {
    248   // Don't remove volatile/atomic stores.
    249   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    250     return SI->isUnordered();
    251 
    252   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    253     switch (II->getIntrinsicID()) {
    254     default: llvm_unreachable("doesn't pass 'hasMemoryWrite' predicate");
    255     case Intrinsic::lifetime_end:
    256       // Never remove dead lifetime_end's, e.g. because it is followed by a
    257       // free.
    258       return false;
    259     case Intrinsic::init_trampoline:
    260       // Always safe to remove init_trampoline.
    261       return true;
    262 
    263     case Intrinsic::memset:
    264     case Intrinsic::memmove:
    265     case Intrinsic::memcpy:
    266       // Don't remove volatile memory intrinsics.
    267       return !cast<MemIntrinsic>(II)->isVolatile();
    268     }
    269   }
    270 
    271   if (auto CS = CallSite(I))
    272     return CS.getInstruction()->use_empty();
    273 
    274   return false;
    275 }
    276 
    277 
    278 /// isShortenable - Returns true if this instruction can be safely shortened in
    279 /// length.
    280 static bool isShortenable(Instruction *I) {
    281   // Don't shorten stores for now
    282   if (isa<StoreInst>(I))
    283     return false;
    284 
    285   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    286     switch (II->getIntrinsicID()) {
    287       default: return false;
    288       case Intrinsic::memset:
    289       case Intrinsic::memcpy:
    290         // Do shorten memory intrinsics.
    291         return true;
    292     }
    293   }
    294 
    295   // Don't shorten libcalls calls for now.
    296 
    297   return false;
    298 }
    299 
    300 /// getStoredPointerOperand - Return the pointer that is being written to.
    301 static Value *getStoredPointerOperand(Instruction *I) {
    302   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    303     return SI->getPointerOperand();
    304   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    305     return MI->getDest();
    306 
    307   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    308     switch (II->getIntrinsicID()) {
    309     default: llvm_unreachable("Unexpected intrinsic!");
    310     case Intrinsic::init_trampoline:
    311       return II->getArgOperand(0);
    312     }
    313   }
    314 
    315   CallSite CS(I);
    316   // All the supported functions so far happen to have dest as their first
    317   // argument.
    318   return CS.getArgument(0);
    319 }
    320 
    321 static uint64_t getPointerSize(const Value *V, const DataLayout &DL,
    322                                const TargetLibraryInfo &TLI) {
    323   uint64_t Size;
    324   if (getObjectSize(V, Size, DL, &TLI))
    325     return Size;
    326   return MemoryLocation::UnknownSize;
    327 }
    328 
    329 namespace {
    330   enum OverwriteResult
    331   {
    332     OverwriteComplete,
    333     OverwriteEnd,
    334     OverwriteUnknown
    335   };
    336 }
    337 
    338 /// isOverwrite - Return 'OverwriteComplete' if a store to the 'Later' location
    339 /// completely overwrites a store to the 'Earlier' location.
    340 /// 'OverwriteEnd' if the end of the 'Earlier' location is completely
    341 /// overwritten by 'Later', or 'OverwriteUnknown' if nothing can be determined
    342 static OverwriteResult isOverwrite(const MemoryLocation &Later,
    343                                    const MemoryLocation &Earlier,
    344                                    const DataLayout &DL,
    345                                    const TargetLibraryInfo &TLI,
    346                                    int64_t &EarlierOff, int64_t &LaterOff) {
    347   const Value *P1 = Earlier.Ptr->stripPointerCasts();
    348   const Value *P2 = Later.Ptr->stripPointerCasts();
    349 
    350   // If the start pointers are the same, we just have to compare sizes to see if
    351   // the later store was larger than the earlier store.
    352   if (P1 == P2) {
    353     // If we don't know the sizes of either access, then we can't do a
    354     // comparison.
    355     if (Later.Size == MemoryLocation::UnknownSize ||
    356         Earlier.Size == MemoryLocation::UnknownSize)
    357       return OverwriteUnknown;
    358 
    359     // Make sure that the Later size is >= the Earlier size.
    360     if (Later.Size >= Earlier.Size)
    361       return OverwriteComplete;
    362   }
    363 
    364   // Otherwise, we have to have size information, and the later store has to be
    365   // larger than the earlier one.
    366   if (Later.Size == MemoryLocation::UnknownSize ||
    367       Earlier.Size == MemoryLocation::UnknownSize)
    368     return OverwriteUnknown;
    369 
    370   // Check to see if the later store is to the entire object (either a global,
    371   // an alloca, or a byval/inalloca argument).  If so, then it clearly
    372   // overwrites any other store to the same object.
    373   const Value *UO1 = GetUnderlyingObject(P1, DL),
    374               *UO2 = GetUnderlyingObject(P2, DL);
    375 
    376   // If we can't resolve the same pointers to the same object, then we can't
    377   // analyze them at all.
    378   if (UO1 != UO2)
    379     return OverwriteUnknown;
    380 
    381   // If the "Later" store is to a recognizable object, get its size.
    382   uint64_t ObjectSize = getPointerSize(UO2, DL, TLI);
    383   if (ObjectSize != MemoryLocation::UnknownSize)
    384     if (ObjectSize == Later.Size && ObjectSize >= Earlier.Size)
    385       return OverwriteComplete;
    386 
    387   // Okay, we have stores to two completely different pointers.  Try to
    388   // decompose the pointer into a "base + constant_offset" form.  If the base
    389   // pointers are equal, then we can reason about the two stores.
    390   EarlierOff = 0;
    391   LaterOff = 0;
    392   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, DL);
    393   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, DL);
    394 
    395   // If the base pointers still differ, we have two completely different stores.
    396   if (BP1 != BP2)
    397     return OverwriteUnknown;
    398 
    399   // The later store completely overlaps the earlier store if:
    400   //
    401   // 1. Both start at the same offset and the later one's size is greater than
    402   //    or equal to the earlier one's, or
    403   //
    404   //      |--earlier--|
    405   //      |--   later   --|
    406   //
    407   // 2. The earlier store has an offset greater than the later offset, but which
    408   //    still lies completely within the later store.
    409   //
    410   //        |--earlier--|
    411   //    |-----  later  ------|
    412   //
    413   // We have to be careful here as *Off is signed while *.Size is unsigned.
    414   if (EarlierOff >= LaterOff &&
    415       Later.Size >= Earlier.Size &&
    416       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
    417     return OverwriteComplete;
    418 
    419   // The other interesting case is if the later store overwrites the end of
    420   // the earlier store
    421   //
    422   //      |--earlier--|
    423   //                |--   later   --|
    424   //
    425   // In this case we may want to trim the size of earlier to avoid generating
    426   // writes to addresses which will definitely be overwritten later
    427   if (LaterOff > EarlierOff &&
    428       LaterOff < int64_t(EarlierOff + Earlier.Size) &&
    429       int64_t(LaterOff + Later.Size) >= int64_t(EarlierOff + Earlier.Size))
    430     return OverwriteEnd;
    431 
    432   // Otherwise, they don't completely overlap.
    433   return OverwriteUnknown;
    434 }
    435 
    436 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
    437 /// memory region into an identical pointer) then it doesn't actually make its
    438 /// input dead in the traditional sense.  Consider this case:
    439 ///
    440 ///   memcpy(A <- B)
    441 ///   memcpy(A <- A)
    442 ///
    443 /// In this case, the second store to A does not make the first store to A dead.
    444 /// The usual situation isn't an explicit A<-A store like this (which can be
    445 /// trivially removed) but a case where two pointers may alias.
    446 ///
    447 /// This function detects when it is unsafe to remove a dependent instruction
    448 /// because the DSE inducing instruction may be a self-read.
    449 static bool isPossibleSelfRead(Instruction *Inst,
    450                                const MemoryLocation &InstStoreLoc,
    451                                Instruction *DepWrite,
    452                                const TargetLibraryInfo &TLI,
    453                                AliasAnalysis &AA) {
    454   // Self reads can only happen for instructions that read memory.  Get the
    455   // location read.
    456   MemoryLocation InstReadLoc = getLocForRead(Inst, TLI);
    457   if (!InstReadLoc.Ptr) return false;  // Not a reading instruction.
    458 
    459   // If the read and written loc obviously don't alias, it isn't a read.
    460   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
    461 
    462   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
    463   // DepWrite instruction if we can prove that it reads from the same location
    464   // as Inst.  This handles useful cases like:
    465   //   memcpy(A <- B)
    466   //   memcpy(A <- B)
    467   // Here we don't know if A/B may alias, but we do know that B/B are must
    468   // aliases, so removing the first memcpy is safe (assuming it writes <= #
    469   // bytes as the second one.
    470   MemoryLocation DepReadLoc = getLocForRead(DepWrite, TLI);
    471 
    472   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
    473     return false;
    474 
    475   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
    476   // then it can't be considered dead.
    477   return true;
    478 }
    479 
    480 
    481 //===----------------------------------------------------------------------===//
    482 // DSE Pass
    483 //===----------------------------------------------------------------------===//
    484 
    485 bool DSE::runOnBasicBlock(BasicBlock &BB) {
    486   const DataLayout &DL = BB.getModule()->getDataLayout();
    487   bool MadeChange = false;
    488 
    489   // Do a top-down walk on the BB.
    490   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    491     Instruction *Inst = &*BBI++;
    492 
    493     // Handle 'free' calls specially.
    494     if (CallInst *F = isFreeCall(Inst, TLI)) {
    495       MadeChange |= HandleFree(F);
    496       continue;
    497     }
    498 
    499     // If we find something that writes memory, get its memory dependence.
    500     if (!hasMemoryWrite(Inst, *TLI))
    501       continue;
    502 
    503     // If we're storing the same value back to a pointer that we just
    504     // loaded from, then the store can be removed.
    505     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    506 
    507       auto RemoveDeadInstAndUpdateBBI = [&](Instruction *DeadInst) {
    508         // DeleteDeadInstruction can delete the current instruction.  Save BBI
    509         // in case we need it.
    510         WeakVH NextInst(&*BBI);
    511 
    512         DeleteDeadInstruction(DeadInst, *MD, *TLI);
    513 
    514         if (!NextInst) // Next instruction deleted.
    515           BBI = BB.begin();
    516         else if (BBI != BB.begin()) // Revisit this instruction if possible.
    517           --BBI;
    518         ++NumRedundantStores;
    519         MadeChange = true;
    520       };
    521 
    522       if (LoadInst *DepLoad = dyn_cast<LoadInst>(SI->getValueOperand())) {
    523         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
    524             isRemovable(SI) &&
    525             MemoryIsNotModifiedBetween(DepLoad, SI)) {
    526 
    527           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
    528                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
    529 
    530           RemoveDeadInstAndUpdateBBI(SI);
    531           continue;
    532         }
    533       }
    534 
    535       // Remove null stores into the calloc'ed objects
    536       Constant *StoredConstant = dyn_cast<Constant>(SI->getValueOperand());
    537 
    538       if (StoredConstant && StoredConstant->isNullValue() &&
    539           isRemovable(SI)) {
    540         Instruction *UnderlyingPointer = dyn_cast<Instruction>(
    541             GetUnderlyingObject(SI->getPointerOperand(), DL));
    542 
    543         if (UnderlyingPointer && isCallocLikeFn(UnderlyingPointer, TLI) &&
    544             MemoryIsNotModifiedBetween(UnderlyingPointer, SI)) {
    545           DEBUG(dbgs()
    546                 << "DSE: Remove null store to the calloc'ed object:\n  DEAD: "
    547                 << *Inst << "\n  OBJECT: " << *UnderlyingPointer << '\n');
    548 
    549           RemoveDeadInstAndUpdateBBI(SI);
    550           continue;
    551         }
    552       }
    553     }
    554 
    555     MemDepResult InstDep = MD->getDependency(Inst);
    556 
    557     // Ignore any store where we can't find a local dependence.
    558     // FIXME: cross-block DSE would be fun. :)
    559     if (!InstDep.isDef() && !InstDep.isClobber())
    560       continue;
    561 
    562     // Figure out what location is being stored to.
    563     MemoryLocation Loc = getLocForWrite(Inst, *AA);
    564 
    565     // If we didn't get a useful location, fail.
    566     if (!Loc.Ptr)
    567       continue;
    568 
    569     while (InstDep.isDef() || InstDep.isClobber()) {
    570       // Get the memory clobbered by the instruction we depend on.  MemDep will
    571       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
    572       // end up depending on a may- or must-aliased load, then we can't optimize
    573       // away the store and we bail out.  However, if we depend on on something
    574       // that overwrites the memory location we *can* potentially optimize it.
    575       //
    576       // Find out what memory location the dependent instruction stores.
    577       Instruction *DepWrite = InstDep.getInst();
    578       MemoryLocation DepLoc = getLocForWrite(DepWrite, *AA);
    579       // If we didn't get a useful location, or if it isn't a size, bail out.
    580       if (!DepLoc.Ptr)
    581         break;
    582 
    583       // If we find a write that is a) removable (i.e., non-volatile), b) is
    584       // completely obliterated by the store to 'Loc', and c) which we know that
    585       // 'Inst' doesn't load from, then we can remove it.
    586       if (isRemovable(DepWrite) &&
    587           !isPossibleSelfRead(Inst, Loc, DepWrite, *TLI, *AA)) {
    588         int64_t InstWriteOffset, DepWriteOffset;
    589         OverwriteResult OR =
    590             isOverwrite(Loc, DepLoc, DL, *TLI, DepWriteOffset, InstWriteOffset);
    591         if (OR == OverwriteComplete) {
    592           DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
    593                 << *DepWrite << "\n  KILLER: " << *Inst << '\n');
    594 
    595           // Delete the store and now-dead instructions that feed it.
    596           DeleteDeadInstruction(DepWrite, *MD, *TLI);
    597           ++NumFastStores;
    598           MadeChange = true;
    599 
    600           // DeleteDeadInstruction can delete the current instruction in loop
    601           // cases, reset BBI.
    602           BBI = Inst->getIterator();
    603           if (BBI != BB.begin())
    604             --BBI;
    605           break;
    606         } else if (OR == OverwriteEnd && isShortenable(DepWrite)) {
    607           // TODO: base this on the target vector size so that if the earlier
    608           // store was too small to get vector writes anyway then its likely
    609           // a good idea to shorten it
    610           // Power of 2 vector writes are probably always a bad idea to optimize
    611           // as any store/memset/memcpy is likely using vector instructions so
    612           // shortening it to not vector size is likely to be slower
    613           MemIntrinsic* DepIntrinsic = cast<MemIntrinsic>(DepWrite);
    614           unsigned DepWriteAlign = DepIntrinsic->getAlignment();
    615           if (llvm::isPowerOf2_64(InstWriteOffset) ||
    616               ((DepWriteAlign != 0) && InstWriteOffset % DepWriteAlign == 0)) {
    617 
    618             DEBUG(dbgs() << "DSE: Remove Dead Store:\n  OW END: "
    619                   << *DepWrite << "\n  KILLER (offset "
    620                   << InstWriteOffset << ", "
    621                   << DepLoc.Size << ")"
    622                   << *Inst << '\n');
    623 
    624             Value* DepWriteLength = DepIntrinsic->getLength();
    625             Value* TrimmedLength = ConstantInt::get(DepWriteLength->getType(),
    626                                                     InstWriteOffset -
    627                                                     DepWriteOffset);
    628             DepIntrinsic->setLength(TrimmedLength);
    629             MadeChange = true;
    630           }
    631         }
    632       }
    633 
    634       // If this is a may-aliased store that is clobbering the store value, we
    635       // can keep searching past it for another must-aliased pointer that stores
    636       // to the same location.  For example, in:
    637       //   store -> P
    638       //   store -> Q
    639       //   store -> P
    640       // we can remove the first store to P even though we don't know if P and Q
    641       // alias.
    642       if (DepWrite == &BB.front()) break;
    643 
    644       // Can't look past this instruction if it might read 'Loc'.
    645       if (AA->getModRefInfo(DepWrite, Loc) & MRI_Ref)
    646         break;
    647 
    648       InstDep = MD->getPointerDependencyFrom(Loc, false,
    649                                              DepWrite->getIterator(), &BB);
    650     }
    651   }
    652 
    653   // If this block ends in a return, unwind, or unreachable, all allocas are
    654   // dead at its end, which means stores to them are also dead.
    655   if (BB.getTerminator()->getNumSuccessors() == 0)
    656     MadeChange |= handleEndBlock(BB);
    657 
    658   return MadeChange;
    659 }
    660 
    661 /// Returns true if the memory which is accessed by the second instruction is not
    662 /// modified between the first and the second instruction.
    663 /// Precondition: Second instruction must be dominated by the first
    664 /// instruction.
    665 bool DSE::MemoryIsNotModifiedBetween(Instruction *FirstI,
    666                                      Instruction *SecondI) {
    667   SmallVector<BasicBlock *, 16> WorkList;
    668   SmallPtrSet<BasicBlock *, 8> Visited;
    669   BasicBlock::iterator FirstBBI(FirstI);
    670   ++FirstBBI;
    671   BasicBlock::iterator SecondBBI(SecondI);
    672   BasicBlock *FirstBB = FirstI->getParent();
    673   BasicBlock *SecondBB = SecondI->getParent();
    674   MemoryLocation MemLoc = MemoryLocation::get(SecondI);
    675 
    676   // Start checking the store-block.
    677   WorkList.push_back(SecondBB);
    678   bool isFirstBlock = true;
    679 
    680   // Check all blocks going backward until we reach the load-block.
    681   while (!WorkList.empty()) {
    682     BasicBlock *B = WorkList.pop_back_val();
    683 
    684     // Ignore instructions before LI if this is the FirstBB.
    685     BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
    686 
    687     BasicBlock::iterator EI;
    688     if (isFirstBlock) {
    689       // Ignore instructions after SI if this is the first visit of SecondBB.
    690       assert(B == SecondBB && "first block is not the store block");
    691       EI = SecondBBI;
    692       isFirstBlock = false;
    693     } else {
    694       // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
    695       // In this case we also have to look at instructions after SI.
    696       EI = B->end();
    697     }
    698     for (; BI != EI; ++BI) {
    699       Instruction *I = &*BI;
    700       if (I->mayWriteToMemory() && I != SecondI) {
    701         auto Res = AA->getModRefInfo(I, MemLoc);
    702         if (Res != MRI_NoModRef)
    703           return false;
    704       }
    705     }
    706     if (B != FirstBB) {
    707       assert(B != &FirstBB->getParent()->getEntryBlock() &&
    708           "Should not hit the entry block because SI must be dominated by LI");
    709       for (auto PredI = pred_begin(B), PE = pred_end(B); PredI != PE; ++PredI) {
    710         if (!Visited.insert(*PredI).second)
    711           continue;
    712         WorkList.push_back(*PredI);
    713       }
    714     }
    715   }
    716   return true;
    717 }
    718 
    719 /// Find all blocks that will unconditionally lead to the block BB and append
    720 /// them to F.
    721 static void FindUnconditionalPreds(SmallVectorImpl<BasicBlock *> &Blocks,
    722                                    BasicBlock *BB, DominatorTree *DT) {
    723   for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
    724     BasicBlock *Pred = *I;
    725     if (Pred == BB) continue;
    726     TerminatorInst *PredTI = Pred->getTerminator();
    727     if (PredTI->getNumSuccessors() != 1)
    728       continue;
    729 
    730     if (DT->isReachableFromEntry(Pred))
    731       Blocks.push_back(Pred);
    732   }
    733 }
    734 
    735 /// HandleFree - Handle frees of entire structures whose dependency is a store
    736 /// to a field of that structure.
    737 bool DSE::HandleFree(CallInst *F) {
    738   bool MadeChange = false;
    739 
    740   MemoryLocation Loc = MemoryLocation(F->getOperand(0));
    741   SmallVector<BasicBlock *, 16> Blocks;
    742   Blocks.push_back(F->getParent());
    743   const DataLayout &DL = F->getModule()->getDataLayout();
    744 
    745   while (!Blocks.empty()) {
    746     BasicBlock *BB = Blocks.pop_back_val();
    747     Instruction *InstPt = BB->getTerminator();
    748     if (BB == F->getParent()) InstPt = F;
    749 
    750     MemDepResult Dep =
    751         MD->getPointerDependencyFrom(Loc, false, InstPt->getIterator(), BB);
    752     while (Dep.isDef() || Dep.isClobber()) {
    753       Instruction *Dependency = Dep.getInst();
    754       if (!hasMemoryWrite(Dependency, *TLI) || !isRemovable(Dependency))
    755         break;
    756 
    757       Value *DepPointer =
    758           GetUnderlyingObject(getStoredPointerOperand(Dependency), DL);
    759 
    760       // Check for aliasing.
    761       if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
    762         break;
    763 
    764       auto Next = ++Dependency->getIterator();
    765 
    766       // DCE instructions only used to calculate that store
    767       DeleteDeadInstruction(Dependency, *MD, *TLI);
    768       ++NumFastStores;
    769       MadeChange = true;
    770 
    771       // Inst's old Dependency is now deleted. Compute the next dependency,
    772       // which may also be dead, as in
    773       //    s[0] = 0;
    774       //    s[1] = 0; // This has just been deleted.
    775       //    free(s);
    776       Dep = MD->getPointerDependencyFrom(Loc, false, Next, BB);
    777     }
    778 
    779     if (Dep.isNonLocal())
    780       FindUnconditionalPreds(Blocks, BB, DT);
    781   }
    782 
    783   return MadeChange;
    784 }
    785 
    786 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
    787 /// function end block.  Ex:
    788 /// %A = alloca i32
    789 /// ...
    790 /// store i32 1, i32* %A
    791 /// ret void
    792 bool DSE::handleEndBlock(BasicBlock &BB) {
    793   bool MadeChange = false;
    794 
    795   // Keep track of all of the stack objects that are dead at the end of the
    796   // function.
    797   SmallSetVector<Value*, 16> DeadStackObjects;
    798 
    799   // Find all of the alloca'd pointers in the entry block.
    800   BasicBlock &Entry = BB.getParent()->front();
    801   for (Instruction &I : Entry) {
    802     if (isa<AllocaInst>(&I))
    803       DeadStackObjects.insert(&I);
    804 
    805     // Okay, so these are dead heap objects, but if the pointer never escapes
    806     // then it's leaked by this function anyways.
    807     else if (isAllocLikeFn(&I, TLI) && !PointerMayBeCaptured(&I, true, true))
    808       DeadStackObjects.insert(&I);
    809   }
    810 
    811   // Treat byval or inalloca arguments the same, stores to them are dead at the
    812   // end of the function.
    813   for (Argument &AI : BB.getParent()->args())
    814     if (AI.hasByValOrInAllocaAttr())
    815       DeadStackObjects.insert(&AI);
    816 
    817   const DataLayout &DL = BB.getModule()->getDataLayout();
    818 
    819   // Scan the basic block backwards
    820   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    821     --BBI;
    822 
    823     // If we find a store, check to see if it points into a dead stack value.
    824     if (hasMemoryWrite(&*BBI, *TLI) && isRemovable(&*BBI)) {
    825       // See through pointer-to-pointer bitcasts
    826       SmallVector<Value *, 4> Pointers;
    827       GetUnderlyingObjects(getStoredPointerOperand(&*BBI), Pointers, DL);
    828 
    829       // Stores to stack values are valid candidates for removal.
    830       bool AllDead = true;
    831       for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
    832            E = Pointers.end(); I != E; ++I)
    833         if (!DeadStackObjects.count(*I)) {
    834           AllDead = false;
    835           break;
    836         }
    837 
    838       if (AllDead) {
    839         Instruction *Dead = &*BBI++;
    840 
    841         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
    842                      << *Dead << "\n  Objects: ";
    843               for (SmallVectorImpl<Value *>::iterator I = Pointers.begin(),
    844                    E = Pointers.end(); I != E; ++I) {
    845                 dbgs() << **I;
    846                 if (std::next(I) != E)
    847                   dbgs() << ", ";
    848               }
    849               dbgs() << '\n');
    850 
    851         // DCE instructions only used to calculate that store.
    852         DeleteDeadInstruction(Dead, *MD, *TLI, &DeadStackObjects);
    853         ++NumFastStores;
    854         MadeChange = true;
    855         continue;
    856       }
    857     }
    858 
    859     // Remove any dead non-memory-mutating instructions.
    860     if (isInstructionTriviallyDead(&*BBI, TLI)) {
    861       Instruction *Inst = &*BBI++;
    862       DeleteDeadInstruction(Inst, *MD, *TLI, &DeadStackObjects);
    863       ++NumFastOther;
    864       MadeChange = true;
    865       continue;
    866     }
    867 
    868     if (isa<AllocaInst>(BBI)) {
    869       // Remove allocas from the list of dead stack objects; there can't be
    870       // any references before the definition.
    871       DeadStackObjects.remove(&*BBI);
    872       continue;
    873     }
    874 
    875     if (auto CS = CallSite(&*BBI)) {
    876       // Remove allocation function calls from the list of dead stack objects;
    877       // there can't be any references before the definition.
    878       if (isAllocLikeFn(&*BBI, TLI))
    879         DeadStackObjects.remove(&*BBI);
    880 
    881       // If this call does not access memory, it can't be loading any of our
    882       // pointers.
    883       if (AA->doesNotAccessMemory(CS))
    884         continue;
    885 
    886       // If the call might load from any of our allocas, then any store above
    887       // the call is live.
    888       DeadStackObjects.remove_if([&](Value *I) {
    889         // See if the call site touches the value.
    890         ModRefInfo A = AA->getModRefInfo(CS, I, getPointerSize(I, DL, *TLI));
    891 
    892         return A == MRI_ModRef || A == MRI_Ref;
    893       });
    894 
    895       // If all of the allocas were clobbered by the call then we're not going
    896       // to find anything else to process.
    897       if (DeadStackObjects.empty())
    898         break;
    899 
    900       continue;
    901     }
    902 
    903     MemoryLocation LoadedLoc;
    904 
    905     // If we encounter a use of the pointer, it is no longer considered dead
    906     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
    907       if (!L->isUnordered()) // Be conservative with atomic/volatile load
    908         break;
    909       LoadedLoc = MemoryLocation::get(L);
    910     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
    911       LoadedLoc = MemoryLocation::get(V);
    912     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
    913       LoadedLoc = MemoryLocation::getForSource(MTI);
    914     } else if (!BBI->mayReadFromMemory()) {
    915       // Instruction doesn't read memory.  Note that stores that weren't removed
    916       // above will hit this case.
    917       continue;
    918     } else {
    919       // Unknown inst; assume it clobbers everything.
    920       break;
    921     }
    922 
    923     // Remove any allocas from the DeadPointer set that are loaded, as this
    924     // makes any stores above the access live.
    925     RemoveAccessedObjects(LoadedLoc, DeadStackObjects, DL);
    926 
    927     // If all of the allocas were clobbered by the access then we're not going
    928     // to find anything else to process.
    929     if (DeadStackObjects.empty())
    930       break;
    931   }
    932 
    933   return MadeChange;
    934 }
    935 
    936 /// RemoveAccessedObjects - Check to see if the specified location may alias any
    937 /// of the stack objects in the DeadStackObjects set.  If so, they become live
    938 /// because the location is being loaded.
    939 void DSE::RemoveAccessedObjects(const MemoryLocation &LoadedLoc,
    940                                 SmallSetVector<Value *, 16> &DeadStackObjects,
    941                                 const DataLayout &DL) {
    942   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr, DL);
    943 
    944   // A constant can't be in the dead pointer set.
    945   if (isa<Constant>(UnderlyingPointer))
    946     return;
    947 
    948   // If the kill pointer can be easily reduced to an alloca, don't bother doing
    949   // extraneous AA queries.
    950   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    951     DeadStackObjects.remove(const_cast<Value*>(UnderlyingPointer));
    952     return;
    953   }
    954 
    955   // Remove objects that could alias LoadedLoc.
    956   DeadStackObjects.remove_if([&](Value *I) {
    957     // See if the loaded location could alias the stack location.
    958     MemoryLocation StackLoc(I, getPointerSize(I, DL, *TLI));
    959     return !AA->isNoAlias(StackLoc, LoadedLoc);
    960   });
    961 }
    962