1 /* xf86drmHash.c -- Small hash table support for integer -> integer mapping 2 * Created: Sun Apr 18 09:35:45 1999 by faith (at) precisioninsight.com 3 * 4 * Copyright 1999 Precision Insight, Inc., Cedar Park, Texas. 5 * All Rights Reserved. 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a 8 * copy of this software and associated documentation files (the "Software"), 9 * to deal in the Software without restriction, including without limitation 10 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 11 * and/or sell copies of the Software, and to permit persons to whom the 12 * Software is furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice (including the next 15 * paragraph) shall be included in all copies or substantial portions of the 16 * Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR 22 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, 23 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 24 * DEALINGS IN THE SOFTWARE. 25 * 26 * Authors: Rickard E. (Rik) Faith <faith (at) valinux.com> 27 * 28 * DESCRIPTION 29 * 30 * This file contains a straightforward implementation of a fixed-sized 31 * hash table using self-organizing linked lists [Knuth73, pp. 398-399] for 32 * collision resolution. There are two potentially interesting things 33 * about this implementation: 34 * 35 * 1) The table is power-of-two sized. Prime sized tables are more 36 * traditional, but do not have a significant advantage over power-of-two 37 * sized table, especially when double hashing is not used for collision 38 * resolution. 39 * 40 * 2) The hash computation uses a table of random integers [Hanson97, 41 * pp. 39-41]. 42 * 43 * FUTURE ENHANCEMENTS 44 * 45 * With a table size of 512, the current implementation is sufficient for a 46 * few hundred keys. Since this is well above the expected size of the 47 * tables for which this implementation was designed, the implementation of 48 * dynamic hash tables was postponed until the need arises. A common (and 49 * naive) approach to dynamic hash table implementation simply creates a 50 * new hash table when necessary, rehashes all the data into the new table, 51 * and destroys the old table. The approach in [Larson88] is superior in 52 * two ways: 1) only a portion of the table is expanded when needed, 53 * distributing the expansion cost over several insertions, and 2) portions 54 * of the table can be locked, enabling a scalable thread-safe 55 * implementation. 56 * 57 * REFERENCES 58 * 59 * [Hanson97] David R. Hanson. C Interfaces and Implementations: 60 * Techniques for Creating Reusable Software. Reading, Massachusetts: 61 * Addison-Wesley, 1997. 62 * 63 * [Knuth73] Donald E. Knuth. The Art of Computer Programming. Volume 3: 64 * Sorting and Searching. Reading, Massachusetts: Addison-Wesley, 1973. 65 * 66 * [Larson88] Per-Ake Larson. "Dynamic Hash Tables". CACM 31(4), April 67 * 1988, pp. 446-457. 68 * 69 */ 70 71 #include <stdio.h> 72 #include <stdlib.h> 73 74 #include "xf86drm.h" 75 #include "xf86drmHash.h" 76 77 #define HASH_MAGIC 0xdeadbeef 78 79 static unsigned long HashHash(unsigned long key) 80 { 81 unsigned long hash = 0; 82 unsigned long tmp = key; 83 static int init = 0; 84 static unsigned long scatter[256]; 85 int i; 86 87 if (!init) { 88 void *state; 89 state = drmRandomCreate(37); 90 for (i = 0; i < 256; i++) scatter[i] = drmRandom(state); 91 drmRandomDestroy(state); 92 ++init; 93 } 94 95 while (tmp) { 96 hash = (hash << 1) + scatter[tmp & 0xff]; 97 tmp >>= 8; 98 } 99 100 hash %= HASH_SIZE; 101 #if DEBUG 102 printf( "Hash(%lu) = %lu\n", key, hash); 103 #endif 104 return hash; 105 } 106 107 void *drmHashCreate(void) 108 { 109 HashTablePtr table; 110 int i; 111 112 table = drmMalloc(sizeof(*table)); 113 if (!table) return NULL; 114 table->magic = HASH_MAGIC; 115 table->entries = 0; 116 table->hits = 0; 117 table->partials = 0; 118 table->misses = 0; 119 120 for (i = 0; i < HASH_SIZE; i++) table->buckets[i] = NULL; 121 return table; 122 } 123 124 int drmHashDestroy(void *t) 125 { 126 HashTablePtr table = (HashTablePtr)t; 127 HashBucketPtr bucket; 128 HashBucketPtr next; 129 int i; 130 131 if (table->magic != HASH_MAGIC) return -1; /* Bad magic */ 132 133 for (i = 0; i < HASH_SIZE; i++) { 134 for (bucket = table->buckets[i]; bucket;) { 135 next = bucket->next; 136 drmFree(bucket); 137 bucket = next; 138 } 139 } 140 drmFree(table); 141 return 0; 142 } 143 144 /* Find the bucket and organize the list so that this bucket is at the 145 top. */ 146 147 static HashBucketPtr HashFind(HashTablePtr table, 148 unsigned long key, unsigned long *h) 149 { 150 unsigned long hash = HashHash(key); 151 HashBucketPtr prev = NULL; 152 HashBucketPtr bucket; 153 154 if (h) *h = hash; 155 156 for (bucket = table->buckets[hash]; bucket; bucket = bucket->next) { 157 if (bucket->key == key) { 158 if (prev) { 159 /* Organize */ 160 prev->next = bucket->next; 161 bucket->next = table->buckets[hash]; 162 table->buckets[hash] = bucket; 163 ++table->partials; 164 } else { 165 ++table->hits; 166 } 167 return bucket; 168 } 169 prev = bucket; 170 } 171 ++table->misses; 172 return NULL; 173 } 174 175 int drmHashLookup(void *t, unsigned long key, void **value) 176 { 177 HashTablePtr table = (HashTablePtr)t; 178 HashBucketPtr bucket; 179 180 if (!table || table->magic != HASH_MAGIC) return -1; /* Bad magic */ 181 182 bucket = HashFind(table, key, NULL); 183 if (!bucket) return 1; /* Not found */ 184 *value = bucket->value; 185 return 0; /* Found */ 186 } 187 188 int drmHashInsert(void *t, unsigned long key, void *value) 189 { 190 HashTablePtr table = (HashTablePtr)t; 191 HashBucketPtr bucket; 192 unsigned long hash; 193 194 if (table->magic != HASH_MAGIC) return -1; /* Bad magic */ 195 196 if (HashFind(table, key, &hash)) return 1; /* Already in table */ 197 198 bucket = drmMalloc(sizeof(*bucket)); 199 if (!bucket) return -1; /* Error */ 200 bucket->key = key; 201 bucket->value = value; 202 bucket->next = table->buckets[hash]; 203 table->buckets[hash] = bucket; 204 #if DEBUG 205 printf("Inserted %lu at %lu/%p\n", key, hash, bucket); 206 #endif 207 return 0; /* Added to table */ 208 } 209 210 int drmHashDelete(void *t, unsigned long key) 211 { 212 HashTablePtr table = (HashTablePtr)t; 213 unsigned long hash; 214 HashBucketPtr bucket; 215 216 if (table->magic != HASH_MAGIC) return -1; /* Bad magic */ 217 218 bucket = HashFind(table, key, &hash); 219 220 if (!bucket) return 1; /* Not found */ 221 222 table->buckets[hash] = bucket->next; 223 drmFree(bucket); 224 return 0; 225 } 226 227 int drmHashNext(void *t, unsigned long *key, void **value) 228 { 229 HashTablePtr table = (HashTablePtr)t; 230 231 while (table->p0 < HASH_SIZE) { 232 if (table->p1) { 233 *key = table->p1->key; 234 *value = table->p1->value; 235 table->p1 = table->p1->next; 236 return 1; 237 } 238 table->p1 = table->buckets[table->p0]; 239 ++table->p0; 240 } 241 return 0; 242 } 243 244 int drmHashFirst(void *t, unsigned long *key, void **value) 245 { 246 HashTablePtr table = (HashTablePtr)t; 247 248 if (table->magic != HASH_MAGIC) return -1; /* Bad magic */ 249 250 table->p0 = 0; 251 table->p1 = table->buckets[0]; 252 return drmHashNext(table, key, value); 253 } 254