1 //--------------------------------------------------------------------*/ 2 //--- Massif: a heap profiling tool. ms_main.c ---*/ 3 //--------------------------------------------------------------------*/ 4 5 /* 6 This file is part of Massif, a Valgrind tool for profiling memory 7 usage of programs. 8 9 Copyright (C) 2003-2015 Nicholas Nethercote 10 njn (at) valgrind.org 11 12 This program is free software; you can redistribute it and/or 13 modify it under the terms of the GNU General Public License as 14 published by the Free Software Foundation; either version 2 of the 15 License, or (at your option) any later version. 16 17 This program is distributed in the hope that it will be useful, but 18 WITHOUT ANY WARRANTY; without even the implied warranty of 19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 General Public License for more details. 21 22 You should have received a copy of the GNU General Public License 23 along with this program; if not, write to the Free Software 24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 25 02111-1307, USA. 26 27 The GNU General Public License is contained in the file COPYING. 28 */ 29 30 //--------------------------------------------------------------------------- 31 // XXX: 32 //--------------------------------------------------------------------------- 33 // Todo -- nice, but less critical: 34 // - do a graph-drawing test 35 // - make file format more generic. Obstacles: 36 // - unit prefixes are not generic 37 // - preset column widths for stats are not generic 38 // - preset column headers are not generic 39 // - "Massif arguments:" line is not generic 40 // - do snapshots on some specific client requests 41 // - "show me the extra allocations since the last snapshot" 42 // - "start/stop logging" (eg. quickly skip boring bits) 43 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total. 44 // Give each graph a title. (try to do it generically!) 45 // - make --show-below-main=no work 46 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)' 47 // don't work in a .valgrindrc file or in $VALGRIND_OPTS. 48 // m_commandline.c:add_args_from_string() needs to respect single quotes. 49 // - With --stack=yes, want to add a stack trace for detailed snapshots so 50 // it's clear where/why the peak is occurring. (Mattieu Castet) Also, 51 // possibly useful even with --stack=no? (Andi Yin) 52 // 53 // Performance: 54 // - To run the benchmarks: 55 // 56 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif 57 // time valgrind --tool=massif --depth=100 konqueror 58 // 59 // The other benchmarks don't do much allocation, and so give similar speeds 60 // to Nulgrind. 61 // 62 // Timing results on 'nevermore' (njn's machine) as of r7013: 63 // 64 // heap 0.53s ma:12.4s (23.5x, -----) 65 // tinycc 0.46s ma: 4.9s (10.7x, -----) 66 // many-xpts 0.08s ma: 2.0s (25.0x, -----) 67 // konqueror 29.6s real 0:21.0s user 68 // 69 // [Introduction of --time-unit=i as the default slowed things down by 70 // roughly 0--20%.] 71 // 72 // - get_XCon accounts for about 9% of konqueror startup time. Try 73 // keeping XPt children sorted by 'ip' and use binary search in get_XCon. 74 // Requires factoring out binary search code from various places into a 75 // VG_(bsearch) function. 76 // 77 // Todo -- low priority: 78 // - In each XPt, record both bytes and the number of allocations, and 79 // possibly the global number of allocations. 80 // - (Andy Lin) Give a stack trace on detailed snapshots? 81 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger 82 // than a certain size! Because: "linux's malloc allows to set a 83 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will 84 // be handled directly by the kernel, and are guaranteed to be returned to 85 // the system when freed. So we needed to profile only blocks below this 86 // limit." 87 // 88 // File format working notes: 89 90 #if 0 91 desc: --heap-admin=foo 92 cmd: date 93 time_unit: ms 94 #----------- 95 snapshot=0 96 #----------- 97 time=0 98 mem_heap_B=0 99 mem_heap_admin_B=0 100 mem_stacks_B=0 101 heap_tree=empty 102 #----------- 103 snapshot=1 104 #----------- 105 time=353 106 mem_heap_B=5 107 mem_heap_admin_B=0 108 mem_stacks_B=0 109 heap_tree=detailed 110 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 111 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 112 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so) 113 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so) 114 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so) 115 n1: 5 0x8049821: (within /bin/date) 116 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so) 117 118 119 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 120 t_events: B 121 n 0 0 0 0 0 122 n 0 0 0 0 0 123 t1: 5 <string...> 124 t1: 6 <string...> 125 126 Ideas: 127 - each snapshot specifies an x-axis value and one or more y-axis values. 128 - can display the y-axis values separately if you like 129 - can completely separate connection between snapshots and trees. 130 131 Challenges: 132 - how to specify and scale/abbreviate units on axes? 133 - how to combine multiple values into the y-axis? 134 135 --------------------------------------------------------------------------------Command: date 136 Massif arguments: --heap-admin=foo 137 ms_print arguments: massif.out 138 -------------------------------------------------------------------------------- 139 KB 140 6.472^ :# 141 | :# :: . . 142 ... 143 | ::@ :@ :@ :@:::# :: : :::: 144 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713 145 146 Number of snapshots: 50 147 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)] 148 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B) 149 -------------------------------------------------------------------------------- 0 0 0 0 0 0 150 1 345 5 5 0 0 151 2 353 5 5 0 0 152 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc. 153 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so) 154 #endif 155 156 //--------------------------------------------------------------------------- 157 158 #include "pub_tool_basics.h" 159 #include "pub_tool_vki.h" 160 #include "pub_tool_aspacemgr.h" 161 #include "pub_tool_debuginfo.h" 162 #include "pub_tool_hashtable.h" 163 #include "pub_tool_libcbase.h" 164 #include "pub_tool_libcassert.h" 165 #include "pub_tool_libcfile.h" 166 #include "pub_tool_libcprint.h" 167 #include "pub_tool_libcproc.h" 168 #include "pub_tool_machine.h" 169 #include "pub_tool_mallocfree.h" 170 #include "pub_tool_options.h" 171 #include "pub_tool_replacemalloc.h" 172 #include "pub_tool_stacktrace.h" 173 #include "pub_tool_threadstate.h" 174 #include "pub_tool_tooliface.h" 175 #include "pub_tool_xarray.h" 176 #include "pub_tool_clientstate.h" 177 #include "pub_tool_gdbserver.h" 178 179 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK 180 181 //------------------------------------------------------------*/ 182 //--- Overview of operation ---*/ 183 //------------------------------------------------------------*/ 184 185 // The size of the stacks and heap is tracked. The heap is tracked in a lot 186 // of detail, enough to tell how many bytes each line of code is responsible 187 // for, more or less. The main data structure is a tree representing the 188 // call tree beneath all the allocation functions like malloc(). 189 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at 190 // the page level, and each page is treated much like a heap block. We use 191 // "heap" throughout below to cover this case because the concepts are all the 192 // same.) 193 // 194 // "Snapshots" are recordings of the memory usage. There are two basic 195 // kinds: 196 // - Normal: these record the current time, total memory size, total heap 197 // size, heap admin size and stack size. 198 // - Detailed: these record those things in a normal snapshot, plus a very 199 // detailed XTree (see below) indicating how the heap is structured. 200 // 201 // Snapshots are taken every so often. There are two storage classes of 202 // snapshots: 203 // - Temporary: Massif does a temporary snapshot every so often. The idea 204 // is to always have a certain number of temporary snapshots around. So 205 // we take them frequently to begin with, but decreasingly often as the 206 // program continues to run. Also, we remove some old ones after a while. 207 // Overall it's a kind of exponential decay thing. Most of these are 208 // normal snapshots, a small fraction are detailed snapshots. 209 // - Permanent: Massif takes a permanent (detailed) snapshot in some 210 // circumstances. They are: 211 // - Peak snapshot: When the memory usage peak is reached, it takes a 212 // snapshot. It keeps this, unless the peak is subsequently exceeded, 213 // in which case it will overwrite the peak snapshot. 214 // - User-requested snapshots: These are done in response to client 215 // requests. They are always kept. 216 217 // Used for printing things when clo_verbosity > 1. 218 #define VERB(verb, format, args...) \ 219 if (VG_(clo_verbosity) > verb) { \ 220 VG_(dmsg)("Massif: " format, ##args); \ 221 } 222 223 //------------------------------------------------------------// 224 //--- Statistics ---// 225 //------------------------------------------------------------// 226 227 // Konqueror startup, to give an idea of the numbers involved with a biggish 228 // program, with default depth: 229 // 230 // depth=3 depth=40 231 // - 310,000 allocations 232 // - 300,000 frees 233 // - 15,000 XPts 800,000 XPts 234 // - 1,800 top-XPts 235 236 static UInt n_heap_allocs = 0; 237 static UInt n_heap_reallocs = 0; 238 static UInt n_heap_frees = 0; 239 static UInt n_ignored_heap_allocs = 0; 240 static UInt n_ignored_heap_frees = 0; 241 static UInt n_ignored_heap_reallocs = 0; 242 static UInt n_stack_allocs = 0; 243 static UInt n_stack_frees = 0; 244 static UInt n_xpts = 0; 245 static UInt n_xpt_init_expansions = 0; 246 static UInt n_xpt_later_expansions = 0; 247 static UInt n_sxpt_allocs = 0; 248 static UInt n_sxpt_frees = 0; 249 static UInt n_skipped_snapshots = 0; 250 static UInt n_real_snapshots = 0; 251 static UInt n_detailed_snapshots = 0; 252 static UInt n_peak_snapshots = 0; 253 static UInt n_cullings = 0; 254 static UInt n_XCon_redos = 0; 255 256 //------------------------------------------------------------// 257 //--- Globals ---// 258 //------------------------------------------------------------// 259 260 // Number of guest instructions executed so far. Only used with 261 // --time-unit=i. 262 static Long guest_instrs_executed = 0; 263 264 static SizeT heap_szB = 0; // Live heap size 265 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes 266 static SizeT stacks_szB = 0; // Live stacks size 267 268 // This is the total size from the current peak snapshot, or 0 if no peak 269 // snapshot has been taken yet. 270 static SizeT peak_snapshot_total_szB = 0; 271 272 // Incremented every time memory is allocated/deallocated, by the 273 // allocated/deallocated amount; includes heap, heap-admin and stack 274 // memory. An alternative to milliseconds as a unit of program "time". 275 static ULong total_allocs_deallocs_szB = 0; 276 277 // When running with --heap=yes --pages-as-heap=no, we don't start taking 278 // snapshots until the first basic block is executed, rather than doing it in 279 // ms_post_clo_init (which is the obvious spot), for two reasons. 280 // - It lets us ignore stack events prior to that, because they're not 281 // really proper ones and just would screw things up. 282 // - Because there's still some core initialisation to do, and so there 283 // would be an artificial time gap between the first and second snapshots. 284 // 285 // When running with --heap=yes --pages-as-heap=yes, snapshots start much 286 // earlier due to new_mem_startup so this isn't relevant. 287 // 288 static Bool have_started_executing_code = False; 289 290 //------------------------------------------------------------// 291 //--- Alloc fns ---// 292 //------------------------------------------------------------// 293 294 static XArray* alloc_fns; 295 static XArray* ignore_fns; 296 297 static void init_alloc_fns(void) 298 { 299 // Create the list, and add the default elements. 300 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1", 301 VG_(free), sizeof(HChar*)); 302 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); } 303 304 // Ordered roughly according to (presumed) frequency. 305 // Nb: The C++ "operator new*" ones are overloadable. We include them 306 // always anyway, because even if they're overloaded, it would be a 307 // prodigiously stupid overloading that caused them to not allocate 308 // memory. 309 // 310 // XXX: because we don't look at the first stack entry (unless it's a 311 // custom allocation) there's not much point to having all these alloc 312 // functions here -- they should never appear anywhere (I think?) other 313 // than the top stack entry. The only exceptions are those that in 314 // vg_replace_malloc.c are partly or fully implemented in terms of another 315 // alloc function: realloc (which uses malloc); valloc, 316 // malloc_zone_valloc, posix_memalign and memalign_common (which use 317 // memalign). 318 // 319 DO("malloc" ); 320 DO("__builtin_new" ); 321 DO("operator new(unsigned)" ); 322 DO("operator new(unsigned long)" ); 323 DO("__builtin_vec_new" ); 324 DO("operator new[](unsigned)" ); 325 DO("operator new[](unsigned long)" ); 326 DO("calloc" ); 327 DO("realloc" ); 328 DO("memalign" ); 329 DO("posix_memalign" ); 330 DO("valloc" ); 331 DO("operator new(unsigned, std::nothrow_t const&)" ); 332 DO("operator new[](unsigned, std::nothrow_t const&)" ); 333 DO("operator new(unsigned long, std::nothrow_t const&)" ); 334 DO("operator new[](unsigned long, std::nothrow_t const&)"); 335 #if defined(VGO_darwin) 336 DO("malloc_zone_malloc" ); 337 DO("malloc_zone_calloc" ); 338 DO("malloc_zone_realloc" ); 339 DO("malloc_zone_memalign" ); 340 DO("malloc_zone_valloc" ); 341 #endif 342 } 343 344 static void init_ignore_fns(void) 345 { 346 // Create the (empty) list. 347 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1", 348 VG_(free), sizeof(HChar*)); 349 } 350 351 // Determines if the named function is a member of the XArray. 352 static Bool is_member_fn(const XArray* fns, const HChar* fnname) 353 { 354 HChar** fn_ptr; 355 Int i; 356 357 // Nb: It's a linear search through the list, because we're comparing 358 // strings rather than pointers to strings. 359 // Nb: This gets called a lot. It was an OSet, but they're quite slow to 360 // iterate through so it wasn't a good choice. 361 for (i = 0; i < VG_(sizeXA)(fns); i++) { 362 fn_ptr = VG_(indexXA)(fns, i); 363 if (VG_STREQ(fnname, *fn_ptr)) 364 return True; 365 } 366 return False; 367 } 368 369 370 //------------------------------------------------------------// 371 //--- Command line args ---// 372 //------------------------------------------------------------// 373 374 #define MAX_DEPTH 200 375 376 typedef enum { TimeI, TimeMS, TimeB } TimeUnit; 377 378 static const HChar* TimeUnit_to_string(TimeUnit time_unit) 379 { 380 switch (time_unit) { 381 case TimeI: return "i"; 382 case TimeMS: return "ms"; 383 case TimeB: return "B"; 384 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit"); 385 } 386 } 387 388 static Bool clo_heap = True; 389 // clo_heap_admin is deliberately a word-sized type. At one point it was 390 // a UInt, but this caused problems on 64-bit machines when it was 391 // multiplied by a small negative number and then promoted to a 392 // word-sized type -- it ended up with a value of 4.2 billion. Sigh. 393 static SSizeT clo_heap_admin = 8; 394 static Bool clo_pages_as_heap = False; 395 static Bool clo_stacks = False; 396 static Int clo_depth = 30; 397 static double clo_threshold = 1.0; // percentage 398 static double clo_peak_inaccuracy = 1.0; // percentage 399 static Int clo_time_unit = TimeI; 400 static Int clo_detailed_freq = 10; 401 static Int clo_max_snapshots = 100; 402 static const HChar* clo_massif_out_file = "massif.out.%p"; 403 404 static XArray* args_for_massif; 405 406 static Bool ms_process_cmd_line_option(const HChar* arg) 407 { 408 const HChar* tmp_str; 409 410 // Remember the arg for later use. 411 VG_(addToXA)(args_for_massif, &arg); 412 413 if VG_BOOL_CLO(arg, "--heap", clo_heap) {} 414 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {} 415 416 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {} 417 418 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {} 419 420 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {} 421 422 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) { 423 VG_(addToXA)(alloc_fns, &tmp_str); 424 } 425 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) { 426 VG_(addToXA)(ignore_fns, &tmp_str); 427 } 428 429 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) { 430 if (clo_threshold < 0 || clo_threshold > 100) { 431 VG_(fmsg_bad_option)(arg, 432 "--threshold must be between 0.0 and 100.0\n"); 433 } 434 } 435 436 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {} 437 438 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {} 439 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {} 440 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {} 441 442 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {} 443 444 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {} 445 446 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {} 447 448 else 449 return VG_(replacement_malloc_process_cmd_line_option)(arg); 450 451 return True; 452 } 453 454 static void ms_print_usage(void) 455 { 456 VG_(printf)( 457 " --heap=no|yes profile heap blocks [yes]\n" 458 " --heap-admin=<size> average admin bytes per heap block;\n" 459 " ignored if --heap=no [8]\n" 460 " --stacks=no|yes profile stack(s) [no]\n" 461 " --pages-as-heap=no|yes profile memory at the page level [no]\n" 462 " --depth=<number> depth of contexts [30]\n" 463 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n" 464 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n" 465 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n" 466 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n" 467 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n" 468 " or heap bytes alloc'd/dealloc'd [i]\n" 469 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n" 470 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n" 471 " --massif-out-file=<file> output file name [massif.out.%%p]\n" 472 ); 473 } 474 475 static void ms_print_debug_usage(void) 476 { 477 VG_(printf)( 478 " (none)\n" 479 ); 480 } 481 482 483 //------------------------------------------------------------// 484 //--- XPts, XTrees and XCons ---// 485 //------------------------------------------------------------// 486 487 // An XPt represents an "execution point", ie. a code address. Each XPt is 488 // part of a tree of XPts (an "execution tree", or "XTree"). The details of 489 // the heap are represented by a single XTree. 490 // 491 // The root of the tree is 'alloc_xpt', which represents all allocation 492 // functions, eg: 493 // - malloc/calloc/realloc/memalign/new/new[]; 494 // - user-specified allocation functions (using --alloc-fn); 495 // - custom allocation (MALLOCLIKE) points 496 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because 497 // it makes the code simpler. 498 // 499 // Any child of 'alloc_xpt' is called a "top-XPt". The XPts at the bottom 500 // of an XTree (leaf nodes) are "bottom-XPTs". 501 // 502 // Each path from a top-XPt to a bottom-XPt through an XTree gives an 503 // execution context ("XCon"), ie. a stack trace. (And sub-paths represent 504 // stack sub-traces.) The number of XCons in an XTree is equal to the 505 // number of bottom-XPTs in that XTree. 506 // 507 // alloc_xpt XTrees are bi-directional. 508 // | ^ 509 // v | 510 // > parent < Example: if child1() calls parent() and child2() 511 // / | \ also calls parent(), and parent() calls malloc(), 512 // | / \ | the XTree will look like this. 513 // | v v | 514 // child1 child2 515 // 516 // (Note that malformed stack traces can lead to difficulties. See the 517 // comment at the bottom of get_XCon.) 518 // 519 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short 520 // for "saved". When the XTree is duplicated for a snapshot, we duplicate 521 // it as an SXTree, which is similar but omits some things it does not need, 522 // and aggregates up insignificant nodes. This is important as an SXTree is 523 // typically much smaller than an XTree. 524 525 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two 526 // allocations per Pt. 527 528 typedef struct _XPt XPt; 529 struct _XPt { 530 Addr ip; // code address 531 532 // Bottom-XPts: space for the precise context. 533 // Other XPts: space of all the descendent bottom-XPts. 534 // Nb: this value goes up and down as the program executes. 535 SizeT szB; 536 537 XPt* parent; // pointer to parent XPt 538 539 // Children. 540 // n_children and max_children are 32-bit integers. 16-bit integers 541 // are too small -- a very big program might have more than 65536 542 // allocation points (ie. top-XPts) -- Konqueror starting up has 1800. 543 UInt n_children; // number of children 544 UInt max_children; // capacity of children array 545 XPt** children; // pointers to children XPts 546 }; 547 548 typedef 549 enum { 550 SigSXPt, 551 InsigSXPt 552 } 553 SXPtTag; 554 555 typedef struct _SXPt SXPt; 556 struct _SXPt { 557 SXPtTag tag; 558 SizeT szB; // memory size for the node, be it Sig or Insig 559 union { 560 // An SXPt representing a single significant code location. Much like 561 // an XPt, minus the fields that aren't necessary. 562 struct { 563 Addr ip; 564 UInt n_children; 565 SXPt** children; 566 } 567 Sig; 568 569 // An SXPt representing one or more code locations, all below the 570 // significance threshold. 571 struct { 572 Int n_xpts; // number of aggregated XPts 573 } 574 Insig; 575 }; 576 }; 577 578 // Fake XPt representing all allocation functions like malloc(). Acts as 579 // parent node to all top-XPts. 580 static XPt* alloc_xpt; 581 582 static XPt* new_XPt(Addr ip, XPt* parent) 583 { 584 // XPts are never freed, so we can use VG_(perm_malloc) to allocate them. 585 // Note that we cannot use VG_(perm_malloc) for the 'children' array, because 586 // that needs to be resizable. 587 XPt* xpt = VG_(perm_malloc)(sizeof(XPt), vg_alignof(XPt)); 588 xpt->ip = ip; 589 xpt->szB = 0; 590 xpt->parent = parent; 591 592 // We don't initially allocate any space for children. We let that 593 // happen on demand. Many XPts (ie. all the bottom-XPts) don't have any 594 // children anyway. 595 xpt->n_children = 0; 596 xpt->max_children = 0; 597 xpt->children = NULL; 598 599 // Update statistics 600 n_xpts++; 601 602 return xpt; 603 } 604 605 static void add_child_xpt(XPt* parent, XPt* child) 606 { 607 // Expand 'children' if necessary. 608 tl_assert(parent->n_children <= parent->max_children); 609 if (parent->n_children == parent->max_children) { 610 if (0 == parent->max_children) { 611 parent->max_children = 4; 612 parent->children = VG_(malloc)( "ms.main.acx.1", 613 parent->max_children * sizeof(XPt*) ); 614 n_xpt_init_expansions++; 615 } else { 616 parent->max_children *= 2; // Double size 617 parent->children = VG_(realloc)( "ms.main.acx.2", 618 parent->children, 619 parent->max_children * sizeof(XPt*) ); 620 n_xpt_later_expansions++; 621 } 622 } 623 624 // Insert new child XPt in parent's children list. 625 parent->children[ parent->n_children++ ] = child; 626 } 627 628 // Reverse comparison for a reverse sort -- biggest to smallest. 629 static Int SXPt_revcmp_szB(const void* n1, const void* n2) 630 { 631 const SXPt* sxpt1 = *(const SXPt *const *)n1; 632 const SXPt* sxpt2 = *(const SXPt *const *)n2; 633 return ( sxpt1->szB < sxpt2->szB ? 1 634 : sxpt1->szB > sxpt2->szB ? -1 635 : 0); 636 } 637 638 //------------------------------------------------------------// 639 //--- XTree Operations ---// 640 //------------------------------------------------------------// 641 642 // Duplicates an XTree as an SXTree. 643 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB) 644 { 645 Int i, n_sig_children, n_insig_children, n_child_sxpts; 646 SizeT sig_child_threshold_szB; 647 SXPt* sxpt; 648 649 // Number of XPt children Action for SXPT 650 // ------------------ --------------- 651 // 0 sig, 0 insig alloc 0 children 652 // N sig, 0 insig alloc N children, dup all 653 // N sig, M insig alloc N+1, dup first N, aggregate remaining M 654 // 0 sig, M insig alloc 1, aggregate M 655 656 // Work out how big a child must be to be significant. If the current 657 // total_szB is zero, then we set it to 1, which means everything will be 658 // judged insignificant -- this is sensible, as there's no point showing 659 // any detail for this case. Unless they used --threshold=0, in which 660 // case we show them everything because that's what they asked for. 661 // 662 // Nb: We do this once now, rather than once per child, because if we do 663 // that the cost of all the divisions adds up to something significant. 664 if (0 == total_szB && 0 != clo_threshold) { 665 sig_child_threshold_szB = 1; 666 } else { 667 sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100); 668 } 669 670 // How many children are significant? And do we need an aggregate SXPt? 671 n_sig_children = 0; 672 for (i = 0; i < xpt->n_children; i++) { 673 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 674 n_sig_children++; 675 } 676 } 677 n_insig_children = xpt->n_children - n_sig_children; 678 n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 ); 679 680 // Duplicate the XPt. 681 sxpt = VG_(malloc)("ms.main.dX.1", sizeof(SXPt)); 682 n_sxpt_allocs++; 683 sxpt->tag = SigSXPt; 684 sxpt->szB = xpt->szB; 685 sxpt->Sig.ip = xpt->ip; 686 sxpt->Sig.n_children = n_child_sxpts; 687 688 // Create the SXPt's children. 689 if (n_child_sxpts > 0) { 690 Int j; 691 SizeT sig_children_szB = 0, insig_children_szB = 0; 692 sxpt->Sig.children = VG_(malloc)("ms.main.dX.2", 693 n_child_sxpts * sizeof(SXPt*)); 694 695 // Duplicate the significant children. (Nb: sig_children_szB + 696 // insig_children_szB doesn't necessarily equal xpt->szB.) 697 j = 0; 698 for (i = 0; i < xpt->n_children; i++) { 699 if (xpt->children[i]->szB >= sig_child_threshold_szB) { 700 sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB); 701 sig_children_szB += xpt->children[i]->szB; 702 } else { 703 insig_children_szB += xpt->children[i]->szB; 704 } 705 } 706 707 // Create the SXPt for the insignificant children, if any, and put it 708 // in the last child entry. 709 if (n_insig_children > 0) { 710 // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt 711 // doesn't involve a call to dup_XTree(). 712 SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt)); 713 n_sxpt_allocs++; 714 insig_sxpt->tag = InsigSXPt; 715 insig_sxpt->szB = insig_children_szB; 716 insig_sxpt->Insig.n_xpts = n_insig_children; 717 sxpt->Sig.children[n_sig_children] = insig_sxpt; 718 } 719 } else { 720 sxpt->Sig.children = NULL; 721 } 722 723 return sxpt; 724 } 725 726 static void free_SXTree(SXPt* sxpt) 727 { 728 Int i; 729 tl_assert(sxpt != NULL); 730 731 switch (sxpt->tag) { 732 case SigSXPt: 733 // Free all children SXPts, then the children array. 734 for (i = 0; i < sxpt->Sig.n_children; i++) { 735 free_SXTree(sxpt->Sig.children[i]); 736 sxpt->Sig.children[i] = NULL; 737 } 738 VG_(free)(sxpt->Sig.children); sxpt->Sig.children = NULL; 739 break; 740 741 case InsigSXPt: 742 break; 743 744 default: tl_assert2(0, "free_SXTree: unknown SXPt tag"); 745 } 746 747 // Free the SXPt itself. 748 VG_(free)(sxpt); sxpt = NULL; 749 n_sxpt_frees++; 750 } 751 752 // Sanity checking: we periodically check the heap XTree with 753 // ms_expensive_sanity_check. 754 static void sanity_check_XTree(XPt* xpt, XPt* parent) 755 { 756 tl_assert(xpt != NULL); 757 758 // Check back-pointer. 759 tl_assert2(xpt->parent == parent, 760 "xpt->parent = %p, parent = %p\n", xpt->parent, parent); 761 762 // Check children counts look sane. 763 tl_assert(xpt->n_children <= xpt->max_children); 764 765 // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's 766 // children's sizes. See comment at the bottom of get_XCon. 767 } 768 769 // Sanity checking: we check SXTrees (which are in snapshots) after 770 // snapshots are created, before they are deleted, and before they are 771 // printed. 772 static void sanity_check_SXTree(SXPt* sxpt) 773 { 774 Int i; 775 776 tl_assert(sxpt != NULL); 777 778 // Check the sum of any children szBs equals the SXPt's szB. Check the 779 // children at the same time. 780 switch (sxpt->tag) { 781 case SigSXPt: { 782 if (sxpt->Sig.n_children > 0) { 783 for (i = 0; i < sxpt->Sig.n_children; i++) { 784 sanity_check_SXTree(sxpt->Sig.children[i]); 785 } 786 } 787 break; 788 } 789 case InsigSXPt: 790 break; // do nothing 791 792 default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag"); 793 } 794 } 795 796 797 //------------------------------------------------------------// 798 //--- XCon Operations ---// 799 //------------------------------------------------------------// 800 801 // This is the limit on the number of removed alloc-fns that can be in a 802 // single XCon. 803 #define MAX_OVERESTIMATE 50 804 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE) 805 806 // Determine if the given IP belongs to a function that should be ignored. 807 static Bool fn_should_be_ignored(Addr ip) 808 { 809 const HChar *buf; 810 return 811 ( VG_(get_fnname)(ip, &buf) && is_member_fn(ignore_fns, buf) 812 ? True : False ); 813 } 814 815 // Get the stack trace for an XCon, filtering out uninteresting entries: 816 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main. 817 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c 818 // becomes: a / b / main 819 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked 820 // as an alloc-fn. This is ok. 821 static 822 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[]) 823 { 824 Int n_ips, i, n_alloc_fns_removed; 825 Int overestimate; 826 Bool redo; 827 828 // We ask for a few more IPs than clo_depth suggests we need. Then we 829 // remove every entry that is an alloc-fn. Depending on the 830 // circumstances, we may need to redo it all, asking for more IPs. 831 // Details: 832 // - If the original stack trace is smaller than asked-for, redo=False 833 // - Else if after filtering we have >= clo_depth IPs, redo=False 834 // - Else redo=True 835 // In other words, to redo, we'd have to get a stack trace as big as we 836 // asked for and remove more than 'overestimate' alloc-fns. 837 838 // Main loop. 839 redo = True; // Assume this to begin with. 840 for (overestimate = 3; redo; overestimate += 6) { 841 // This should never happen -- would require MAX_OVERESTIMATE 842 // alloc-fns to be removed from the stack trace. 843 if (overestimate > MAX_OVERESTIMATE) 844 VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?"); 845 846 // Ask for more IPs than clo_depth suggests we need. 847 n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate, 848 NULL/*array to dump SP values in*/, 849 NULL/*array to dump FP values in*/, 850 0/*first_ip_delta*/ ); 851 tl_assert(n_ips > 0); 852 853 // If the original stack trace is smaller than asked-for, redo=False. 854 if (n_ips < clo_depth + overestimate) { redo = False; } 855 856 // Filter out alloc fns. If requested, we automatically remove the 857 // first entry (which presumably will be something like malloc or 858 // __builtin_new that we're sure to filter out) without looking at it, 859 // because VG_(get_fnname) is expensive. 860 n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 ); 861 for (i = n_alloc_fns_removed; i < n_ips; i++) { 862 const HChar *buf; 863 if (VG_(get_fnname)(ips[i], &buf)) { 864 if (is_member_fn(alloc_fns, buf)) { 865 n_alloc_fns_removed++; 866 } else { 867 break; 868 } 869 } 870 } 871 // Remove the alloc fns by shuffling the rest down over them. 872 n_ips -= n_alloc_fns_removed; 873 for (i = 0; i < n_ips; i++) { 874 ips[i] = ips[i + n_alloc_fns_removed]; 875 } 876 877 // If after filtering we have >= clo_depth IPs, redo=False 878 if (n_ips >= clo_depth) { 879 redo = False; 880 n_ips = clo_depth; // Ignore any IPs below --depth. 881 } 882 883 if (redo) { 884 n_XCon_redos++; 885 } 886 } 887 return n_ips; 888 } 889 890 // Gets an XCon and puts it in the tree. Returns the XCon's bottom-XPt. 891 // Unless the allocation should be ignored, in which case we return NULL. 892 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry ) 893 { 894 static Addr ips[MAX_IPS]; 895 Int i; 896 XPt* xpt = alloc_xpt; 897 898 // After this call, the IPs we want are in ips[0]..ips[n_ips-1]. 899 Int n_ips = get_IPs(tid, exclude_first_entry, ips); 900 901 // Should we ignore this allocation? (Nb: n_ips can be zero, eg. if 902 // 'main' is marked as an alloc-fn.) 903 if (n_ips > 0 && fn_should_be_ignored(ips[0])) { 904 return NULL; 905 } 906 907 // Now do the search/insertion of the XCon. 908 for (i = 0; i < n_ips; i++) { 909 Addr ip = ips[i]; 910 Int ch; 911 // Look for IP in xpt's children. 912 // Linear search, ugh -- about 10% of time for konqueror startup tried 913 // caching last result, only hit about 4% for konqueror. 914 // Nb: this search hits about 98% of the time for konqueror 915 for (ch = 0; True; ch++) { 916 if (ch == xpt->n_children) { 917 // IP not found in the children. 918 // Create and add new child XPt, then stop. 919 XPt* new_child_xpt = new_XPt(ip, xpt); 920 add_child_xpt(xpt, new_child_xpt); 921 xpt = new_child_xpt; 922 break; 923 924 } else if (ip == xpt->children[ch]->ip) { 925 // Found the IP in the children, stop. 926 xpt = xpt->children[ch]; 927 break; 928 } 929 } 930 } 931 932 // [Note: several comments refer to this comment. Do not delete it 933 // without updating them.] 934 // 935 // A complication... If all stack traces were well-formed, then the 936 // returned xpt would always be a bottom-XPt. As a consequence, an XPt's 937 // size would always be equal to the sum of its children's sizes, which 938 // is an excellent sanity check. 939 // 940 // Unfortunately, stack traces occasionally are malformed, ie. truncated. 941 // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a 942 // sub-trace of a/b/c/d. So we can't assume this xpt is a bottom-XPt; 943 // nor can we do sanity check an XPt's size against its children's sizes. 944 // This is annoying, but must be dealt with. (Older versions of Massif 945 // had this assertion in, and it was reported to fail by real users a 946 // couple of times.) Even more annoyingly, I can't come up with a simple 947 // test case that exhibit such a malformed stack trace, so I can't 948 // regression test it. Sigh. 949 // 950 // However, we can print a warning, so that if it happens (unexpectedly) 951 // in existing regression tests we'll know. Also, it warns users that 952 // the output snapshots may not add up the way they might expect. 953 // 954 //tl_assert(0 == xpt->n_children); // Must be bottom-XPt 955 if (0 != xpt->n_children) { 956 static Int n_moans = 0; 957 if (n_moans < 3) { 958 VG_(umsg)( 959 "Warning: Malformed stack trace detected. In Massif's output,\n"); 960 VG_(umsg)( 961 " the size of an entry's child entries may not sum up\n"); 962 VG_(umsg)( 963 " to the entry's size as they normally do.\n"); 964 n_moans++; 965 if (3 == n_moans) 966 VG_(umsg)( 967 " (And Massif now won't warn about this again.)\n"); 968 } 969 } 970 return xpt; 971 } 972 973 // Update 'szB' of every XPt in the XCon, by percolating upwards. 974 static void update_XCon(XPt* xpt, SSizeT space_delta) 975 { 976 tl_assert(clo_heap); 977 tl_assert(NULL != xpt); 978 979 if (0 == space_delta) 980 return; 981 982 while (xpt != alloc_xpt) { 983 if (space_delta < 0) tl_assert(xpt->szB >= -space_delta); 984 xpt->szB += space_delta; 985 xpt = xpt->parent; 986 } 987 if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta); 988 alloc_xpt->szB += space_delta; 989 } 990 991 992 //------------------------------------------------------------// 993 //--- Snapshots ---// 994 //------------------------------------------------------------// 995 996 // Snapshots are done in a way so that we always have a reasonable number of 997 // them. We start by taking them quickly. Once we hit our limit, we cull 998 // some (eg. half), and start taking them more slowly. Once we hit the 999 // limit again, we again cull and then take them even more slowly, and so 1000 // on. 1001 1002 // Time is measured either in i or ms or bytes, depending on the --time-unit 1003 // option. It's a Long because it can exceed 32-bits reasonably easily, and 1004 // because we need to allow negative values to represent unset times. 1005 typedef Long Time; 1006 1007 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number. 1008 1009 typedef 1010 enum { 1011 Normal = 77, 1012 Peak, 1013 Unused 1014 } 1015 SnapshotKind; 1016 1017 typedef 1018 struct { 1019 SnapshotKind kind; 1020 Time time; 1021 SizeT heap_szB; 1022 SizeT heap_extra_szB;// Heap slop + admin bytes. 1023 SizeT stacks_szB; 1024 SXPt* alloc_sxpt; // Heap XTree root, if a detailed snapshot, 1025 } // otherwise NULL. 1026 Snapshot; 1027 1028 static UInt next_snapshot_i = 0; // Index of where next snapshot will go. 1029 static Snapshot* snapshots; // Array of snapshots. 1030 1031 static Bool is_snapshot_in_use(Snapshot* snapshot) 1032 { 1033 if (Unused == snapshot->kind) { 1034 // If snapshot is unused, check all the fields are unset. 1035 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME); 1036 tl_assert(snapshot->heap_extra_szB == 0); 1037 tl_assert(snapshot->heap_szB == 0); 1038 tl_assert(snapshot->stacks_szB == 0); 1039 tl_assert(snapshot->alloc_sxpt == NULL); 1040 return False; 1041 } else { 1042 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME); 1043 return True; 1044 } 1045 } 1046 1047 static Bool is_detailed_snapshot(Snapshot* snapshot) 1048 { 1049 return (snapshot->alloc_sxpt ? True : False); 1050 } 1051 1052 static Bool is_uncullable_snapshot(Snapshot* snapshot) 1053 { 1054 return &snapshots[0] == snapshot // First snapshot 1055 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot 1056 || snapshot->kind == Peak; // Peak snapshot 1057 } 1058 1059 static void sanity_check_snapshot(Snapshot* snapshot) 1060 { 1061 if (snapshot->alloc_sxpt) { 1062 sanity_check_SXTree(snapshot->alloc_sxpt); 1063 } 1064 } 1065 1066 // All the used entries should look used, all the unused ones should be clear. 1067 static void sanity_check_snapshots_array(void) 1068 { 1069 Int i; 1070 for (i = 0; i < next_snapshot_i; i++) { 1071 tl_assert( is_snapshot_in_use( & snapshots[i] )); 1072 } 1073 for ( ; i < clo_max_snapshots; i++) { 1074 tl_assert(!is_snapshot_in_use( & snapshots[i] )); 1075 } 1076 } 1077 1078 // This zeroes all the fields in the snapshot, but does not free the heap 1079 // XTree if present. It also does a sanity check unless asked not to; we 1080 // can't sanity check at startup when clearing the initial snapshots because 1081 // they're full of junk. 1082 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check) 1083 { 1084 if (do_sanity_check) sanity_check_snapshot(snapshot); 1085 snapshot->kind = Unused; 1086 snapshot->time = UNUSED_SNAPSHOT_TIME; 1087 snapshot->heap_extra_szB = 0; 1088 snapshot->heap_szB = 0; 1089 snapshot->stacks_szB = 0; 1090 snapshot->alloc_sxpt = NULL; 1091 } 1092 1093 // This zeroes all the fields in the snapshot, and frees the heap XTree if 1094 // present. 1095 static void delete_snapshot(Snapshot* snapshot) 1096 { 1097 // Nb: if there's an XTree, we free it after calling clear_snapshot, 1098 // because clear_snapshot does a sanity check which includes checking the 1099 // XTree. 1100 SXPt* tmp_sxpt = snapshot->alloc_sxpt; 1101 clear_snapshot(snapshot, /*do_sanity_check*/True); 1102 if (tmp_sxpt) { 1103 free_SXTree(tmp_sxpt); 1104 } 1105 } 1106 1107 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i) 1108 { 1109 Snapshot* snapshot = &snapshots[i]; 1110 const HChar* suffix; 1111 switch (snapshot->kind) { 1112 case Peak: suffix = "p"; break; 1113 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break; 1114 case Unused: suffix = "u"; break; 1115 default: 1116 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind); 1117 } 1118 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n", 1119 prefix, suffix, i, 1120 snapshot->time, 1121 snapshot->heap_szB, 1122 snapshot->heap_extra_szB, 1123 snapshot->stacks_szB 1124 ); 1125 } 1126 1127 // Cull half the snapshots; we choose those that represent the smallest 1128 // time-spans, because that gives us the most even distribution of snapshots 1129 // over time. (It's possible to lose interesting spikes, however.) 1130 // 1131 // Algorithm for N snapshots: We find the snapshot representing the smallest 1132 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone. 1133 // We have to do this one snapshot at a time, rather than finding the (N/2) 1134 // smallest snapshots in one hit, because when a snapshot is removed, its 1135 // neighbours immediately cover greater timespans. So it's O(N^2), but N is 1136 // small, and it's not done very often. 1137 // 1138 // Once we're done, we return the new smallest interval between snapshots. 1139 // That becomes our minimum time interval. 1140 static UInt cull_snapshots(void) 1141 { 1142 Int i, jp, j, jn, min_timespan_i; 1143 Int n_deleted = 0; 1144 Time min_timespan; 1145 1146 n_cullings++; 1147 1148 // Sets j to the index of the first not-yet-removed snapshot at or after i 1149 #define FIND_SNAPSHOT(i, j) \ 1150 for (j = i; \ 1151 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \ 1152 j++) { } 1153 1154 VERB(2, "Culling...\n"); 1155 1156 // First we remove enough snapshots by clearing them in-place. Once 1157 // that's done, we can slide the remaining ones down. 1158 for (i = 0; i < clo_max_snapshots/2; i++) { 1159 // Find the snapshot representing the smallest timespan. The timespan 1160 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between 1161 // snapshot A and B. We don't consider the first and last snapshots for 1162 // removal. 1163 Snapshot* min_snapshot; 1164 Int min_j; 1165 1166 // Initial triple: (prev, curr, next) == (jp, j, jn) 1167 // Initial min_timespan is the first one. 1168 jp = 0; 1169 FIND_SNAPSHOT(1, j); 1170 FIND_SNAPSHOT(j+1, jn); 1171 min_timespan = 0x7fffffffffffffffLL; 1172 min_j = -1; 1173 while (jn < clo_max_snapshots) { 1174 Time timespan = snapshots[jn].time - snapshots[jp].time; 1175 tl_assert(timespan >= 0); 1176 // Nb: We never cull the peak snapshot. 1177 if (Peak != snapshots[j].kind && timespan < min_timespan) { 1178 min_timespan = timespan; 1179 min_j = j; 1180 } 1181 // Move on to next triple 1182 jp = j; 1183 j = jn; 1184 FIND_SNAPSHOT(jn+1, jn); 1185 } 1186 // We've found the least important snapshot, now delete it. First 1187 // print it if necessary. 1188 tl_assert(-1 != min_j); // Check we found a minimum. 1189 min_snapshot = & snapshots[ min_j ]; 1190 if (VG_(clo_verbosity) > 1) { 1191 HChar buf[64]; // large enough 1192 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan); 1193 VERB_snapshot(2, buf, min_j); 1194 } 1195 delete_snapshot(min_snapshot); 1196 n_deleted++; 1197 } 1198 1199 // Slide down the remaining snapshots over the removed ones. First set i 1200 // to point to the first empty slot, and j to the first full slot after 1201 // i. Then slide everything down. 1202 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { } 1203 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { } 1204 for ( ; j < clo_max_snapshots; j++) { 1205 if (is_snapshot_in_use( &snapshots[j] )) { 1206 snapshots[i++] = snapshots[j]; 1207 clear_snapshot(&snapshots[j], /*do_sanity_check*/True); 1208 } 1209 } 1210 next_snapshot_i = i; 1211 1212 // Check snapshots array looks ok after changes. 1213 sanity_check_snapshots_array(); 1214 1215 // Find the minimum timespan remaining; that will be our new minimum 1216 // time interval. Note that above we were finding timespans by measuring 1217 // two intervals around a snapshot that was under consideration for 1218 // deletion. Here we only measure single intervals because all the 1219 // deletions have occurred. 1220 // 1221 // But we have to be careful -- some snapshots (eg. snapshot 0, and the 1222 // peak snapshot) are uncullable. If two uncullable snapshots end up 1223 // next to each other, they'll never be culled (assuming the peak doesn't 1224 // change), and the time gap between them will not change. However, the 1225 // time between the remaining cullable snapshots will grow ever larger. 1226 // This means that the min_timespan found will always be that between the 1227 // two uncullable snapshots, and it will be much smaller than it should 1228 // be. To avoid this problem, when computing the minimum timespan, we 1229 // ignore any timespans between two uncullable snapshots. 1230 tl_assert(next_snapshot_i > 1); 1231 min_timespan = 0x7fffffffffffffffLL; 1232 min_timespan_i = -1; 1233 for (i = 1; i < next_snapshot_i; i++) { 1234 if (is_uncullable_snapshot(&snapshots[i]) && 1235 is_uncullable_snapshot(&snapshots[i-1])) 1236 { 1237 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i); 1238 } else { 1239 Time timespan = snapshots[i].time - snapshots[i-1].time; 1240 tl_assert(timespan >= 0); 1241 if (timespan < min_timespan) { 1242 min_timespan = timespan; 1243 min_timespan_i = i; 1244 } 1245 } 1246 } 1247 tl_assert(-1 != min_timespan_i); // Check we found a minimum. 1248 1249 // Print remaining snapshots, if necessary. 1250 if (VG_(clo_verbosity) > 1) { 1251 VERB(2, "Finished culling (%3d of %3d deleted)\n", 1252 n_deleted, clo_max_snapshots); 1253 for (i = 0; i < next_snapshot_i; i++) { 1254 VERB_snapshot(2, " post-cull", i); 1255 } 1256 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n", 1257 min_timespan, min_timespan_i-1, min_timespan_i); 1258 } 1259 1260 return min_timespan; 1261 } 1262 1263 static Time get_time(void) 1264 { 1265 // Get current time, in whatever time unit we're using. 1266 if (clo_time_unit == TimeI) { 1267 return guest_instrs_executed; 1268 } else if (clo_time_unit == TimeMS) { 1269 // Some stuff happens between the millisecond timer being initialised 1270 // to zero and us taking our first snapshot. We determine that time 1271 // gap so we can subtract it from all subsequent times so that our 1272 // first snapshot is considered to be at t = 0ms. Unfortunately, a 1273 // bunch of symbols get read after the first snapshot is taken but 1274 // before the second one (which is triggered by the first allocation), 1275 // so when the time-unit is 'ms' we always have a big gap between the 1276 // first two snapshots. But at least users won't have to wonder why 1277 // the first snapshot isn't at t=0. 1278 static Bool is_first_get_time = True; 1279 static Time start_time_ms; 1280 if (is_first_get_time) { 1281 start_time_ms = VG_(read_millisecond_timer)(); 1282 is_first_get_time = False; 1283 return 0; 1284 } else { 1285 return VG_(read_millisecond_timer)() - start_time_ms; 1286 } 1287 } else if (clo_time_unit == TimeB) { 1288 return total_allocs_deallocs_szB; 1289 } else { 1290 tl_assert2(0, "bad --time-unit value"); 1291 } 1292 } 1293 1294 // Take a snapshot, and only that -- decisions on whether to take a 1295 // snapshot, or what kind of snapshot, are made elsewhere. 1296 // Nb: we call the arg "my_time" because "time" shadows a global declaration 1297 // in /usr/include/time.h on Darwin. 1298 static void 1299 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time, 1300 Bool is_detailed) 1301 { 1302 tl_assert(!is_snapshot_in_use(snapshot)); 1303 if (!clo_pages_as_heap) { 1304 tl_assert(have_started_executing_code); 1305 } 1306 1307 // Heap and heap admin. 1308 if (clo_heap) { 1309 snapshot->heap_szB = heap_szB; 1310 if (is_detailed) { 1311 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1312 snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB); 1313 tl_assert( alloc_xpt->szB == heap_szB); 1314 tl_assert(snapshot->alloc_sxpt->szB == heap_szB); 1315 } 1316 snapshot->heap_extra_szB = heap_extra_szB; 1317 } 1318 1319 // Stack(s). 1320 if (clo_stacks) { 1321 snapshot->stacks_szB = stacks_szB; 1322 } 1323 1324 // Rest of snapshot. 1325 snapshot->kind = kind; 1326 snapshot->time = my_time; 1327 sanity_check_snapshot(snapshot); 1328 1329 // Update stats. 1330 if (Peak == kind) n_peak_snapshots++; 1331 if (is_detailed) n_detailed_snapshots++; 1332 n_real_snapshots++; 1333 } 1334 1335 1336 // Take a snapshot, if it's time, or if we've hit a peak. 1337 static void 1338 maybe_take_snapshot(SnapshotKind kind, const HChar* what) 1339 { 1340 // 'min_time_interval' is the minimum time interval between snapshots. 1341 // If we try to take a snapshot and less than this much time has passed, 1342 // we don't take it. It gets larger as the program runs longer. It's 1343 // initialised to zero so that we begin by taking snapshots as quickly as 1344 // possible. 1345 static Time min_time_interval = 0; 1346 // Zero allows startup snapshot. 1347 static Time earliest_possible_time_of_next_snapshot = 0; 1348 static Int n_snapshots_since_last_detailed = 0; 1349 static Int n_skipped_snapshots_since_last_snapshot = 0; 1350 1351 Snapshot* snapshot; 1352 Bool is_detailed; 1353 // Nb: we call this variable "my_time" because "time" shadows a global 1354 // declaration in /usr/include/time.h on Darwin. 1355 Time my_time = get_time(); 1356 1357 switch (kind) { 1358 case Normal: 1359 // Only do a snapshot if it's time. 1360 if (my_time < earliest_possible_time_of_next_snapshot) { 1361 n_skipped_snapshots++; 1362 n_skipped_snapshots_since_last_snapshot++; 1363 return; 1364 } 1365 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed); 1366 break; 1367 1368 case Peak: { 1369 // Because we're about to do a deallocation, we're coming down from a 1370 // local peak. If it is (a) actually a global peak, and (b) a certain 1371 // amount bigger than the previous peak, then we take a peak snapshot. 1372 // By not taking a snapshot for every peak, we save a lot of effort -- 1373 // because many peaks remain peak only for a short time. 1374 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB; 1375 SizeT excess_szB_for_new_peak = 1376 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100); 1377 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) { 1378 return; 1379 } 1380 is_detailed = True; 1381 break; 1382 } 1383 1384 default: 1385 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind"); 1386 } 1387 1388 // Take the snapshot. 1389 snapshot = & snapshots[next_snapshot_i]; 1390 take_snapshot(snapshot, kind, my_time, is_detailed); 1391 1392 // Record if it was detailed. 1393 if (is_detailed) { 1394 n_snapshots_since_last_detailed = 0; 1395 } else { 1396 n_snapshots_since_last_detailed++; 1397 } 1398 1399 // Update peak data, if it's a Peak snapshot. 1400 if (Peak == kind) { 1401 Int i, number_of_peaks_snapshots_found = 0; 1402 1403 // Sanity check the size, then update our recorded peak. 1404 SizeT snapshot_total_szB = 1405 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 1406 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB, 1407 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB); 1408 peak_snapshot_total_szB = snapshot_total_szB; 1409 1410 // Find the old peak snapshot, if it exists, and mark it as normal. 1411 for (i = 0; i < next_snapshot_i; i++) { 1412 if (Peak == snapshots[i].kind) { 1413 snapshots[i].kind = Normal; 1414 number_of_peaks_snapshots_found++; 1415 } 1416 } 1417 tl_assert(number_of_peaks_snapshots_found <= 1); 1418 } 1419 1420 // Finish up verbosity and stats stuff. 1421 if (n_skipped_snapshots_since_last_snapshot > 0) { 1422 VERB(2, " (skipped %d snapshot%s)\n", 1423 n_skipped_snapshots_since_last_snapshot, 1424 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") ); 1425 } 1426 VERB_snapshot(2, what, next_snapshot_i); 1427 n_skipped_snapshots_since_last_snapshot = 0; 1428 1429 // Cull the entries, if our snapshot table is full. 1430 next_snapshot_i++; 1431 if (clo_max_snapshots == next_snapshot_i) { 1432 min_time_interval = cull_snapshots(); 1433 } 1434 1435 // Work out the earliest time when the next snapshot can happen. 1436 earliest_possible_time_of_next_snapshot = my_time + min_time_interval; 1437 } 1438 1439 1440 //------------------------------------------------------------// 1441 //--- Sanity checking ---// 1442 //------------------------------------------------------------// 1443 1444 static Bool ms_cheap_sanity_check ( void ) 1445 { 1446 return True; // Nothing useful we can cheaply check. 1447 } 1448 1449 static Bool ms_expensive_sanity_check ( void ) 1450 { 1451 sanity_check_XTree(alloc_xpt, /*parent*/NULL); 1452 sanity_check_snapshots_array(); 1453 return True; 1454 } 1455 1456 1457 //------------------------------------------------------------// 1458 //--- Heap management ---// 1459 //------------------------------------------------------------// 1460 1461 // Metadata for heap blocks. Each one contains a pointer to a bottom-XPt, 1462 // which is a foothold into the XCon at which it was allocated. From 1463 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and 1464 // decremented (at deallocation). 1465 // 1466 // Nb: first two fields must match core's VgHashNode. 1467 typedef 1468 struct _HP_Chunk { 1469 struct _HP_Chunk* next; 1470 Addr data; // Ptr to actual block 1471 SizeT req_szB; // Size requested 1472 SizeT slop_szB; // Extra bytes given above those requested 1473 XPt* where; // Where allocated; bottom-XPt 1474 } 1475 HP_Chunk; 1476 1477 static VgHashTable *malloc_list = NULL; // HP_Chunks 1478 1479 static void update_alloc_stats(SSizeT szB_delta) 1480 { 1481 // Update total_allocs_deallocs_szB. 1482 if (szB_delta < 0) szB_delta = -szB_delta; 1483 total_allocs_deallocs_szB += szB_delta; 1484 } 1485 1486 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta) 1487 { 1488 if (heap_szB_delta < 0) 1489 tl_assert(heap_szB >= -heap_szB_delta); 1490 if (heap_extra_szB_delta < 0) 1491 tl_assert(heap_extra_szB >= -heap_extra_szB_delta); 1492 1493 heap_extra_szB += heap_extra_szB_delta; 1494 heap_szB += heap_szB_delta; 1495 1496 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta); 1497 } 1498 1499 static 1500 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB, 1501 Bool exclude_first_entry, Bool maybe_snapshot ) 1502 { 1503 // Make new HP_Chunk node, add to malloc_list 1504 HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk)); 1505 hc->req_szB = req_szB; 1506 hc->slop_szB = slop_szB; 1507 hc->data = (Addr)p; 1508 hc->where = NULL; 1509 VG_(HT_add_node)(malloc_list, hc); 1510 1511 if (clo_heap) { 1512 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB); 1513 1514 hc->where = get_XCon( tid, exclude_first_entry ); 1515 1516 if (hc->where) { 1517 // Update statistics. 1518 n_heap_allocs++; 1519 1520 // Update heap stats. 1521 update_heap_stats(req_szB, clo_heap_admin + slop_szB); 1522 1523 // Update XTree. 1524 update_XCon(hc->where, req_szB); 1525 1526 // Maybe take a snapshot. 1527 if (maybe_snapshot) { 1528 maybe_take_snapshot(Normal, " alloc"); 1529 } 1530 1531 } else { 1532 // Ignored allocation. 1533 n_ignored_heap_allocs++; 1534 1535 VERB(3, "(ignored)\n"); 1536 } 1537 1538 VERB(3, ">>>\n"); 1539 } 1540 1541 return p; 1542 } 1543 1544 static __inline__ 1545 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB, 1546 Bool is_zeroed ) 1547 { 1548 SizeT actual_szB, slop_szB; 1549 void* p; 1550 1551 if ((SSizeT)req_szB < 0) return NULL; 1552 1553 // Allocate and zero if necessary. 1554 p = VG_(cli_malloc)( req_alignB, req_szB ); 1555 if (!p) { 1556 return NULL; 1557 } 1558 if (is_zeroed) VG_(memset)(p, 0, req_szB); 1559 actual_szB = VG_(cli_malloc_usable_size)(p); 1560 tl_assert(actual_szB >= req_szB); 1561 slop_szB = actual_szB - req_szB; 1562 1563 // Record block. 1564 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True, 1565 /*maybe_snapshot*/True); 1566 1567 return p; 1568 } 1569 1570 static __inline__ 1571 void unrecord_block ( void* p, Bool maybe_snapshot ) 1572 { 1573 // Remove HP_Chunk from malloc_list 1574 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p); 1575 if (NULL == hc) { 1576 return; // must have been a bogus free() 1577 } 1578 1579 if (clo_heap) { 1580 VERB(3, "<<< unrecord_block\n"); 1581 1582 if (hc->where) { 1583 // Update statistics. 1584 n_heap_frees++; 1585 1586 // Maybe take a peak snapshot, since it's a deallocation. 1587 if (maybe_snapshot) { 1588 maybe_take_snapshot(Peak, "de-PEAK"); 1589 } 1590 1591 // Update heap stats. 1592 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB); 1593 1594 // Update XTree. 1595 update_XCon(hc->where, -hc->req_szB); 1596 1597 // Maybe take a snapshot. 1598 if (maybe_snapshot) { 1599 maybe_take_snapshot(Normal, "dealloc"); 1600 } 1601 1602 } else { 1603 n_ignored_heap_frees++; 1604 1605 VERB(3, "(ignored)\n"); 1606 } 1607 1608 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB); 1609 } 1610 1611 // Actually free the chunk, and the heap block (if necessary) 1612 VG_(free)( hc ); hc = NULL; 1613 } 1614 1615 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was 1616 // ignored, but the realloc is not requested to be ignored, and we are 1617 // shrinking the block, then we have to ignore the realloc -- otherwise we 1618 // could end up with negative heap sizes. This isn't a danger if we are 1619 // growing such a block, but for consistency (it also simplifies things) we 1620 // ignore such reallocs as well. 1621 static __inline__ 1622 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB ) 1623 { 1624 HP_Chunk* hc; 1625 void* p_new; 1626 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB; 1627 XPt *old_where, *new_where; 1628 Bool is_ignored = False; 1629 1630 // Remove the old block 1631 hc = VG_(HT_remove)(malloc_list, (UWord)p_old); 1632 if (hc == NULL) { 1633 return NULL; // must have been a bogus realloc() 1634 } 1635 1636 old_req_szB = hc->req_szB; 1637 old_slop_szB = hc->slop_szB; 1638 1639 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes. 1640 if (clo_heap) { 1641 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB); 1642 1643 if (hc->where) { 1644 // Update statistics. 1645 n_heap_reallocs++; 1646 1647 // Maybe take a peak snapshot, if it's (effectively) a deallocation. 1648 if (new_req_szB < old_req_szB) { 1649 maybe_take_snapshot(Peak, "re-PEAK"); 1650 } 1651 } else { 1652 // The original malloc was ignored, so we have to ignore the 1653 // realloc as well. 1654 is_ignored = True; 1655 } 1656 } 1657 1658 // Actually do the allocation, if necessary. 1659 if (new_req_szB <= old_req_szB + old_slop_szB) { 1660 // New size is smaller or same; block not moved. 1661 p_new = p_old; 1662 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB); 1663 1664 } else { 1665 // New size is bigger; make new block, copy shared contents, free old. 1666 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB); 1667 if (!p_new) { 1668 // Nb: if realloc fails, NULL is returned but the old block is not 1669 // touched. What an awful function. 1670 return NULL; 1671 } 1672 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB); 1673 VG_(cli_free)(p_old); 1674 new_actual_szB = VG_(cli_malloc_usable_size)(p_new); 1675 tl_assert(new_actual_szB >= new_req_szB); 1676 new_slop_szB = new_actual_szB - new_req_szB; 1677 } 1678 1679 if (p_new) { 1680 // Update HP_Chunk. 1681 hc->data = (Addr)p_new; 1682 hc->req_szB = new_req_szB; 1683 hc->slop_szB = new_slop_szB; 1684 old_where = hc->where; 1685 hc->where = NULL; 1686 1687 // Update XTree. 1688 if (clo_heap) { 1689 new_where = get_XCon( tid, /*exclude_first_entry*/True); 1690 if (!is_ignored && new_where) { 1691 hc->where = new_where; 1692 update_XCon(old_where, -old_req_szB); 1693 update_XCon(new_where, new_req_szB); 1694 } else { 1695 // The realloc itself is ignored. 1696 is_ignored = True; 1697 1698 // Update statistics. 1699 n_ignored_heap_reallocs++; 1700 } 1701 } 1702 } 1703 1704 // Now insert the new hc (with a possibly new 'data' field) into 1705 // malloc_list. If this realloc() did not increase the memory size, we 1706 // will have removed and then re-added hc unnecessarily. But that's ok 1707 // because shrinking a block with realloc() is (presumably) much rarer 1708 // than growing it, and this way simplifies the growing case. 1709 VG_(HT_add_node)(malloc_list, hc); 1710 1711 if (clo_heap) { 1712 if (!is_ignored) { 1713 // Update heap stats. 1714 update_heap_stats(new_req_szB - old_req_szB, 1715 new_slop_szB - old_slop_szB); 1716 1717 // Maybe take a snapshot. 1718 maybe_take_snapshot(Normal, "realloc"); 1719 } else { 1720 1721 VERB(3, "(ignored)\n"); 1722 } 1723 1724 VERB(3, ">>> (%ld, %ld)\n", 1725 (SSizeT)(new_req_szB - old_req_szB), 1726 (SSizeT)(new_slop_szB - old_slop_szB)); 1727 } 1728 1729 return p_new; 1730 } 1731 1732 1733 //------------------------------------------------------------// 1734 //--- malloc() et al replacement wrappers ---// 1735 //------------------------------------------------------------// 1736 1737 static void* ms_malloc ( ThreadId tid, SizeT szB ) 1738 { 1739 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1740 } 1741 1742 static void* ms___builtin_new ( ThreadId tid, SizeT szB ) 1743 { 1744 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1745 } 1746 1747 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB ) 1748 { 1749 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False ); 1750 } 1751 1752 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB ) 1753 { 1754 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True ); 1755 } 1756 1757 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB ) 1758 { 1759 return alloc_and_record_block( tid, szB, alignB, False ); 1760 } 1761 1762 static void ms_free ( ThreadId tid __attribute__((unused)), void* p ) 1763 { 1764 unrecord_block(p, /*maybe_snapshot*/True); 1765 VG_(cli_free)(p); 1766 } 1767 1768 static void ms___builtin_delete ( ThreadId tid, void* p ) 1769 { 1770 unrecord_block(p, /*maybe_snapshot*/True); 1771 VG_(cli_free)(p); 1772 } 1773 1774 static void ms___builtin_vec_delete ( ThreadId tid, void* p ) 1775 { 1776 unrecord_block(p, /*maybe_snapshot*/True); 1777 VG_(cli_free)(p); 1778 } 1779 1780 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB ) 1781 { 1782 return realloc_block(tid, p_old, new_szB); 1783 } 1784 1785 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p ) 1786 { 1787 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p ); 1788 1789 return ( hc ? hc->req_szB + hc->slop_szB : 0 ); 1790 } 1791 1792 //------------------------------------------------------------// 1793 //--- Page handling ---// 1794 //------------------------------------------------------------// 1795 1796 static 1797 void ms_record_page_mem ( Addr a, SizeT len ) 1798 { 1799 ThreadId tid = VG_(get_running_tid)(); 1800 Addr end; 1801 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1802 tl_assert(len >= VKI_PAGE_SIZE); 1803 // Record the first N-1 pages as blocks, but don't do any snapshots. 1804 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1805 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1806 /*exclude_first_entry*/False, /*maybe_snapshot*/False ); 1807 } 1808 // Record the last page as a block, and maybe do a snapshot afterwards. 1809 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0, 1810 /*exclude_first_entry*/False, /*maybe_snapshot*/True ); 1811 } 1812 1813 static 1814 void ms_unrecord_page_mem( Addr a, SizeT len ) 1815 { 1816 Addr end; 1817 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1818 tl_assert(len >= VKI_PAGE_SIZE); 1819 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) { 1820 unrecord_block((void*)a, /*maybe_snapshot*/False); 1821 } 1822 unrecord_block((void*)a, /*maybe_snapshot*/True); 1823 } 1824 1825 //------------------------------------------------------------// 1826 1827 static 1828 void ms_new_mem_mmap ( Addr a, SizeT len, 1829 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1830 { 1831 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1832 ms_record_page_mem(a, len); 1833 } 1834 1835 static 1836 void ms_new_mem_startup( Addr a, SizeT len, 1837 Bool rr, Bool ww, Bool xx, ULong di_handle ) 1838 { 1839 // startup maps are always be page-sized, except the trampoline page is 1840 // marked by the core as only being the size of the trampoline itself, 1841 // which is something like 57 bytes. Round it up to page size. 1842 len = VG_PGROUNDUP(len); 1843 ms_record_page_mem(a, len); 1844 } 1845 1846 static 1847 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid ) 1848 { 1849 // brk limit is not necessarily aligned on a page boundary. 1850 // If new memory being brk-ed implies to allocate a new page, 1851 // then call ms_record_page_mem with page aligned parameters 1852 // otherwise just ignore. 1853 Addr old_bottom_page = VG_PGROUNDDN(a - 1); 1854 Addr new_top_page = VG_PGROUNDDN(a + len - 1); 1855 if (old_bottom_page != new_top_page) 1856 ms_record_page_mem(VG_PGROUNDDN(a), 1857 (new_top_page - old_bottom_page)); 1858 } 1859 1860 static 1861 void ms_copy_mem_remap( Addr from, Addr to, SizeT len) 1862 { 1863 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1864 ms_unrecord_page_mem(from, len); 1865 ms_record_page_mem(to, len); 1866 } 1867 1868 static 1869 void ms_die_mem_munmap( Addr a, SizeT len ) 1870 { 1871 tl_assert(VG_IS_PAGE_ALIGNED(len)); 1872 ms_unrecord_page_mem(a, len); 1873 } 1874 1875 static 1876 void ms_die_mem_brk( Addr a, SizeT len ) 1877 { 1878 // Call ms_unrecord_page_mem only if one or more pages are de-allocated. 1879 // See ms_new_mem_brk for more details. 1880 Addr new_bottom_page = VG_PGROUNDDN(a - 1); 1881 Addr old_top_page = VG_PGROUNDDN(a + len - 1); 1882 if (old_top_page != new_bottom_page) 1883 ms_unrecord_page_mem(VG_PGROUNDDN(a), 1884 (old_top_page - new_bottom_page)); 1885 1886 } 1887 1888 //------------------------------------------------------------// 1889 //--- Stacks ---// 1890 //------------------------------------------------------------// 1891 1892 // We really want the inlining to occur... 1893 #define INLINE inline __attribute__((always_inline)) 1894 1895 static void update_stack_stats(SSizeT stack_szB_delta) 1896 { 1897 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta); 1898 stacks_szB += stack_szB_delta; 1899 1900 update_alloc_stats(stack_szB_delta); 1901 } 1902 1903 static INLINE void new_mem_stack_2(SizeT len, const HChar* what) 1904 { 1905 if (have_started_executing_code) { 1906 VERB(3, "<<< new_mem_stack (%lu)\n", len); 1907 n_stack_allocs++; 1908 update_stack_stats(len); 1909 maybe_take_snapshot(Normal, what); 1910 VERB(3, ">>>\n"); 1911 } 1912 } 1913 1914 static INLINE void die_mem_stack_2(SizeT len, const HChar* what) 1915 { 1916 if (have_started_executing_code) { 1917 VERB(3, "<<< die_mem_stack (-%lu)\n", len); 1918 n_stack_frees++; 1919 maybe_take_snapshot(Peak, "stkPEAK"); 1920 update_stack_stats(-len); 1921 maybe_take_snapshot(Normal, what); 1922 VERB(3, ">>>\n"); 1923 } 1924 } 1925 1926 static void new_mem_stack(Addr a, SizeT len) 1927 { 1928 new_mem_stack_2(len, "stk-new"); 1929 } 1930 1931 static void die_mem_stack(Addr a, SizeT len) 1932 { 1933 die_mem_stack_2(len, "stk-die"); 1934 } 1935 1936 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid) 1937 { 1938 new_mem_stack_2(len, "sig-new"); 1939 } 1940 1941 static void die_mem_stack_signal(Addr a, SizeT len) 1942 { 1943 die_mem_stack_2(len, "sig-die"); 1944 } 1945 1946 1947 //------------------------------------------------------------// 1948 //--- Client Requests ---// 1949 //------------------------------------------------------------// 1950 1951 static void print_monitor_help ( void ) 1952 { 1953 VG_(gdb_printf) ("\n"); 1954 VG_(gdb_printf) ("massif monitor commands:\n"); 1955 VG_(gdb_printf) (" snapshot [<filename>]\n"); 1956 VG_(gdb_printf) (" detailed_snapshot [<filename>]\n"); 1957 VG_(gdb_printf) (" takes a snapshot (or a detailed snapshot)\n"); 1958 VG_(gdb_printf) (" and saves it in <filename>\n"); 1959 VG_(gdb_printf) (" default <filename> is massif.vgdb.out\n"); 1960 VG_(gdb_printf) (" all_snapshots [<filename>]\n"); 1961 VG_(gdb_printf) (" saves all snapshot(s) taken so far in <filename>\n"); 1962 VG_(gdb_printf) (" default <filename> is massif.vgdb.out\n"); 1963 VG_(gdb_printf) ("\n"); 1964 } 1965 1966 1967 /* Forward declaration. 1968 return True if request recognised, False otherwise */ 1969 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req); 1970 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret ) 1971 { 1972 switch (argv[0]) { 1973 case VG_USERREQ__MALLOCLIKE_BLOCK: { 1974 void* p = (void*)argv[1]; 1975 SizeT szB = argv[2]; 1976 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False, 1977 /*maybe_snapshot*/True ); 1978 *ret = 0; 1979 return True; 1980 } 1981 case VG_USERREQ__RESIZEINPLACE_BLOCK: { 1982 void* p = (void*)argv[1]; 1983 SizeT newSizeB = argv[3]; 1984 1985 unrecord_block(p, /*maybe_snapshot*/True); 1986 record_block(tid, p, newSizeB, /*slop_szB*/0, 1987 /*exclude_first_entry*/False, /*maybe_snapshot*/True); 1988 return True; 1989 } 1990 case VG_USERREQ__FREELIKE_BLOCK: { 1991 void* p = (void*)argv[1]; 1992 unrecord_block(p, /*maybe_snapshot*/True); 1993 *ret = 0; 1994 return True; 1995 } 1996 case VG_USERREQ__GDB_MONITOR_COMMAND: { 1997 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]); 1998 if (handled) 1999 *ret = 1; 2000 else 2001 *ret = 0; 2002 return handled; 2003 } 2004 2005 default: 2006 *ret = 0; 2007 return False; 2008 } 2009 } 2010 2011 //------------------------------------------------------------// 2012 //--- Instrumentation ---// 2013 //------------------------------------------------------------// 2014 2015 static void add_counter_update(IRSB* sbOut, Int n) 2016 { 2017 #if defined(VG_BIGENDIAN) 2018 # define END Iend_BE 2019 #elif defined(VG_LITTLEENDIAN) 2020 # define END Iend_LE 2021 #else 2022 # error "Unknown endianness" 2023 #endif 2024 // Add code to increment 'guest_instrs_executed' by 'n', like this: 2025 // WrTmp(t1, Load64(&guest_instrs_executed)) 2026 // WrTmp(t2, Add64(RdTmp(t1), Const(n))) 2027 // Store(&guest_instrs_executed, t2) 2028 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64); 2029 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64); 2030 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed ); 2031 2032 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr)); 2033 IRStmt* st2 = 2034 IRStmt_WrTmp(t2, 2035 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1), 2036 IRExpr_Const(IRConst_U64(n)))); 2037 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2)); 2038 2039 addStmtToIRSB( sbOut, st1 ); 2040 addStmtToIRSB( sbOut, st2 ); 2041 addStmtToIRSB( sbOut, st3 ); 2042 } 2043 2044 static IRSB* ms_instrument2( IRSB* sbIn ) 2045 { 2046 Int i, n = 0; 2047 IRSB* sbOut; 2048 2049 // We increment the instruction count in two places: 2050 // - just before any Ist_Exit statements; 2051 // - just before the IRSB's end. 2052 // In the former case, we zero 'n' and then continue instrumenting. 2053 2054 sbOut = deepCopyIRSBExceptStmts(sbIn); 2055 2056 for (i = 0; i < sbIn->stmts_used; i++) { 2057 IRStmt* st = sbIn->stmts[i]; 2058 2059 if (!st || st->tag == Ist_NoOp) continue; 2060 2061 if (st->tag == Ist_IMark) { 2062 n++; 2063 } else if (st->tag == Ist_Exit) { 2064 if (n > 0) { 2065 // Add an increment before the Exit statement, then reset 'n'. 2066 add_counter_update(sbOut, n); 2067 n = 0; 2068 } 2069 } 2070 addStmtToIRSB( sbOut, st ); 2071 } 2072 2073 if (n > 0) { 2074 // Add an increment before the SB end. 2075 add_counter_update(sbOut, n); 2076 } 2077 return sbOut; 2078 } 2079 2080 static 2081 IRSB* ms_instrument ( VgCallbackClosure* closure, 2082 IRSB* sbIn, 2083 const VexGuestLayout* layout, 2084 const VexGuestExtents* vge, 2085 const VexArchInfo* archinfo_host, 2086 IRType gWordTy, IRType hWordTy ) 2087 { 2088 if (! have_started_executing_code) { 2089 // Do an initial sample to guarantee that we have at least one. 2090 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure 2091 // 'maybe_take_snapshot's internal static variables are initialised. 2092 have_started_executing_code = True; 2093 maybe_take_snapshot(Normal, "startup"); 2094 } 2095 2096 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); } 2097 else if (clo_time_unit == TimeMS) { return sbIn; } 2098 else if (clo_time_unit == TimeB) { return sbIn; } 2099 else { tl_assert2(0, "bad --time-unit value"); } 2100 } 2101 2102 2103 //------------------------------------------------------------// 2104 //--- Writing snapshots ---// 2105 //------------------------------------------------------------// 2106 2107 #define FP(format, args...) ({ VG_(fprintf)(fp, format, ##args); }) 2108 2109 static void pp_snapshot_SXPt(VgFile *fp, SXPt* sxpt, Int depth, 2110 HChar* depth_str, Int depth_str_len, 2111 SizeT snapshot_heap_szB, SizeT snapshot_total_szB) 2112 { 2113 Int i, j, n_insig_children_sxpts; 2114 SXPt* child = NULL; 2115 2116 // Used for printing function names. Is made static to keep it out 2117 // of the stack frame -- this function is recursive. Obviously this 2118 // now means its contents are trashed across the recursive call. 2119 const HChar* ip_desc; 2120 2121 switch (sxpt->tag) { 2122 case SigSXPt: 2123 // Print the SXPt itself. 2124 if (0 == depth) { 2125 if (clo_heap) { 2126 ip_desc = 2127 ( clo_pages_as_heap 2128 ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc." 2129 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc." 2130 ); 2131 } else { 2132 // XXX: --alloc-fns? 2133 2134 // Nick thinks this case cannot happen. ip_desc would be 2135 // conceptually uninitialised here. Therefore: 2136 tl_assert2(0, "pp_snapshot_SXPt: unexpected"); 2137 } 2138 } else { 2139 // If it's main-or-below-main, we (if appropriate) ignore everything 2140 // below it by pretending it has no children. 2141 if ( ! VG_(clo_show_below_main) ) { 2142 Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip); 2143 if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) { 2144 sxpt->Sig.n_children = 0; 2145 } 2146 } 2147 2148 // We need the -1 to get the line number right, But I'm not sure why. 2149 ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, NULL); 2150 } 2151 2152 // Do the non-ip_desc part first... 2153 FP("%sn%u: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB); 2154 2155 // For ip_descs beginning with "0xABCD...:" addresses, we first 2156 // measure the length of the "0xabcd: " address at the start of the 2157 // ip_desc. 2158 j = 0; 2159 if ('0' == ip_desc[0] && 'x' == ip_desc[1]) { 2160 j = 2; 2161 while (True) { 2162 if (ip_desc[j]) { 2163 if (':' == ip_desc[j]) break; 2164 j++; 2165 } else { 2166 tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc); 2167 } 2168 } 2169 } 2170 // It used to be that ip_desc was truncated at the end. 2171 // But there does not seem to be a good reason for that. Besides, 2172 // the string was truncated at the right, which is less than ideal. 2173 // Truncation at the beginning of the string would have been preferable. 2174 // Think several nested namespaces in C++.... 2175 // Anyhow, we spit out the full-length string now. 2176 FP("%s\n", ip_desc); 2177 2178 // Indent. 2179 tl_assert(depth+1 < depth_str_len-1); // -1 for end NUL char 2180 depth_str[depth+0] = ' '; 2181 depth_str[depth+1] = '\0'; 2182 2183 // Sort SXPt's children by szB (reverse order: biggest to smallest). 2184 // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for 2185 // two reasons. First, if we do it during dup_XTree, it can get 2186 // expensive (eg. 15% of execution time for konqueror 2187 // startup/shutdown). Second, this way we get the Insig SXPt (if one 2188 // is present) in its sorted position, not at the end. 2189 VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*), 2190 SXPt_revcmp_szB); 2191 2192 // Print the SXPt's children. They should already be in sorted order. 2193 n_insig_children_sxpts = 0; 2194 for (i = 0; i < sxpt->Sig.n_children; i++) { 2195 child = sxpt->Sig.children[i]; 2196 2197 if (InsigSXPt == child->tag) 2198 n_insig_children_sxpts++; 2199 2200 // Ok, print the child. NB: contents of ip_desc will be 2201 // trashed by this recursive call. Doesn't matter currently, 2202 // but worth noting. 2203 pp_snapshot_SXPt(fp, child, depth+1, depth_str, depth_str_len, 2204 snapshot_heap_szB, snapshot_total_szB); 2205 } 2206 2207 // Unindent. 2208 depth_str[depth+0] = '\0'; 2209 depth_str[depth+1] = '\0'; 2210 2211 // There should be 0 or 1 Insig children SXPts. 2212 tl_assert(n_insig_children_sxpts <= 1); 2213 break; 2214 2215 case InsigSXPt: { 2216 const HChar* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" ); 2217 FP("%sn0: %lu in %d place%s below massif's threshold (%.2f%%)\n", 2218 depth_str, sxpt->szB, sxpt->Insig.n_xpts, s, clo_threshold); 2219 break; 2220 } 2221 2222 default: 2223 tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag"); 2224 } 2225 } 2226 2227 static void pp_snapshot(VgFile *fp, Snapshot* snapshot, Int snapshot_n) 2228 { 2229 sanity_check_snapshot(snapshot); 2230 2231 FP("#-----------\n"); 2232 FP("snapshot=%d\n", snapshot_n); 2233 FP("#-----------\n"); 2234 FP("time=%lld\n", snapshot->time); 2235 FP("mem_heap_B=%lu\n", snapshot->heap_szB); 2236 FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB); 2237 FP("mem_stacks_B=%lu\n", snapshot->stacks_szB); 2238 2239 if (is_detailed_snapshot(snapshot)) { 2240 // Detailed snapshot -- print heap tree. 2241 Int depth_str_len = clo_depth + 3; 2242 HChar* depth_str = VG_(malloc)("ms.main.pps.1", 2243 sizeof(HChar) * depth_str_len); 2244 SizeT snapshot_total_szB = 2245 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB; 2246 depth_str[0] = '\0'; // Initialise depth_str to "". 2247 2248 FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" )); 2249 pp_snapshot_SXPt(fp, snapshot->alloc_sxpt, 0, depth_str, 2250 depth_str_len, snapshot->heap_szB, 2251 snapshot_total_szB); 2252 2253 VG_(free)(depth_str); 2254 2255 } else { 2256 FP("heap_tree=empty\n"); 2257 } 2258 } 2259 2260 static void write_snapshots_to_file(const HChar* massif_out_file, 2261 Snapshot snapshots_array[], 2262 Int nr_elements) 2263 { 2264 Int i; 2265 VgFile *fp; 2266 2267 fp = VG_(fopen)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY, 2268 VKI_S_IRUSR|VKI_S_IWUSR); 2269 if (fp == NULL) { 2270 // If the file can't be opened for whatever reason (conflict 2271 // between multiple cachegrinded processes?), give up now. 2272 VG_(umsg)("error: can't open output file '%s'\n", massif_out_file ); 2273 VG_(umsg)(" ... so profiling results will be missing.\n"); 2274 return; 2275 } 2276 2277 // Print massif-specific options that were used. 2278 // XXX: is it worth having a "desc:" line? Could just call it "options:" 2279 // -- this file format isn't as generic as Cachegrind's, so the 2280 // implied genericity of "desc:" is bogus. 2281 FP("desc:"); 2282 for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) { 2283 HChar* arg = *(HChar**)VG_(indexXA)(args_for_massif, i); 2284 FP(" %s", arg); 2285 } 2286 if (0 == i) FP(" (none)"); 2287 FP("\n"); 2288 2289 // Print "cmd:" line. 2290 FP("cmd: "); 2291 FP("%s", VG_(args_the_exename)); 2292 for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) { 2293 HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i ); 2294 FP(" %s", arg); 2295 } 2296 FP("\n"); 2297 2298 FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit)); 2299 2300 for (i = 0; i < nr_elements; i++) { 2301 Snapshot* snapshot = & snapshots_array[i]; 2302 pp_snapshot(fp, snapshot, i); // Detailed snapshot! 2303 } 2304 VG_(fclose) (fp); 2305 } 2306 2307 static void write_snapshots_array_to_file(void) 2308 { 2309 // Setup output filename. Nb: it's important to do this now, ie. as late 2310 // as possible. If we do it at start-up and the program forks and the 2311 // output file format string contains a %p (pid) specifier, both the 2312 // parent and child will incorrectly write to the same file; this 2313 // happened in 3.3.0. 2314 HChar* massif_out_file = 2315 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file); 2316 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i); 2317 VG_(free)(massif_out_file); 2318 } 2319 2320 static void handle_snapshot_monitor_command (const HChar *filename, 2321 Bool detailed) 2322 { 2323 Snapshot snapshot; 2324 2325 if (!clo_pages_as_heap && !have_started_executing_code) { 2326 // See comments of variable have_started_executing_code. 2327 VG_(gdb_printf) 2328 ("error: cannot take snapshot before execution has started\n"); 2329 return; 2330 } 2331 2332 clear_snapshot(&snapshot, /* do_sanity_check */ False); 2333 take_snapshot(&snapshot, Normal, get_time(), detailed); 2334 write_snapshots_to_file ((filename == NULL) ? 2335 "massif.vgdb.out" : filename, 2336 &snapshot, 2337 1); 2338 delete_snapshot(&snapshot); 2339 } 2340 2341 static void handle_all_snapshots_monitor_command (const HChar *filename) 2342 { 2343 if (!clo_pages_as_heap && !have_started_executing_code) { 2344 // See comments of variable have_started_executing_code. 2345 VG_(gdb_printf) 2346 ("error: cannot take snapshot before execution has started\n"); 2347 return; 2348 } 2349 2350 write_snapshots_to_file ((filename == NULL) ? 2351 "massif.vgdb.out" : filename, 2352 snapshots, next_snapshot_i); 2353 } 2354 2355 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req) 2356 { 2357 HChar* wcmd; 2358 HChar s[VG_(strlen(req)) + 1]; /* copy for strtok_r */ 2359 HChar *ssaveptr; 2360 2361 VG_(strcpy) (s, req); 2362 2363 wcmd = VG_(strtok_r) (s, " ", &ssaveptr); 2364 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots", 2365 wcmd, kwd_report_duplicated_matches)) { 2366 case -2: /* multiple matches */ 2367 return True; 2368 case -1: /* not found */ 2369 return False; 2370 case 0: /* help */ 2371 print_monitor_help(); 2372 return True; 2373 case 1: { /* snapshot */ 2374 HChar* filename; 2375 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2376 handle_snapshot_monitor_command (filename, False /* detailed */); 2377 return True; 2378 } 2379 case 2: { /* detailed_snapshot */ 2380 HChar* filename; 2381 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2382 handle_snapshot_monitor_command (filename, True /* detailed */); 2383 return True; 2384 } 2385 case 3: { /* all_snapshots */ 2386 HChar* filename; 2387 filename = VG_(strtok_r) (NULL, " ", &ssaveptr); 2388 handle_all_snapshots_monitor_command (filename); 2389 return True; 2390 } 2391 default: 2392 tl_assert(0); 2393 return False; 2394 } 2395 } 2396 2397 static void ms_print_stats (void) 2398 { 2399 #define STATS(format, args...) \ 2400 VG_(dmsg)("Massif: " format, ##args) 2401 2402 STATS("heap allocs: %u\n", n_heap_allocs); 2403 STATS("heap reallocs: %u\n", n_heap_reallocs); 2404 STATS("heap frees: %u\n", n_heap_frees); 2405 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs); 2406 STATS("ignored heap frees: %u\n", n_ignored_heap_frees); 2407 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs); 2408 STATS("stack allocs: %u\n", n_stack_allocs); 2409 STATS("stack frees: %u\n", n_stack_frees); 2410 STATS("XPts: %u\n", n_xpts); 2411 STATS("top-XPts: %u (%u%%)\n", 2412 alloc_xpt->n_children, 2413 ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0)); 2414 STATS("XPt init expansions: %u\n", n_xpt_init_expansions); 2415 STATS("XPt later expansions: %u\n", n_xpt_later_expansions); 2416 STATS("SXPt allocs: %u\n", n_sxpt_allocs); 2417 STATS("SXPt frees: %u\n", n_sxpt_frees); 2418 STATS("skipped snapshots: %u\n", n_skipped_snapshots); 2419 STATS("real snapshots: %u\n", n_real_snapshots); 2420 STATS("detailed snapshots: %u\n", n_detailed_snapshots); 2421 STATS("peak snapshots: %u\n", n_peak_snapshots); 2422 STATS("cullings: %u\n", n_cullings); 2423 STATS("XCon redos: %u\n", n_XCon_redos); 2424 #undef STATS 2425 } 2426 2427 //------------------------------------------------------------// 2428 //--- Finalisation ---// 2429 //------------------------------------------------------------// 2430 2431 static void ms_fini(Int exit_status) 2432 { 2433 // Output. 2434 write_snapshots_array_to_file(); 2435 2436 // Stats 2437 tl_assert(n_xpts > 0); // always have alloc_xpt 2438 2439 if (VG_(clo_stats)) 2440 ms_print_stats(); 2441 } 2442 2443 2444 //------------------------------------------------------------// 2445 //--- Initialisation ---// 2446 //------------------------------------------------------------// 2447 2448 static void ms_post_clo_init(void) 2449 { 2450 Int i; 2451 HChar* LD_PRELOAD_val; 2452 HChar* s; 2453 HChar* s2; 2454 2455 // Check options. 2456 if (clo_pages_as_heap) { 2457 if (clo_stacks) { 2458 VG_(fmsg_bad_option)("--pages-as-heap=yes", 2459 "Cannot be used together with --stacks=yes"); 2460 } 2461 } 2462 if (!clo_heap) { 2463 clo_pages_as_heap = False; 2464 } 2465 2466 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we 2467 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or 2468 // platform-equivalent). We replace it entirely with spaces because then 2469 // the linker doesn't complain (it does complain if we just change the name 2470 // to a bogus file). This is a bit of a hack, but LD_PRELOAD is setup well 2471 // before tool initialisation, so this seems the best way to do it. 2472 if (clo_pages_as_heap) { 2473 clo_heap_admin = 0; // No heap admin on pages. 2474 2475 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) ); 2476 tl_assert(LD_PRELOAD_val); 2477 2478 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity. 2479 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core"); 2480 tl_assert(s2); 2481 2482 // Now find the vgpreload_massif-$PLATFORM entry. 2483 s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif"); 2484 tl_assert(s2); 2485 2486 // Blank out everything to the previous ':', which must be there because 2487 // of the preceding vgpreload_core-$PLATFORM entry. 2488 for (s = s2; *s != ':'; s--) { 2489 *s = ' '; 2490 } 2491 2492 // Blank out everything to the end of the entry, which will be '\0' if 2493 // LD_PRELOAD was empty before Valgrind started, or ':' otherwise. 2494 for (s = s2; *s != ':' && *s != '\0'; s++) { 2495 *s = ' '; 2496 } 2497 } 2498 2499 // Print alloc-fns and ignore-fns, if necessary. 2500 if (VG_(clo_verbosity) > 1) { 2501 VERB(1, "alloc-fns:\n"); 2502 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) { 2503 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i); 2504 VERB(1, " %s\n", *fn_ptr); 2505 } 2506 2507 VERB(1, "ignore-fns:\n"); 2508 if (0 == VG_(sizeXA)(ignore_fns)) { 2509 VERB(1, " <empty>\n"); 2510 } 2511 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) { 2512 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i); 2513 VERB(1, " %d: %s\n", i, *fn_ptr); 2514 } 2515 } 2516 2517 // Events to track. 2518 if (clo_stacks) { 2519 VG_(track_new_mem_stack) ( new_mem_stack ); 2520 VG_(track_die_mem_stack) ( die_mem_stack ); 2521 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal ); 2522 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal ); 2523 } 2524 2525 if (clo_pages_as_heap) { 2526 VG_(track_new_mem_startup) ( ms_new_mem_startup ); 2527 VG_(track_new_mem_brk) ( ms_new_mem_brk ); 2528 VG_(track_new_mem_mmap) ( ms_new_mem_mmap ); 2529 2530 VG_(track_copy_mem_remap) ( ms_copy_mem_remap ); 2531 2532 VG_(track_die_mem_brk) ( ms_die_mem_brk ); 2533 VG_(track_die_mem_munmap) ( ms_die_mem_munmap ); 2534 } 2535 2536 // Initialise snapshot array, and sanity-check it. 2537 snapshots = VG_(malloc)("ms.main.mpoci.1", 2538 sizeof(Snapshot) * clo_max_snapshots); 2539 // We don't want to do snapshot sanity checks here, because they're 2540 // currently uninitialised. 2541 for (i = 0; i < clo_max_snapshots; i++) { 2542 clear_snapshot( & snapshots[i], /*do_sanity_check*/False ); 2543 } 2544 sanity_check_snapshots_array(); 2545 } 2546 2547 static void ms_pre_clo_init(void) 2548 { 2549 VG_(details_name) ("Massif"); 2550 VG_(details_version) (NULL); 2551 VG_(details_description) ("a heap profiler"); 2552 VG_(details_copyright_author)( 2553 "Copyright (C) 2003-2015, and GNU GPL'd, by Nicholas Nethercote"); 2554 VG_(details_bug_reports_to) (VG_BUGS_TO); 2555 2556 VG_(details_avg_translation_sizeB) ( 330 ); 2557 2558 VG_(clo_vex_control).iropt_register_updates_default 2559 = VG_(clo_px_file_backed) 2560 = VexRegUpdSpAtMemAccess; // overridable by the user. 2561 2562 // Basic functions. 2563 VG_(basic_tool_funcs) (ms_post_clo_init, 2564 ms_instrument, 2565 ms_fini); 2566 2567 // Needs. 2568 VG_(needs_libc_freeres)(); 2569 VG_(needs_command_line_options)(ms_process_cmd_line_option, 2570 ms_print_usage, 2571 ms_print_debug_usage); 2572 VG_(needs_client_requests) (ms_handle_client_request); 2573 VG_(needs_sanity_checks) (ms_cheap_sanity_check, 2574 ms_expensive_sanity_check); 2575 VG_(needs_print_stats) (ms_print_stats); 2576 VG_(needs_malloc_replacement) (ms_malloc, 2577 ms___builtin_new, 2578 ms___builtin_vec_new, 2579 ms_memalign, 2580 ms_calloc, 2581 ms_free, 2582 ms___builtin_delete, 2583 ms___builtin_vec_delete, 2584 ms_realloc, 2585 ms_malloc_usable_size, 2586 0 ); 2587 2588 // HP_Chunks. 2589 malloc_list = VG_(HT_construct)( "Massif's malloc list" ); 2590 2591 // Dummy node at top of the context structure. 2592 alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL); 2593 2594 // Initialise alloc_fns and ignore_fns. 2595 init_alloc_fns(); 2596 init_ignore_fns(); 2597 2598 // Initialise args_for_massif. 2599 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1", 2600 VG_(free), sizeof(HChar*)); 2601 } 2602 2603 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init) 2604 2605 //--------------------------------------------------------------------// 2606 //--- end ---// 2607 //--------------------------------------------------------------------// 2608