1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #include "opencv2/ts/cuda_test.hpp" 44 #include <stdexcept> 45 46 using namespace cv; 47 using namespace cv::cuda; 48 using namespace cvtest; 49 using namespace testing; 50 using namespace testing::internal; 51 52 namespace perf 53 { 54 CV_EXPORTS void printCudaInfo(); 55 } 56 57 namespace cvtest 58 { 59 ////////////////////////////////////////////////////////////////////// 60 // random generators 61 62 int randomInt(int minVal, int maxVal) 63 { 64 RNG& rng = TS::ptr()->get_rng(); 65 return rng.uniform(minVal, maxVal); 66 } 67 68 double randomDouble(double minVal, double maxVal) 69 { 70 RNG& rng = TS::ptr()->get_rng(); 71 return rng.uniform(minVal, maxVal); 72 } 73 74 Size randomSize(int minVal, int maxVal) 75 { 76 return Size(randomInt(minVal, maxVal), randomInt(minVal, maxVal)); 77 } 78 79 Scalar randomScalar(double minVal, double maxVal) 80 { 81 return Scalar(randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal), randomDouble(minVal, maxVal)); 82 } 83 84 Mat randomMat(Size size, int type, double minVal, double maxVal) 85 { 86 return randomMat(TS::ptr()->get_rng(), size, type, minVal, maxVal, false); 87 } 88 89 ////////////////////////////////////////////////////////////////////// 90 // GpuMat create 91 92 GpuMat createMat(Size size, int type, bool useRoi) 93 { 94 Size size0 = size; 95 96 if (useRoi) 97 { 98 size0.width += randomInt(5, 15); 99 size0.height += randomInt(5, 15); 100 } 101 102 GpuMat d_m(size0, type); 103 104 if (size0 != size) 105 d_m = d_m(Rect((size0.width - size.width) / 2, (size0.height - size.height) / 2, size.width, size.height)); 106 107 return d_m; 108 } 109 110 GpuMat loadMat(const Mat& m, bool useRoi) 111 { 112 GpuMat d_m = createMat(m.size(), m.type(), useRoi); 113 d_m.upload(m); 114 return d_m; 115 } 116 117 ////////////////////////////////////////////////////////////////////// 118 // Image load 119 120 Mat readImage(const std::string& fileName, int flags) 121 { 122 return imread(TS::ptr()->get_data_path() + fileName, flags); 123 } 124 125 Mat readImageType(const std::string& fname, int type) 126 { 127 Mat src = readImage(fname, CV_MAT_CN(type) == 1 ? IMREAD_GRAYSCALE : IMREAD_COLOR); 128 if (CV_MAT_CN(type) == 4) 129 { 130 Mat temp; 131 cvtColor(src, temp, COLOR_BGR2BGRA); 132 swap(src, temp); 133 } 134 src.convertTo(src, CV_MAT_DEPTH(type), CV_MAT_DEPTH(type) == CV_32F ? 1.0 / 255.0 : 1.0); 135 return src; 136 } 137 138 ////////////////////////////////////////////////////////////////////// 139 // Gpu devices 140 141 bool supportFeature(const DeviceInfo& info, FeatureSet feature) 142 { 143 return TargetArchs::builtWith(feature) && info.supports(feature); 144 } 145 146 DeviceManager& DeviceManager::instance() 147 { 148 static DeviceManager obj; 149 return obj; 150 } 151 152 void DeviceManager::load(int i) 153 { 154 devices_.clear(); 155 devices_.reserve(1); 156 157 std::ostringstream msg; 158 159 if (i < 0 || i >= getCudaEnabledDeviceCount()) 160 { 161 msg << "Incorrect device number - " << i; 162 throw std::runtime_error(msg.str()); 163 } 164 165 DeviceInfo info(i); 166 167 if (!info.isCompatible()) 168 { 169 msg << "Device " << i << " [" << info.name() << "] is NOT compatible with current CUDA module build"; 170 throw std::runtime_error(msg.str()); 171 } 172 173 devices_.push_back(info); 174 } 175 176 void DeviceManager::loadAll() 177 { 178 int deviceCount = getCudaEnabledDeviceCount(); 179 180 devices_.clear(); 181 devices_.reserve(deviceCount); 182 183 for (int i = 0; i < deviceCount; ++i) 184 { 185 DeviceInfo info(i); 186 if (info.isCompatible()) 187 { 188 devices_.push_back(info); 189 } 190 } 191 } 192 193 void parseCudaDeviceOptions(int argc, char **argv) 194 { 195 cv::CommandLineParser cmd(argc, argv, 196 "{ cuda_device | -1 | CUDA device on which tests will be executed (-1 means all devices) }" 197 "{ h help | false | Print help info }" 198 ); 199 200 if (cmd.has("help")) 201 { 202 std::cout << "\nAvailable options besides google test option: \n"; 203 cmd.printMessage(); 204 } 205 206 int device = cmd.get<int>("cuda_device"); 207 if (device < 0) 208 { 209 cvtest::DeviceManager::instance().loadAll(); 210 std::cout << "Run tests on all supported CUDA devices \n" << std::endl; 211 } 212 else 213 { 214 cvtest::DeviceManager::instance().load(device); 215 cv::cuda::DeviceInfo info(device); 216 std::cout << "Run tests on CUDA device " << device << " [" << info.name() << "] \n" << std::endl; 217 } 218 } 219 220 ////////////////////////////////////////////////////////////////////// 221 // Additional assertion 222 223 namespace 224 { 225 template <typename T, typename OutT> std::string printMatValImpl(const Mat& m, Point p) 226 { 227 const int cn = m.channels(); 228 229 std::ostringstream ostr; 230 ostr << "("; 231 232 p.x /= cn; 233 234 ostr << static_cast<OutT>(m.at<T>(p.y, p.x * cn)); 235 for (int c = 1; c < m.channels(); ++c) 236 { 237 ostr << ", " << static_cast<OutT>(m.at<T>(p.y, p.x * cn + c)); 238 } 239 ostr << ")"; 240 241 return ostr.str(); 242 } 243 244 std::string printMatVal(const Mat& m, Point p) 245 { 246 typedef std::string (*func_t)(const Mat& m, Point p); 247 248 static const func_t funcs[] = 249 { 250 printMatValImpl<uchar, int>, printMatValImpl<schar, int>, printMatValImpl<ushort, int>, printMatValImpl<short, int>, 251 printMatValImpl<int, int>, printMatValImpl<float, float>, printMatValImpl<double, double> 252 }; 253 254 return funcs[m.depth()](m, p); 255 } 256 } 257 258 void minMaxLocGold(const Mat& src, double* minVal_, double* maxVal_, Point* minLoc_, Point* maxLoc_, const Mat& mask) 259 { 260 if (src.depth() != CV_8S) 261 { 262 minMaxLoc(src, minVal_, maxVal_, minLoc_, maxLoc_, mask); 263 return; 264 } 265 266 // OpenCV's minMaxLoc doesn't support CV_8S type 267 double minVal = std::numeric_limits<double>::max(); 268 Point minLoc(-1, -1); 269 270 double maxVal = -std::numeric_limits<double>::max(); 271 Point maxLoc(-1, -1); 272 273 for (int y = 0; y < src.rows; ++y) 274 { 275 const schar* src_row = src.ptr<schar>(y); 276 const uchar* mask_row = mask.empty() ? 0 : mask.ptr<uchar>(y); 277 278 for (int x = 0; x < src.cols; ++x) 279 { 280 if (!mask_row || mask_row[x]) 281 { 282 schar val = src_row[x]; 283 284 if (val < minVal) 285 { 286 minVal = val; 287 minLoc = cv::Point(x, y); 288 } 289 290 if (val > maxVal) 291 { 292 maxVal = val; 293 maxLoc = cv::Point(x, y); 294 } 295 } 296 } 297 } 298 299 if (minVal_) *minVal_ = minVal; 300 if (maxVal_) *maxVal_ = maxVal; 301 302 if (minLoc_) *minLoc_ = minLoc; 303 if (maxLoc_) *maxLoc_ = maxLoc; 304 } 305 306 Mat getMat(InputArray arr) 307 { 308 if (arr.kind() == _InputArray::CUDA_GPU_MAT) 309 { 310 Mat m; 311 arr.getGpuMat().download(m); 312 return m; 313 } 314 315 return arr.getMat(); 316 } 317 318 AssertionResult assertMatNear(const char* expr1, const char* expr2, const char* eps_expr, InputArray m1_, InputArray m2_, double eps) 319 { 320 Mat m1 = getMat(m1_); 321 Mat m2 = getMat(m2_); 322 323 if (m1.size() != m2.size()) 324 { 325 return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different sizes : \"" 326 << expr1 << "\" [" << PrintToString(m1.size()) << "] vs \"" 327 << expr2 << "\" [" << PrintToString(m2.size()) << "]"; 328 } 329 330 if (m1.type() != m2.type()) 331 { 332 return AssertionFailure() << "Matrices \"" << expr1 << "\" and \"" << expr2 << "\" have different types : \"" 333 << expr1 << "\" [" << PrintToString(MatType(m1.type())) << "] vs \"" 334 << expr2 << "\" [" << PrintToString(MatType(m2.type())) << "]"; 335 } 336 337 Mat diff; 338 absdiff(m1.reshape(1), m2.reshape(1), diff); 339 340 double maxVal = 0.0; 341 Point maxLoc; 342 minMaxLocGold(diff, 0, &maxVal, 0, &maxLoc); 343 344 if (maxVal > eps) 345 { 346 return AssertionFailure() << "The max difference between matrices \"" << expr1 << "\" and \"" << expr2 347 << "\" is " << maxVal << " at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ")" 348 << ", which exceeds \"" << eps_expr << "\", where \"" 349 << expr1 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m1, maxLoc) << ", \"" 350 << expr2 << "\" at (" << maxLoc.y << ", " << maxLoc.x / m1.channels() << ") evaluates to " << printMatVal(m2, maxLoc) << ", \"" 351 << eps_expr << "\" evaluates to " << eps; 352 } 353 354 return AssertionSuccess(); 355 } 356 357 double checkSimilarity(InputArray m1, InputArray m2) 358 { 359 Mat diff; 360 matchTemplate(getMat(m1), getMat(m2), diff, TM_CCORR_NORMED); 361 return std::abs(diff.at<float>(0, 0) - 1.f); 362 } 363 364 ////////////////////////////////////////////////////////////////////// 365 // Helper structs for value-parameterized tests 366 367 vector<MatType> types(int depth_start, int depth_end, int cn_start, int cn_end) 368 { 369 vector<MatType> v; 370 371 v.reserve((depth_end - depth_start + 1) * (cn_end - cn_start + 1)); 372 373 for (int depth = depth_start; depth <= depth_end; ++depth) 374 { 375 for (int cn = cn_start; cn <= cn_end; ++cn) 376 { 377 v.push_back(MatType(CV_MAKE_TYPE(depth, cn))); 378 } 379 } 380 381 return v; 382 } 383 384 const vector<MatType>& all_types() 385 { 386 static vector<MatType> v = types(CV_8U, CV_64F, 1, 4); 387 388 return v; 389 } 390 391 void PrintTo(const UseRoi& useRoi, std::ostream* os) 392 { 393 if (useRoi) 394 (*os) << "sub matrix"; 395 else 396 (*os) << "whole matrix"; 397 } 398 399 void PrintTo(const Inverse& inverse, std::ostream* os) 400 { 401 if (inverse) 402 (*os) << "inverse"; 403 else 404 (*os) << "direct"; 405 } 406 407 ////////////////////////////////////////////////////////////////////// 408 // Other 409 410 void dumpImage(const std::string& fileName, const Mat& image) 411 { 412 imwrite(TS::ptr()->get_data_path() + fileName, image); 413 } 414 415 void showDiff(InputArray gold_, InputArray actual_, double eps) 416 { 417 Mat gold = getMat(gold_); 418 Mat actual = getMat(actual_); 419 420 Mat diff; 421 absdiff(gold, actual, diff); 422 threshold(diff, diff, eps, 255.0, cv::THRESH_BINARY); 423 424 namedWindow("gold", WINDOW_NORMAL); 425 namedWindow("actual", WINDOW_NORMAL); 426 namedWindow("diff", WINDOW_NORMAL); 427 428 imshow("gold", gold); 429 imshow("actual", actual); 430 imshow("diff", diff); 431 432 waitKey(); 433 } 434 435 namespace 436 { 437 bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2) 438 { 439 const double maxPtDif = 1.0; 440 const double maxSizeDif = 1.0; 441 const double maxAngleDif = 2.0; 442 const double maxResponseDif = 0.1; 443 444 double dist = cv::norm(p1.pt - p2.pt); 445 446 if (dist < maxPtDif && 447 fabs(p1.size - p2.size) < maxSizeDif && 448 abs(p1.angle - p2.angle) < maxAngleDif && 449 abs(p1.response - p2.response) < maxResponseDif && 450 p1.octave == p2.octave && 451 p1.class_id == p2.class_id) 452 { 453 return true; 454 } 455 456 return false; 457 } 458 459 struct KeyPointLess : std::binary_function<cv::KeyPoint, cv::KeyPoint, bool> 460 { 461 bool operator()(const cv::KeyPoint& kp1, const cv::KeyPoint& kp2) const 462 { 463 return kp1.pt.y < kp2.pt.y || (kp1.pt.y == kp2.pt.y && kp1.pt.x < kp2.pt.x); 464 } 465 }; 466 } 467 468 testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char* actual_expr, std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) 469 { 470 if (gold.size() != actual.size()) 471 { 472 return testing::AssertionFailure() << "KeyPoints size mistmach\n" 473 << "\"" << gold_expr << "\" : " << gold.size() << "\n" 474 << "\"" << actual_expr << "\" : " << actual.size(); 475 } 476 477 std::sort(actual.begin(), actual.end(), KeyPointLess()); 478 std::sort(gold.begin(), gold.end(), KeyPointLess()); 479 480 for (size_t i = 0; i < gold.size(); ++i) 481 { 482 const cv::KeyPoint& p1 = gold[i]; 483 const cv::KeyPoint& p2 = actual[i]; 484 485 if (!keyPointsEquals(p1, p2)) 486 { 487 return testing::AssertionFailure() << "KeyPoints differ at " << i << "\n" 488 << "\"" << gold_expr << "\" vs \"" << actual_expr << "\" : \n" 489 << "pt : " << testing::PrintToString(p1.pt) << " vs " << testing::PrintToString(p2.pt) << "\n" 490 << "size : " << p1.size << " vs " << p2.size << "\n" 491 << "angle : " << p1.angle << " vs " << p2.angle << "\n" 492 << "response : " << p1.response << " vs " << p2.response << "\n" 493 << "octave : " << p1.octave << " vs " << p2.octave << "\n" 494 << "class_id : " << p1.class_id << " vs " << p2.class_id; 495 } 496 } 497 498 return ::testing::AssertionSuccess(); 499 } 500 501 int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual) 502 { 503 std::sort(actual.begin(), actual.end(), KeyPointLess()); 504 std::sort(gold.begin(), gold.end(), KeyPointLess()); 505 506 int validCount = 0; 507 508 for (size_t i = 0; i < gold.size(); ++i) 509 { 510 const cv::KeyPoint& p1 = gold[i]; 511 const cv::KeyPoint& p2 = actual[i]; 512 513 if (keyPointsEquals(p1, p2)) 514 ++validCount; 515 } 516 517 return validCount; 518 } 519 520 int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches) 521 { 522 int validCount = 0; 523 524 for (size_t i = 0; i < matches.size(); ++i) 525 { 526 const cv::DMatch& m = matches[i]; 527 528 const cv::KeyPoint& p1 = keypoints1[m.queryIdx]; 529 const cv::KeyPoint& p2 = keypoints2[m.trainIdx]; 530 531 if (keyPointsEquals(p1, p2)) 532 ++validCount; 533 } 534 535 return validCount; 536 } 537 538 void printCudaInfo() 539 { 540 perf::printCudaInfo(); 541 } 542 } 543 544 545 void cv::cuda::PrintTo(const DeviceInfo& info, std::ostream* os) 546 { 547 (*os) << info.name(); 548 } 549