Home | History | Annotate | Download | only in heap
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_HEAP_HEAP_H_
      6 #define V8_HEAP_HEAP_H_
      7 
      8 #include <cmath>
      9 #include <map>
     10 
     11 // Clients of this interface shouldn't depend on lots of heap internals.
     12 // Do not include anything from src/heap here!
     13 #include "src/allocation.h"
     14 #include "src/assert-scope.h"
     15 #include "src/atomic-utils.h"
     16 #include "src/globals.h"
     17 // TODO(mstarzinger): Two more includes to kill!
     18 #include "src/heap/spaces.h"
     19 #include "src/heap/store-buffer.h"
     20 #include "src/list.h"
     21 
     22 namespace v8 {
     23 namespace internal {
     24 
     25 // Defines all the roots in Heap.
     26 #define STRONG_ROOT_LIST(V)                                                    \
     27   V(Map, byte_array_map, ByteArrayMap)                                         \
     28   V(Map, free_space_map, FreeSpaceMap)                                         \
     29   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
     30   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
     31   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
     32   V(Smi, store_buffer_top, StoreBufferTop)                                     \
     33   V(Oddball, undefined_value, UndefinedValue)                                  \
     34   V(Oddball, the_hole_value, TheHoleValue)                                     \
     35   V(Oddball, null_value, NullValue)                                            \
     36   V(Oddball, true_value, TrueValue)                                            \
     37   V(Oddball, false_value, FalseValue)                                          \
     38   V(String, empty_string, empty_string)                                        \
     39   V(String, hidden_string, hidden_string)                                      \
     40   V(Oddball, uninitialized_value, UninitializedValue)                          \
     41   V(Map, cell_map, CellMap)                                                    \
     42   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
     43   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
     44   V(Map, meta_map, MetaMap)                                                    \
     45   V(Map, heap_number_map, HeapNumberMap)                                       \
     46   V(Map, mutable_heap_number_map, MutableHeapNumberMap)                        \
     47   V(Map, float32x4_map, Float32x4Map)                                          \
     48   V(Map, int32x4_map, Int32x4Map)                                              \
     49   V(Map, uint32x4_map, Uint32x4Map)                                            \
     50   V(Map, bool32x4_map, Bool32x4Map)                                            \
     51   V(Map, int16x8_map, Int16x8Map)                                              \
     52   V(Map, uint16x8_map, Uint16x8Map)                                            \
     53   V(Map, bool16x8_map, Bool16x8Map)                                            \
     54   V(Map, int8x16_map, Int8x16Map)                                              \
     55   V(Map, uint8x16_map, Uint8x16Map)                                            \
     56   V(Map, bool8x16_map, Bool8x16Map)                                            \
     57   V(Map, native_context_map, NativeContextMap)                                 \
     58   V(Map, fixed_array_map, FixedArrayMap)                                       \
     59   V(Map, code_map, CodeMap)                                                    \
     60   V(Map, scope_info_map, ScopeInfoMap)                                         \
     61   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
     62   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
     63   V(Map, weak_cell_map, WeakCellMap)                                           \
     64   V(Map, transition_array_map, TransitionArrayMap)                             \
     65   V(Map, one_byte_string_map, OneByteStringMap)                                \
     66   V(Map, one_byte_internalized_string_map, OneByteInternalizedStringMap)       \
     67   V(Map, function_context_map, FunctionContextMap)                             \
     68   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
     69   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
     70   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
     71   /* The roots above this line should be boring from a GC point of view.    */ \
     72   /* This means they are never in new space and never on a page that is     */ \
     73   /* being compacted.                                                       */ \
     74   V(Oddball, no_interceptor_result_sentinel, NoInterceptorResultSentinel)      \
     75   V(Oddball, arguments_marker, ArgumentsMarker)                                \
     76   V(Oddball, exception, Exception)                                             \
     77   V(Oddball, termination_exception, TerminationException)                      \
     78   V(FixedArray, number_string_cache, NumberStringCache)                        \
     79   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
     80   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
     81   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
     82   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
     83   V(FixedArray, string_split_cache, StringSplitCache)                          \
     84   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
     85   V(Smi, hash_seed, HashSeed)                                                  \
     86   V(Map, hash_table_map, HashTableMap)                                         \
     87   V(Map, ordered_hash_table_map, OrderedHashTableMap)                          \
     88   V(Map, symbol_map, SymbolMap)                                                \
     89   V(Map, string_map, StringMap)                                                \
     90   V(Map, cons_one_byte_string_map, ConsOneByteStringMap)                       \
     91   V(Map, cons_string_map, ConsStringMap)                                       \
     92   V(Map, sliced_string_map, SlicedStringMap)                                   \
     93   V(Map, sliced_one_byte_string_map, SlicedOneByteStringMap)                   \
     94   V(Map, external_string_map, ExternalStringMap)                               \
     95   V(Map, external_string_with_one_byte_data_map,                               \
     96     ExternalStringWithOneByteDataMap)                                          \
     97   V(Map, external_one_byte_string_map, ExternalOneByteStringMap)               \
     98   V(Map, native_source_string_map, NativeSourceStringMap)                      \
     99   V(Map, short_external_string_map, ShortExternalStringMap)                    \
    100   V(Map, short_external_string_with_one_byte_data_map,                         \
    101     ShortExternalStringWithOneByteDataMap)                                     \
    102   V(Map, internalized_string_map, InternalizedStringMap)                       \
    103   V(Map, external_internalized_string_map, ExternalInternalizedStringMap)      \
    104   V(Map, external_internalized_string_with_one_byte_data_map,                  \
    105     ExternalInternalizedStringWithOneByteDataMap)                              \
    106   V(Map, external_one_byte_internalized_string_map,                            \
    107     ExternalOneByteInternalizedStringMap)                                      \
    108   V(Map, short_external_internalized_string_map,                               \
    109     ShortExternalInternalizedStringMap)                                        \
    110   V(Map, short_external_internalized_string_with_one_byte_data_map,            \
    111     ShortExternalInternalizedStringWithOneByteDataMap)                         \
    112   V(Map, short_external_one_byte_internalized_string_map,                      \
    113     ShortExternalOneByteInternalizedStringMap)                                 \
    114   V(Map, short_external_one_byte_string_map, ShortExternalOneByteStringMap)    \
    115   V(Map, fixed_uint8_array_map, FixedUint8ArrayMap)                            \
    116   V(Map, fixed_int8_array_map, FixedInt8ArrayMap)                              \
    117   V(Map, fixed_uint16_array_map, FixedUint16ArrayMap)                          \
    118   V(Map, fixed_int16_array_map, FixedInt16ArrayMap)                            \
    119   V(Map, fixed_uint32_array_map, FixedUint32ArrayMap)                          \
    120   V(Map, fixed_int32_array_map, FixedInt32ArrayMap)                            \
    121   V(Map, fixed_float32_array_map, FixedFloat32ArrayMap)                        \
    122   V(Map, fixed_float64_array_map, FixedFloat64ArrayMap)                        \
    123   V(Map, fixed_uint8_clamped_array_map, FixedUint8ClampedArrayMap)             \
    124   V(FixedTypedArrayBase, empty_fixed_uint8_array, EmptyFixedUint8Array)        \
    125   V(FixedTypedArrayBase, empty_fixed_int8_array, EmptyFixedInt8Array)          \
    126   V(FixedTypedArrayBase, empty_fixed_uint16_array, EmptyFixedUint16Array)      \
    127   V(FixedTypedArrayBase, empty_fixed_int16_array, EmptyFixedInt16Array)        \
    128   V(FixedTypedArrayBase, empty_fixed_uint32_array, EmptyFixedUint32Array)      \
    129   V(FixedTypedArrayBase, empty_fixed_int32_array, EmptyFixedInt32Array)        \
    130   V(FixedTypedArrayBase, empty_fixed_float32_array, EmptyFixedFloat32Array)    \
    131   V(FixedTypedArrayBase, empty_fixed_float64_array, EmptyFixedFloat64Array)    \
    132   V(FixedTypedArrayBase, empty_fixed_uint8_clamped_array,                      \
    133     EmptyFixedUint8ClampedArray)                                               \
    134   V(Map, sloppy_arguments_elements_map, SloppyArgumentsElementsMap)            \
    135   V(Map, catch_context_map, CatchContextMap)                                   \
    136   V(Map, with_context_map, WithContextMap)                                     \
    137   V(Map, block_context_map, BlockContextMap)                                   \
    138   V(Map, module_context_map, ModuleContextMap)                                 \
    139   V(Map, script_context_map, ScriptContextMap)                                 \
    140   V(Map, script_context_table_map, ScriptContextTableMap)                      \
    141   V(Map, undefined_map, UndefinedMap)                                          \
    142   V(Map, the_hole_map, TheHoleMap)                                             \
    143   V(Map, null_map, NullMap)                                                    \
    144   V(Map, boolean_map, BooleanMap)                                              \
    145   V(Map, uninitialized_map, UninitializedMap)                                  \
    146   V(Map, arguments_marker_map, ArgumentsMarkerMap)                             \
    147   V(Map, no_interceptor_result_sentinel_map, NoInterceptorResultSentinelMap)   \
    148   V(Map, exception_map, ExceptionMap)                                          \
    149   V(Map, termination_exception_map, TerminationExceptionMap)                   \
    150   V(Map, message_object_map, JSMessageObjectMap)                               \
    151   V(Map, foreign_map, ForeignMap)                                              \
    152   V(Map, neander_map, NeanderMap)                                              \
    153   V(Map, external_map, ExternalMap)                                            \
    154   V(HeapNumber, nan_value, NanValue)                                           \
    155   V(HeapNumber, infinity_value, InfinityValue)                                 \
    156   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
    157   V(HeapNumber, minus_infinity_value, MinusInfinityValue)                      \
    158   V(JSObject, message_listeners, MessageListeners)                             \
    159   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
    160   V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache)      \
    161   V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache)        \
    162   V(Code, js_entry_code, JsEntryCode)                                          \
    163   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
    164   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
    165   V(FixedArray, experimental_natives_source_cache,                             \
    166     ExperimentalNativesSourceCache)                                            \
    167   V(FixedArray, extra_natives_source_cache, ExtraNativesSourceCache)           \
    168   V(FixedArray, experimental_extra_natives_source_cache,                       \
    169     ExperimentalExtraNativesSourceCache)                                       \
    170   V(Script, empty_script, EmptyScript)                                         \
    171   V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
    172   V(NameDictionary, empty_properties_dictionary, EmptyPropertiesDictionary)    \
    173   V(Cell, undefined_cell, UndefinedCell)                                       \
    174   V(JSObject, observation_state, ObservationState)                             \
    175   V(Object, symbol_registry, SymbolRegistry)                                   \
    176   V(Object, script_list, ScriptList)                                           \
    177   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
    178     EmptySlowElementDictionary)                                                \
    179   V(FixedArray, materialized_objects, MaterializedObjects)                     \
    180   V(FixedArray, microtask_queue, MicrotaskQueue)                               \
    181   V(TypeFeedbackVector, dummy_vector, DummyVector)                             \
    182   V(FixedArray, cleared_optimized_code_map, ClearedOptimizedCodeMap)           \
    183   V(FixedArray, detached_contexts, DetachedContexts)                           \
    184   V(ArrayList, retained_maps, RetainedMaps)                                    \
    185   V(WeakHashTable, weak_object_to_code_table, WeakObjectToCodeTable)           \
    186   V(PropertyCell, array_protector, ArrayProtector)                             \
    187   V(PropertyCell, empty_property_cell, EmptyPropertyCell)                      \
    188   V(Object, weak_stack_trace_list, WeakStackTraceList)                         \
    189   V(Object, noscript_shared_function_infos, NoScriptSharedFunctionInfos)       \
    190   V(FixedArray, interpreter_table, InterpreterTable)                           \
    191   V(Map, bytecode_array_map, BytecodeArrayMap)                                 \
    192   V(WeakCell, empty_weak_cell, EmptyWeakCell)                                  \
    193   V(BytecodeArray, empty_bytecode_array, EmptyBytecodeArray)
    194 
    195 
    196 // Entries in this list are limited to Smis and are not visited during GC.
    197 #define SMI_ROOT_LIST(V)                                                   \
    198   V(Smi, stack_limit, StackLimit)                                          \
    199   V(Smi, real_stack_limit, RealStackLimit)                                 \
    200   V(Smi, last_script_id, LastScriptId)                                     \
    201   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset) \
    202   V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)       \
    203   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)             \
    204   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)
    205 
    206 
    207 #define ROOT_LIST(V)  \
    208   STRONG_ROOT_LIST(V) \
    209   SMI_ROOT_LIST(V)    \
    210   V(StringTable, string_table, StringTable)
    211 
    212 #define INTERNALIZED_STRING_LIST(V)                              \
    213   V(anonymous_string, "anonymous")                               \
    214   V(apply_string, "apply")                                       \
    215   V(assign_string, "assign")                                     \
    216   V(arguments_string, "arguments")                               \
    217   V(Arguments_string, "Arguments")                               \
    218   V(Array_string, "Array")                                       \
    219   V(bind_string, "bind")                                         \
    220   V(bool16x8_string, "bool16x8")                                 \
    221   V(Bool16x8_string, "Bool16x8")                                 \
    222   V(bool32x4_string, "bool32x4")                                 \
    223   V(Bool32x4_string, "Bool32x4")                                 \
    224   V(bool8x16_string, "bool8x16")                                 \
    225   V(Bool8x16_string, "Bool8x16")                                 \
    226   V(boolean_string, "boolean")                                   \
    227   V(Boolean_string, "Boolean")                                   \
    228   V(bound__string, "bound ")                                     \
    229   V(byte_length_string, "byteLength")                            \
    230   V(byte_offset_string, "byteOffset")                            \
    231   V(call_string, "call")                                         \
    232   V(callee_string, "callee")                                     \
    233   V(caller_string, "caller")                                     \
    234   V(cell_value_string, "%cell_value")                            \
    235   V(char_at_string, "CharAt")                                    \
    236   V(closure_string, "(closure)")                                 \
    237   V(compare_ic_string, "==")                                     \
    238   V(configurable_string, "configurable")                         \
    239   V(constructor_string, "constructor")                           \
    240   V(construct_string, "construct")                               \
    241   V(create_string, "create")                                     \
    242   V(Date_string, "Date")                                         \
    243   V(default_string, "default")                                   \
    244   V(defineProperty_string, "defineProperty")                     \
    245   V(deleteProperty_string, "deleteProperty")                     \
    246   V(display_name_string, "displayName")                          \
    247   V(done_string, "done")                                         \
    248   V(dot_result_string, ".result")                                \
    249   V(dot_string, ".")                                             \
    250   V(enumerable_string, "enumerable")                             \
    251   V(enumerate_string, "enumerate")                               \
    252   V(Error_string, "Error")                                       \
    253   V(eval_string, "eval")                                         \
    254   V(false_string, "false")                                       \
    255   V(float32x4_string, "float32x4")                               \
    256   V(Float32x4_string, "Float32x4")                               \
    257   V(for_api_string, "for_api")                                   \
    258   V(for_string, "for")                                           \
    259   V(function_string, "function")                                 \
    260   V(Function_string, "Function")                                 \
    261   V(Generator_string, "Generator")                               \
    262   V(getOwnPropertyDescriptor_string, "getOwnPropertyDescriptor") \
    263   V(getPrototypeOf_string, "getPrototypeOf")                     \
    264   V(get_string, "get")                                           \
    265   V(global_string, "global")                                     \
    266   V(has_string, "has")                                           \
    267   V(illegal_access_string, "illegal access")                     \
    268   V(illegal_argument_string, "illegal argument")                 \
    269   V(index_string, "index")                                       \
    270   V(infinity_string, "Infinity")                                 \
    271   V(input_string, "input")                                       \
    272   V(int16x8_string, "int16x8")                                   \
    273   V(Int16x8_string, "Int16x8")                                   \
    274   V(int32x4_string, "int32x4")                                   \
    275   V(Int32x4_string, "Int32x4")                                   \
    276   V(int8x16_string, "int8x16")                                   \
    277   V(Int8x16_string, "Int8x16")                                   \
    278   V(isExtensible_string, "isExtensible")                         \
    279   V(isView_string, "isView")                                     \
    280   V(KeyedLoadMonomorphic_string, "KeyedLoadMonomorphic")         \
    281   V(KeyedStoreMonomorphic_string, "KeyedStoreMonomorphic")       \
    282   V(last_index_string, "lastIndex")                              \
    283   V(length_string, "length")                                     \
    284   V(Map_string, "Map")                                           \
    285   V(minus_infinity_string, "-Infinity")                          \
    286   V(minus_zero_string, "-0")                                     \
    287   V(name_string, "name")                                         \
    288   V(nan_string, "NaN")                                           \
    289   V(next_string, "next")                                         \
    290   V(null_string, "null")                                         \
    291   V(null_to_string, "[object Null]")                             \
    292   V(number_string, "number")                                     \
    293   V(Number_string, "Number")                                     \
    294   V(object_string, "object")                                     \
    295   V(Object_string, "Object")                                     \
    296   V(ownKeys_string, "ownKeys")                                   \
    297   V(preventExtensions_string, "preventExtensions")               \
    298   V(private_api_string, "private_api")                           \
    299   V(Promise_string, "Promise")                                   \
    300   V(proto_string, "__proto__")                                   \
    301   V(prototype_string, "prototype")                               \
    302   V(Proxy_string, "Proxy")                                       \
    303   V(query_colon_string, "(?:)")                                  \
    304   V(RegExp_string, "RegExp")                                     \
    305   V(setPrototypeOf_string, "setPrototypeOf")                     \
    306   V(set_string, "set")                                           \
    307   V(Set_string, "Set")                                           \
    308   V(source_mapping_url_string, "source_mapping_url")             \
    309   V(source_string, "source")                                     \
    310   V(source_url_string, "source_url")                             \
    311   V(stack_string, "stack")                                       \
    312   V(strict_compare_ic_string, "===")                             \
    313   V(string_string, "string")                                     \
    314   V(String_string, "String")                                     \
    315   V(symbol_string, "symbol")                                     \
    316   V(Symbol_string, "Symbol")                                     \
    317   V(this_string, "this")                                         \
    318   V(throw_string, "throw")                                       \
    319   V(toJSON_string, "toJSON")                                     \
    320   V(toString_string, "toString")                                 \
    321   V(true_string, "true")                                         \
    322   V(uint16x8_string, "uint16x8")                                 \
    323   V(Uint16x8_string, "Uint16x8")                                 \
    324   V(uint32x4_string, "uint32x4")                                 \
    325   V(Uint32x4_string, "Uint32x4")                                 \
    326   V(uint8x16_string, "uint8x16")                                 \
    327   V(Uint8x16_string, "Uint8x16")                                 \
    328   V(undefined_string, "undefined")                               \
    329   V(undefined_to_string, "[object Undefined]")                   \
    330   V(valueOf_string, "valueOf")                                   \
    331   V(value_string, "value")                                       \
    332   V(WeakMap_string, "WeakMap")                                   \
    333   V(WeakSet_string, "WeakSet")                                   \
    334   V(writable_string, "writable")
    335 
    336 #define PRIVATE_SYMBOL_LIST(V)              \
    337   V(array_iteration_kind_symbol)            \
    338   V(array_iterator_next_symbol)             \
    339   V(array_iterator_object_symbol)           \
    340   V(call_site_function_symbol)              \
    341   V(call_site_position_symbol)              \
    342   V(call_site_receiver_symbol)              \
    343   V(call_site_strict_symbol)                \
    344   V(class_end_position_symbol)              \
    345   V(class_start_position_symbol)            \
    346   V(detailed_stack_trace_symbol)            \
    347   V(elements_transition_symbol)             \
    348   V(error_end_pos_symbol)                   \
    349   V(error_script_symbol)                    \
    350   V(error_start_pos_symbol)                 \
    351   V(formatted_stack_trace_symbol)           \
    352   V(frozen_symbol)                          \
    353   V(hash_code_symbol)                       \
    354   V(home_object_symbol)                     \
    355   V(internal_error_symbol)                  \
    356   V(intl_impl_object_symbol)                \
    357   V(intl_initialized_marker_symbol)         \
    358   V(intl_pattern_symbol)                    \
    359   V(intl_resolved_symbol)                   \
    360   V(megamorphic_symbol)                     \
    361   V(native_context_index_symbol)            \
    362   V(nonexistent_symbol)                     \
    363   V(nonextensible_symbol)                   \
    364   V(normal_ic_symbol)                       \
    365   V(not_mapped_symbol)                      \
    366   V(observed_symbol)                        \
    367   V(premonomorphic_symbol)                  \
    368   V(promise_combined_deferred_symbol)       \
    369   V(promise_debug_marker_symbol)            \
    370   V(promise_has_handler_symbol)             \
    371   V(promise_on_resolve_symbol)              \
    372   V(promise_on_reject_symbol)               \
    373   V(promise_raw_symbol)                     \
    374   V(promise_status_symbol)                  \
    375   V(promise_value_symbol)                   \
    376   V(sealed_symbol)                          \
    377   V(stack_trace_symbol)                     \
    378   V(strict_function_transition_symbol)      \
    379   V(string_iterator_iterated_string_symbol) \
    380   V(string_iterator_next_index_symbol)      \
    381   V(strong_function_transition_symbol)      \
    382   V(uninitialized_symbol)
    383 
    384 #define PUBLIC_SYMBOL_LIST(V)                \
    385   V(has_instance_symbol, Symbol.hasInstance) \
    386   V(iterator_symbol, Symbol.iterator)        \
    387   V(match_symbol, Symbol.match)              \
    388   V(replace_symbol, Symbol.replace)          \
    389   V(search_symbol, Symbol.search)            \
    390   V(species_symbol, Symbol.species)          \
    391   V(split_symbol, Symbol.split)              \
    392   V(to_primitive_symbol, Symbol.toPrimitive) \
    393   V(unscopables_symbol, Symbol.unscopables)
    394 
    395 // Well-Known Symbols are "Public" symbols, which have a bit set which causes
    396 // them to produce an undefined value when a load results in a failed access
    397 // check. Because this behaviour is not specified properly as of yet, it only
    398 // applies to a subset of spec-defined Well-Known Symbols.
    399 #define WELL_KNOWN_SYMBOL_LIST(V)                           \
    400   V(is_concat_spreadable_symbol, Symbol.isConcatSpreadable) \
    401   V(to_string_tag_symbol, Symbol.toStringTag)
    402 
    403 // Heap roots that are known to be immortal immovable, for which we can safely
    404 // skip write barriers. This list is not complete and has omissions.
    405 #define IMMORTAL_IMMOVABLE_ROOT_LIST(V) \
    406   V(ByteArrayMap)                       \
    407   V(BytecodeArrayMap)                   \
    408   V(FreeSpaceMap)                       \
    409   V(OnePointerFillerMap)                \
    410   V(TwoPointerFillerMap)                \
    411   V(UndefinedValue)                     \
    412   V(TheHoleValue)                       \
    413   V(NullValue)                          \
    414   V(TrueValue)                          \
    415   V(FalseValue)                         \
    416   V(UninitializedValue)                 \
    417   V(CellMap)                            \
    418   V(GlobalPropertyCellMap)              \
    419   V(SharedFunctionInfoMap)              \
    420   V(MetaMap)                            \
    421   V(HeapNumberMap)                      \
    422   V(MutableHeapNumberMap)               \
    423   V(Float32x4Map)                       \
    424   V(Int32x4Map)                         \
    425   V(Uint32x4Map)                        \
    426   V(Bool32x4Map)                        \
    427   V(Int16x8Map)                         \
    428   V(Uint16x8Map)                        \
    429   V(Bool16x8Map)                        \
    430   V(Int8x16Map)                         \
    431   V(Uint8x16Map)                        \
    432   V(Bool8x16Map)                        \
    433   V(NativeContextMap)                   \
    434   V(FixedArrayMap)                      \
    435   V(CodeMap)                            \
    436   V(ScopeInfoMap)                       \
    437   V(FixedCOWArrayMap)                   \
    438   V(FixedDoubleArrayMap)                \
    439   V(WeakCellMap)                        \
    440   V(TransitionArrayMap)                 \
    441   V(NoInterceptorResultSentinel)        \
    442   V(HashTableMap)                       \
    443   V(OrderedHashTableMap)                \
    444   V(EmptyFixedArray)                    \
    445   V(EmptyByteArray)                     \
    446   V(EmptyBytecodeArray)                 \
    447   V(EmptyDescriptorArray)               \
    448   V(ArgumentsMarker)                    \
    449   V(SymbolMap)                          \
    450   V(SloppyArgumentsElementsMap)         \
    451   V(FunctionContextMap)                 \
    452   V(CatchContextMap)                    \
    453   V(WithContextMap)                     \
    454   V(BlockContextMap)                    \
    455   V(ModuleContextMap)                   \
    456   V(ScriptContextMap)                   \
    457   V(UndefinedMap)                       \
    458   V(TheHoleMap)                         \
    459   V(NullMap)                            \
    460   V(BooleanMap)                         \
    461   V(UninitializedMap)                   \
    462   V(ArgumentsMarkerMap)                 \
    463   V(JSMessageObjectMap)                 \
    464   V(ForeignMap)                         \
    465   V(NeanderMap)                         \
    466   V(EmptyWeakCell)                      \
    467   V(empty_string)                       \
    468   PRIVATE_SYMBOL_LIST(V)
    469 
    470 // Forward declarations.
    471 class ArrayBufferTracker;
    472 class GCIdleTimeAction;
    473 class GCIdleTimeHandler;
    474 class GCIdleTimeHeapState;
    475 class GCTracer;
    476 class HeapObjectsFilter;
    477 class HeapStats;
    478 class HistogramTimer;
    479 class Isolate;
    480 class MemoryReducer;
    481 class ObjectStats;
    482 class Scavenger;
    483 class ScavengeJob;
    484 class WeakObjectRetainer;
    485 
    486 
    487 // A queue of objects promoted during scavenge. Each object is accompanied
    488 // by it's size to avoid dereferencing a map pointer for scanning.
    489 // The last page in to-space is used for the promotion queue. On conflict
    490 // during scavenge, the promotion queue is allocated externally and all
    491 // entries are copied to the external queue.
    492 class PromotionQueue {
    493  public:
    494   explicit PromotionQueue(Heap* heap)
    495       : front_(NULL),
    496         rear_(NULL),
    497         limit_(NULL),
    498         emergency_stack_(0),
    499         heap_(heap) {}
    500 
    501   void Initialize();
    502 
    503   void Destroy() {
    504     DCHECK(is_empty());
    505     delete emergency_stack_;
    506     emergency_stack_ = NULL;
    507   }
    508 
    509   Page* GetHeadPage() {
    510     return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
    511   }
    512 
    513   void SetNewLimit(Address limit) {
    514     // If we are already using an emergency stack, we can ignore it.
    515     if (emergency_stack_) return;
    516 
    517     // If the limit is not on the same page, we can ignore it.
    518     if (Page::FromAllocationTop(limit) != GetHeadPage()) return;
    519 
    520     limit_ = reinterpret_cast<intptr_t*>(limit);
    521 
    522     if (limit_ <= rear_) {
    523       return;
    524     }
    525 
    526     RelocateQueueHead();
    527   }
    528 
    529   bool IsBelowPromotionQueue(Address to_space_top) {
    530     // If an emergency stack is used, the to-space address cannot interfere
    531     // with the promotion queue.
    532     if (emergency_stack_) return true;
    533 
    534     // If the given to-space top pointer and the head of the promotion queue
    535     // are not on the same page, then the to-space objects are below the
    536     // promotion queue.
    537     if (GetHeadPage() != Page::FromAddress(to_space_top)) {
    538       return true;
    539     }
    540     // If the to space top pointer is smaller or equal than the promotion
    541     // queue head, then the to-space objects are below the promotion queue.
    542     return reinterpret_cast<intptr_t*>(to_space_top) <= rear_;
    543   }
    544 
    545   bool is_empty() {
    546     return (front_ == rear_) &&
    547            (emergency_stack_ == NULL || emergency_stack_->length() == 0);
    548   }
    549 
    550   inline void insert(HeapObject* target, int size);
    551 
    552   void remove(HeapObject** target, int* size) {
    553     DCHECK(!is_empty());
    554     if (front_ == rear_) {
    555       Entry e = emergency_stack_->RemoveLast();
    556       *target = e.obj_;
    557       *size = e.size_;
    558       return;
    559     }
    560 
    561     *target = reinterpret_cast<HeapObject*>(*(--front_));
    562     *size = static_cast<int>(*(--front_));
    563     // Assert no underflow.
    564     SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
    565                                 reinterpret_cast<Address>(front_));
    566   }
    567 
    568  private:
    569   // The front of the queue is higher in the memory page chain than the rear.
    570   intptr_t* front_;
    571   intptr_t* rear_;
    572   intptr_t* limit_;
    573 
    574   static const int kEntrySizeInWords = 2;
    575 
    576   struct Entry {
    577     Entry(HeapObject* obj, int size) : obj_(obj), size_(size) {}
    578 
    579     HeapObject* obj_;
    580     int size_;
    581   };
    582   List<Entry>* emergency_stack_;
    583 
    584   Heap* heap_;
    585 
    586   void RelocateQueueHead();
    587 
    588   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
    589 };
    590 
    591 
    592 enum ArrayStorageAllocationMode {
    593   DONT_INITIALIZE_ARRAY_ELEMENTS,
    594   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
    595 };
    596 
    597 
    598 class Heap {
    599  public:
    600   // Declare all the root indices.  This defines the root list order.
    601   enum RootListIndex {
    602 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
    603     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
    604 #undef ROOT_INDEX_DECLARATION
    605 
    606 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
    607         INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
    608 #undef STRING_DECLARATION
    609 
    610 #define SYMBOL_INDEX_DECLARATION(name) k##name##RootIndex,
    611             PRIVATE_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
    612 #undef SYMBOL_INDEX_DECLARATION
    613 
    614 #define SYMBOL_INDEX_DECLARATION(name, description) k##name##RootIndex,
    615                 PUBLIC_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
    616                     WELL_KNOWN_SYMBOL_LIST(SYMBOL_INDEX_DECLARATION)
    617 #undef SYMBOL_INDEX_DECLARATION
    618 
    619 // Utility type maps
    620 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
    621                         STRUCT_LIST(DECLARE_STRUCT_MAP)
    622 #undef DECLARE_STRUCT_MAP
    623                             kStringTableRootIndex,
    624 
    625 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
    626     SMI_ROOT_LIST(ROOT_INDEX_DECLARATION)
    627 #undef ROOT_INDEX_DECLARATION
    628         kRootListLength,
    629     kStrongRootListLength = kStringTableRootIndex,
    630     kSmiRootsStart = kStringTableRootIndex + 1
    631   };
    632 
    633   // Indicates whether live bytes adjustment is triggered
    634   // - from within the GC code before sweeping started (SEQUENTIAL_TO_SWEEPER),
    635   // - or from within GC (CONCURRENT_TO_SWEEPER),
    636   // - or mutator code (CONCURRENT_TO_SWEEPER).
    637   enum InvocationMode { SEQUENTIAL_TO_SWEEPER, CONCURRENT_TO_SWEEPER };
    638 
    639   enum PretenuringFeedbackInsertionMode { kCached, kGlobal };
    640 
    641   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
    642 
    643   // Taking this lock prevents the GC from entering a phase that relocates
    644   // object references.
    645   class RelocationLock {
    646    public:
    647     explicit RelocationLock(Heap* heap) : heap_(heap) {
    648       heap_->relocation_mutex_.Lock();
    649     }
    650 
    651     ~RelocationLock() { heap_->relocation_mutex_.Unlock(); }
    652 
    653    private:
    654     Heap* heap_;
    655   };
    656 
    657   // Support for partial snapshots.  After calling this we have a linear
    658   // space to write objects in each space.
    659   struct Chunk {
    660     uint32_t size;
    661     Address start;
    662     Address end;
    663   };
    664   typedef List<Chunk> Reservation;
    665 
    666   static const intptr_t kMinimumOldGenerationAllocationLimit =
    667       8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
    668 
    669   static const int kInitalOldGenerationLimitFactor = 2;
    670 
    671 #if V8_OS_ANDROID
    672   // Don't apply pointer multiplier on Android since it has no swap space and
    673   // should instead adapt it's heap size based on available physical memory.
    674   static const int kPointerMultiplier = 1;
    675 #else
    676   static const int kPointerMultiplier = i::kPointerSize / 4;
    677 #endif
    678 
    679   // The new space size has to be a power of 2. Sizes are in MB.
    680   static const int kMaxSemiSpaceSizeLowMemoryDevice = 1 * kPointerMultiplier;
    681   static const int kMaxSemiSpaceSizeMediumMemoryDevice = 4 * kPointerMultiplier;
    682   static const int kMaxSemiSpaceSizeHighMemoryDevice = 8 * kPointerMultiplier;
    683   static const int kMaxSemiSpaceSizeHugeMemoryDevice = 8 * kPointerMultiplier;
    684 
    685   // The old space size has to be a multiple of Page::kPageSize.
    686   // Sizes are in MB.
    687   static const int kMaxOldSpaceSizeLowMemoryDevice = 128 * kPointerMultiplier;
    688   static const int kMaxOldSpaceSizeMediumMemoryDevice =
    689       256 * kPointerMultiplier;
    690   static const int kMaxOldSpaceSizeHighMemoryDevice = 512 * kPointerMultiplier;
    691   static const int kMaxOldSpaceSizeHugeMemoryDevice = 700 * kPointerMultiplier;
    692 
    693   // The executable size has to be a multiple of Page::kPageSize.
    694   // Sizes are in MB.
    695   static const int kMaxExecutableSizeLowMemoryDevice = 96 * kPointerMultiplier;
    696   static const int kMaxExecutableSizeMediumMemoryDevice =
    697       192 * kPointerMultiplier;
    698   static const int kMaxExecutableSizeHighMemoryDevice =
    699       256 * kPointerMultiplier;
    700   static const int kMaxExecutableSizeHugeMemoryDevice =
    701       256 * kPointerMultiplier;
    702 
    703   static const int kTraceRingBufferSize = 512;
    704   static const int kStacktraceBufferSize = 512;
    705 
    706   static const double kMinHeapGrowingFactor;
    707   static const double kMaxHeapGrowingFactor;
    708   static const double kMaxHeapGrowingFactorMemoryConstrained;
    709   static const double kMaxHeapGrowingFactorIdle;
    710   static const double kTargetMutatorUtilization;
    711 
    712   // Sloppy mode arguments object size.
    713   static const int kSloppyArgumentsObjectSize =
    714       JSObject::kHeaderSize + 2 * kPointerSize;
    715 
    716   // Strict mode arguments has no callee so it is smaller.
    717   static const int kStrictArgumentsObjectSize =
    718       JSObject::kHeaderSize + 1 * kPointerSize;
    719 
    720   // Indicies for direct access into argument objects.
    721   static const int kArgumentsLengthIndex = 0;
    722 
    723   // callee is only valid in sloppy mode.
    724   static const int kArgumentsCalleeIndex = 1;
    725 
    726   static const int kNoGCFlags = 0;
    727   static const int kReduceMemoryFootprintMask = 1;
    728   static const int kAbortIncrementalMarkingMask = 2;
    729   static const int kFinalizeIncrementalMarkingMask = 4;
    730 
    731   // Making the heap iterable requires us to abort incremental marking.
    732   static const int kMakeHeapIterableMask = kAbortIncrementalMarkingMask;
    733 
    734   // The roots that have an index less than this are always in old space.
    735   static const int kOldSpaceRoots = 0x20;
    736 
    737   // The minimum size of a HeapObject on the heap.
    738   static const int kMinObjectSizeInWords = 2;
    739 
    740   STATIC_ASSERT(kUndefinedValueRootIndex ==
    741                 Internals::kUndefinedValueRootIndex);
    742   STATIC_ASSERT(kNullValueRootIndex == Internals::kNullValueRootIndex);
    743   STATIC_ASSERT(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
    744   STATIC_ASSERT(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
    745   STATIC_ASSERT(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
    746 
    747   // Calculates the maximum amount of filler that could be required by the
    748   // given alignment.
    749   static int GetMaximumFillToAlign(AllocationAlignment alignment);
    750   // Calculates the actual amount of filler required for a given address at the
    751   // given alignment.
    752   static int GetFillToAlign(Address address, AllocationAlignment alignment);
    753 
    754   template <typename T>
    755   static inline bool IsOneByte(T t, int chars);
    756 
    757   static void FatalProcessOutOfMemory(const char* location,
    758                                       bool take_snapshot = false);
    759 
    760   static bool RootIsImmortalImmovable(int root_index);
    761 
    762   // Checks whether the space is valid.
    763   static bool IsValidAllocationSpace(AllocationSpace space);
    764 
    765   // Generated code can embed direct references to non-writable roots if
    766   // they are in new space.
    767   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
    768 
    769   // Zapping is needed for verify heap, and always done in debug builds.
    770   static inline bool ShouldZapGarbage() {
    771 #ifdef DEBUG
    772     return true;
    773 #else
    774 #ifdef VERIFY_HEAP
    775     return FLAG_verify_heap;
    776 #else
    777     return false;
    778 #endif
    779 #endif
    780   }
    781 
    782   static double HeapGrowingFactor(double gc_speed, double mutator_speed);
    783 
    784   // Copy block of memory from src to dst. Size of block should be aligned
    785   // by pointer size.
    786   static inline void CopyBlock(Address dst, Address src, int byte_size);
    787 
    788   // Optimized version of memmove for blocks with pointer size aligned sizes and
    789   // pointer size aligned addresses.
    790   static inline void MoveBlock(Address dst, Address src, int byte_size);
    791 
    792   // Determines a static visitor id based on the given {map} that can then be
    793   // stored on the map to facilitate fast dispatch for {StaticVisitorBase}.
    794   static int GetStaticVisitorIdForMap(Map* map);
    795 
    796   // Notifies the heap that is ok to start marking or other activities that
    797   // should not happen during deserialization.
    798   void NotifyDeserializationComplete();
    799 
    800   intptr_t old_generation_allocation_limit() const {
    801     return old_generation_allocation_limit_;
    802   }
    803 
    804   bool always_allocate() { return always_allocate_scope_count_.Value() != 0; }
    805 
    806   Address* NewSpaceAllocationTopAddress() {
    807     return new_space_.allocation_top_address();
    808   }
    809   Address* NewSpaceAllocationLimitAddress() {
    810     return new_space_.allocation_limit_address();
    811   }
    812 
    813   Address* OldSpaceAllocationTopAddress() {
    814     return old_space_->allocation_top_address();
    815   }
    816   Address* OldSpaceAllocationLimitAddress() {
    817     return old_space_->allocation_limit_address();
    818   }
    819 
    820   // TODO(hpayer): There is still a missmatch between capacity and actual
    821   // committed memory size.
    822   bool CanExpandOldGeneration(int size = 0) {
    823     if (force_oom_) return false;
    824     return (CommittedOldGenerationMemory() + size) < MaxOldGenerationSize();
    825   }
    826 
    827   // Clear the Instanceof cache (used when a prototype changes).
    828   inline void ClearInstanceofCache();
    829 
    830   // FreeSpace objects have a null map after deserialization. Update the map.
    831   void RepairFreeListsAfterDeserialization();
    832 
    833   // Move len elements within a given array from src_index index to dst_index
    834   // index.
    835   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
    836 
    837   // Initialize a filler object to keep the ability to iterate over the heap
    838   // when introducing gaps within pages.
    839   void CreateFillerObjectAt(Address addr, int size);
    840 
    841   bool CanMoveObjectStart(HeapObject* object);
    842 
    843   // Maintain consistency of live bytes during incremental marking.
    844   void AdjustLiveBytes(HeapObject* object, int by, InvocationMode mode);
    845 
    846   // Trim the given array from the left. Note that this relocates the object
    847   // start and hence is only valid if there is only a single reference to it.
    848   FixedArrayBase* LeftTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
    849 
    850   // Trim the given array from the right.
    851   template<Heap::InvocationMode mode>
    852   void RightTrimFixedArray(FixedArrayBase* obj, int elements_to_trim);
    853 
    854   // Converts the given boolean condition to JavaScript boolean value.
    855   inline Object* ToBoolean(bool condition);
    856 
    857   // Check whether the heap is currently iterable.
    858   bool IsHeapIterable();
    859 
    860   // Notify the heap that a context has been disposed.
    861   int NotifyContextDisposed(bool dependant_context);
    862 
    863   inline void increment_scan_on_scavenge_pages() {
    864     scan_on_scavenge_pages_++;
    865     if (FLAG_gc_verbose) {
    866       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
    867     }
    868   }
    869 
    870   inline void decrement_scan_on_scavenge_pages() {
    871     scan_on_scavenge_pages_--;
    872     if (FLAG_gc_verbose) {
    873       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
    874     }
    875   }
    876 
    877   void set_native_contexts_list(Object* object) {
    878     native_contexts_list_ = object;
    879   }
    880   Object* native_contexts_list() const { return native_contexts_list_; }
    881 
    882   void set_allocation_sites_list(Object* object) {
    883     allocation_sites_list_ = object;
    884   }
    885   Object* allocation_sites_list() { return allocation_sites_list_; }
    886 
    887   // Used in CreateAllocationSiteStub and the (de)serializer.
    888   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
    889 
    890   void set_encountered_weak_collections(Object* weak_collection) {
    891     encountered_weak_collections_ = weak_collection;
    892   }
    893   Object* encountered_weak_collections() const {
    894     return encountered_weak_collections_;
    895   }
    896 
    897   void set_encountered_weak_cells(Object* weak_cell) {
    898     encountered_weak_cells_ = weak_cell;
    899   }
    900   Object* encountered_weak_cells() const { return encountered_weak_cells_; }
    901 
    902   void set_encountered_transition_arrays(Object* transition_array) {
    903     encountered_transition_arrays_ = transition_array;
    904   }
    905   Object* encountered_transition_arrays() const {
    906     return encountered_transition_arrays_;
    907   }
    908 
    909   // Number of mark-sweeps.
    910   int ms_count() const { return ms_count_; }
    911 
    912   // Checks whether the given object is allowed to be migrated from it's
    913   // current space into the given destination space. Used for debugging.
    914   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
    915 
    916   void CheckHandleCount();
    917 
    918   // Number of "runtime allocations" done so far.
    919   uint32_t allocations_count() { return allocations_count_; }
    920 
    921   // Print short heap statistics.
    922   void PrintShortHeapStatistics();
    923 
    924   inline HeapState gc_state() { return gc_state_; }
    925 
    926   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
    927 
    928   // If an object has an AllocationMemento trailing it, return it, otherwise
    929   // return NULL;
    930   inline AllocationMemento* FindAllocationMemento(HeapObject* object);
    931 
    932   // Returns false if not able to reserve.
    933   bool ReserveSpace(Reservation* reservations);
    934 
    935   //
    936   // Support for the API.
    937   //
    938 
    939   void CreateApiObjects();
    940 
    941   // Implements the corresponding V8 API function.
    942   bool IdleNotification(double deadline_in_seconds);
    943   bool IdleNotification(int idle_time_in_ms);
    944 
    945   double MonotonicallyIncreasingTimeInMs();
    946 
    947   void RecordStats(HeapStats* stats, bool take_snapshot = false);
    948 
    949   // Check new space expansion criteria and expand semispaces if it was hit.
    950   void CheckNewSpaceExpansionCriteria();
    951 
    952   inline bool HeapIsFullEnoughToStartIncrementalMarking(intptr_t limit) {
    953     if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
    954 
    955     intptr_t adjusted_allocation_limit = limit - new_space_.Capacity();
    956 
    957     if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
    958 
    959     return false;
    960   }
    961 
    962   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
    963 
    964   // An object should be promoted if the object has survived a
    965   // scavenge operation.
    966   inline bool ShouldBePromoted(Address old_address, int object_size);
    967 
    968   void ClearNormalizedMapCaches();
    969 
    970   void IncrementDeferredCount(v8::Isolate::UseCounterFeature feature);
    971 
    972   inline bool OldGenerationAllocationLimitReached();
    973 
    974   void QueueMemoryChunkForFree(MemoryChunk* chunk);
    975   void FilterStoreBufferEntriesOnAboutToBeFreedPages();
    976   void FreeQueuedChunks(MemoryChunk* list_head);
    977   void FreeQueuedChunks();
    978   void WaitUntilUnmappingOfFreeChunksCompleted();
    979 
    980   // Completely clear the Instanceof cache (to stop it keeping objects alive
    981   // around a GC).
    982   inline void CompletelyClearInstanceofCache();
    983 
    984   inline uint32_t HashSeed();
    985 
    986   inline int NextScriptId();
    987 
    988   inline void SetArgumentsAdaptorDeoptPCOffset(int pc_offset);
    989   inline void SetConstructStubDeoptPCOffset(int pc_offset);
    990   inline void SetGetterStubDeoptPCOffset(int pc_offset);
    991   inline void SetSetterStubDeoptPCOffset(int pc_offset);
    992 
    993   // For post mortem debugging.
    994   void RememberUnmappedPage(Address page, bool compacted);
    995 
    996   // Global inline caching age: it is incremented on some GCs after context
    997   // disposal. We use it to flush inline caches.
    998   int global_ic_age() { return global_ic_age_; }
    999 
   1000   void AgeInlineCaches() {
   1001     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
   1002   }
   1003 
   1004   int64_t amount_of_external_allocated_memory() {
   1005     return amount_of_external_allocated_memory_;
   1006   }
   1007 
   1008   void update_amount_of_external_allocated_memory(int64_t delta) {
   1009     amount_of_external_allocated_memory_ += delta;
   1010   }
   1011 
   1012   void DeoptMarkedAllocationSites();
   1013 
   1014   bool DeoptMaybeTenuredAllocationSites() {
   1015     return new_space_.IsAtMaximumCapacity() && maximum_size_scavenges_ == 0;
   1016   }
   1017 
   1018   void AddWeakObjectToCodeDependency(Handle<HeapObject> obj,
   1019                                      Handle<DependentCode> dep);
   1020 
   1021   DependentCode* LookupWeakObjectToCodeDependency(Handle<HeapObject> obj);
   1022 
   1023   void AddRetainedMap(Handle<Map> map);
   1024 
   1025   // This event is triggered after successful allocation of a new object made
   1026   // by runtime. Allocations of target space for object evacuation do not
   1027   // trigger the event. In order to track ALL allocations one must turn off
   1028   // FLAG_inline_new and FLAG_use_allocation_folding.
   1029   inline void OnAllocationEvent(HeapObject* object, int size_in_bytes);
   1030 
   1031   // This event is triggered after object is moved to a new place.
   1032   inline void OnMoveEvent(HeapObject* target, HeapObject* source,
   1033                           int size_in_bytes);
   1034 
   1035   bool deserialization_complete() const { return deserialization_complete_; }
   1036 
   1037   bool HasLowAllocationRate();
   1038   bool HasHighFragmentation();
   1039   bool HasHighFragmentation(intptr_t used, intptr_t committed);
   1040 
   1041   void SetOptimizeForLatency() { optimize_for_memory_usage_ = false; }
   1042   void SetOptimizeForMemoryUsage() { optimize_for_memory_usage_ = true; }
   1043   bool ShouldOptimizeForMemoryUsage() { return optimize_for_memory_usage_; }
   1044 
   1045   // ===========================================================================
   1046   // Initialization. ===========================================================
   1047   // ===========================================================================
   1048 
   1049   // Configure heap size in MB before setup. Return false if the heap has been
   1050   // set up already.
   1051   bool ConfigureHeap(int max_semi_space_size, int max_old_space_size,
   1052                      int max_executable_size, size_t code_range_size);
   1053   bool ConfigureHeapDefault();
   1054 
   1055   // Prepares the heap, setting up memory areas that are needed in the isolate
   1056   // without actually creating any objects.
   1057   bool SetUp();
   1058 
   1059   // Bootstraps the object heap with the core set of objects required to run.
   1060   // Returns whether it succeeded.
   1061   bool CreateHeapObjects();
   1062 
   1063   // Destroys all memory allocated by the heap.
   1064   void TearDown();
   1065 
   1066   // Returns whether SetUp has been called.
   1067   bool HasBeenSetUp();
   1068 
   1069   // ===========================================================================
   1070   // Getters for spaces. =======================================================
   1071   // ===========================================================================
   1072 
   1073   // Return the starting address and a mask for the new space.  And-masking an
   1074   // address with the mask will result in the start address of the new space
   1075   // for all addresses in either semispace.
   1076   Address NewSpaceStart() { return new_space_.start(); }
   1077   uintptr_t NewSpaceMask() { return new_space_.mask(); }
   1078   Address NewSpaceTop() { return new_space_.top(); }
   1079 
   1080   NewSpace* new_space() { return &new_space_; }
   1081   OldSpace* old_space() { return old_space_; }
   1082   OldSpace* code_space() { return code_space_; }
   1083   MapSpace* map_space() { return map_space_; }
   1084   LargeObjectSpace* lo_space() { return lo_space_; }
   1085 
   1086   PagedSpace* paged_space(int idx) {
   1087     switch (idx) {
   1088       case OLD_SPACE:
   1089         return old_space();
   1090       case MAP_SPACE:
   1091         return map_space();
   1092       case CODE_SPACE:
   1093         return code_space();
   1094       case NEW_SPACE:
   1095       case LO_SPACE:
   1096         UNREACHABLE();
   1097     }
   1098     return NULL;
   1099   }
   1100 
   1101   Space* space(int idx) {
   1102     switch (idx) {
   1103       case NEW_SPACE:
   1104         return new_space();
   1105       case LO_SPACE:
   1106         return lo_space();
   1107       default:
   1108         return paged_space(idx);
   1109     }
   1110   }
   1111 
   1112   // Returns name of the space.
   1113   const char* GetSpaceName(int idx);
   1114 
   1115   // ===========================================================================
   1116   // Getters to other components. ==============================================
   1117   // ===========================================================================
   1118 
   1119   GCTracer* tracer() { return tracer_; }
   1120 
   1121   PromotionQueue* promotion_queue() { return &promotion_queue_; }
   1122 
   1123   inline Isolate* isolate();
   1124 
   1125   MarkCompactCollector* mark_compact_collector() {
   1126     return mark_compact_collector_;
   1127   }
   1128 
   1129   // ===========================================================================
   1130   // Root set access. ==========================================================
   1131   // ===========================================================================
   1132 
   1133   // Heap root getters.
   1134 #define ROOT_ACCESSOR(type, name, camel_name) inline type* name();
   1135   ROOT_LIST(ROOT_ACCESSOR)
   1136 #undef ROOT_ACCESSOR
   1137 
   1138   // Utility type maps.
   1139 #define STRUCT_MAP_ACCESSOR(NAME, Name, name) inline Map* name##_map();
   1140   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
   1141 #undef STRUCT_MAP_ACCESSOR
   1142 
   1143 #define STRING_ACCESSOR(name, str) inline String* name();
   1144   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
   1145 #undef STRING_ACCESSOR
   1146 
   1147 #define SYMBOL_ACCESSOR(name) inline Symbol* name();
   1148   PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR)
   1149 #undef SYMBOL_ACCESSOR
   1150 
   1151 #define SYMBOL_ACCESSOR(name, description) inline Symbol* name();
   1152   PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR)
   1153   WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR)
   1154 #undef SYMBOL_ACCESSOR
   1155 
   1156   Object* root(RootListIndex index) { return roots_[index]; }
   1157   Handle<Object> root_handle(RootListIndex index) {
   1158     return Handle<Object>(&roots_[index]);
   1159   }
   1160 
   1161   // Generated code can embed this address to get access to the roots.
   1162   Object** roots_array_start() { return roots_; }
   1163 
   1164   // Sets the stub_cache_ (only used when expanding the dictionary).
   1165   void SetRootCodeStubs(UnseededNumberDictionary* value) {
   1166     roots_[kCodeStubsRootIndex] = value;
   1167   }
   1168 
   1169   // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
   1170   void SetRootNonMonomorphicCache(UnseededNumberDictionary* value) {
   1171     roots_[kNonMonomorphicCacheRootIndex] = value;
   1172   }
   1173 
   1174   void SetRootMaterializedObjects(FixedArray* objects) {
   1175     roots_[kMaterializedObjectsRootIndex] = objects;
   1176   }
   1177 
   1178   void SetRootScriptList(Object* value) {
   1179     roots_[kScriptListRootIndex] = value;
   1180   }
   1181 
   1182   void SetRootStringTable(StringTable* value) {
   1183     roots_[kStringTableRootIndex] = value;
   1184   }
   1185 
   1186   void SetRootNoScriptSharedFunctionInfos(Object* value) {
   1187     roots_[kNoScriptSharedFunctionInfosRootIndex] = value;
   1188   }
   1189 
   1190   // Set the stack limit in the roots_ array.  Some architectures generate
   1191   // code that looks here, because it is faster than loading from the static
   1192   // jslimit_/real_jslimit_ variable in the StackGuard.
   1193   void SetStackLimits();
   1194 
   1195   // Generated code can treat direct references to this root as constant.
   1196   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
   1197 
   1198   Map* MapForFixedTypedArray(ExternalArrayType array_type);
   1199   RootListIndex RootIndexForFixedTypedArray(ExternalArrayType array_type);
   1200 
   1201   RootListIndex RootIndexForEmptyFixedTypedArray(ElementsKind kind);
   1202   FixedTypedArrayBase* EmptyFixedTypedArrayForMap(Map* map);
   1203 
   1204   void RegisterStrongRoots(Object** start, Object** end);
   1205   void UnregisterStrongRoots(Object** start);
   1206 
   1207   // ===========================================================================
   1208   // Inline allocation. ========================================================
   1209   // ===========================================================================
   1210 
   1211   // Indicates whether inline bump-pointer allocation has been disabled.
   1212   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
   1213 
   1214   // Switch whether inline bump-pointer allocation should be used.
   1215   void EnableInlineAllocation();
   1216   void DisableInlineAllocation();
   1217 
   1218   // ===========================================================================
   1219   // Methods triggering GCs. ===================================================
   1220   // ===========================================================================
   1221 
   1222   // Performs garbage collection operation.
   1223   // Returns whether there is a chance that another major GC could
   1224   // collect more garbage.
   1225   inline bool CollectGarbage(
   1226       AllocationSpace space, const char* gc_reason = NULL,
   1227       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1228 
   1229   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
   1230   // non-zero, then the slower precise sweeper is used, which leaves the heap
   1231   // in a state where we can iterate over the heap visiting all objects.
   1232   void CollectAllGarbage(
   1233       int flags = kFinalizeIncrementalMarkingMask, const char* gc_reason = NULL,
   1234       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1235 
   1236   // Last hope GC, should try to squeeze as much as possible.
   1237   void CollectAllAvailableGarbage(const char* gc_reason = NULL);
   1238 
   1239   // Reports and external memory pressure event, either performs a major GC or
   1240   // completes incremental marking in order to free external resources.
   1241   void ReportExternalMemoryPressure(const char* gc_reason = NULL);
   1242 
   1243   // Invoked when GC was requested via the stack guard.
   1244   void HandleGCRequest();
   1245 
   1246   // ===========================================================================
   1247   // Iterators. ================================================================
   1248   // ===========================================================================
   1249 
   1250   // Iterates over all roots in the heap.
   1251   void IterateRoots(ObjectVisitor* v, VisitMode mode);
   1252   // Iterates over all strong roots in the heap.
   1253   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
   1254   // Iterates over entries in the smi roots list.  Only interesting to the
   1255   // serializer/deserializer, since GC does not care about smis.
   1256   void IterateSmiRoots(ObjectVisitor* v);
   1257   // Iterates over all the other roots in the heap.
   1258   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
   1259 
   1260   // Iterate pointers to from semispace of new space found in memory interval
   1261   // from start to end within |object|.
   1262   void IteratePointersToFromSpace(HeapObject* target, int size,
   1263                                   ObjectSlotCallback callback);
   1264 
   1265   void IterateAndMarkPointersToFromSpace(HeapObject* object, Address start,
   1266                                          Address end, bool record_slots,
   1267                                          ObjectSlotCallback callback);
   1268 
   1269   // ===========================================================================
   1270   // Store buffer API. =========================================================
   1271   // ===========================================================================
   1272 
   1273   // Write barrier support for address[offset] = o.
   1274   INLINE(void RecordWrite(Address address, int offset));
   1275 
   1276   // Write barrier support for address[start : start + len[ = o.
   1277   INLINE(void RecordWrites(Address address, int start, int len));
   1278 
   1279   Address* store_buffer_top_address() {
   1280     return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
   1281   }
   1282 
   1283   // ===========================================================================
   1284   // Incremental marking API. ==================================================
   1285   // ===========================================================================
   1286 
   1287   // Start incremental marking and ensure that idle time handler can perform
   1288   // incremental steps.
   1289   void StartIdleIncrementalMarking();
   1290 
   1291   // Starts incremental marking assuming incremental marking is currently
   1292   // stopped.
   1293   void StartIncrementalMarking(int gc_flags = kNoGCFlags,
   1294                                const GCCallbackFlags gc_callback_flags =
   1295                                    GCCallbackFlags::kNoGCCallbackFlags,
   1296                                const char* reason = nullptr);
   1297 
   1298   void FinalizeIncrementalMarkingIfComplete(const char* comment);
   1299 
   1300   bool TryFinalizeIdleIncrementalMarking(double idle_time_in_ms);
   1301 
   1302   IncrementalMarking* incremental_marking() { return incremental_marking_; }
   1303 
   1304   // ===========================================================================
   1305   // External string table API. ================================================
   1306   // ===========================================================================
   1307 
   1308   // Registers an external string.
   1309   inline void RegisterExternalString(String* string);
   1310 
   1311   // Finalizes an external string by deleting the associated external
   1312   // data and clearing the resource pointer.
   1313   inline void FinalizeExternalString(String* string);
   1314 
   1315   // ===========================================================================
   1316   // Methods checking/returning the space of a given object/address. ===========
   1317   // ===========================================================================
   1318 
   1319   // Returns whether the object resides in new space.
   1320   inline bool InNewSpace(Object* object);
   1321   inline bool InNewSpace(Address address);
   1322   inline bool InNewSpacePage(Address address);
   1323   inline bool InFromSpace(Object* object);
   1324   inline bool InToSpace(Object* object);
   1325 
   1326   // Returns whether the object resides in old space.
   1327   inline bool InOldSpace(Address address);
   1328   inline bool InOldSpace(Object* object);
   1329 
   1330   // Checks whether an address/object in the heap (including auxiliary
   1331   // area and unused area).
   1332   bool Contains(Address addr);
   1333   bool Contains(HeapObject* value);
   1334 
   1335   // Checks whether an address/object in a space.
   1336   // Currently used by tests, serialization and heap verification only.
   1337   bool InSpace(Address addr, AllocationSpace space);
   1338   bool InSpace(HeapObject* value, AllocationSpace space);
   1339 
   1340   // ===========================================================================
   1341   // Object statistics tracking. ===============================================
   1342   // ===========================================================================
   1343 
   1344   // Returns the number of buckets used by object statistics tracking during a
   1345   // major GC. Note that the following methods fail gracefully when the bounds
   1346   // are exceeded though.
   1347   size_t NumberOfTrackedHeapObjectTypes();
   1348 
   1349   // Returns object statistics about count and size at the last major GC.
   1350   // Objects are being grouped into buckets that roughly resemble existing
   1351   // instance types.
   1352   size_t ObjectCountAtLastGC(size_t index);
   1353   size_t ObjectSizeAtLastGC(size_t index);
   1354 
   1355   // Retrieves names of buckets used by object statistics tracking.
   1356   bool GetObjectTypeName(size_t index, const char** object_type,
   1357                          const char** object_sub_type);
   1358 
   1359   // ===========================================================================
   1360   // GC statistics. ============================================================
   1361   // ===========================================================================
   1362 
   1363   // Returns the maximum amount of memory reserved for the heap.  For
   1364   // the young generation, we reserve 4 times the amount needed for a
   1365   // semi space.  The young generation consists of two semi spaces and
   1366   // we reserve twice the amount needed for those in order to ensure
   1367   // that new space can be aligned to its size.
   1368   intptr_t MaxReserved() {
   1369     return 4 * reserved_semispace_size_ + max_old_generation_size_;
   1370   }
   1371   int MaxSemiSpaceSize() { return max_semi_space_size_; }
   1372   int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
   1373   int InitialSemiSpaceSize() { return initial_semispace_size_; }
   1374   int TargetSemiSpaceSize() { return target_semispace_size_; }
   1375   intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
   1376   intptr_t MaxExecutableSize() { return max_executable_size_; }
   1377 
   1378   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
   1379   // more spaces are needed until it reaches the limit.
   1380   intptr_t Capacity();
   1381 
   1382   // Returns the amount of memory currently committed for the heap.
   1383   intptr_t CommittedMemory();
   1384 
   1385   // Returns the amount of memory currently committed for the old space.
   1386   intptr_t CommittedOldGenerationMemory();
   1387 
   1388   // Returns the amount of executable memory currently committed for the heap.
   1389   intptr_t CommittedMemoryExecutable();
   1390 
   1391   // Returns the amount of phyical memory currently committed for the heap.
   1392   size_t CommittedPhysicalMemory();
   1393 
   1394   // Returns the maximum amount of memory ever committed for the heap.
   1395   intptr_t MaximumCommittedMemory() { return maximum_committed_; }
   1396 
   1397   // Updates the maximum committed memory for the heap. Should be called
   1398   // whenever a space grows.
   1399   void UpdateMaximumCommitted();
   1400 
   1401   // Returns the available bytes in space w/o growing.
   1402   // Heap doesn't guarantee that it can allocate an object that requires
   1403   // all available bytes. Check MaxHeapObjectSize() instead.
   1404   intptr_t Available();
   1405 
   1406   // Returns of size of all objects residing in the heap.
   1407   intptr_t SizeOfObjects();
   1408 
   1409   void UpdateSurvivalStatistics(int start_new_space_size);
   1410 
   1411   inline void IncrementPromotedObjectsSize(int object_size) {
   1412     DCHECK_GE(object_size, 0);
   1413     promoted_objects_size_ += object_size;
   1414   }
   1415   inline intptr_t promoted_objects_size() { return promoted_objects_size_; }
   1416 
   1417   inline void IncrementSemiSpaceCopiedObjectSize(int object_size) {
   1418     DCHECK_GE(object_size, 0);
   1419     semi_space_copied_object_size_ += object_size;
   1420   }
   1421   inline intptr_t semi_space_copied_object_size() {
   1422     return semi_space_copied_object_size_;
   1423   }
   1424 
   1425   inline intptr_t SurvivedNewSpaceObjectSize() {
   1426     return promoted_objects_size_ + semi_space_copied_object_size_;
   1427   }
   1428 
   1429   inline void IncrementNodesDiedInNewSpace() { nodes_died_in_new_space_++; }
   1430 
   1431   inline void IncrementNodesCopiedInNewSpace() { nodes_copied_in_new_space_++; }
   1432 
   1433   inline void IncrementNodesPromoted() { nodes_promoted_++; }
   1434 
   1435   inline void IncrementYoungSurvivorsCounter(int survived) {
   1436     DCHECK(survived >= 0);
   1437     survived_last_scavenge_ = survived;
   1438     survived_since_last_expansion_ += survived;
   1439   }
   1440 
   1441   inline intptr_t PromotedTotalSize() {
   1442     int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
   1443     if (total > std::numeric_limits<intptr_t>::max()) {
   1444       // TODO(erikcorry): Use uintptr_t everywhere we do heap size calculations.
   1445       return std::numeric_limits<intptr_t>::max();
   1446     }
   1447     if (total < 0) return 0;
   1448     return static_cast<intptr_t>(total);
   1449   }
   1450 
   1451   void UpdateNewSpaceAllocationCounter() {
   1452     new_space_allocation_counter_ = NewSpaceAllocationCounter();
   1453   }
   1454 
   1455   size_t NewSpaceAllocationCounter() {
   1456     return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC();
   1457   }
   1458 
   1459   // This should be used only for testing.
   1460   void set_new_space_allocation_counter(size_t new_value) {
   1461     new_space_allocation_counter_ = new_value;
   1462   }
   1463 
   1464   void UpdateOldGenerationAllocationCounter() {
   1465     old_generation_allocation_counter_ = OldGenerationAllocationCounter();
   1466   }
   1467 
   1468   size_t OldGenerationAllocationCounter() {
   1469     return old_generation_allocation_counter_ + PromotedSinceLastGC();
   1470   }
   1471 
   1472   // This should be used only for testing.
   1473   void set_old_generation_allocation_counter(size_t new_value) {
   1474     old_generation_allocation_counter_ = new_value;
   1475   }
   1476 
   1477   size_t PromotedSinceLastGC() {
   1478     return PromotedSpaceSizeOfObjects() - old_generation_size_at_last_gc_;
   1479   }
   1480 
   1481   int gc_count() const { return gc_count_; }
   1482 
   1483   // Returns the size of objects residing in non new spaces.
   1484   intptr_t PromotedSpaceSizeOfObjects();
   1485 
   1486   double total_regexp_code_generated() { return total_regexp_code_generated_; }
   1487   void IncreaseTotalRegexpCodeGenerated(int size) {
   1488     total_regexp_code_generated_ += size;
   1489   }
   1490 
   1491   void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
   1492     if (is_crankshafted) {
   1493       crankshaft_codegen_bytes_generated_ += size;
   1494     } else {
   1495       full_codegen_bytes_generated_ += size;
   1496     }
   1497   }
   1498 
   1499   // ===========================================================================
   1500   // Prologue/epilogue callback methods.========================================
   1501   // ===========================================================================
   1502 
   1503   void AddGCPrologueCallback(v8::Isolate::GCCallback callback,
   1504                              GCType gc_type_filter, bool pass_isolate = true);
   1505   void RemoveGCPrologueCallback(v8::Isolate::GCCallback callback);
   1506 
   1507   void AddGCEpilogueCallback(v8::Isolate::GCCallback callback,
   1508                              GCType gc_type_filter, bool pass_isolate = true);
   1509   void RemoveGCEpilogueCallback(v8::Isolate::GCCallback callback);
   1510 
   1511   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
   1512   void CallGCEpilogueCallbacks(GCType gc_type, GCCallbackFlags flags);
   1513 
   1514   // ===========================================================================
   1515   // Allocation methods. =======================================================
   1516   // ===========================================================================
   1517 
   1518   // Creates a filler object and returns a heap object immediately after it.
   1519   MUST_USE_RESULT HeapObject* PrecedeWithFiller(HeapObject* object,
   1520                                                 int filler_size);
   1521 
   1522   // Creates a filler object if needed for alignment and returns a heap object
   1523   // immediately after it. If any space is left after the returned object,
   1524   // another filler object is created so the over allocated memory is iterable.
   1525   MUST_USE_RESULT HeapObject* AlignWithFiller(HeapObject* object,
   1526                                               int object_size,
   1527                                               int allocation_size,
   1528                                               AllocationAlignment alignment);
   1529 
   1530   // ===========================================================================
   1531   // ArrayBuffer tracking. =====================================================
   1532   // ===========================================================================
   1533 
   1534   void RegisterNewArrayBuffer(JSArrayBuffer* buffer);
   1535   void UnregisterArrayBuffer(JSArrayBuffer* buffer);
   1536 
   1537   inline ArrayBufferTracker* array_buffer_tracker() {
   1538     return array_buffer_tracker_;
   1539   }
   1540 
   1541   // ===========================================================================
   1542   // Allocation site tracking. =================================================
   1543   // ===========================================================================
   1544 
   1545   // Updates the AllocationSite of a given {object}. If the global prenuring
   1546   // storage is passed as {pretenuring_feedback} the memento found count on
   1547   // the corresponding allocation site is immediately updated and an entry
   1548   // in the hash map is created. Otherwise the entry (including a the count
   1549   // value) is cached on the local pretenuring feedback.
   1550   inline void UpdateAllocationSite(HeapObject* object,
   1551                                    HashMap* pretenuring_feedback);
   1552 
   1553   // Removes an entry from the global pretenuring storage.
   1554   inline void RemoveAllocationSitePretenuringFeedback(AllocationSite* site);
   1555 
   1556   // Merges local pretenuring feedback into the global one. Note that this
   1557   // method needs to be called after evacuation, as allocation sites may be
   1558   // evacuated and this method resolves forward pointers accordingly.
   1559   void MergeAllocationSitePretenuringFeedback(
   1560       const HashMap& local_pretenuring_feedback);
   1561 
   1562 // =============================================================================
   1563 
   1564 #ifdef VERIFY_HEAP
   1565   // Verify the heap is in its normal state before or after a GC.
   1566   void Verify();
   1567 #endif
   1568 
   1569 #ifdef DEBUG
   1570   void set_allocation_timeout(int timeout) { allocation_timeout_ = timeout; }
   1571 
   1572   void TracePathToObjectFrom(Object* target, Object* root);
   1573   void TracePathToObject(Object* target);
   1574   void TracePathToGlobal();
   1575 
   1576   void Print();
   1577   void PrintHandles();
   1578 
   1579   // Report heap statistics.
   1580   void ReportHeapStatistics(const char* title);
   1581   void ReportCodeStatistics(const char* title);
   1582 #endif
   1583 
   1584  private:
   1585   class PretenuringScope;
   1586   class UnmapFreeMemoryTask;
   1587 
   1588   // External strings table is a place where all external strings are
   1589   // registered.  We need to keep track of such strings to properly
   1590   // finalize them.
   1591   class ExternalStringTable {
   1592    public:
   1593     // Registers an external string.
   1594     inline void AddString(String* string);
   1595 
   1596     inline void Iterate(ObjectVisitor* v);
   1597 
   1598     // Restores internal invariant and gets rid of collected strings.
   1599     // Must be called after each Iterate() that modified the strings.
   1600     void CleanUp();
   1601 
   1602     // Destroys all allocated memory.
   1603     void TearDown();
   1604 
   1605    private:
   1606     explicit ExternalStringTable(Heap* heap) : heap_(heap) {}
   1607 
   1608     inline void Verify();
   1609 
   1610     inline void AddOldString(String* string);
   1611 
   1612     // Notifies the table that only a prefix of the new list is valid.
   1613     inline void ShrinkNewStrings(int position);
   1614 
   1615     // To speed up scavenge collections new space string are kept
   1616     // separate from old space strings.
   1617     List<Object*> new_space_strings_;
   1618     List<Object*> old_space_strings_;
   1619 
   1620     Heap* heap_;
   1621 
   1622     friend class Heap;
   1623 
   1624     DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
   1625   };
   1626 
   1627   struct StrongRootsList;
   1628 
   1629   struct StringTypeTable {
   1630     InstanceType type;
   1631     int size;
   1632     RootListIndex index;
   1633   };
   1634 
   1635   struct ConstantStringTable {
   1636     const char* contents;
   1637     RootListIndex index;
   1638   };
   1639 
   1640   struct StructTable {
   1641     InstanceType type;
   1642     int size;
   1643     RootListIndex index;
   1644   };
   1645 
   1646   struct GCCallbackPair {
   1647     GCCallbackPair(v8::Isolate::GCCallback callback, GCType gc_type,
   1648                    bool pass_isolate)
   1649         : callback(callback), gc_type(gc_type), pass_isolate(pass_isolate) {}
   1650 
   1651     bool operator==(const GCCallbackPair& other) const {
   1652       return other.callback == callback;
   1653     }
   1654 
   1655     v8::Isolate::GCCallback callback;
   1656     GCType gc_type;
   1657     bool pass_isolate;
   1658   };
   1659 
   1660   typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
   1661                                                         Object** pointer);
   1662 
   1663   static const int kInitialStringTableSize = 2048;
   1664   static const int kInitialEvalCacheSize = 64;
   1665   static const int kInitialNumberStringCacheSize = 256;
   1666 
   1667   static const int kRememberedUnmappedPages = 128;
   1668 
   1669   static const StringTypeTable string_type_table[];
   1670   static const ConstantStringTable constant_string_table[];
   1671   static const StructTable struct_table[];
   1672 
   1673   static const int kYoungSurvivalRateHighThreshold = 90;
   1674   static const int kYoungSurvivalRateAllowedDeviation = 15;
   1675   static const int kOldSurvivalRateLowThreshold = 10;
   1676 
   1677   static const int kMaxMarkCompactsInIdleRound = 7;
   1678   static const int kIdleScavengeThreshold = 5;
   1679 
   1680   static const int kInitialFeedbackCapacity = 256;
   1681 
   1682   Heap();
   1683 
   1684   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
   1685       Heap* heap, Object** pointer);
   1686 
   1687   static void ScavengeStoreBufferCallback(Heap* heap, MemoryChunk* page,
   1688                                           StoreBufferEvent event);
   1689 
   1690   // Selects the proper allocation space based on the pretenuring decision.
   1691   static AllocationSpace SelectSpace(PretenureFlag pretenure) {
   1692     return (pretenure == TENURED) ? OLD_SPACE : NEW_SPACE;
   1693   }
   1694 
   1695 #define ROOT_ACCESSOR(type, name, camel_name) \
   1696   inline void set_##name(type* value);
   1697   ROOT_LIST(ROOT_ACCESSOR)
   1698 #undef ROOT_ACCESSOR
   1699 
   1700   StoreBuffer* store_buffer() { return &store_buffer_; }
   1701 
   1702   void set_current_gc_flags(int flags) {
   1703     current_gc_flags_ = flags;
   1704     DCHECK(!ShouldFinalizeIncrementalMarking() ||
   1705            !ShouldAbortIncrementalMarking());
   1706   }
   1707 
   1708   inline bool ShouldReduceMemory() const {
   1709     return current_gc_flags_ & kReduceMemoryFootprintMask;
   1710   }
   1711 
   1712   inline bool ShouldAbortIncrementalMarking() const {
   1713     return current_gc_flags_ & kAbortIncrementalMarkingMask;
   1714   }
   1715 
   1716   inline bool ShouldFinalizeIncrementalMarking() const {
   1717     return current_gc_flags_ & kFinalizeIncrementalMarkingMask;
   1718   }
   1719 
   1720   void PreprocessStackTraces();
   1721 
   1722   // Checks whether a global GC is necessary
   1723   GarbageCollector SelectGarbageCollector(AllocationSpace space,
   1724                                           const char** reason);
   1725 
   1726   // Make sure there is a filler value behind the top of the new space
   1727   // so that the GC does not confuse some unintialized/stale memory
   1728   // with the allocation memento of the object at the top
   1729   void EnsureFillerObjectAtTop();
   1730 
   1731   // Ensure that we have swept all spaces in such a way that we can iterate
   1732   // over all objects.  May cause a GC.
   1733   void MakeHeapIterable();
   1734 
   1735   // Performs garbage collection operation.
   1736   // Returns whether there is a chance that another major GC could
   1737   // collect more garbage.
   1738   bool CollectGarbage(
   1739       GarbageCollector collector, const char* gc_reason,
   1740       const char* collector_reason,
   1741       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1742 
   1743   // Performs garbage collection
   1744   // Returns whether there is a chance another major GC could
   1745   // collect more garbage.
   1746   bool PerformGarbageCollection(
   1747       GarbageCollector collector,
   1748       const GCCallbackFlags gc_callback_flags = kNoGCCallbackFlags);
   1749 
   1750   inline void UpdateOldSpaceLimits();
   1751 
   1752   // Initializes a JSObject based on its map.
   1753   void InitializeJSObjectFromMap(JSObject* obj, FixedArray* properties,
   1754                                  Map* map);
   1755 
   1756   // Initializes JSObject body starting at given offset.
   1757   void InitializeJSObjectBody(JSObject* obj, Map* map, int start_offset);
   1758 
   1759   void InitializeAllocationMemento(AllocationMemento* memento,
   1760                                    AllocationSite* allocation_site);
   1761 
   1762   bool CreateInitialMaps();
   1763   void CreateInitialObjects();
   1764 
   1765   // These five Create*EntryStub functions are here and forced to not be inlined
   1766   // because of a gcc-4.4 bug that assigns wrong vtable entries.
   1767   NO_INLINE(void CreateJSEntryStub());
   1768   NO_INLINE(void CreateJSConstructEntryStub());
   1769 
   1770   void CreateFixedStubs();
   1771 
   1772   HeapObject* DoubleAlignForDeserialization(HeapObject* object, int size);
   1773 
   1774   // Commits from space if it is uncommitted.
   1775   void EnsureFromSpaceIsCommitted();
   1776 
   1777   // Uncommit unused semi space.
   1778   bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
   1779 
   1780   // Fill in bogus values in from space
   1781   void ZapFromSpace();
   1782 
   1783   // Deopts all code that contains allocation instruction which are tenured or
   1784   // not tenured. Moreover it clears the pretenuring allocation site statistics.
   1785   void ResetAllAllocationSitesDependentCode(PretenureFlag flag);
   1786 
   1787   // Evaluates local pretenuring for the old space and calls
   1788   // ResetAllTenuredAllocationSitesDependentCode if too many objects died in
   1789   // the old space.
   1790   void EvaluateOldSpaceLocalPretenuring(uint64_t size_of_objects_before_gc);
   1791 
   1792   // Record statistics before and after garbage collection.
   1793   void ReportStatisticsBeforeGC();
   1794   void ReportStatisticsAfterGC();
   1795 
   1796   // Creates and installs the full-sized number string cache.
   1797   int FullSizeNumberStringCacheLength();
   1798   // Flush the number to string cache.
   1799   void FlushNumberStringCache();
   1800 
   1801   // TODO(hpayer): Allocation site pretenuring may make this method obsolete.
   1802   // Re-visit incremental marking heuristics.
   1803   bool IsHighSurvivalRate() { return high_survival_rate_period_length_ > 0; }
   1804 
   1805   void ConfigureInitialOldGenerationSize();
   1806 
   1807   bool HasLowYoungGenerationAllocationRate();
   1808   bool HasLowOldGenerationAllocationRate();
   1809   double YoungGenerationMutatorUtilization();
   1810   double OldGenerationMutatorUtilization();
   1811 
   1812   void ReduceNewSpaceSize();
   1813 
   1814   bool TryFinalizeIdleIncrementalMarking(
   1815       double idle_time_in_ms, size_t size_of_objects,
   1816       size_t mark_compact_speed_in_bytes_per_ms);
   1817 
   1818   GCIdleTimeHeapState ComputeHeapState();
   1819 
   1820   bool PerformIdleTimeAction(GCIdleTimeAction action,
   1821                              GCIdleTimeHeapState heap_state,
   1822                              double deadline_in_ms);
   1823 
   1824   void IdleNotificationEpilogue(GCIdleTimeAction action,
   1825                                 GCIdleTimeHeapState heap_state, double start_ms,
   1826                                 double deadline_in_ms);
   1827 
   1828   inline void UpdateAllocationsHash(HeapObject* object);
   1829   inline void UpdateAllocationsHash(uint32_t value);
   1830   void PrintAlloctionsHash();
   1831 
   1832   void AddToRingBuffer(const char* string);
   1833   void GetFromRingBuffer(char* buffer);
   1834 
   1835   void CompactRetainedMaps(ArrayList* retained_maps);
   1836 
   1837   // Attempt to over-approximate the weak closure by marking object groups and
   1838   // implicit references from global handles, but don't atomically complete
   1839   // marking. If we continue to mark incrementally, we might have marked
   1840   // objects that die later.
   1841   void FinalizeIncrementalMarking(const char* gc_reason);
   1842 
   1843   // Returns the timer used for a given GC type.
   1844   // - GCScavenger: young generation GC
   1845   // - GCCompactor: full GC
   1846   // - GCFinalzeMC: finalization of incremental full GC
   1847   // - GCFinalizeMCReduceMemory: finalization of incremental full GC with
   1848   // memory reduction
   1849   HistogramTimer* GCTypeTimer(GarbageCollector collector);
   1850 
   1851   // ===========================================================================
   1852   // Pretenuring. ==============================================================
   1853   // ===========================================================================
   1854 
   1855   // Pretenuring decisions are made based on feedback collected during new space
   1856   // evacuation. Note that between feedback collection and calling this method
   1857   // object in old space must not move.
   1858   void ProcessPretenuringFeedback();
   1859 
   1860   // ===========================================================================
   1861   // Actual GC. ================================================================
   1862   // ===========================================================================
   1863 
   1864   // Code that should be run before and after each GC.  Includes some
   1865   // reporting/verification activities when compiled with DEBUG set.
   1866   void GarbageCollectionPrologue();
   1867   void GarbageCollectionEpilogue();
   1868 
   1869   // Performs a major collection in the whole heap.
   1870   void MarkCompact();
   1871 
   1872   // Code to be run before and after mark-compact.
   1873   void MarkCompactPrologue();
   1874   void MarkCompactEpilogue();
   1875 
   1876   // Performs a minor collection in new generation.
   1877   void Scavenge();
   1878 
   1879   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
   1880 
   1881   void UpdateNewSpaceReferencesInExternalStringTable(
   1882       ExternalStringTableUpdaterCallback updater_func);
   1883 
   1884   void UpdateReferencesInExternalStringTable(
   1885       ExternalStringTableUpdaterCallback updater_func);
   1886 
   1887   void ProcessAllWeakReferences(WeakObjectRetainer* retainer);
   1888   void ProcessYoungWeakReferences(WeakObjectRetainer* retainer);
   1889   void ProcessNativeContexts(WeakObjectRetainer* retainer);
   1890   void ProcessAllocationSites(WeakObjectRetainer* retainer);
   1891 
   1892   // ===========================================================================
   1893   // GC statistics. ============================================================
   1894   // ===========================================================================
   1895 
   1896   inline intptr_t OldGenerationSpaceAvailable() {
   1897     return old_generation_allocation_limit_ - PromotedTotalSize();
   1898   }
   1899 
   1900   // Returns maximum GC pause.
   1901   double get_max_gc_pause() { return max_gc_pause_; }
   1902 
   1903   // Returns maximum size of objects alive after GC.
   1904   intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
   1905 
   1906   // Returns minimal interval between two subsequent collections.
   1907   double get_min_in_mutator() { return min_in_mutator_; }
   1908 
   1909   // Update GC statistics that are tracked on the Heap.
   1910   void UpdateCumulativeGCStatistics(double duration, double spent_in_mutator,
   1911                                     double marking_time);
   1912 
   1913   bool MaximumSizeScavenge() { return maximum_size_scavenges_ > 0; }
   1914 
   1915   // ===========================================================================
   1916   // Growing strategy. =========================================================
   1917   // ===========================================================================
   1918 
   1919   // Decrease the allocation limit if the new limit based on the given
   1920   // parameters is lower than the current limit.
   1921   void DampenOldGenerationAllocationLimit(intptr_t old_gen_size,
   1922                                           double gc_speed,
   1923                                           double mutator_speed);
   1924 
   1925 
   1926   // Calculates the allocation limit based on a given growing factor and a
   1927   // given old generation size.
   1928   intptr_t CalculateOldGenerationAllocationLimit(double factor,
   1929                                                  intptr_t old_gen_size);
   1930 
   1931   // Sets the allocation limit to trigger the next full garbage collection.
   1932   void SetOldGenerationAllocationLimit(intptr_t old_gen_size, double gc_speed,
   1933                                        double mutator_speed);
   1934 
   1935   // ===========================================================================
   1936   // Idle notification. ========================================================
   1937   // ===========================================================================
   1938 
   1939   bool RecentIdleNotificationHappened();
   1940   void ScheduleIdleScavengeIfNeeded(int bytes_allocated);
   1941 
   1942   // ===========================================================================
   1943   // HeapIterator helpers. =====================================================
   1944   // ===========================================================================
   1945 
   1946   void heap_iterator_start() { heap_iterator_depth_++; }
   1947 
   1948   void heap_iterator_end() { heap_iterator_depth_--; }
   1949 
   1950   bool in_heap_iterator() { return heap_iterator_depth_ > 0; }
   1951 
   1952   // ===========================================================================
   1953   // Allocation methods. =======================================================
   1954   // ===========================================================================
   1955 
   1956   // Returns a deep copy of the JavaScript object.
   1957   // Properties and elements are copied too.
   1958   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
   1959   MUST_USE_RESULT AllocationResult CopyJSObject(JSObject* source,
   1960                                                 AllocationSite* site = NULL);
   1961 
   1962   // Allocates a JS Map in the heap.
   1963   MUST_USE_RESULT AllocationResult
   1964   AllocateMap(InstanceType instance_type, int instance_size,
   1965               ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
   1966 
   1967   // Allocates and initializes a new JavaScript object based on a
   1968   // constructor.
   1969   // If allocation_site is non-null, then a memento is emitted after the object
   1970   // that points to the site.
   1971   MUST_USE_RESULT AllocationResult AllocateJSObject(
   1972       JSFunction* constructor, PretenureFlag pretenure = NOT_TENURED,
   1973       AllocationSite* allocation_site = NULL);
   1974 
   1975   // Allocates and initializes a new JavaScript object based on a map.
   1976   // Passing an allocation site means that a memento will be created that
   1977   // points to the site.
   1978   MUST_USE_RESULT AllocationResult
   1979   AllocateJSObjectFromMap(Map* map, PretenureFlag pretenure = NOT_TENURED,
   1980                           AllocationSite* allocation_site = NULL);
   1981 
   1982   // Allocates a HeapNumber from value.
   1983   MUST_USE_RESULT AllocationResult
   1984   AllocateHeapNumber(double value, MutableMode mode = IMMUTABLE,
   1985                      PretenureFlag pretenure = NOT_TENURED);
   1986 
   1987 // Allocates SIMD values from the given lane values.
   1988 #define SIMD_ALLOCATE_DECLARATION(TYPE, Type, type, lane_count, lane_type) \
   1989   AllocationResult Allocate##Type(lane_type lanes[lane_count],             \
   1990                                   PretenureFlag pretenure = NOT_TENURED);
   1991   SIMD128_TYPES(SIMD_ALLOCATE_DECLARATION)
   1992 #undef SIMD_ALLOCATE_DECLARATION
   1993 
   1994   // Allocates a byte array of the specified length
   1995   MUST_USE_RESULT AllocationResult
   1996   AllocateByteArray(int length, PretenureFlag pretenure = NOT_TENURED);
   1997 
   1998   // Allocates a bytecode array with given contents.
   1999   MUST_USE_RESULT AllocationResult
   2000   AllocateBytecodeArray(int length, const byte* raw_bytecodes, int frame_size,
   2001                         int parameter_count, FixedArray* constant_pool);
   2002 
   2003   // Copy the code and scope info part of the code object, but insert
   2004   // the provided data as the relocation information.
   2005   MUST_USE_RESULT AllocationResult CopyCode(Code* code,
   2006                                             Vector<byte> reloc_info);
   2007 
   2008   MUST_USE_RESULT AllocationResult CopyCode(Code* code);
   2009 
   2010   // Allocates a fixed array initialized with undefined values
   2011   MUST_USE_RESULT AllocationResult
   2012   AllocateFixedArray(int length, PretenureFlag pretenure = NOT_TENURED);
   2013 
   2014   // Allocate an uninitialized object.  The memory is non-executable if the
   2015   // hardware and OS allow.  This is the single choke-point for allocations
   2016   // performed by the runtime and should not be bypassed (to extend this to
   2017   // inlined allocations, use the Heap::DisableInlineAllocation() support).
   2018   MUST_USE_RESULT inline AllocationResult AllocateRaw(
   2019       int size_in_bytes, AllocationSpace space,
   2020       AllocationAlignment aligment = kWordAligned);
   2021 
   2022   // Allocates a heap object based on the map.
   2023   MUST_USE_RESULT AllocationResult
   2024       Allocate(Map* map, AllocationSpace space,
   2025                AllocationSite* allocation_site = NULL);
   2026 
   2027   // Allocates a partial map for bootstrapping.
   2028   MUST_USE_RESULT AllocationResult
   2029       AllocatePartialMap(InstanceType instance_type, int instance_size);
   2030 
   2031   // Allocate a block of memory in the given space (filled with a filler).
   2032   // Used as a fall-back for generated code when the space is full.
   2033   MUST_USE_RESULT AllocationResult
   2034       AllocateFillerObject(int size, bool double_align, AllocationSpace space);
   2035 
   2036   // Allocate an uninitialized fixed array.
   2037   MUST_USE_RESULT AllocationResult
   2038       AllocateRawFixedArray(int length, PretenureFlag pretenure);
   2039 
   2040   // Allocate an uninitialized fixed double array.
   2041   MUST_USE_RESULT AllocationResult
   2042       AllocateRawFixedDoubleArray(int length, PretenureFlag pretenure);
   2043 
   2044   // Allocate an initialized fixed array with the given filler value.
   2045   MUST_USE_RESULT AllocationResult
   2046       AllocateFixedArrayWithFiller(int length, PretenureFlag pretenure,
   2047                                    Object* filler);
   2048 
   2049   // Allocate and partially initializes a String.  There are two String
   2050   // encodings: one-byte and two-byte.  These functions allocate a string of
   2051   // the given length and set its map and length fields.  The characters of
   2052   // the string are uninitialized.
   2053   MUST_USE_RESULT AllocationResult
   2054       AllocateRawOneByteString(int length, PretenureFlag pretenure);
   2055   MUST_USE_RESULT AllocationResult
   2056       AllocateRawTwoByteString(int length, PretenureFlag pretenure);
   2057 
   2058   // Allocates an internalized string in old space based on the character
   2059   // stream.
   2060   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringFromUtf8(
   2061       Vector<const char> str, int chars, uint32_t hash_field);
   2062 
   2063   MUST_USE_RESULT inline AllocationResult AllocateOneByteInternalizedString(
   2064       Vector<const uint8_t> str, uint32_t hash_field);
   2065 
   2066   MUST_USE_RESULT inline AllocationResult AllocateTwoByteInternalizedString(
   2067       Vector<const uc16> str, uint32_t hash_field);
   2068 
   2069   template <bool is_one_byte, typename T>
   2070   MUST_USE_RESULT AllocationResult
   2071       AllocateInternalizedStringImpl(T t, int chars, uint32_t hash_field);
   2072 
   2073   template <typename T>
   2074   MUST_USE_RESULT inline AllocationResult AllocateInternalizedStringImpl(
   2075       T t, int chars, uint32_t hash_field);
   2076 
   2077   // Allocates an uninitialized fixed array. It must be filled by the caller.
   2078   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedArray(int length);
   2079 
   2080   // Make a copy of src and return it.
   2081   MUST_USE_RESULT inline AllocationResult CopyFixedArray(FixedArray* src);
   2082 
   2083   // Make a copy of src, also grow the copy, and return the copy.
   2084   MUST_USE_RESULT AllocationResult
   2085   CopyFixedArrayAndGrow(FixedArray* src, int grow_by, PretenureFlag pretenure);
   2086 
   2087   // Make a copy of src, set the map, and return the copy.
   2088   MUST_USE_RESULT AllocationResult
   2089       CopyFixedArrayWithMap(FixedArray* src, Map* map);
   2090 
   2091   // Make a copy of src and return it.
   2092   MUST_USE_RESULT inline AllocationResult CopyFixedDoubleArray(
   2093       FixedDoubleArray* src);
   2094 
   2095   // Computes a single character string where the character has code.
   2096   // A cache is used for one-byte (Latin1) codes.
   2097   MUST_USE_RESULT AllocationResult
   2098       LookupSingleCharacterStringFromCode(uint16_t code);
   2099 
   2100   // Allocate a symbol in old space.
   2101   MUST_USE_RESULT AllocationResult AllocateSymbol();
   2102 
   2103   // Allocates an external array of the specified length and type.
   2104   MUST_USE_RESULT AllocationResult AllocateFixedTypedArrayWithExternalPointer(
   2105       int length, ExternalArrayType array_type, void* external_pointer,
   2106       PretenureFlag pretenure);
   2107 
   2108   // Allocates a fixed typed array of the specified length and type.
   2109   MUST_USE_RESULT AllocationResult
   2110   AllocateFixedTypedArray(int length, ExternalArrayType array_type,
   2111                           bool initialize, PretenureFlag pretenure);
   2112 
   2113   // Make a copy of src and return it.
   2114   MUST_USE_RESULT AllocationResult CopyAndTenureFixedCOWArray(FixedArray* src);
   2115 
   2116   // Make a copy of src, set the map, and return the copy.
   2117   MUST_USE_RESULT AllocationResult
   2118       CopyFixedDoubleArrayWithMap(FixedDoubleArray* src, Map* map);
   2119 
   2120   // Allocates a fixed double array with uninitialized values. Returns
   2121   MUST_USE_RESULT AllocationResult AllocateUninitializedFixedDoubleArray(
   2122       int length, PretenureFlag pretenure = NOT_TENURED);
   2123 
   2124   // Allocate empty fixed array.
   2125   MUST_USE_RESULT AllocationResult AllocateEmptyFixedArray();
   2126 
   2127   // Allocate empty fixed typed array of given type.
   2128   MUST_USE_RESULT AllocationResult
   2129       AllocateEmptyFixedTypedArray(ExternalArrayType array_type);
   2130 
   2131   // Allocate a tenured simple cell.
   2132   MUST_USE_RESULT AllocationResult AllocateCell(Object* value);
   2133 
   2134   // Allocate a tenured JS global property cell initialized with the hole.
   2135   MUST_USE_RESULT AllocationResult AllocatePropertyCell();
   2136 
   2137   MUST_USE_RESULT AllocationResult AllocateWeakCell(HeapObject* value);
   2138 
   2139   MUST_USE_RESULT AllocationResult AllocateTransitionArray(int capacity);
   2140 
   2141   // Allocates a new utility object in the old generation.
   2142   MUST_USE_RESULT AllocationResult AllocateStruct(InstanceType type);
   2143 
   2144   // Allocates a new foreign object.
   2145   MUST_USE_RESULT AllocationResult
   2146       AllocateForeign(Address address, PretenureFlag pretenure = NOT_TENURED);
   2147 
   2148   MUST_USE_RESULT AllocationResult
   2149       AllocateCode(int object_size, bool immovable);
   2150 
   2151   MUST_USE_RESULT AllocationResult InternalizeStringWithKey(HashTableKey* key);
   2152 
   2153   MUST_USE_RESULT AllocationResult InternalizeString(String* str);
   2154 
   2155   // ===========================================================================
   2156 
   2157   void set_force_oom(bool value) { force_oom_ = value; }
   2158 
   2159   // The amount of external memory registered through the API kept alive
   2160   // by global handles
   2161   int64_t amount_of_external_allocated_memory_;
   2162 
   2163   // Caches the amount of external memory registered at the last global gc.
   2164   int64_t amount_of_external_allocated_memory_at_last_global_gc_;
   2165 
   2166   // This can be calculated directly from a pointer to the heap; however, it is
   2167   // more expedient to get at the isolate directly from within Heap methods.
   2168   Isolate* isolate_;
   2169 
   2170   Object* roots_[kRootListLength];
   2171 
   2172   size_t code_range_size_;
   2173   int reserved_semispace_size_;
   2174   int max_semi_space_size_;
   2175   int initial_semispace_size_;
   2176   int target_semispace_size_;
   2177   intptr_t max_old_generation_size_;
   2178   intptr_t initial_old_generation_size_;
   2179   bool old_generation_size_configured_;
   2180   intptr_t max_executable_size_;
   2181   intptr_t maximum_committed_;
   2182 
   2183   // For keeping track of how much data has survived
   2184   // scavenge since last new space expansion.
   2185   int survived_since_last_expansion_;
   2186 
   2187   // ... and since the last scavenge.
   2188   int survived_last_scavenge_;
   2189 
   2190   // This is not the depth of nested AlwaysAllocateScope's but rather a single
   2191   // count, as scopes can be acquired from multiple tasks (read: threads).
   2192   AtomicNumber<size_t> always_allocate_scope_count_;
   2193 
   2194   // For keeping track of context disposals.
   2195   int contexts_disposed_;
   2196 
   2197   // The length of the retained_maps array at the time of context disposal.
   2198   // This separates maps in the retained_maps array that were created before
   2199   // and after context disposal.
   2200   int number_of_disposed_maps_;
   2201 
   2202   int global_ic_age_;
   2203 
   2204   int scan_on_scavenge_pages_;
   2205 
   2206   NewSpace new_space_;
   2207   OldSpace* old_space_;
   2208   OldSpace* code_space_;
   2209   MapSpace* map_space_;
   2210   LargeObjectSpace* lo_space_;
   2211   HeapState gc_state_;
   2212   int gc_post_processing_depth_;
   2213   Address new_space_top_after_last_gc_;
   2214 
   2215   // Returns the amount of external memory registered since last global gc.
   2216   int64_t PromotedExternalMemorySize();
   2217 
   2218   // How many "runtime allocations" happened.
   2219   uint32_t allocations_count_;
   2220 
   2221   // Running hash over allocations performed.
   2222   uint32_t raw_allocations_hash_;
   2223 
   2224   // How many mark-sweep collections happened.
   2225   unsigned int ms_count_;
   2226 
   2227   // How many gc happened.
   2228   unsigned int gc_count_;
   2229 
   2230   // For post mortem debugging.
   2231   int remembered_unmapped_pages_index_;
   2232   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
   2233 
   2234 #ifdef DEBUG
   2235   // If the --gc-interval flag is set to a positive value, this
   2236   // variable holds the value indicating the number of allocations
   2237   // remain until the next failure and garbage collection.
   2238   int allocation_timeout_;
   2239 #endif  // DEBUG
   2240 
   2241   // Limit that triggers a global GC on the next (normally caused) GC.  This
   2242   // is checked when we have already decided to do a GC to help determine
   2243   // which collector to invoke, before expanding a paged space in the old
   2244   // generation and on every allocation in large object space.
   2245   intptr_t old_generation_allocation_limit_;
   2246 
   2247   // Indicates that an allocation has failed in the old generation since the
   2248   // last GC.
   2249   bool old_gen_exhausted_;
   2250 
   2251   // Indicates that memory usage is more important than latency.
   2252   // TODO(ulan): Merge it with memory reducer once chromium:490559 is fixed.
   2253   bool optimize_for_memory_usage_;
   2254 
   2255   // Indicates that inline bump-pointer allocation has been globally disabled
   2256   // for all spaces. This is used to disable allocations in generated code.
   2257   bool inline_allocation_disabled_;
   2258 
   2259   // Weak list heads, threaded through the objects.
   2260   // List heads are initialized lazily and contain the undefined_value at start.
   2261   Object* native_contexts_list_;
   2262   Object* allocation_sites_list_;
   2263 
   2264   // List of encountered weak collections (JSWeakMap and JSWeakSet) during
   2265   // marking. It is initialized during marking, destroyed after marking and
   2266   // contains Smi(0) while marking is not active.
   2267   Object* encountered_weak_collections_;
   2268 
   2269   Object* encountered_weak_cells_;
   2270 
   2271   Object* encountered_transition_arrays_;
   2272 
   2273   StoreBufferRebuilder store_buffer_rebuilder_;
   2274 
   2275   List<GCCallbackPair> gc_epilogue_callbacks_;
   2276   List<GCCallbackPair> gc_prologue_callbacks_;
   2277 
   2278   // Total RegExp code ever generated
   2279   double total_regexp_code_generated_;
   2280 
   2281   int deferred_counters_[v8::Isolate::kUseCounterFeatureCount];
   2282 
   2283   GCTracer* tracer_;
   2284 
   2285   int high_survival_rate_period_length_;
   2286   intptr_t promoted_objects_size_;
   2287   double promotion_ratio_;
   2288   double promotion_rate_;
   2289   intptr_t semi_space_copied_object_size_;
   2290   intptr_t previous_semi_space_copied_object_size_;
   2291   double semi_space_copied_rate_;
   2292   int nodes_died_in_new_space_;
   2293   int nodes_copied_in_new_space_;
   2294   int nodes_promoted_;
   2295 
   2296   // This is the pretenuring trigger for allocation sites that are in maybe
   2297   // tenure state. When we switched to the maximum new space size we deoptimize
   2298   // the code that belongs to the allocation site and derive the lifetime
   2299   // of the allocation site.
   2300   unsigned int maximum_size_scavenges_;
   2301 
   2302   // Maximum GC pause.
   2303   double max_gc_pause_;
   2304 
   2305   // Total time spent in GC.
   2306   double total_gc_time_ms_;
   2307 
   2308   // Maximum size of objects alive after GC.
   2309   intptr_t max_alive_after_gc_;
   2310 
   2311   // Minimal interval between two subsequent collections.
   2312   double min_in_mutator_;
   2313 
   2314   // Cumulative GC time spent in marking.
   2315   double marking_time_;
   2316 
   2317   // Cumulative GC time spent in sweeping.
   2318   double sweeping_time_;
   2319 
   2320   // Last time an idle notification happened.
   2321   double last_idle_notification_time_;
   2322 
   2323   // Last time a garbage collection happened.
   2324   double last_gc_time_;
   2325 
   2326   Scavenger* scavenge_collector_;
   2327 
   2328   MarkCompactCollector* mark_compact_collector_;
   2329 
   2330   StoreBuffer store_buffer_;
   2331 
   2332   IncrementalMarking* incremental_marking_;
   2333 
   2334   GCIdleTimeHandler* gc_idle_time_handler_;
   2335 
   2336   MemoryReducer* memory_reducer_;
   2337 
   2338   ObjectStats* object_stats_;
   2339 
   2340   ScavengeJob* scavenge_job_;
   2341 
   2342   InlineAllocationObserver* idle_scavenge_observer_;
   2343 
   2344   // These two counters are monotomically increasing and never reset.
   2345   size_t full_codegen_bytes_generated_;
   2346   size_t crankshaft_codegen_bytes_generated_;
   2347 
   2348   // This counter is increased before each GC and never reset.
   2349   // To account for the bytes allocated since the last GC, use the
   2350   // NewSpaceAllocationCounter() function.
   2351   size_t new_space_allocation_counter_;
   2352 
   2353   // This counter is increased before each GC and never reset. To
   2354   // account for the bytes allocated since the last GC, use the
   2355   // OldGenerationAllocationCounter() function.
   2356   size_t old_generation_allocation_counter_;
   2357 
   2358   // The size of objects in old generation after the last MarkCompact GC.
   2359   size_t old_generation_size_at_last_gc_;
   2360 
   2361   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
   2362   // this variable holds the number of garbage collections since the last
   2363   // deoptimization triggered by garbage collection.
   2364   int gcs_since_last_deopt_;
   2365 
   2366   // The feedback storage is used to store allocation sites (keys) and how often
   2367   // they have been visited (values) by finding a memento behind an object. The
   2368   // storage is only alive temporary during a GC. The invariant is that all
   2369   // pointers in this map are already fixed, i.e., they do not point to
   2370   // forwarding pointers.
   2371   HashMap* global_pretenuring_feedback_;
   2372 
   2373   char trace_ring_buffer_[kTraceRingBufferSize];
   2374   // If it's not full then the data is from 0 to ring_buffer_end_.  If it's
   2375   // full then the data is from ring_buffer_end_ to the end of the buffer and
   2376   // from 0 to ring_buffer_end_.
   2377   bool ring_buffer_full_;
   2378   size_t ring_buffer_end_;
   2379 
   2380   // Shared state read by the scavenge collector and set by ScavengeObject.
   2381   PromotionQueue promotion_queue_;
   2382 
   2383   // Flag is set when the heap has been configured.  The heap can be repeatedly
   2384   // configured through the API until it is set up.
   2385   bool configured_;
   2386 
   2387   // Currently set GC flags that are respected by all GC components.
   2388   int current_gc_flags_;
   2389 
   2390   // Currently set GC callback flags that are used to pass information between
   2391   // the embedder and V8's GC.
   2392   GCCallbackFlags current_gc_callback_flags_;
   2393 
   2394   ExternalStringTable external_string_table_;
   2395 
   2396   MemoryChunk* chunks_queued_for_free_;
   2397 
   2398   size_t concurrent_unmapping_tasks_active_;
   2399 
   2400   base::Semaphore pending_unmapping_tasks_semaphore_;
   2401 
   2402   base::Mutex relocation_mutex_;
   2403 
   2404   int gc_callbacks_depth_;
   2405 
   2406   bool deserialization_complete_;
   2407 
   2408   StrongRootsList* strong_roots_list_;
   2409 
   2410   ArrayBufferTracker* array_buffer_tracker_;
   2411 
   2412   // The depth of HeapIterator nestings.
   2413   int heap_iterator_depth_;
   2414 
   2415   // Used for testing purposes.
   2416   bool force_oom_;
   2417 
   2418   // Classes in "heap" can be friends.
   2419   friend class AlwaysAllocateScope;
   2420   friend class GCCallbacksScope;
   2421   friend class GCTracer;
   2422   friend class HeapIterator;
   2423   friend class IdleScavengeObserver;
   2424   friend class IncrementalMarking;
   2425   friend class IteratePointersToFromSpaceVisitor;
   2426   friend class MarkCompactCollector;
   2427   friend class MarkCompactMarkingVisitor;
   2428   friend class NewSpace;
   2429   friend class ObjectStatsVisitor;
   2430   friend class Page;
   2431   friend class Scavenger;
   2432   friend class StoreBuffer;
   2433 
   2434   // The allocator interface.
   2435   friend class Factory;
   2436 
   2437   // The Isolate constructs us.
   2438   friend class Isolate;
   2439 
   2440   // Used in cctest.
   2441   friend class HeapTester;
   2442 
   2443   DISALLOW_COPY_AND_ASSIGN(Heap);
   2444 };
   2445 
   2446 
   2447 class HeapStats {
   2448  public:
   2449   static const int kStartMarker = 0xDECADE00;
   2450   static const int kEndMarker = 0xDECADE01;
   2451 
   2452   int* start_marker;                       //  0
   2453   int* new_space_size;                     //  1
   2454   int* new_space_capacity;                 //  2
   2455   intptr_t* old_space_size;                //  3
   2456   intptr_t* old_space_capacity;            //  4
   2457   intptr_t* code_space_size;               //  5
   2458   intptr_t* code_space_capacity;           //  6
   2459   intptr_t* map_space_size;                //  7
   2460   intptr_t* map_space_capacity;            //  8
   2461   intptr_t* lo_space_size;                 //  9
   2462   int* global_handle_count;                // 10
   2463   int* weak_global_handle_count;           // 11
   2464   int* pending_global_handle_count;        // 12
   2465   int* near_death_global_handle_count;     // 13
   2466   int* free_global_handle_count;           // 14
   2467   intptr_t* memory_allocator_size;         // 15
   2468   intptr_t* memory_allocator_capacity;     // 16
   2469   int* objects_per_type;                   // 17
   2470   int* size_per_type;                      // 18
   2471   int* os_error;                           // 19
   2472   char* last_few_messages;                 // 20
   2473   char* js_stacktrace;                     // 21
   2474   int* end_marker;                         // 22
   2475 };
   2476 
   2477 
   2478 class AlwaysAllocateScope {
   2479  public:
   2480   explicit inline AlwaysAllocateScope(Isolate* isolate);
   2481   inline ~AlwaysAllocateScope();
   2482 
   2483  private:
   2484   Heap* heap_;
   2485 };
   2486 
   2487 
   2488 // Visitor class to verify interior pointers in spaces that do not contain
   2489 // or care about intergenerational references. All heap object pointers have to
   2490 // point into the heap to a location that has a map pointer at its first word.
   2491 // Caveat: Heap::Contains is an approximation because it can return true for
   2492 // objects in a heap space but above the allocation pointer.
   2493 class VerifyPointersVisitor : public ObjectVisitor {
   2494  public:
   2495   inline void VisitPointers(Object** start, Object** end) override;
   2496 };
   2497 
   2498 
   2499 // Verify that all objects are Smis.
   2500 class VerifySmisVisitor : public ObjectVisitor {
   2501  public:
   2502   inline void VisitPointers(Object** start, Object** end) override;
   2503 };
   2504 
   2505 
   2506 // Space iterator for iterating over all spaces of the heap.  Returns each space
   2507 // in turn, and null when it is done.
   2508 class AllSpaces BASE_EMBEDDED {
   2509  public:
   2510   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
   2511   Space* next();
   2512 
   2513  private:
   2514   Heap* heap_;
   2515   int counter_;
   2516 };
   2517 
   2518 
   2519 // Space iterator for iterating over all old spaces of the heap: Old space
   2520 // and code space.  Returns each space in turn, and null when it is done.
   2521 class OldSpaces BASE_EMBEDDED {
   2522  public:
   2523   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
   2524   OldSpace* next();
   2525 
   2526  private:
   2527   Heap* heap_;
   2528   int counter_;
   2529 };
   2530 
   2531 
   2532 // Space iterator for iterating over all the paged spaces of the heap: Map
   2533 // space, old space, code space and cell space.  Returns
   2534 // each space in turn, and null when it is done.
   2535 class PagedSpaces BASE_EMBEDDED {
   2536  public:
   2537   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_SPACE) {}
   2538   PagedSpace* next();
   2539 
   2540  private:
   2541   Heap* heap_;
   2542   int counter_;
   2543 };
   2544 
   2545 
   2546 // Space iterator for iterating over all spaces of the heap.
   2547 // For each space an object iterator is provided. The deallocation of the
   2548 // returned object iterators is handled by the space iterator.
   2549 class SpaceIterator : public Malloced {
   2550  public:
   2551   explicit SpaceIterator(Heap* heap);
   2552   virtual ~SpaceIterator();
   2553 
   2554   bool has_next();
   2555   ObjectIterator* next();
   2556 
   2557  private:
   2558   ObjectIterator* CreateIterator();
   2559 
   2560   Heap* heap_;
   2561   int current_space_;         // from enum AllocationSpace.
   2562   ObjectIterator* iterator_;  // object iterator for the current space.
   2563 };
   2564 
   2565 
   2566 // A HeapIterator provides iteration over the whole heap. It
   2567 // aggregates the specific iterators for the different spaces as
   2568 // these can only iterate over one space only.
   2569 //
   2570 // HeapIterator ensures there is no allocation during its lifetime
   2571 // (using an embedded DisallowHeapAllocation instance).
   2572 //
   2573 // HeapIterator can skip free list nodes (that is, de-allocated heap
   2574 // objects that still remain in the heap). As implementation of free
   2575 // nodes filtering uses GC marks, it can't be used during MS/MC GC
   2576 // phases. Also, it is forbidden to interrupt iteration in this mode,
   2577 // as this will leave heap objects marked (and thus, unusable).
   2578 class HeapIterator BASE_EMBEDDED {
   2579  public:
   2580   enum HeapObjectsFiltering { kNoFiltering, kFilterUnreachable };
   2581 
   2582   explicit HeapIterator(Heap* heap,
   2583                         HeapObjectsFiltering filtering = kNoFiltering);
   2584   ~HeapIterator();
   2585 
   2586   HeapObject* next();
   2587 
   2588  private:
   2589   struct MakeHeapIterableHelper {
   2590     explicit MakeHeapIterableHelper(Heap* heap) { heap->MakeHeapIterable(); }
   2591   };
   2592 
   2593   HeapObject* NextObject();
   2594 
   2595   // The following two fields need to be declared in this order. Initialization
   2596   // order guarantees that we first make the heap iterable (which may involve
   2597   // allocations) and only then lock it down by not allowing further
   2598   // allocations.
   2599   MakeHeapIterableHelper make_heap_iterable_helper_;
   2600   DisallowHeapAllocation no_heap_allocation_;
   2601 
   2602   Heap* heap_;
   2603   HeapObjectsFiltering filtering_;
   2604   HeapObjectsFilter* filter_;
   2605   // Space iterator for iterating all the spaces.
   2606   SpaceIterator* space_iterator_;
   2607   // Object iterator for the space currently being iterated.
   2608   ObjectIterator* object_iterator_;
   2609 };
   2610 
   2611 
   2612 // Cache for mapping (map, property name) into field offset.
   2613 // Cleared at startup and prior to mark sweep collection.
   2614 class KeyedLookupCache {
   2615  public:
   2616   // Lookup field offset for (map, name). If absent, -1 is returned.
   2617   int Lookup(Handle<Map> map, Handle<Name> name);
   2618 
   2619   // Update an element in the cache.
   2620   void Update(Handle<Map> map, Handle<Name> name, int field_offset);
   2621 
   2622   // Clear the cache.
   2623   void Clear();
   2624 
   2625   static const int kLength = 256;
   2626   static const int kCapacityMask = kLength - 1;
   2627   static const int kMapHashShift = 5;
   2628   static const int kHashMask = -4;  // Zero the last two bits.
   2629   static const int kEntriesPerBucket = 4;
   2630   static const int kEntryLength = 2;
   2631   static const int kMapIndex = 0;
   2632   static const int kKeyIndex = 1;
   2633   static const int kNotFound = -1;
   2634 
   2635   // kEntriesPerBucket should be a power of 2.
   2636   STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
   2637   STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
   2638 
   2639  private:
   2640   KeyedLookupCache() {
   2641     for (int i = 0; i < kLength; ++i) {
   2642       keys_[i].map = NULL;
   2643       keys_[i].name = NULL;
   2644       field_offsets_[i] = kNotFound;
   2645     }
   2646   }
   2647 
   2648   static inline int Hash(Handle<Map> map, Handle<Name> name);
   2649 
   2650   // Get the address of the keys and field_offsets arrays.  Used in
   2651   // generated code to perform cache lookups.
   2652   Address keys_address() { return reinterpret_cast<Address>(&keys_); }
   2653 
   2654   Address field_offsets_address() {
   2655     return reinterpret_cast<Address>(&field_offsets_);
   2656   }
   2657 
   2658   struct Key {
   2659     Map* map;
   2660     Name* name;
   2661   };
   2662 
   2663   Key keys_[kLength];
   2664   int field_offsets_[kLength];
   2665 
   2666   friend class ExternalReference;
   2667   friend class Isolate;
   2668   DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
   2669 };
   2670 
   2671 
   2672 // Cache for mapping (map, property name) into descriptor index.
   2673 // The cache contains both positive and negative results.
   2674 // Descriptor index equals kNotFound means the property is absent.
   2675 // Cleared at startup and prior to any gc.
   2676 class DescriptorLookupCache {
   2677  public:
   2678   // Lookup descriptor index for (map, name).
   2679   // If absent, kAbsent is returned.
   2680   inline int Lookup(Map* source, Name* name);
   2681 
   2682   // Update an element in the cache.
   2683   inline void Update(Map* source, Name* name, int result);
   2684 
   2685   // Clear the cache.
   2686   void Clear();
   2687 
   2688   static const int kAbsent = -2;
   2689 
   2690  private:
   2691   DescriptorLookupCache() {
   2692     for (int i = 0; i < kLength; ++i) {
   2693       keys_[i].source = NULL;
   2694       keys_[i].name = NULL;
   2695       results_[i] = kAbsent;
   2696     }
   2697   }
   2698 
   2699   static int Hash(Object* source, Name* name) {
   2700     // Uses only lower 32 bits if pointers are larger.
   2701     uint32_t source_hash =
   2702         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source)) >>
   2703         kPointerSizeLog2;
   2704     uint32_t name_hash =
   2705         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name)) >>
   2706         kPointerSizeLog2;
   2707     return (source_hash ^ name_hash) % kLength;
   2708   }
   2709 
   2710   static const int kLength = 64;
   2711   struct Key {
   2712     Map* source;
   2713     Name* name;
   2714   };
   2715 
   2716   Key keys_[kLength];
   2717   int results_[kLength];
   2718 
   2719   friend class Isolate;
   2720   DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
   2721 };
   2722 
   2723 
   2724 // Abstract base class for checking whether a weak object should be retained.
   2725 class WeakObjectRetainer {
   2726  public:
   2727   virtual ~WeakObjectRetainer() {}
   2728 
   2729   // Return whether this object should be retained. If NULL is returned the
   2730   // object has no references. Otherwise the address of the retained object
   2731   // should be returned as in some GC situations the object has been moved.
   2732   virtual Object* RetainAs(Object* object) = 0;
   2733 };
   2734 
   2735 
   2736 #ifdef DEBUG
   2737 // Helper class for tracing paths to a search target Object from all roots.
   2738 // The TracePathFrom() method can be used to trace paths from a specific
   2739 // object to the search target object.
   2740 class PathTracer : public ObjectVisitor {
   2741  public:
   2742   enum WhatToFind {
   2743     FIND_ALL,   // Will find all matches.
   2744     FIND_FIRST  // Will stop the search after first match.
   2745   };
   2746 
   2747   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
   2748   static const int kMarkTag = 2;
   2749 
   2750   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
   2751   // after the first match.  If FIND_ALL is specified, then tracing will be
   2752   // done for all matches.
   2753   PathTracer(Object* search_target, WhatToFind what_to_find,
   2754              VisitMode visit_mode)
   2755       : search_target_(search_target),
   2756         found_target_(false),
   2757         found_target_in_trace_(false),
   2758         what_to_find_(what_to_find),
   2759         visit_mode_(visit_mode),
   2760         object_stack_(20),
   2761         no_allocation() {}
   2762 
   2763   void VisitPointers(Object** start, Object** end) override;
   2764 
   2765   void Reset();
   2766   void TracePathFrom(Object** root);
   2767 
   2768   bool found() const { return found_target_; }
   2769 
   2770   static Object* const kAnyGlobalObject;
   2771 
   2772  protected:
   2773   class MarkVisitor;
   2774   class UnmarkVisitor;
   2775 
   2776   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
   2777   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
   2778   virtual void ProcessResults();
   2779 
   2780   Object* search_target_;
   2781   bool found_target_;
   2782   bool found_target_in_trace_;
   2783   WhatToFind what_to_find_;
   2784   VisitMode visit_mode_;
   2785   List<Object*> object_stack_;
   2786 
   2787   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
   2788 
   2789  private:
   2790   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
   2791 };
   2792 #endif  // DEBUG
   2793 }  // namespace internal
   2794 }  // namespace v8
   2795 
   2796 #endif  // V8_HEAP_HEAP_H_
   2797