1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #define __STDC_LIMIT_MACROS 18 19 #include <assert.h> 20 #include <stdint.h> 21 22 #include <utils/LinearTransform.h> 23 24 // disable sanitize as these functions may intentionally overflow (see comments below). 25 // the ifdef can be removed when host builds use clang. 26 #if defined(__clang__) 27 #define ATTRIBUTE_NO_SANITIZE_INTEGER __attribute__((no_sanitize("integer"))) 28 #else 29 #define ATTRIBUTE_NO_SANITIZE_INTEGER 30 #endif 31 32 namespace android { 33 34 // sanitize failure with T = int32_t and x = 0x80000000 35 template<class T> 36 ATTRIBUTE_NO_SANITIZE_INTEGER 37 static inline T ABS(T x) { return (x < 0) ? -x : x; } 38 39 // Static math methods involving linear transformations 40 // remote sanitize failure on overflow case. 41 ATTRIBUTE_NO_SANITIZE_INTEGER 42 static bool scale_u64_to_u64( 43 uint64_t val, 44 uint32_t N, 45 uint32_t D, 46 uint64_t* res, 47 bool round_up_not_down) { 48 uint64_t tmp1, tmp2; 49 uint32_t r; 50 51 assert(res); 52 assert(D); 53 54 // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit 55 // integer X. 56 // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit 57 // integer X. 58 // Let X[A, B] with A <= B denote bits A through B of the integer X. 59 // Let (A | B) denote the concatination of two 32 bit ints, A and B. 60 // IOW X = (A | B) => U32(X) == A && L32(X) == B 61 // 62 // compute M = val * N (a 96 bit int) 63 // --------------------------------- 64 // tmp2 = U32(val) * N (a 64 bit int) 65 // tmp1 = L32(val) * N (a 64 bit int) 66 // which means 67 // M = val * N = (tmp2 << 32) + tmp1 68 tmp2 = (val >> 32) * N; 69 tmp1 = (val & UINT32_MAX) * N; 70 71 // compute M[32, 95] 72 // tmp2 = tmp2 + U32(tmp1) 73 // = (U32(val) * N) + U32(L32(val) * N) 74 // = M[32, 95] 75 tmp2 += tmp1 >> 32; 76 77 // if M[64, 95] >= D, then M/D has bits > 63 set and we have 78 // an overflow. 79 if ((tmp2 >> 32) >= D) { 80 *res = UINT64_MAX; 81 return false; 82 } 83 84 // Divide. Going in we know 85 // tmp2 = M[32, 95] 86 // U32(tmp2) < D 87 r = tmp2 % D; 88 tmp2 /= D; 89 90 // At this point 91 // tmp1 = L32(val) * N 92 // tmp2 = M[32, 95] / D 93 // = (M / D)[32, 95] 94 // r = M[32, 95] % D 95 // U32(tmp2) = 0 96 // 97 // compute tmp1 = (r | M[0, 31]) 98 tmp1 = (tmp1 & UINT32_MAX) | ((uint64_t)r << 32); 99 100 // Divide again. Keep the remainder around in order to round properly. 101 r = tmp1 % D; 102 tmp1 /= D; 103 104 // At this point 105 // tmp2 = (M / D)[32, 95] 106 // tmp1 = (M / D)[ 0, 31] 107 // r = M % D 108 // U32(tmp1) = 0 109 // U32(tmp2) = 0 110 111 // Pack the result and deal with the round-up case (As well as the 112 // remote possiblility over overflow in such a case). 113 *res = (tmp2 << 32) | tmp1; 114 if (r && round_up_not_down) { 115 ++(*res); 116 if (!(*res)) { 117 *res = UINT64_MAX; 118 return false; 119 } 120 } 121 122 return true; 123 } 124 125 // at least one known sanitize failure (see comment below) 126 ATTRIBUTE_NO_SANITIZE_INTEGER 127 static bool linear_transform_s64_to_s64( 128 int64_t val, 129 int64_t basis1, 130 int32_t N, 131 uint32_t D, 132 bool invert_frac, 133 int64_t basis2, 134 int64_t* out) { 135 uint64_t scaled, res; 136 uint64_t abs_val; 137 bool is_neg; 138 139 if (!out) 140 return false; 141 142 // Compute abs(val - basis_64). Keep track of whether or not this delta 143 // will be negative after the scale opertaion. 144 if (val < basis1) { 145 is_neg = true; 146 abs_val = basis1 - val; 147 } else { 148 is_neg = false; 149 abs_val = val - basis1; 150 } 151 152 if (N < 0) 153 is_neg = !is_neg; 154 155 if (!scale_u64_to_u64(abs_val, 156 invert_frac ? D : ABS(N), 157 invert_frac ? ABS(N) : D, 158 &scaled, 159 is_neg)) 160 return false; // overflow/undeflow 161 162 // if scaled is >= 0x8000<etc>, then we are going to overflow or 163 // underflow unless ABS(basis2) is large enough to pull us back into the 164 // non-overflow/underflow region. 165 if (scaled & INT64_MIN) { 166 if (is_neg && (basis2 < 0)) 167 return false; // certain underflow 168 169 if (!is_neg && (basis2 >= 0)) 170 return false; // certain overflow 171 172 if (ABS(basis2) <= static_cast<int64_t>(scaled & INT64_MAX)) 173 return false; // not enough 174 175 // Looks like we are OK 176 *out = (is_neg ? (-scaled) : scaled) + basis2; 177 } else { 178 // Scaled fits within signed bounds, so we just need to check for 179 // over/underflow for two signed integers. Basically, if both scaled 180 // and basis2 have the same sign bit, and the result has a different 181 // sign bit, then we have under/overflow. An easy way to compute this 182 // is 183 // (scaled_signbit XNOR basis_signbit) && 184 // (scaled_signbit XOR res_signbit) 185 // == 186 // (scaled_signbit XOR basis_signbit XOR 1) && 187 // (scaled_signbit XOR res_signbit) 188 189 if (is_neg) 190 scaled = -scaled; // known sanitize failure 191 res = scaled + basis2; 192 193 if ((scaled ^ basis2 ^ INT64_MIN) & (scaled ^ res) & INT64_MIN) 194 return false; 195 196 *out = res; 197 } 198 199 return true; 200 } 201 202 bool LinearTransform::doForwardTransform(int64_t a_in, int64_t* b_out) const { 203 if (0 == a_to_b_denom) 204 return false; 205 206 return linear_transform_s64_to_s64(a_in, 207 a_zero, 208 a_to_b_numer, 209 a_to_b_denom, 210 false, 211 b_zero, 212 b_out); 213 } 214 215 bool LinearTransform::doReverseTransform(int64_t b_in, int64_t* a_out) const { 216 if (0 == a_to_b_numer) 217 return false; 218 219 return linear_transform_s64_to_s64(b_in, 220 b_zero, 221 a_to_b_numer, 222 a_to_b_denom, 223 true, 224 a_zero, 225 a_out); 226 } 227 228 template <class T> void LinearTransform::reduce(T* N, T* D) { 229 T a, b; 230 if (!N || !D || !(*D)) { 231 assert(false); 232 return; 233 } 234 235 a = *N; 236 b = *D; 237 238 if (a == 0) { 239 *D = 1; 240 return; 241 } 242 243 // This implements Euclid's method to find GCD. 244 if (a < b) { 245 T tmp = a; 246 a = b; 247 b = tmp; 248 } 249 250 while (1) { 251 // a is now the greater of the two. 252 const T remainder = a % b; 253 if (remainder == 0) { 254 *N /= b; 255 *D /= b; 256 return; 257 } 258 // by swapping remainder and b, we are guaranteeing that a is 259 // still the greater of the two upon entrance to the loop. 260 a = b; 261 b = remainder; 262 } 263 }; 264 265 template void LinearTransform::reduce<uint64_t>(uint64_t* N, uint64_t* D); 266 template void LinearTransform::reduce<uint32_t>(uint32_t* N, uint32_t* D); 267 268 // sanitize failure if *N = 0x80000000 269 ATTRIBUTE_NO_SANITIZE_INTEGER 270 void LinearTransform::reduce(int32_t* N, uint32_t* D) { 271 if (N && D && *D) { 272 if (*N < 0) { 273 *N = -(*N); 274 reduce(reinterpret_cast<uint32_t*>(N), D); 275 *N = -(*N); 276 } else { 277 reduce(reinterpret_cast<uint32_t*>(N), D); 278 } 279 } 280 } 281 282 } // namespace android 283